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A UNIFIED THEORY OF PLASTIC BUCKLING OF COLUMNS AND PLATES

By ELBRIDGEZ.STOViWLL

SUMMARY

on the basis of modern plasticity considerations, a unified
theory of pladie buckling applicable to both columns and plates
has been dereloped. For uniform compreseian, the theory.
8hows that long columns which bend withowt appreciable
titing require the tangent rnodulu~ and that long $anges
which tm”st without appreciable bending require the secant
nwdwhis. Structures that both bend and twist when they
buckle require a modulu8 which is a combination of the 8ecant
modu[us and the tangent moduhL8.

INTRODUCTION

The calculation of the critical compreesiw stress of
columns and of structures made up of pktes is an important
problem in aircraft design. Formulas for the critical com-
pressive stresshave been worked out for Q multitude of cases
of both columns and plates, but these formulas are accurate
only if the buckling takes place. w-ithin the elastic range of
the material. In presentday designs, most buckling occurs
above the elastic range. The usurdmethod of handling this
problem is to retain tdI the formulas clerked for the elastic
case.,but to try ta dieccwer an effecti~e, or reduced, modulus
of elasticity which will give the correct result when inserted
into these formulas.

Column buckling was the first structural problem to be
studied in the plmtic range. k the latter part of the nine-
teenth century, Engesser proposed use of the tangent
modulus as the reduced modulus for cohmms. At ahnost
the same time, in the belief that the column would be
strengthened by udoading on the convex side, ConsicRre.
suggested that the effective modulus should lie between the
tangent modtius and Young’s modulus. This concept -was
subsequently refined by Engesser and by Von K&rmtin
(reference I) and led to what is generally knowm as the
“double modulus.”

Experiments have shown, however,” that the Ton IGfrmt!n
double modulus gives values that are too high for the column
strength (reference 2) and that the correct modulus is
probably the tangent modulus. Shanley (reference 3) has
stated the situation compactly as follows: W the tangent
modulus is used directly in the Euler formula, the resulting
oritical load is somewhat lower than that given by the re-
duced modulus theory. This simpler formula, originally
proposed by Engeeser, is now widely used by engineers,
since it gives -dues that agree very well with test data.”
Further careful tests by Shanley (reference 4) and aIso by
Langley structures research laboratory have shown that @e
unloading on one side of the column, postulated by

Von K6rm6n, doss not occur at buckling and that the correct
modulus for columns is actuaUy the tangent modulus. This
concksion also has theoretiml justification (references 3 .”
and 4). ”

In the case of 100alor plate buckling, the reduced modulus
is appreciably higher thnn the tangent modulus. Tests .
of the local buckling stress.of aircraft.-~ction cohunns ha~’e
been made by Qerard (reference 5), who bS swgeste~ the_

use of the secant moduke for this type of buckling. Exten-
sive tests in the Langley strneturas research laboratory on
similar aircraft sections made and reported over a period
of several years ancl summarized in reference 6 have also ..__
shown that the reduced modulus for plates is in the vicinity
of the secant modulus.. In particuk, testsof long aluminum-
alloy cruciform-s~tion cohmnsl ckignecl to budde by

twisting without appreciable bending, haw been made
in a manner simfiar to that described for the aircraft-section
columns in reference 6. The results have .$hown that the
reducecl modulus for pure twisting is very close to the
seoant modulus.

The present paper constitutes a theoretical investigation
of the buckling of plates beyond the elastic range, which
includes columns as.a limiting case. Such an investigation
requires a knomdedge of the. relations between the skx.as
and strain components beyond the elastic range. These
relations have not as yet been conclusively determined.
A recent paper by Handelman and Prager (reference 7)
based on one possible set of stress-strain relations. led to..
regtits for the buckhg of hinged fiang= in sharp d@gr:e-_ ....
ment with test rewdts obtained at the Langley structures
research laboratory. Another set of stress-strain rektions
is genera.IIyaccepted by the Russian investigateors and has
been applieclby Ilyushin (reference 8) to the stre= condi~io=-”’;
in thin plates. These re.wdts form the foundation of the
present paper, which assumes that in plates as well as in
cokmne unIoading during the early stages of buckl@ does
not occur. On this basis, a uni6ed theory of plastic buckling
applicable to both cohnnn and local buckling has been
developed. The results are presented in the folloting section..-.

RESULTS AND CONCLUSIONS

IIyushin (reference 8) has treated the stability of plates
stressed above the elastic limit with consideration of the ‘- ‘.
three possib~e zones that might result from buckling:.
(I) a purely elastic zone, (2) a zone in -which part of the_ __
material is in the elastic and part k in the plastic state—
the “ elasto-plastic” zone, and (3) a purely plastic zone in
which all of the plate is stressed beyond the elastic limit.
Ml three zones may exist simuhaneously if the plate is not
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entirely in the plastic state before buckling or if the buckling
is aIIowed to proceed beyond the initird stages.

If, however, the pIate is uniformly Ioaded before buckling
so that all parts of it are initially at the same point in the
plastic range and if, in addition, buckling and increasti.in
Ioad are assumed to. progress simultaneously, then the plate
may be expected to remain in the purely pIastic state in the
early stages of buckling. This second assumption is in
agreement with the corresponding condition that apparently
holds for. columns (reference 4).

Upon the assumption that the pIate remains in the pureIy
plastic state during buckling, Ilyushin’s general relations for
this state have been used to derive the differentia.Iequation

of equilibrium of the plate under combined loads. since
criticaI stres9e9are generally simpler to compute from euergy
expressions than from a difkrential equation, the correspond-
ing energy expressions were also found. Thmc derivations
are given in appendix A, Logetherwi~h applications to com-
pressive buckLingof various types of p~ates. A comparison
with Ilyusb’s .tre@ment Qf the plastic-buckling problem is
given in~ppendix B.

The r&ults of most interest in the present analysis are
given in .t~e fo~o.ying table “asvalues of a quantity $?,tllo
number by which the critical stress computed for tho elastic
case must”be multiplied to give th~ critical stress for tho
plastic case.

. .

Structure

I1“ ‘ - “:-a’g’~:) $-”” ‘“-’ 7-” “
Long flange, one un- .

loaded edge E@p]y
~ -..nec-E II A

supported

Long flagge, one un- E“
loaded edge clamped ( -J-) .”IB”I_EE-So.330+o.67? 3+$ Em

Longjlates, both un-
loaded ed w .timply
supportJ +(i+i-)” c

Lo;~&pl;t~ both un- ‘E
edges —e?

clamped ( ,, .-JW2) ‘“
~. 0.362+0.648

-

Short pIate loaded asa

()

3 Et= ““-—
column ; <1

; ++4 E

‘“--’””E ““

E

.-.
Square plate loaded as

()
0.114 ‘;w”:Oii6 ~~a column ~= 1 F

;..

Long Cohlmn
( )1 “.

;>>1 E—- . -.
.17, .

I

G

. .-

These values of q m-eplotted as curves A to G in figure 1 for
extruded 24S-T aluminum aIIoy for -which the compressive
yield stress was 46 ksi. SimiIar curves for ~ COUIC1readily
be prepared for any other material having a known strese-
strain relationship.

The vaIues of q given in the table. were obtained by
dividing the critical stress -of tlw structure in the plastic
region by the criticaI stress that would be obtained on the
assumption. of perfect elasticity. Since Poisson’s rtitio his
been taken as one-half in both computations, errors. from
this cause will ordinarily be present in botb critical stresses.
Most of these errors will be ehninate.d, however, in the
process of division to obtain T; and, consequently, the values
of q given are believed to be nearly comect.

When plate-buckling stre~w in the plastic range are to be
computed, the experimental value of Poisson’s ratio that
applies as closely as possibIe to the stressed matefiid, tQ-
gether with the appropriate value of q from this paper,
should be used in the pIate-buckling formula,

EThe highest value of ~“which is ~ can bc realized only if

there is negligible longitudinal bending (as with a long hinged
flange whim b@cIes by twisting). The lowest vah of q

Ewhich is -& occurs when the longitudinal beudmg pre-

dominates over other types of distortion (as wiLh a long
column under Eulei buckIi@. The theory impIiea that Q
change in the stressatrain curve caused by prestrcssingof the
material would alter the value of q in th firsb case but not
in the second; if the buckling stress is higher than the highest
stress re~ched during the operation of prestrcssing. If, on
the other hand, the bu@ling stress is Iower than the highest
stressreatied during the operation of prcstre&ng, then q= 1
for each caste.

LANGLEY.-.MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANQLEY FIELfi~VA.Y”J@ f!9,1947. ‘-
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Compressive stress, AS-=

FIGUREI.-Computed cnrves showingvarfatfonof v with st.rsssfor varfousstrudmres of MET alnmioumEIIOYfn eompredon. (Curves A to G ars dtavin for a msterfd wfth a yfeld
stress of 46 M. Cfrelmare test dats kom emdform s?ctfons and the eatter band enclostngcurve A shows the Malts of varfatkn of the wueffmmation Woperttesfmm 46 kaf.
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APPENDIX A
THEORETICAL DERIVATIONS

Deihitions.-The intensities of stress and strain are
defined in reference ~“ respectively, as .

ci=du:+u:–uz~v+3?

where
u= stress in the direction
e= strain in the x-direction
a~ stress in the y-direction
E# strain in the y-direction
r shear stress —
1’ shear strain

-(1)

(2)

According to the fundamental hypothesis of the theory of
plasticity, the intensity of stress a, is & uniquely defined,
single-valued function of the intasit y of strain e{ for any
given material if Uf increases in magnitude (lcmcling con-
dition). If at decrcascs (unloading condition), the relation
between at and e~becomes linear as-in a purel-y elastic cas~

In the equations of definition (1,) and (2) j the intierial is

taken to be incompressible and Poisson’s ratio=;. The

stress-strain relations compatible. with the equations of
definition (1) and (2) are:

.

(3)

These relations imply isotropy of the material.

‘ Variations of strain and stress,—l~en buckling occurs,
let e., e,, and 7 vary slightly from their values before buckling.
The variations 8e., &ti, and 67 will arise partly fmrn the
variations of middle-surface strains and. partly from strfiins
due to bending; tlms,

,.
ckz= 61— 2X*

&v= c%—2%

} ~~ . . . .

(4)

87=2e3—2zxg

130

in which cl and ez me middle-surface strain”variations and
e~ is “the tiddle-surface shear-strain variation, x and xi
are the changes in curvature and ~ is the change in twisl.,
and z is the distance out from the middle surface of the plate.

The corresponding variations 6S,, &Sw)and & in S., .S”,
and r must “be computed. From equations (3),

S.= Esece.
therefore .,

()
M==”I?JE=+ %8 ;

(5)

NOW “the T’ariatiofiof the work of the internal forces is

;..... r16ei=U&Ez+Cr#EM+T i$~

so that ~..

&i= U=t%=+u&u+ T67 . .
Cri

u#l+ Ufia+2TE3—2(C.XI+ u#fi+ 2TXJ–.-=
at (G)

Substitution of this value of lie*in equation (6) gives

6S==Efle&-

Let the coordinate of the surface for which 6ei=0 (the neutral.
surface) be z=%. The expression for % is obtained by seh
ting tle,=O in equation (6);

u~l+ ufi~+2TE8

‘= C72X1+ ffnx2+fhx3

By introduction of this coordinate into tk exprcmio~lfor &
dri

and by r~ognition of ~~as Etiooand — as Etm
dei

&SJ==E8ec(e,-2x,) +

~ (Eseo”–EtaJ(aZ~+rM~+2rXJ (z– z,) (8) -

In a similar way it may be shown that

WP=.EJC2- axg)+

, .% (E8eo—Etm)(ci.xl+ CrrX3+2@ (z–~) (9)

and

~r=~ Ea~(e8-”zxJ +

& ‘E””
–EtaJ (CTzX,+u,X,+2W) (z–a) (10) “
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Variations of forces and moments,—For the vmiutions
ii~~,and il.fzY

BU~ING OF COLUMNS

of the impressed forces

h

f

T
m=,= &Z dz

ht -T
.

whure h is the thNmcss of the plritc.

From equations (3), (8), and (9),

AND PLATES 131

T=, T,, and T,v and the moments Alz,

(11)

. .

—

-1

(12)

-.

(13)

(14)

In these expressions, the integrations of &Sz,&5’,jand &in the plastic region have been taken over the entire thickness of @
plate, with the implication that no part of the plate is being unloaded. .-
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Equation of eqnilibrium,— If w (z, y) is the bending deflection. of the plate at buckling, and if no external moments are
applied to the platel then the equation of equilibrium of an element of the plate may be written

(15)

in which the impressed forces ush, afi, and rh are considered as given (a: and Cvare positive for compression). In terms of
w, the changes in curvatures are

azw
xl== (lt3a)

and —
VW .

X2=”3
m (ltlb)

The change in twist is -.
a~w ‘.... ._Q -a= ___ (16c)

When the vahws of W., 3MV,and bikizrin equations (12), (13), arid (14), respectively, are d~erentiated as required by
equation (15) and substituted in that equation, the general differential equation of equilibrium for a plate in the plastic~stutc
is obtained as foIIows:

(17)

In the elastic range, equation (17) reduces to the usual form

where
( a~w )Ww=-”jju, g+ u, .p+ “%—

It a~~

“D_&3. . ._ ..:.._
— -.

9
— -.

Energy i.ntegrals,—Equatiori (17) is the Euler equation that results from a minimization of the integrti[

which represents the Wference between the strain energy in the plate and”the work done on the plate by !the external forces.
The coefficients in this integral are:

In the plust~c region In the elastic region

c’=+(:)(+)
“=’%4-2) “:

3“=”32W-%J-C8=1-3

“=’%(1-25 -

“=’-%)0-2)

c,=]

C,=o

454=0

“,=1

—
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If there is a restraint of magnitude ~along one longitudinal edge of the plate, the strain energy in this restraint itself is taken
to be

w[(%)rd~ (19)

if VOis the edge coordinate. (See reference 9 for form of expression.) In expression (19), the st.itbss D’ is assumed to be
the same as that in equation (12). If restraints are present aIong two s@=, there will be two terms similar to expression (19).
These terms may be added to integral (18) as additional strain energy.

&iticaI stress in plastic region.—If the int.egmd(18), s.upplemented if necessary by additiomd terms of the form of ex-
pression (19), is set equal to zero and the resulting equation ‘soI-redfor uf, the critical-stress intensity in the plastic region
(Ui).1 is

in which the vahms of the C’s in the plast’icrange are used. This expression for the critical-stress intensity may be minimized
as with the c.mmxponding elastic case.

If the values of the (2’s in the elastic region are used in formula (20, the critical-str- ~te~ity iU the elastic retion _

(21)

Expression for q,—A quantity ~ is defined as
(U,)p, ,.

q=(r,).,
(“y

This quantity is a direct measure of the effectiveness of plasticity in reducing the critical stress of a structure, and its com-
putation in terms of the constants of the stress-strain curve represents the solution of the problem of phstic buckling.

Application to plates compressed in the Airection,–-The theory wi.11now be applied to flat,, rectangular plates I@-
formIy compressed in the zdirection. Values of q will be computed for the folIowing cases:

I. kmg plates with one free edge (flanges), the other edge being either hinged oi clamped
II. Long plates with both edgffl either hinged or clamped

III. Plates with two free edges (cohmms)

W%en crv=r=O, u~=a. and the plasticity cdicients reduce to

C,=c,=o

The differential equation of equilibrium, equation (17), then becomes

and the corresponding energy expression (20) for the critical stress in the phistic range becomes

(24)
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case I: Elastically restrained flange
If y=O is the elastically restrained edge of the flange and Y=b is the free edge, a deflection surface known to be good in

the elastic rmge and presufiab]y satisfact&y aIso beyo~d this;ange is (referenc~ 9)

‘={i+*[@)+al(iY+@oY+a’(%Yl}co’~
where

a*=–4.96:3

az=9.852

as=–9.778 .

a~ide is the magnitude ol.the elastic restraint.. Substitution of this expression for w in equation (24)

*

gives

.

~tgt’@ ... ..-

where
c1=O.23694

Q=0,79546

ca=0.893Wi

In order to find the miuimurn value of (u.) pi,

which gives

J

The minimum wdue of (uJ,1 is therefo;.e

c4=0.04286 ““ C7=0.19736

cS=O.56712 C*=–2.3168

c,= O.17564 cg=4.0982

2;+;(c2-;c8)+:(co-;%)+2./aJ;[l+?)(++%+$)+Dfw
(ar)pl=~ “c>”””

++g,-+@ ‘“ “-”-””” ‘“-

~.. . .

.—. . . .

. .. . . . ...>.. _.

For the elastic cme, the same repression is obtfiined from equation (21]with C’,= 1 and D’ replaced by ~. From Cq~l~tiOn (’W,

therefore,

, (a) If the edge y=O is hinged, ~=0 and=from equation (25),

E*PI-~a-
E - ‘“. :: (26)

This value, as a function of stress, is plotted as curve A for
24S-T aluminum alloy in flg~e 1. The individual points
represent the NACA testd of the buclding crf.cruciform
section columns for which .thc.condition e= Ois fulfilled.

(b) If the edge y=O is clamped, c= co and, from equa-
tion (25),

.-.“

. “““d(c+7)+2J@‘-””

‘==-+(’+)+23”7.“ : ‘: “.
or

I (
-- q=E~ 0.330+0.670

$w) ““ ’27’ ~ “-

This value of ~ is plotted Lq curvo B for MS-T aluminum
alloy in figure 1.
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Case H: Flute elasticallyrestrained along two unloaded edges

If y= A: are the immovable unloaded edges which are

elastically restrained against rotation by restraints of ma.@-
tude c, a satisfactory deflection surface is known to be
(reference 10)

‘=[wa+(’+$’os$’lcos?
Substitution of this exprwsion for w in equation (24) gives

where

0.0N7e2+0.297e+;
flk)=

0.00461#+0.0947e+;

and

f,(e) =
0.0114e’+0.1894e+l

1
0.00461#+0.0947e+;

ln order to find the minimum due of (az),i

which gives
b’ fl(4() 1%.‘-$x

The minimum value of (u.),1 “istherefore

For the elastic case, the same expression is obtained from
equation (21) with C’1=1 and lY replaced by D. From
equation (22), therefore,

(28)

(a) If the edges ~+~ are hk~ed, r=, -fl(~)=~,~’(~)=2,

and, from equation (28),

‘His value of q is plotted as curve C for 24S-T aluminum
alloy in figure 1.

(b) If the edges y=+! are clamped, e= co, -f1(6)=5.15,

Mc)=2.46, and, from eq~ation (28),

~ 946+4.52>1C~— ~ ‘.
E 6.98

This value of mis plotted as curve D for 24S-T
alloy in figure 1.

(30)

aluminum

Case 111: Plastic buckling of columns
For the discussion of the plastic buckling of cohmms, it “is

convenient to revert to the differential equation (23). The
plate, when loaded as a column, has two free edges describ$~
by the condkions

—.

~$+; g) *=O
U-*T ..-

A solution of equation (23) -whichidentically satisfies the first
condition is

In order that this solution also satisfy the second
at the free edges, it is required that

condition

which is the buckliig criterion for the plate when loaded as
a column. Let

()
b ‘(1–~z)~+(;y(l –cl) = ~ (32)

where gzis a quantity to be determined for three inclix%lual
cases. B-y use of equation (32)

()

..:
d= y ‘(1+4=)

,. -—-
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and the buckling criterion given in equu.tion (31)becomes

or

()From equation (32), k= ~ ‘(C1–~2); and thus the critical

stress in the plastic range is

where

The corresponding critical ?@ess in thq.elastic range is

. ..

The reduction factor q is obtained from formula (22) as

(a) In order to investigate. the case of short columns, let
~ approach zero. Then, by definition of B,

L

2

In addition,

&z+(*-&’)(l–m) +0

The buckling criterion given in equation (33)” therefore
reduces to

[“+(:-’’)(1+’’-)1%=0‘2

The expression in the brackets approaches ~ as ‘&+O. In

order to satisfy the buckling criterion, therefore,

“ tanh ;

w
a

which can.be realized only if a is large; that is, if b/1 is Iarge.
For short columns, therefore,

[=0

and, from equation (34),

(35)

This value of ~ is plotted as curve E for 24S-T aluminum
alloy in figure 1.

(b) For a square plate, ~-l, a=~l + JI=

@=&r~l – J= and’ the buckling critefion ~v&

equation <33)becomes -

[’2+(+-’2)(’+”’-)1‘d$~~)-
2–

. .

.’ -’-.
in

.-

[“+(+-’’)~)l’an$qy)’oqy)’o
2––

which is satisfied by ~z= 0.15375. From equation (34),

?=0.114 ++0.886 + (36)

This value of q is plotted as curve F for 24S-T aluminum
alloy in figure L

(c) For long columns, a and 6 become so small that

tlanh~ tan ~
— .

a -p-l_
.—

.-,-- 2 3-

and the buckling criterion of equation (33) reducca to

[’+(++)(’+;=)l-[’’+(+-’)~~)l=.
which is ~itisfied by :2=~0 From equation (34),

This value of q agre~ with. the
references 2 and 4 and is plotted
aluminum alIoy in figure 1..

.
— (37)

experimental remdts of

as curve G for 24S-T



APPENDIX B

COMPARISON WITH ILYUSHIN’S STABILITY CALCULATIONS

The basic difTereme between I&din’s solution of the
plastic-budding problem and that given in this paper is that
IIyushin considers the plate to unload on one face as it
buckles. The unloading process results in the creation of
an elastic-plastic zone in the plate, and di&rent equations
from those that apply when the plate remains plastic during
the buckling process are required for this zone.

The differential equation for the buckling of a rectangular
plate when bu@cling is accompanied by unloading is given
by Ilyushin as equation (3.43) of reference 8. For simple
compression in the z-direction this equation is of the same
form as equation (23) of the present paper, but with the
following diflerent constants: ~ is used instead of 11’ and

k=l–hr’(3–2r)

is used instead of ‘&*. In the formula

tion (3.1) of referenl~ 8,

~=l–J=l

h

and, from equation (1.22) of reference 8,

A=I–>=

When the values of f and h are inserted

for k

for k, from equa-

into the expression

E
Computation shows that k is always larger than ~) so

see

that the use of k in place of ~% will redt in appreciably

higher values of T than those given in the present paper.

Site Iiyushin uses the elastic -wdue~, there is no possibility
of the solution yielding a secant modulus. Cu&res A to G.
in figure 1, if computed from Ilyushin’s equation (3.43))
would start with a horizontal line at unity for curve A
(Young’s modulus) and end with curve G exprwsing the
K4rm6n double modulus which is appreciably higher than
the tangent moduhs of this paper. If D’ were substituted
for D in Ilyushin’s equation (3.43), curve A would then

represent the secant modulus as it does in the present paper,

but curve G would still remain the lWmtin double modulus.

Therefore, when the unloading of the plate during the

buckling process is considered, results are obtained which

are not confirmed by experiment.
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