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APPROXIMATE ANALYSIS OF EFFECTS OF LARGE DEFLECTIONS AND INITIAL TWIST ON
TORSIONAL STIFFNESS OF A CANTILEVER PLATE SUBJECTED TO THERMAL STRESSES!

By Ricrarp R. HeroenreLs and Louis F. VosTeen

SUMMARY

An approximate analysis of the nonlinear effects of initial
twist and large deflections on the torsional stiffness of a cantilever
plate subjected to a nonuniform temperature distribution is
presented. The Von Kdrmdn large-deflection equations are
satigfied through the use of a veriaitonal principle. The
results show that initial twist and applied moments can have
stgnificant effects on the changes in stiffness produced by non-
uniform heating, particularly in the region of the buckling
temperature difference. Results calculated by this approrimate
analysis are in satisfactory agreement with measured torstonal
deformations and changes in natural frequency.

INTRODUCTION

One of the structural problems of high-speed flight is the
reduction of effective stiffiness of structures due to the thermal
stresses produced by aerodynamic heating. A reduction in
torsional stiffness can be an important factor in aeroelastic
problems as indicated in references 1 and 2. A similar
reduction in stiffness produced by thermal stresses pre-
sumably caused the flutter and failures of some structural
models described in reference 3. A simple method for
calculating the reduction in torsional stiffness of thin wings
is presented in reference 4. In reference 5 the results cal-
‘culated from a small-deflection plate theory are compared
with experimentally determined changes in the torsional
stiffness of a cantilever plate rapidly heated along the
longitudinel edges. The theory used in reference 5 predicted
the general effect of thermal stresses on the torsional stiffness,
as indicated by measurements of torsional deformation and
changes in natural frequency of vibration, but overestimated
the magnitude of the changes.

The purpose of this paper is to present the results of an
approximate analysis to show that the differences between
theory and experiment noted in reference 5 are due to the
nonlinear effects of large deflections and initial deformations
not included in the small-deflection analysis. The analytical
approach used to account for large deflections and initial
deformations is presented, the general significance of the
results is discussed, and calculated values are compared with
the experimental data of reference 5.
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1 Bapersedes NAQA Techmical Note 4067 by Richard B. Heldenfels and Louis F, Vosteen, 1957,

SYMBOLS

plate length in z-direction

coefficients of series expansion for plate
deflection

half-plate width in y-direction

coefficient of stress function

. Ep

plate flexural stiffness, Ba—)

modulus of elasticity

stress function defining stress distribution in
plate

selected funetions of z and y

values obtained from definite integrals

torsional stiffness

torsional stiffness of flat, unstressed plate

incrementel torsional stiffness

initial incremental torsional stiffness before
heating

minimum incremental torsional stiffness

nondimensional moment

applied moment (positive in direction of
positive twist)

pressure

plate thickness

temperature -

particolar temperature difference

critical value of AT

total plate deflection

initial plate deflection

coordinate axes

coefficient of thermal expansion

small dynamic perturbation

exponential parameter of temperature dis-
tribution function

twist at plate tip

initial twist at plate tip

temperature ratio, AT/AT,,

value of A corresponding to A(GJS)nn

Poisson’s ratio

density
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G20y normal stresses in plane of plate in -
and y-directions, respectively, positive
for tension
Try shear stress in plane of plate
T time
@ nondimensional twist 4
o initial nondimensional twist
) circular frequency
o circular frequency of unheated perfect plate
o, initial circular frequency
Wrmin minimum circular frequency
a’
v? differential operator, 3 xg-l- o
s ot ot
v differential operator, 5 J:4-1-2 55 E)y’+by‘

Double dot indicates second derivative with respect to
time.
ANALYSIS

STATEMENT OF PROBLEM

The studics presented herein are primarily concerned with
the twist of a uniformly thick rectangular cantilever plate
shown in figure 1. The equations are derived to consider the

- effects of initial twist, applied moments, and thermal stresses
on the torsional deformations.and natural frequencies of
plates. The analysis involves an approximate solution of
the Von Kérmidn large-deflection equations which have been
modified to include the effects of initial imperfections and
nonuniform temperature distributions. The modified equa-
tions are (from ref. 6) ’

- D%\ dwdtw [ O%w,\?, Otw, b’*w,:l
V= ExT+E| (5 o) "o o \eroy) Tor o
(1a)
. p t(oFow OFdw , OF ow
vitw—w,) _DLD o7 oF "o of 2orogozoy) P
where F is the stress function such that
_oF - oa)

A

Fiaure 1.—Dimensions and coordinate system of cantilever plate.
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Equation (1a) is the differential equation for compatibility
in the plane of the plate and equation (1b) is the differential
equation for equilibrium of forces acting perpendicular to the
plane of the plate. The solution of equations (1), subject to
the proper boundary conditions on the deflections and
stresses, describes the behavior of the plate under the applied
loads p and the temperature distribution 7. For the purpose
of this paper the assumption is made that no external loads
are applied in the plane of the plate so that the inplane
stresses defined by the stress function F are zero at tho free
boundaries (stress-free edges). Equations (1) apply to both
the dynamic and the static problem if p includes the dynamic
loads as well as static loads.

APPROXIMATE SOLUTION OF EQUATIONS

Exact solutions of the Von Kdrmdn large-deflection equa-
tions are difficult to obtain, but approximate solutions can be
obtained to any desired accuracy by several methods. TFor
the analysis herein equations (1) will be satisfied through the
use of the following variational principle:

’ (ff g {[Ww—w,)]ﬂ—za [b’@v—wf) b’(zg;wo
2 Ty oot (13 (TG T
A GGV ey (GE -5 5) et

e G+ oo

3 o s—=+201+ )(br )l]d:c(ly

f f taT(aF W) dz dy— f f p(w—w,)da:dy)— 3

This principle is essentially a particularization of one given
by Reissner (ref. 7) and also has been modified to include the
effects of initial deformations and a nonuniform temperature
distribution. The deflection w must satisfy the geometrical
boundary conditions, that is, the conditions imposed on slopes
and deflections. Variation of equation (3) with respect to I
yields equation (12) and the associated natural boundary
conditions, and variation with respect to w yields equation
(1b) and the associated natural boundary conditions,

The following assumptions for stress, deflection, and tem-
perature are made:

F=0f,
w="btf.
w,=041;
T=AT}s

#)
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where the stress coefficient C and the tip twist 6 are to be
determined by means of the variational principle. The func-
tions f;, 11, and f3, the initial tip twist 6;, and the temperature
coefficient AT are presumed to be known. Selection of these
quantities is discussed in appendix A. It should be noted
here that, although the temperature distribution is considered
to vary with time, the shapes of the plate deflection and of
the stress function are assumed to remain constant during
heating or loading.

The unknown coefficient of the stress function C'is obtained
by substituting equations (4) into equation (3) and taking the
variation with respect to C. The resulf is

O=—ExAT (% +ERB—0) (%) ®)
where

SIEx

b’fx) —2 a’fx a’fx

J;Iy):] dxdy (6)

2
2(1 -hu) a?:
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The relation between the twist, the load, and the tempera-
ture is obtained by performing the variation on equation (3)
with respect to the twist ¢ with € held constant. The
resulting relationship is

Db’(o—ﬂ,)L+2th’HI,—bffpfg dz dy=0 (9)

where
G833
‘ 2(1—p) azgfgy)jdxdy (10)

The pressure loading p now will be considered to consist of
a static loading p, and a dynamic or inertia loading pt wso that

P=p

For this analysis the lateral static load p, will be restricted
to two equal concentrated loads P applied at the corners
r=q, y=+b in such a way as to form a couple about the
z-axis. ‘Then

f f padrdy=m I;—otbil, (12)
where

I= f f 5r—a) ly—b) —s(y+ )] fodz dy a3
Io= f f fidx dy (14)

M=2bP (15)

pt 0 an’

and 8 is the Dirac delta function.

If the value of € from equation (5) is substituted into
equation (9) and the terms are rearranged, the resulting
expression is

62(3—0914_2%15 - af,+2‘;_(;2"Ea ATI;?

4
Zg’ Bo(—on L U" (16)
which gives the relationship between twist, applied moment,
inertia loading, and temperature.

DEFINITION OF PARAMETERS

It is convenient to define certain parameters which can be
obtained from equation (16) when the large-deflection effects
are neglected and the initial twist 6, is 0. Then, from
equation (16)

bzeL_;)I, —p DaL,—l—ztgaE ATI}L

(a7
If the plate is not vibrating and no loads are applied, the

criticel, or buckling, temperature difference is obtained from

equation (17) as

D LI,

A e=sfrmt LT,

(18)
Similarly, when the plate is not vibrating and the tempera-

ture is uniform (A7=0) but the load is acting, the moment-
twist relation is given by

Ma
=@, 19

where (GJ)o is the torsional stiffness of the flat plate given by

I,

(G)o=2ab*D 7 (20)

In the absence of heating and loading the frequency may be
found to be
_D L
Wy = ot I, 21
When equations (18), (19), (20), and (21) are substituted
into equation (16) the result may be written as

Ma 1., AT 2Eh? (I)*
et aT -0 @08 T T (22)

0‘_0(

If a “nondimensional” twist is defined so that

_ . PEF O
=D I #3)

aloﬁg with a nondimensional moment

Ma [2Etb* (Ip?
n=wnN D I @4)
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and a temperature ratio

AT
A= AT, (25)
equation (22) may be written simply as
1.
p—e=mthe—elf—of)— 5 0 (26)

APPLICATION TO STATIC PROBLEM

The relationship between twist, moment, and temperature

is given by equation (26) when the dynamic term ‘;’(o is 0.
Equation (26) then becomes
p—or=m-Ae— (P —of) 27

The incremental stiffness of the plate, defined as the rate of
change of moment with respect to twist, is given by

A(G]) a OM
(GJ)e  (GJ)o 08
or, from equation (27),
A (GJ) _om_

APPLICATION TO DYNAMIC PROBLEDM

In order to determine the effect of temperature, moment,
and initial twist on the natural frequency of torsional
vibration, the quantity ¢ in equation (26) is replaced by
o+e¢ sin wr where ¢ is considered to be the static solution
obtained from equation (27) and e represents a small dy-
namic perturbation about the static equilibrium position.
Subtracting equation (27) from the perturbated relation,
neglecting higher order terms in ¢, and dividing by e sin or
yields

1= —3tert (2)

The frequency may then be written in terms of the twist
and temperature as

(ﬂ>’=1—>\+3¢2— 2 29)
@ Pi

which is identical to the incremental stiffness (eq. (28)).
This identity results from assuming similar deflection mode
shapes for thermal buckling, twist due to applied moment,
and torsional vibration and would not be expected to apply
if the mode shapes involved were different.

RESULTS AND DISCUSSION
GENERAL RESULTS OF EQUATIONS

The behavior of the plate as determined by equation (26)
is discussed in the following sections for several combinations
of conditions. In most cases the calculations include large
values of initial twist and applied moment and have been
carried well into the region where the temperature difference -
AT exceeds the critical value. Although some of the results
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may be beyond the range for which the analysis is accurate,
these results have been presented to illustrate the trends
indicated by the equations despite the fact that they may
not be quantitatively correct in some regions.

Twisting due to an applied moment.—The twisting of the
plate due to an applied moment is given by equation (27) if
the temperature ratio \ is set equal to 0. The results from
this expression are presented in figure 2 for various values of
the initial twist.

In figure 2, small-deflection results would plot as lines at
45° to the coordinate axes. The large-deflection results

‘become increasingly different as the moment or initial twist

is increased and indicate that the plate becomes substan-
tially stiffer as the twist is increased.

Buckling due to nonuniform heating.—The twist of the
plate (assuming that the buckling mode is a twisting action)
is given by equation (27) when the moment m is 0; for the
initially flat plate ¢; would also be 0. The initially flat, or
perfect, plate begins to deform only after the critical tem-
perature difference is reached, whereas, as indicated by
equation (27), the plate with initial twist begins to deform
immediately upon heating. The results obtained from
evaluation of equation (27) are given in figure 3 for several
values of the initial twist.

If the initial twist is large, a plot of twist against temper-
ature ratio, like figure 3, does not give an accurate indication
of the buckling temperature. Only if the initial twist is
small is there a definite knee in the curve as the buckling
temperature is approached, but this knee occurs below tho
buckling temperature of the perfect plate.

Combined action of applied moment and nonuniform
heating.—Equation (27) applies directly to this case but
may be more conveniently written as

v/l

Figure 2.—Calculated twist as a function of applied moment for
several values of the initial twist.
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Figure 3.—Calculated twist as a function of temperature ratio for
geveral values of initial twist.

where
o' =p+m (31a)
and
N=r—(m?*+2me,) (31b)
Equation (30) now has the same form as equation {27) when
m is set equal to 0. The results plotted in figure 3 then apply
to this case also if ¢, is replaced by ¢’ and X by A'. The
moment then effectively acts the same as an initial twist
if the temperature ratio is reduced by the quantity m?+2me,.

In figure 4 the relation between moment and twist has
been indicated for two values of initial twist and several
values of . These curves show the characteristic increase
in stiffness as the twist increases but also show a reduction
in stiffness as the temperature ratio increases. These changes
in stiffness are examined further in the following section.
The portions of the curves where the slope is negative have
been shown as dashed lines and are regions of unstable
equilibrium which would not exist in the physical problem.
The unstable portion of the curve exists whenever
A pf—3p*>1.

Frequency and incremental stiffness.—As has been noted,
the square of the frequency ratio (eq. (29)) varies in the
same manner as the incremental stiffness (eq. (28)) and,
therefore, any of the following discussion perfaining to
stiffness applies directly to the square of the frequency.
Also, the figures which are presented for the incremental
stiffness have been labeled with the square of the frequency
ratio as well as with the stiffness ratio.

The variation in incremental stiffness with temperature
given by equation (28) is shown in figure 5 for several values
of initial twist when m is equal to 0. The results show that,
when the perfect plate is heated, the stiffness decreases
linearly as the thermal stresses develop and becomes zero
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Figure 4.—Caloulated twist as a function of applied moment for
several eombinations of temperature ratio and initial twist.
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Firgure 5.—Caloulated incremental stiffness as & function of tempera-
ture ratio for several values of initial twist.

when the buckling temperature difference is reached
Further heating causes the plate to twist and the twisting
in turn leads to an increase in stiffness at a rate twice that
of the initial decrease.

If the plate has an initial twist, the heating causes the
twist to increase as the heating progresses. This twist leads
to an increase in stiffness that tends to counteract the reduc-
tion produced by thermal stresses and, as a result, the
stiffness first decreases and thep increases without going
to zero. The points of minimum stiffness occur at femper-
atures lower than the buckling temperature. The locus
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of points of minimum stiffness has been indicated in figure
5 by the dashed line. If the initial twist is sufficiently
large, the stiffness does not decrease but increases with
heating.

TWhen a moment is applied to the plate, figure 5 will
indicate the incremental stiffness of the plate if ¢, is replaced
by ¢’ and A by N (as defined by eqs. (312) and (31b)).

The locus of points where the incremental stiffness is a
minimum is given by the equations

A(GJ)min pr+m
Goa(at)'
M=l p?—3(2E2)" 33)
or
A((gj))Mtﬂ*o(l )\mm‘_ﬂai ) (34)

Equations (33) and (34) show that the nonuniform heating
will increase the stiffness of the plate if the initial twist is
geater than that given by

2/3
3(2E2) tormt

The initial incremental stiffness of the plate is given by
equation (28) when N is 0. The ratio of the minimum to
the initial incremental stiffness therefore may be written as

6 ‘Pt+m )2I3
A (GJ) mtn=
AGT): 1435 —pf

Some results from equation (35) have been plotted in figure
6. This figure indicates that small changes in the initial
twist may cause large changes in the minimum incremental
stiffness. The effects of applied moment are again similar
to those of initial twist and certain combinations of the two
can lead to drastic stiffness changes. For negative values
of ¢, the curves would be similar, with the stiffness ratio
going to zero whenever g;=—m.

(35)

COMPARISON WITH EXPERIMENT

Results calculated with the previously derived equations
are compared in the following sections with the experimental
results reported in reference 5. The results given in reference
5 are for a square cantilever plate which was heated along
the two longitudinal edges by carbon-rod radiators. Typical
temperature histories of points on the heated edge and on
the longitudinal center line are given in figure 7. Heat
was supplied to the plate edges for 16 seconds; then the
plate was allowed to cool. The deformations of the plate
under the influence of nonuniform heating were determined
for the conditions of no load and applied positive and
negative tip moments. The changes in natural frequency
of the first torsion mode were also measured during a heating
test. {

The expressions used in reference 5 for stresses, deflec-
tions, and temperature are retained except that herein only
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Figure 6.—Calculated ratio of minimum incremental stiffness to
initial incremental stiffness as a funotion of initial twist for soveral
values of applied moment.
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Fraure 7.~—DMeasured temperature higstories for a heated edge and
the center line of the plate test specimen.

three terms are used for the deflections. In nondimensional

form thése expressions are

AG-TW-T
Ea@e]

1+4,+A4,

=<%>r (38)

and
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The function f; satisfies the condition of zero stress on the
free edges and f, specifies zero slope and deflection along
the root. The two undetermined coefficients of equation
(37) are established from the small-deflection buckling
analysis and carried through the large-deflection analysis as
constants. Their values are given in appendix A along with
data on the influence of the number of terms in the deflec-
tion function on the accurady with which the buckling
temperature difference, natural frequency, and ratio of twist
to an applied moment can be calculated. The exponential
parameter ¢ of the temperature function is adjusted to
approximate the varistion in the temperature distribution
during o test.

The numerical evaluation of the integrals and related
functions required for comparison of theory and experiment
are given in appendix B.

Initial plate shape.—The initial shape of the plate of
reference 6 was measured and is indicated in figure 8. In
the selection of a value of initial twist, the higher order
shapes (which are unlikely to have much influence on the
twisting) have been ignored. The free corners were con-
nected by a straight line in order to obtain a value of initial
twist of 6,=0.35° which was used for comparison of theory
and experiment.

Twist due to an applied moment.—The deformations
resulting from heating for three values of applied tip moment
are presented in figure 9 and compared with curves calculated
by use of a wvalue of 6,=0.35°. The agreement between
theory and experiment is satisfactory, although the theory
overestimates the twist in the vicinity of the maximum
temperature difference (about 16 seconds). No theoretical

results are presented past 20 seconds because, beyond this

time, the actual temperature distribution cannot be repre-
sented very well by the one-parameter temperature function.

Another comparison of measured and calculated deforma-
tions is shown in figure 10 where the abscissa is the tempera-
ture difference instead of time. Because the shape of the
temperature distribution changes with time, the portion of
the curve for decreasing AT does not retrace the heating
portion.

Natural frequency.—The changes in natural frequency
during a heating test are shown in figure 11 and compared
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Figure 8.—Initial shape of plate test specimen.
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Ficure 9.—Comparison of measured and calculated values of twist
as a function of time for the rapidly heated plate for three values of
applied moment.
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Figore 10.—Comparizon of measured and caloulated values of twist
as a function of temperature difference for three values of the ap-
plied moment.
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Figure 11.—Comparison of measured and caleulated values of fre-
quency ratio as a function of time for the rapidly heated plate.

with a calculated curve for 6,=0.35° and with the small-
deflection results of reference 5. The results calculated by
the use of the large-defiection equations are in good agree-
ment with experimental values and account for the frequency
increase measured in the vicinity of the buckling temperature.
A substantial improvement is noted over the predictions of
small-deflection theory. Tn figure 12 the frequency ratio
is shown as a funection of temperature difference.

CONCLUDING REMARKS

An approximate analysis of the effects of initial twist and
large deflections on the torsional stiffness of a cantilever
plate subjected to nonuniform heating shows that for a
perfectly flat plate the effective stiffness, and thus the
torsional frequency, decreases with increasing thermal
stress, just as predicted by small-deflection theory, and
goes to zero when the buckling temperature difference is
reached. Beyond the buckling temperature, however, the
stiffness, and thus the frequency, increases as the plate
twists. If the plate has an initial twist, it begins to deform
immediately upon heating and the stiffness decreases in
much the same way as that of the perfect plate. The incre-
mental stiffness of the initially twisted plate, however,
reaches & minimum greater than zero before the theoretical
buckling temperature difference is reached; further heating
then increases the stiffness. The minimum incremental
stiffness is a function of the initial twist and, if the initial

1.00 -
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~J ——= Calculoted
~
~
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75 T
\ ~ N //;1
\ ~ 7
, N~
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£ 50
25
o] 50 100 150 200 250
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Figure 12.—Comparison of measured and calculated values of the
frequency ratio as a function of temperature difference.

twist is sufficiently large, no reductions in stiffness are
obtained and nonuniform heating then always increases
the stiffness.

These results for stiffness changes associated with the
torsional frequency are also applicable to the stiffness of

‘the plate with respect to small changes in the applied

moment. In this case the applied moment has an effect
similar to the effect of an initial twist. If the applied moment
exactly counteracts the initial twist, the plate behaves in
much the same way as the perfect plate.

Calculated results were compared with available experi-
mental data and were found to be in satisfactory agreement
in view of the approximate nature of the calculations.

t

LANGLEY AERONAUTICAL LLABORATORY,
NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS,
Lancrey Fiewp, VA., May 15, 1957.



APPENDIX A

DISCUSSION OF MODAL FUNCTIONS USED IN THE ANALYSIS

In the analysis of the torsional deformations of the
cantilever plate by small-deflection theory, a deflection
function containing six terms antisymmetrical in the co-
ordinate y was used. The function (eq. (8) in ref. 5) is

‘?0=Ax'2372y ‘!‘-1‘1145172!/3 + AnrPy+ A2 +An1’4?l -l—A;@?‘?)"

The effect of various combinations of terms on the cal-
culated critical temperature difference, torsional frequency,
and moment-twist relation was investigated for a square
cantilever plate (¢/b=2) by use of the small-deflection theory
of reference 5. The following table shows the results obtained
by starting with a single term 4;; and then progressing
through othér combinations to six terms:

(A1)

Terms used ATy d M
Ky K1 [
A 3.9 127.0 0.324X10?
A, An 6.7 | 7.5 278
Az, Az, An 50.4 7L3 L2713
An, An, Ay, An 57.2 T4 278
Ay, An, An, Ay, Avy, Ao 50.0 701 .273

where K; and K, represent constants that include the plate
dimensions and material properties.

Inasmuch as the tabulated values were obtained from an
application of the Rayleigh-Ritz procedure, the lowest
value i3 the most accurate. The use of six terms improves
the accuracy less than 2 percent over three terms and,
consequently, is not worth the extra complication. The
large-deflection analysis thus can be made by use of only
three terms. The deflection function is nondimensionalized
for this analysis and expressed in the form

O 6]

TF A4, (42)

The relative values of these coefficients for the conditions
given in the preceding table were obtained from the small-
deflection analysis of reference 5 for the square cantilever
plate (a/b=2) with the following results:

Conditlon 1 Ax As

H-Artds | 14+-ArtAs | 14Art-As
Thermal buekling A=1, 6f0=0) e vememcmmnnnn 461 —5.76 2.14
Torsional vibratton =0, wfwe=1) . ao. 38 —4.08 1,42
Applled moment (A=0) 228 —2.01 0.65
Applled moment (\=0.5) oot 3.10 —3.20 1.10

The variation of f; with zfe for these four conditions bas
been plotted in figure 13. The table indicates & wide varia-
tion in the relative values of the coefficients but the plotted

100

“-Applied moment, A=0
50 . i
/. |

~~-Applied moment, 3=0.5

o 25 50 .75 LO0

Figure 13—Comparison of deflected shapes for thermal buckling,
torsional vibration, and twist due to an applied moment as given by
small-deflection theory.

date show that the deflection shapes are all approximately
the same. Then, so long as the calculations are used to
indicate changes from the initial conditions, any of the
modes indicated should be satisfactory.

In addition to the deflection function of equation (A2),
8 stress function and a temperature function are required in
the analysis and have been selected to correspond to those of
reference 5. For convenience, the functions are expressed
in nondimensional form as follows: :

_ X 2 2 .y 2 2z
G-
4
(%

The exponent { must be selected to describe best the meas-
ured temperature distribution at the time of interest. Note
that equation (A4) requires that the specified temperature
difference AT be the difference between temperatures at the
heated edges and the longitudinal center line. The funec-
tion f, has been chosen so that the stresses vanish on the free
boundaries. Along the root (z=0) the function requires
that the plate be free to expand parallel to the y-axis.
Although this requirement does not indicate a *built-in”

condition, it probably resembles the actual test condition.
601
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APPENDIX B

EVALUATION OF INTEGRALS AND RELATED FUNCTIONS

The integrals indicated in the analysis have been evaluated

in terms of the plate dimensions and the nondimensional’

functions given in appendix A. The integrals are as follows:

o I 23

-y o

20+ (5755) |2 to=(555) @ 7(5) +4(5) +7]
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e [T AR+ ) Sy

»2 0y brbybx Yy
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ozt : oy? dr dy
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— 2
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For the square cantilever plate (¢/b=2) and the values of
A4, and A, given in appendix A for the thermal-buckling
mode, the integrals I; to I, reduce to the following when
Poisson’s ratio p equals 0.33:

128\ 135
17\105/ 2& ®B7)
- 256 $
=75 GFGFD ®8)
.52
ka0 &)
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15 5 GF9) GFD ©2

9.567
a?

I= (B10)
The integrals I; and I have not been included but are
discussed subsequently.

The critical temperature difference given by equation (18)
then becomes

AT, (B11)

185 5 [ G0

The twist and applied moment are related to their cor-
responding nondimensional quantities by equations (23) and
(24) and may now be expressed as

Lita?

0=0.0350 [~ (B12)
m= 0035(%]% Lo B13)

Use of the thermal-buckling mode yields incorrect valucs
for the natural frequency and the twist due to applied
moment. In addition, the measured values differ slightly
from the correct calculated values as a result of the im-
perfect clamping at the root of the cantilever plate. For
these reasons, the measured initial values of torsional fre-
quency and twist due to an applied moment are used in the
calculations and the changes produced by the heating cycle
are calculated from the following equations:

>‘=1__¢i+m

+'—ot

(B14)

(&) =1r+ar—ee (B15)

The integrals /5 and 7, are needed only to calculate the
initial natural frequency and twist due to applied moment
and, thus, have not been evaluated for the mode shape of
thermal buckling.

In the calculations, results of which are presented in
figures 9, 10, 11, and 12, the following quantities were used:

E=10.6X10° psi
a=12.8X1076 °F-1
#=0.33

t=0.25 1n.

a=20 in.

b=10 in.

0,=0.35°
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