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REPORT 1000

CALCULATION OF THE AERODYNAMIC LOADING OF SWEPT AND UNSWEPT FLEXIBLE
WINGS OF ARBITRARY STIFFNESS!®

By FrangrLiN W. DIEDERICE

SUMMARY

A method is presented for calculating the aerodynamic load-
ing, the dirvergence speed, and certain stabiltty derivatives of
swept and unswept wings and tail surfaces of arbitrary stiffness.
Provision 18 made for using either stiffness curres and root-
rotation constants or structural influence coefficients in the
analysis. Computing forms, tables of numerical constants
required in the analysis, and an illustrative example are included
to facilitate calculations by means of the method.

INTRODUCTION

The distribution of the aerodynamic loading on wings and
tail surfaces is important both for the structural analysis of
these components, since it determines the applied bending
moment and torque acting at any station, and for their
aerodynamic analysis, since it affects the stability deriva-
tives to a large extent. At high speeds the aerodynamic
loading, particularly in the case of swept wings, is greatly
affected by the structural deformations caused by the load-
ing. The present report is concerned with the determination
of the effects of structural flexibility on the aerodynamic
loading of wings of arbitrary plan form and stiffness.

The present report treats the problem of aerodynamic
loading by matrix methods. Aerodynamic induction is
taken into account by means of approximate aerodynamic
influence coefficients. When more accurate coefficients
become available, they can readily be incorporated in this
method. Structural flexibility is taken into aceount in the
form of either caleulated stiffness variations or measured
influence coefficients. The required integrating matrices
are presented for both a six-point and @ ten-point solution.
For the six-point solution convenient computing forms are
included as well. The method is illustrated by means of
an example. In addition to the analysis of the aerodynamie
loading, the determination of the related divergence speed
and of certain stability derivatives is discussed.

For the convenience of the reader unfamiliar with matrix
terminology, & summary of matrix methods has been includ-
ed in the appendix. The sections entitled ‘“Application of
the Method” and, in particular, “Instructions for Solution”
mey be read without reference to the section entitled
“Derivation of the Method.”

SYMBOLS

A aspect ratio (%)

[d],[A*] aeroelastic matrices defined by equations (21)
and (35)

a section aerodynamic center, measured from leading
edge, fraction of chord

b wing span, inches

b’ wing span less fuselage width, inches

¢ chord measured parallel to the air stream, inches

3 average wing chord, inches (—b—)

€ section lift coefficient (q—lc)

section lift-curve slope, per radian
. . L
e lift coefficient (q_S)

Ce, wing lift-curve slope, per radian
(e, effective lift-curve slope for twist distributions,
¢ per radian

Casxe root bending-moment coefficient (4%)

& rolling-moment coefficient (R oﬂmi ’srfzoment)

[ matrix relatmg concentrated and accumulated
torques

[C4) matrix relating concentrated loads and accumulated
bending moments

[CH] matrix converting torques due to distributed loads
to torques due to concentrated torques

[l matrix converting bending moments due to dis-

tributed loads to bending moments due to con-
centrated loads

ET bending stiffness in planes perpendicular to the
elastic axis, pound—mches"‘

e location of elastic axis measured from leading edge,
fraction of chord

e dimensionless distance along chord from reference
axis to section aerodynamic center (¢—a)

GJ torsional stiffness in planes perpendicular to the

elastic axis, pound-inches?

[f1,[I’] integrating matrices for single integration from tip
to root

1A first row of matrix [I]

1 Supersedes NACA TN 1876—Calculation of the Aerodynamic Loading of Flexible Wings of Arbitrary Plan Form and Stiffness, by Franklin W. Diederich, April 1049,
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[II1,[II"] integrating matrices for double integration from

tip to root
L1, first row of matrix [I7]
[y integrating matrix for single integration from root
to tip (double transpose of matrix [1])
1 ’
k dimensionless parameter E%g: 61,Gfb é 352 % tan A)
K wing lift-curve-slope ratio (O;,a‘ lC’La)
L lift, pounds
l running air load per unit length perpendicular to
the plane of symmetry, pounds per inch
M accumulated bending moment (about axes parallel
to the plane of symmetry unless specified other-
wise), inch-pounds .
M, free-stream Mach number
P concentrated load, pounds
“2%97 wing-tip helix angle
€] serodynamic influence-coefficient matrix
Q., @, root-twist constants (see equation (15))
@r root-bending constant (see equation (15))
g dynamic pressure, pounds per square inch
q* dimensionless dynamic pressure
Cr,q(b'[2)%; ¢.* cos A)
G, )
g' reduced dynamic pressure (CLuq -(;— c,)
q dimensionless dynamic pressure
Cr,q(b'{2)%, tan A
(EI), cos A
S total wing area including part of wing covered by
fuselage, square inches
8 distance from wing root along reference axis, inches
T accumulated torque (abouf axes perpendicular to
the plane of symmetry unléss specified otherwise),
inch-pounds o
T. concentrafed torque, inch-pounds
t running torque due lo air load about axes per-
pendicular to the plane of symmetry, inch-pounds
per inch
w fuselage width, inches
w, distance between the effective root and the inner-
most complete section of the torsion box per-
pendicular to the elastic axis, inches
Y lateral ordinate measured from plane of symmetry,
inches
7J lateral center of pressure, inches
o angle of attack, radians _
C
@ equivalent angle of attack, radians (a,+ gﬁ ae,)
La
T local dihedral angle due to deformation, or slope of
wing deflection curve at reference axis, radians
¢ structural deflection, inches

7 lateral distance from wing root, inches

A angle of sweepback (measured to the veference axis
unless specified otherwise), degrees
[#2] influence-coefficient matrix for wing twist in plancs

parallel to the air stream due to concentrated
unit loads applied at the reference axis, radians
per pound

@7 influence-coefficient matrix for wing twist in plancs
parallel to the air stream due to concentrated
unit torques applied in planes parallel to the air
stream, radians per inch-pound

? angle of twist in planes perpendicular to the
reference axis, radians

Subscripts:

ef2 midchord

D | _divergence

Jw flexible wing

g _ geometric

LE  "leading edge -

M due to bending moment

MAC . pertaining to mean aecrodynamic chord

P due to concentrated load

? damping in roll

r at root or effective root unless specified otherwise

i rigid wing

8 structural (due to structural deformations)

sub subsonic

gpr  _ supersonic

T due to torque

TE  __trailing edge

w wing exclusive of fuselage ]

A in or pertaining to sections perpendicular (v the

reference axis . -

Matrix notation:

{ } ..column matrix

row maftrix

square mafbrix

diagonal matrix

transpose of a matrix

g double transpose of a matrix: first about the princi-
pal diagonal, then about the other diagonal

1] unit matrix

[1,] matrix defined by equation (18)

Y

[ S J S R R R,

DERILVATION OF THE METHOD

METHOD EMPLOYING STIFFNESS CURVES

Assumptions,—In the development of the method the
following assumptions are made:

(a) All deflections and angles of attack are small.

(b) The wing is mounted flexibly at an effective root per-
pendicular to the elastic axis through the intersection of the
elastic axis and the fuselage (see fig. 1), the root rofations
being proportional to the root bending moment and root
torque.
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Torsion box.. =

Reference
IREEn

FroURE 1.—Definition of geometrical parameters used in the analysis.

(¢} An elastic axis exists in the outer portion of the wing,
this axis being defined as the elastie axis the wing would have
if it were mounted rigidly some distance outboard of the root
approximately perpendicular to the midchord line. (Near
the root the elastic axis is defined as the extension of the out-
board elastic axis.)

(d) All deformations other than those due to the root
rotations are given by the elementary theories of bending
and of torsion about the reference axis, which in this case is
the elastic axis.

Air loads.—The force on a wing section of unit width
parallel to the direction of flight is

I=gce; (1)

or, in matrix notation and in terms of the loading coefficient
CC;
—

ér

B=gof 2} @

Cr

The loading coefficient % at any point on the span can be

r

expressed in terms of the angles of attack at various points
on the span by means of aerodynamie influence coefficients.
For subsonic speeds, approximate aerodynamic influence
coefficients may be calculated by the method of reference 1.
With the resulting influence-coefficient matrix [@], the load-
ing coefficients are given by the relation

€C;
{2 =0 101 ) ®

where o is the total angle of attack, which consists of the sum
of the geometrical and structural angles of attack «, and «,.
The geometrical angle of attack is that due to airplane alti-
tude and built-in twist, whereas the structural angle of attack
is that due to structural deformation.

Instead of using the method of reference 1 the matrix []

may be calculated more simply (but less sccurately) by
means of a modified strip theory; the section-lift distribution
is rounded at the wing tips and reduced over the entire span
by a factor which differs for angles of attack due to attitude

and for angles due to any type of twist. On the basis of this
approximstion
Gt=0:.,,0!;+ Cngeaa
=Cp (ot kay) (48)

=0}:,;&

for geometrical angles of attack which consist only of the
angle of attack due to attitude, and

&= Uzas(arl' Ols) ]

r (4b)
=0L“aa J

for all other geometrical angles of attack (due to rolling,
or due to built-in twist, for instance).
tributions and & is an effective angle of attack defined by

o=yt Kkas

Cre,

K —
.

where

Approximate values of Oz, and C' Lo, MAY be obtained by the
reasoning of references 2 and 8 from the following equations:

Acos A
Cre=te A2 cos X (6e)
A cos A
Coe, =01 TF g cos 1 (8b)
so that 4
_A+2cos A
““ATf4cosA 89

An influence-coefficient matrix which relates the loading
coefficients and angle-of-attack values in the manner indi-
cated in equation (3) may be obtained from equations (4a)

and (4b):
@i=| £ ] [a—oaria]

where [1,] is & matrix defined by

1000..
1000..
1000..
L=| 1000..

In equations (4a)
and (4b), C'La,, is an effective lift-curve slope for twist dis-
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(provxded that in the column matrices of « and of ccc, the .

,
values at the wing root or plane of symmetry are written at

the top). However, if the modified strip theory is used,

equations (4a) and (4b) may be used directly without resort- .

ing to an influence-coefficient matrix so that, from equation

(4a),
{cc;l OL [_ -I{ (6a)

and, from equation (4b),

{“"} oz,xl_ —]{a} . *(6b)

For supersonic speeds the loading coefficient given by
unmodified strip theory can he expressed in the form

el . e

where ¢;  is the lift-curve slope pertinent to sections perpen-
dicular to the midchord line. For instance, if the two-
dimensional lift-curve slope is given by the Ackeret relation

_— .
 JMP2—1

C:

then the section lift-curve slope to be used in equation (6¢) is

4cosAys

€, == o
M cos? Agp—1

In the present report equation (6a) is used for the sake of
definiteness. The modifications required in the method to
use equations (6b) and (6¢) rather than equation (6a) are
obvious.

If more accurate serodynamic influence coefficients than
those which correspond to the modified strip theory are
desired, the coefficients of reference 1.may be used in the
manner described therein. Aerodynamic influence coeffi-
cients for subsonic speeds can also be obtained from the
theoretical methods of references 4, 5, and 6 for calculating
spanwise lift distributions. Whether the increase in accuracy
obtainable by combining these methods with that of the
present report warrants the corresponding increase in effort
is somewhat questionable. . == = _

Equations (2) and (6a) may be comblned to y:eld the foHow-

ing relation:
—C.. g, Lﬂ{a} @)

Similarly, the running torque ¢ may be obtained from the
relation

=¢;cl

H=Cr,gote,| 2(2) |@) ®

go that
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(For cambered sections the pitching moment at zero Iift must
be added and the analysis of the following paragraphs modi~
fied accordingly.)

The accumulated torque 7 is obtained from the running
torque and the running load by integrations inboard from the
tip. The integration of the running torque may be performed
by a matrix [J’] which is based on Simpson’s rule with & modi-
fication suggested by V. M. Falkner at the tip. (Sce
appendix.) The effect of Falkner’s modification is to round
off the calculated load distribution and cause it to go v zero
with an infinite slope at the tip, as the acrodynamic lift
distributions at subsonic speeds actually do. For supersonie
speeds a similar matrix without tip modification [7] may be
used. Both matrices are given in table I.  The confribution
of the running load to the accumulated torque is equal Lo the
product. of —tan A and the accumulated bending moment.

The accumulated bending moment 3/ iz obtained by a
double integration of the running load. The double inlegra-
tion inboard from the tip may be performed by means of the
matrices [[7] and [7T'] {(given in table II}), which are based on
the equivalent of Simpson's rule for moments, Kalkner's
modification again being made at the tip in the casc of [I1'].
The derivation of the integrating matrices is discussed in
the appendix.

In the following paragraphs subsonic flow will be assumed
for the sake of definiteness. For supersonic flow, matrices
[1] and [II] are used instead of [I’] and [[[’]. The accumnu-
lated torque and bending moment may then be written as

(T1=2] (t}—tan A(M] )

and

=% unw (10

The hending moments and torques referred to the clastic
or reference axis, M, and T4, can be obtained from those
given in equations (9) and (10) by means of the relations

(M} =cos A{M}—sin A{T)
= (Y i —sina (-) (1t}

-ouse ) saliom|

sin A cos A 22 s 1'][_ ( )']:l{a 1y
{Ta}=cos A{T}+sin A{M}
—cos A 5 1I](1
=Crogote, geosal]| 2(2) @ a2

Structural deformations.-—The equations of cquilibrium
of a deformed wing referred to the elastic axis are

de
GJ o=\ (13)
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dr
ET @—BI A

(14)
These equations must be integrated outboard from the root
to obtain ¢ and I'. The integrations may be performed by
a matrix [I]”’ (see table IIT and appendix). Unlike the
previously mentioned integrations this one is along the
reference axis—that is, with ¢ as the independent variable
rather than y or 5, which are the independent variables for
integrations perpendicular bt,o the plane of symmetry.
. /2
Consequently, the distance cos 1
tion with the dimensionless matrix [1]’.

To the deformations obtained in this manner the rotations
o, and T'; due to the deformations of the root triangle must
be added. The root rotations may be expressed by four
dimensionless constants:

must be used in conjunc-

OrelLa,

Q"sz . (158)
e oo
Qr,.=£—:;&% (15¢)
Qr__‘,=fv—:’;(/§,—{,)f : (15d)
which may be combined into two other constants
Qup= t:[’(‘g})r—(qp,, E%?) tan A QFT) cosA  (156)
Quy = ;Z%;j;;(QW—E—%% tanl A QI-M) cos .A (15f)

w, being defined as in figure 1. The deformations may then

be written as

{o} ~ cos ;&?%’J),I:[ iy I_(G'J)r

W, cOS A pu_—
20082 Quul1i1344) |

+ e Qe | (Th

(16)

and
I 2 . C 2 )
(=55 ’xIEEI),I:[m”L( -|+w 577 Qe 1141 ] {34u}+
4 1‘ A , .
u_b(i?zs er[ll]{T,\}] (1‘)
where the matrix [1,] is defined by
0000 . .
1000..
1000. .
[1/1=| 1000 . . (18)
1000. .

OF SWEPT AND UNSWEPT FLEXIBLE WINGS

The angle of attack due to the structural deformations
a is related to ¢ and T by

(19)

The aeroelastic equation.—If equations (11), (12), (16),
and (17) are substituted in the matrix equivalent of equa-
tion (19), the following relation is obtained:

ay=({o—T tan A) cos A

fa}=g"[Al{e} (20)
where the aeroelastic matrix [A] is defined by ‘
el ={ 11| G 7 Qs Quy tom w1141+

G oo 2 vy | E ,
e ot | | Jin| 2 () T
o} ED ] we ‘12 n| ¢
o[ 2] ey ] £
(21)
the dimensionless dynamic pressure g*, by, o
o Cr g(d'[2)%c. cos A }
=—"@n @2
and the parameter k, by
=GN V2 ony @3

" (EI); e,6r cos® A, o

(The parameters g* and k are similar to the parameters ¢ and
i S ¢
p of reference 2.)

Solution of the aeroelastic equation.—If it is desired to
calculate the serodynamic loading corresponding to & given
geometrical angle-of-attack distribution and dynamic pres-
sure, equation (20) may be rewritten as follows: '

L11—xg*[All{a} ={e}

TIn this form it constitutes a set of linear simultaneous_
equations for values of & in terms of values of @,. From the

(24)

‘calculated values of @ the lift distribution may be deter-

mined from equations (1) and (4).
The divergence dynamic pressure may be obtained from
equation (24) by setting the determinant of the square
matrix on the left side of the equation equal to zero. This
procedure is equivalent to setting «, equal to zero in the
term o of equation (20), so that

{au}=rg*[A}{a:}

The critical value of xg* is then determined by matrix
iteration and hence the divergence dynamic pressure from
equations (5¢) and (22).

METHOD EMPLOYING INFLUENCE COEFFICIENTS

The assumptions made in the preceding sections concern-
ing the behavior of the wing structure are unnecessary if
influence coefficients for the given structure are available
from test data or refined methods of calculation. The co-
efficients most convenient for this analysis are those giving

(25)

9138 _
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the rotation of the structure in planes parallel to the direction
of flight due to vertical loads applied along a convenient
reference axis and due to torques about lines perpendicular
to the direction of flight.

Since it is usually more convenient to apply concentrated
rather than distributed loads in structural tests, the influence
coeflicients are considered in this analysis to have been ob-
tained in this manner. These coefficients must be con-
verted to coefficients which pertain to distributed loadings.
This conversion may be accomplished either hy means of the
weighting matrices of reference 7 or by means of the conver-
sion matrices described in this section.

The angle of structural deformation a, may be expressed
in terms of the influence coefficients &, and ®p as follows:

{a:}=[‘1’r]{Tc}+[q’P]{P} (26)

where the T’s and P’s are arbitrary concentrated torques
and loads, the latter being applied at the reference axis. The
accumulated torques and bending moments about lines
perpendicular and parallel, respectively, to the direction of
flight may be related to the concentrated torques and loads
by means of the summation matrices [(i] and [Cy] (see
appendix) as follows:

{T}=[C}{Tc}—tan A{BL} @7

b’ 4
(M} =2 [C{P) (28)'
These relations may be solved for the values of T, and P
required to produce given distributions of accumulated torque
and bending moment

{T.}=[C (T} +ten A{M}] (29)
(Pl=grs[CA (3} (30)

The accumulated torques and bending moments produced
by the air load are then

(T} =2 ('] lese} — (M} tam & 1)

™2
(=(%) 11w (32
Upon substituting equations (29), (30), (31), (32), (1), and (4)
into equation (26), the following equation is obtained:

{a}=¢q'[A"] {a} 33)

where
r

b
Q‘f..—_obaq TZ. [

d
[A1={ eyerlerl [01] Lj— (&) [rmatea| £]] es

(34)
an
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where, in turn

[G=IC] ']
[C=[GI7 1]

(36)
(37)

are given in tables IV and V. (Conversion matrices for
supersonic flow [C3] and [C)] can be caleulated from [I] and
[ZI], if needed, by replacing [I’] and [II’] with [I] and [/}
in equations (36) and (37).)

The solution of equation (33) is obtained in the manner
previously described for equation (20).

APPLICATION OF THE METHOD

DETERMINATION OF THE STRUCTURAL PARAMETERS

At the time an aeroelastic analysis is performed no experi-
mental stiffness data are usually available, so that eithoer the
calculated stiffness curves or caleulated influence coeflicients
must be used. In order to use the stiffness curves it is neces-
sary to assume the existence of a reasonably siraight clastic
axis. The location of this axis may be estimated by con-
sidering it to be the line connecting the shear centers of the
individual sections. 1f the elastic axis obtained in this
manner is not reasonably straight within one or two pereent
of the chord, the results of the analysis may not be suflie
ciently reliable. . = . _ )

The stiffnesses GJ and EI do not have mueh physical
significance inboard of the last point where there is a com-
plete cross section of the torsion box. (Sce fig. 1.) In order
to arrive at estimates of the root stiffnesses (GJ), and (K1),
which serve primarily as reference valucs in this analysis,
the stiffness curves have to be extended. It is convenient
to consider the stiffnesses to be constant inboard of the last
complete section of the torsion box; this procedure should
vield conservative values of the root rotations.

The most difficult problem incurred in analyzing the de-
flections on the basis of stiffness curves appears to be the
estimation of the root rotations. As used in this analysis,
they are the torsion and bending deflections imposed by the
triangular inner portion of the wing and the earry-through
bay on the rest of the wing. As seen in figure 2, which is
plotted from the data of reference 8, these values are essen-
tially constant along the span, so that they actually consti-
tute rigid-body rotations. (The bending rotations have
been obtained by taking the difference in slope between
curves calculated by considering the wing to be cantilevered
at the effective root—the root used to calculate torsional
deformations in reference 8—and the averages of the leading-
edge and trailing-edge deflections actually measured. The
twists were obtained by subtracting the {wists caleulated on
the basis of the assumed eflective root from the measured
twists.)

The rotations should, in any practical case, be caleulated
by analyzing the triangular root and the earry-through bay
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FIoTRE 2—Rotations of 8 45° swept hex beam due to roof deflections (data from reference 8).
;=104 inches; w,=13 inches; (GJ),=5.10X10? pound-ineh®; (EI}r=9.47X10? pound-inch?;
T=43,420 inch-pounds; A,=260,000 inch-pounds.

and be made dimensionless by means of equations (15a) to
(15f). If such an analysis is not available, the dimensionless
rotation parameters shown in figure 2 may be used as a
guide. It must be kept in mind, however, that in the case
of a sweptforward wing the parameters @, and @, would
have the opposite sign and that for antisymmetrical loadings
the root rotations may be slightly different than for sym-
metrical loadings (see reference 9).

If higher-order structural effects are to be taken into
account—such as shear lag, bending stresses due to torsion,
local stresses due to cut-outs, discontinuity of the elastic
axis, and so on—structural influence coefficients may be
calculated by means of the method of reference 10 and used
in the present analysis in the same manner as measured
influence coefficients.

Once the structure under investigation is built, fairly
simple deflection tests, similar to those performed in refer-
ences 8 and 9, may be used to check the root-rotation
parameters by calculating the differences befween the
observed rotations and those calculated by simple beam
theory copsidering the wing cantilevered ai the effective
root; at the same time the existence and estimated location
of the elastic axis may be verified. If the experimental
program is fairly extensive it is desirable to measure influence
coeficients directly. These influence coefficients can then
be used in conjunction with the alternate method deseribed
in the preceding section to obtain a quick check on the aero-
elastic analysis based on calculated stiffnesses. R

The influence coefficients used in the analysis consist of
the rotations of sections parallel to the direction of flight
due to concentrated unit torques in planes parallel to the
plane of symmetry or concentrated unit loads at the refer-
ence line. VWhen measured, these rotations (in radians)
may be entered in tables of the form:

[®7]
TWIST AT STATION FﬂTz DUE TQ UNIT CONCENTRATED

f”
TORQUE AT v

0.2 0.4 0.6 0.8 0.9 Lo

0.2

0.4

0.6

0.8

09

[®e]

TWIST AT STATION # DUGE TO UNIT CONCENTRATED

nf
LOAD AT 7]

¥z 02 | o4 | o6 | o8 | ae | 10

0.2

0.4

0.6

08

09

These particular tables would be used for a six-point anal-
ysis; similar tables would be used for a ten-point analysis.
In either case it is to be noted that the twists are measured

at values of b’i/2 from 0 to 0.9, whereas the loads are applied
r

at values of b—’fﬁ from 0.2 to 1.0. The tables obtained in this

manner constitute the desired influence-coefficient matrices.

If the wing sections are found to twist nonuniformly, so
that they become cambered in effect, the angles of twist a,
to be entered in the influence-coefficient matrices have to be
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defined in a different manner according to whether the aero-
elastic analysis is performed for subsonic or supersonic speeds.
At subsonic speeds the lift depends on the slope of the mean
camber line at the three-quarter-chord point, so that the
effective angle of attack is

(§erp—§rm) _ : ‘- (38)

ay=23 = p

At supersonic speeds the lift depends primarily on the aver-
age slope of the mean camber line, so that

as:i‘i#__ : . (39)

DETERMINATION OF THE AERODYNAMIC PARAMETERS

The selection of the aerodynamic parameters Cr,, and ¢

for the calculation of the divergence speed has been discussed
in reference 2. For calculating the aerodynamic loading at
8 given flight condition the aerodynamie parameters are
chosen for that flight condition. The use of the effective lift-
curve slopes Cz, and OL¢ in conjunction with modified strip
theory is applicable only to suberitical Mach numbers, At
higher speeds no simple span correction is available; neglect
of the span correction tends to be conservative for caleulation
of the divergence speed and the aerodynamic loading,
however.
INSTRUCTIONS FOR SOLUTION

Two sets of integrating matrices have been prepared, one
for a six-point solution and one for a ten-point solution.
The former should be adequate for all practical purposes;
only where the stiffness curves are very irregular near the
root does the ten-point solution have to be used. The points
considered by the two sets of tables in the case of subsonic

flow are at —b—f’/§=0, 0.2, 0.4, 0.6, 0.8, and 0.9 for.the shorter

0, 0.1, 0.2, 0.3, 0.4,70.5, 0.6, 0.7, 0.8, and
0.9 for the longer solution.

. n__
solution and 4P

_For supersonic cases an addi-
The

procedure to be followed for all solutions is identical; although
computing forms are presetited in this report only for the
six-point solution, their extension to the ten-point solution
is obvious..

Calculation of the matrices.—The first step in the sero-
elastic analysis by means of the stiffness curves is the calcu-
lation of the aeroelastic matrix [A] from the physical and
geometrical parameters of the wing. These parameters are
conveniently tabulated in a form of the type shown in table
VI(a). The computation is then carried out according to
the instructions of table VI(b), each step in the procedure
being identified by the number in the upper left corner of
each box. It must be kept in mind that many of the
operations call for matrix multiplications where the order of

tional point at b’L/2=1'0 is used for both solutions.

the multiplicands is of importan(-e (A Dbrief summary of
matrix methods is presented in the appendix.) The aero-
elastic. matrix is obtained as the last step (step 13) of the
computations in this form, which constitutes an evaluation
of the matrix [A] given in equation (21).

In the computing form of table VI(b) and in the illustrative
example the matrices [I’] and [I1] are used for the supersonie
case. This procedure results in a slight saving in effort and
is justified to a certain extent because even in supersonie flow
the reduction of the actual lift earried by a scetion compared
with the strip-theory value is largest at the tip. In general,
however, use of the matrices [I] and [I]] would probably be
preferable for supersonic speeds.

A special case arises when ¢, is zero. If ¢, is not zero
along the remainder of the span, its value at some point
other than the root may be used as a reference value. The

matrix l—e ( )] and the multiplying factors of sleps 8
11'

and 9 as well as the definition of the parameter ¢* are then

based on the value of ¢; at this other reference station. Ife,is

zero along the entire span, step 1 and steps 3 to 8 may be
omitted and steps 9 to 13 should be modified as follows:

(EI)r W, Q"‘ X

Step 9 @h, V2tan X (1]
Step 10 [@]—[®@]

Step' 11 Asis

Step 12 Omit

Step 13 [d],.o=[@] (@]

If structural influence cocfficients of the proper type are
available, the calculation of the aeroclastic matrix [.'] is
carried out directly by means of equation (35).

Solution for divergence dynamic pressure.—:In order {o
determine the value of the dynamic pressure corresponding
to divergence, the aeroelastic matrix [A] or [1f] is ilerated
(see appendix) as indicated by equation (25). Table V1L (a)
may be.used for this purpose. The result is the critical
value of xg* or xgt. The divergence dynamic pressure is
then calculated from equations (22) or (34). (It is to be
noted that this pressure will be in pounds per square inch.)
Since the aeroelastic matrix is independent of the Mach
number, exeept inofar as ¢; varies with Mach number, the

. same critical value of x¢* or xgt may be used to calculate

the divergence dynamic pressure for an cntire range of
Mach numbers. If the value of ¢; changes, however, as it
does between the subsonic and supersonic region, erilical
values of ¢* and ¢' have to be calculated for both values
of ey.

If the value of ¢, is zero along the entire span and the
matrix [A] has been calculaied according to the modified
instructions, iteration of the matrix will give the value of
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the parameter ¢ at divergence. From the definition of ¢

"3
Ce, q (%) c-tan A
Kq= (_E]),.‘-cos A

£0)

the divergence dynamic pressure may then be calculated.

Solution for aerodynamic loading.—In order to calculate
the aerodynamic loading corresponding to a given flight
condition and geometric angle-of-attack distribution, the
aeroelastic matrix [d] or [4'] is multiplied by the value of xg*
or xq' calculated for the given flight condition and subtracted
from the unit matrix [1]. (See equation (24).) The result
may be entered in table VII (b). Again it must be noted
that the value of the aeroelastic matrix varies with the flight
condition if e, varies, so that the aercelastic matrix corre-
sponding to the proper value of e; must be selected.

The elements of the resulting matrix are the coefficients
of a set of simuitaneous linear algebraic equations for the
unknown values of the effective angle-of-attack distribution
of the deformed wing {a} in terms of the known angle-of-
attack values of the rigid wing {e,}. Table VII (b) is set
up for the calculation of the additional loading, the damping-
in-roll loading, and a third arbitrary loading; as many
loadings as desired may, of course, be calculated by this
method. The solution of the equations may be carried out
in any convenient manner. The form of table VII (b) has
been prepared for use in conjunction with Crout’s method
of solving linear simultaneous equations (reference 11).

The values of & may also be obtained by means of an
iterative rather than a simultaneous-equation type of solu-
tion. A first approximation to the structural twist may be
calculated by premultiplying the column of the values of the
geometrical angle of attack e, by the matrix [4] and
multiplying the resulting column by ¢*. In so doing, the
contribution of e, to the total equivalent angle & has been neg-
lected. However, the approximate values of a, calculated
in this manner may be multiplied by the factor « and added
to the values of the geometrical angle of attack to obtain
approximate values of @. The column of these values is then
premultiplied by ¢*{] to obtain & better approximation to c.
This procedure may be repeated until the solution converges.

Alternatively, the first approximation to the column of «,
may be multiplied by x and premultiplied by ¢*[A] to obtain
approximately the contribution of the term e, in @ to the
calculation of e, by means of equation (20). In turn, the
effect of this contribution on «, may be calculated by pre-
multiplying the contribution by xg*[4], and so on. The final
value of a, is then the sum of all these contributions.

Both of theseproceduresare equivalent. They maybesys-
tematized and shortened as follows: The matrix [A] is
entered at the upper left of table VII (c). Two sets of
values of {«,} are listed at the left of the table. For the
rolling case,

y b a2 w
P2 b 620D

(41)

917

These columns are then premultiplied by the matrix [4].
The resulting columns are entered in the columns to the right

of the columns of {a,} and again premultiplied by the matrix

[A]. The results of this second matrix multiplication are
entered in the next column and premultiplied again by the
matrix [d]. This procedure is repeated until all the ele-
ments of one column, say the rth, differ from the elements of
the preceding column, the (~1)th, only by 2 constant factor
(within 1 percent or less). This constant factor is equal to
1
(x¢®)p

dimensionless dynamic pressure at divergence is, conse-

and is entered at the bottom of the table.

The .

quently, obtained automatically in this iterative procedure __

and need not be calculated separately by means of table
VII (a).

The dynamc pressures of interest and the correbpondmg
values of x¢* are entered in the matrix at the upper right of
table VII(c). Also entered are the corresponding velues of
(xg*)?, (xq*)?, and so on, up to and including (x¢*)"'. In

l—K—Elq/gﬁ are entered

the next row, however, the values of

instead of (xg*)".

The values of & for the two sets of values of e, and for

the various values of ¢ of interest are then obtained by pre-
multiplying the matrix which consists of the rows xg*, (xg*)?,
(xq*)3, . (including the row of 1’s) by the matrices of the
columns {ag} [AHeg}, [AP{eg, and so on. The resulting col-
umns comprise the desired values of @ for the various cases.

These values are entered in the appropriate columns of

table VII (c).

For most conventional plan forms and structures the

results of the iterative procedure described in the foregoing

paragraphs converge in two to four cycles (r=2 to 4}; how-

ever, for & wing which is uncommonly flexible near the tip,
more cycles may be required. In general, the simultaneous-
equation type of solution is preferable when several geo-
metrical angle-of-attack conditions are to he analyzed at one
or two dynamic pressures. The iterative procedure on the

attack cond.mons are to be analyzed for several dynamlc
pressures. Yhen many stations elong the wing span are

taken into account, the iterative procedure is preferable in

almost: all cases.

In the case where ¢; is zero along the span, the headings

at the top of table VII (b) should be modified to read

A =
75 g xq

[L1T—xglAle, o]

where [A], - has been calculated according to the modified
instructions and X¢ has been obtained by iterating [A]a-o.

(See also equation (40).)
The values of {«} calculated for the additional load dis-

tribution (a,=1) constitute values of the ratio e;,fe;,, or
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(eea)ruf(cCr)roin view of the assumptions made concerning theair

forces. The section loading of the flexible wing is obtained
from the relation
cer=cCy @ {42a)
or in dimensionless form
CC; g —_
¢ —-01;,“ ¢, [0 4 (4:2}.))

The wing lift and the bending moment at the wing root may
then be obtained by integrating the load distribution. These
integrations may be performed conveniently by multiplying
the values of ec;fe, by the first rows of the matrices [1’] and

[I1I'], respectively. Thus
Lo~2¢Ce,e 5 LI £ ] @) )
and
’
M,=qCe, (%)’ \IIy) [_ci'| (3} (44)
These quantities may be expressed as dimensionless coefficients:
L
g A ) R
Ly ™ QS PR
and ”
4 M, _
CBM“"m -

The lateral center of pressure of the wing load ¥ may be
determined from the relation

g2l o ay

The fore-and-aft location of the aerodynamic center of the
wing load measured rearward of the leading edge of the
mean serodynamic chord as s fraction of the mean aero-
dynamic chord may then be estimated from the relation

Do g YYsC 1o 4, (46)
Cacac CMac

where A, is the sweep of the section aerodynamic center line,

For any other geometrical angle-of-attack distributions,
such as those due to built-in twist or those due to rolling,
the same section lift-curve slope should be used for the
geometrical as for the structural deformations, so that C,
is replaced by Ci,,, and « is unity, and « in equations (42)

to (44) is replaced by a.

For the damping-in-roll distribution with a tip helix angle
of 1 radian, a, is given by equation (41) and the rolling-
moment coefficient due to the wing load is given by

M,
0"":2@8’—%' - T 4D
where A, is obtained from equation (44) with the values of
« calculated for this case.

- values of the divergence parameter (xg*%),.

The contribution of the wing to other stability derivatives
may be obtained, similarly, by integrating the load distribu-
tions due to the angle-of-attuck distributions caused by the

. motion of interest, as described in reference 12; in the case

of swept wings, particular care must be taken in selecting the
proper angle-of-attack distribution and in aeccounting for
the lateral inclination of the lift vector. (See reference 3.)

If the aerodynamic loading or the stability derivatives
are to be obtained for a wide variety of flight conditions, it is
convenient to systematize the calculations in the following
manner: The aeroelastic matrix is compuied for both the
subsonic and supersonic aerodynamic-center values and
iterated for both cases to obtain the subsonic and supersonie
r From these
values the divergence dynamic pressure may be computed
by means of equation (22) and plotted against Mach num-
ber, as suggested in reference 2; on the same plot, values
of the actual dynamic pressure may be plotled against
Mach number for various altitudes of interest. Such a plot
for a wing, the physical characteristics of which are given in
figure 3, is shown in figure 4.

Since at a given Mach number the ratio xg*/(x¢*)p is
equal to the ratio gfg,, the range of values of xg*/(xq*)p of
interest. may be established from this plot for both the sub-
sonic and the supersonic regions. Several representative
values of this ratio may then be chosen within the given
ranges and the corresponding values of x¢* computed from
the previously calculated values of (x¢*)p. The acrodynamic
loading is calculated for these values of xg* by using the
appropriate matrix [A] and may be plotted in the form of
(eed) uf(ce)re, With the ratio ¢fgp as a parameter. From
these curves (or from the values of &) the wing lift coeflicients
may be obtained and plotted in the form (Cu)n/(Co).
against ¢/gp; the other coefficients may be obtained and
plotted in a similar form.

For any specific flight condition the value of gfg, may
then be obtained from the plot of ¢ and ¢, against Mach
number. The loading, lift coefficient, or other item of
interest-may be obtained from the plots which give these
items in terms of the rigid-wing values. Once the rigid-
wing values at the given Mach number are known, the
flexible-wing values may then be obtained immediately,

ILLUSTRATIVE EXAMPLE

In order to illustrate the method deseribed in the preced-
ing sections, a swept wing has been analyzed. The physical
and geometrical parameters of the wing are shown in figure
3 and the upper part of table VIII (which follows the form
of table VI (2)). The chord, ee¢?, and stiffness matrices
have been obtained from the given parameters and are shown
in the lower part of table VIIL.

The calculation of the aeroeclastic matrix for the subsonic
case hasbeen carried out by means of the form of table V1(b).
All but three of the stc.ps of the computatwn are shown in
table IX, numbered in the same order as in table VI(b).
Steps 1, 2, 6, 7, 11, and 12 constitute matrix multiplications,
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. i

A
o

Position of elastic axis,
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kN
fraction of chord

8
|

8
T

8
T

Chord parallel fo air stream, e, in.

3
3

A
-

n
[

Stiffness, 6J and EL lb~in®

o

40 80 1eo /60 200
Distance glong reference axis, 8, in.

FIcURE 3.—Parameters of the example wing.

which are carried out in the order indicated; steps 5 and 13
constitute matrix additions or subiractions; steps 3 and 4
constitute multiplications of matrices by constants.

The aeroelastic matrix is iterated in table X (a) (which
follows the form of table VII (a)) to yield a value of

(kg*) p=—2.208
From this value and a value of this parameter com-

puted in the same manner for supersonic speeds (using
Cy =Cy, =e¢; ), the divergence dynamic pressure has been
<« ae a

calculated by means of equation (22) on the basis of esti-
mated values of the effective lift-curve slope. The variation
with Mach number of the divergence dynamic pressure, the
actual dynamic. pressure at sea level, and the estimated
effective lift-curve slope is shown in figure 4.

For a value of qi=—0.25, such as would be obtained ap-
D

proximately at & Mach number of 1.0, ‘the aerodynamic
loading has been calculated for the additional-angle-of-
attack case and the damping-in-roll case in table X(b),
which follows the form of table VII(b). The values of «, for
the damping-in-roll case have been calculated from equa-
tion (41). The aerodynamic loadings, in addition to those
calculated for other values of g/gp, have been plotted in
figure 5 as ratios of the flexible-wing loadings to the rigid-
wing loadings. The curves have been integrated to yield
wing lift and rolling-moment coefficients as well as the
aerodynamic center of the wing load, which are shown in

table X(b) for the case of q—g;=—0.25 and which are plotted

against —&q—n in figure 6.
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FiaCrE 4, —Efect of Mach number on the divergence dynamic pressure and lift-curve slope
of the example wing.

The wing lift coefficient is defined in such & manner
that if the fuselage lift is known and made dimensionless by
dividing by ¢ and S the resulting fuselage lift coefficient may
be added directly to the wing lift coefficient. This definition
and the fact that ﬁgu1;e 5 (a) is plotted over the fraction of

the wing-alone span 7 explain the fact that the area under

the curve of figure 5 (2) is not 1. The aerodynamic center
as plotted in figure 6 constitutes the center of pressure of
only the wing load. In order to obtain the airplane sero-
dynamic center, the magnitude and center of pressure of

the fuselage load would have to be known and taken into

account.
DISCUSSION

Both the aerodynamic and the structural assumptions
made in this analysis are somewhat more realistic than those
made in reference 2. The device employed in this analysis
of calculating the air forces for wing sections paralle] to the
direction of flight and then transferring them to sections
perpendicular to the elastic axis obviates the necessity of
replacing the actual wing with one the root and tip of which
are perpendicular to the elastic axis for the purpose of

. analysis.
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Subsoric cose
————— Supersoric case 9/9

(b)

Laoteral ordincte, —5= 672

(a) Assumed ng!d-wmg loading.
(b) Flexible-wing loading,
FIGURE 5.—Load distribution of example wing.

The inclusion of Falkner’s modification (see appendix)
In the integrating matrices has the effect of rounding off the
load distribution approximately in the manner observed at
subsonic speeds. At supersonic speeds the load distributions
do not go fo zero in the same manner, but even at supersonic
speeds there is some reduction of load at the tip, the total
magnitude of which is not far from the reduction obtained
by Falkner’s modification. However, the use of special
matrices [I] and [II] is indicated if the amount of this
reduction is known. . .

The assumption, that induction effects ma.y be approxx-
mated by an over-all reduction of the strip theory loading
(rounded off as previously described) at suberitical speeds and
may be neglected at supersonic speeds, may be avoided by

using aerodynamic influence-coefficient matrices . instead

of the effective lift-curve slopes. Available methods of
calculating such influence coefficients from theoretical
methods for calculating lift distributions for wings of arbi-
trary plan form at subsonic and supersonic speeds are gener-
ally either too inaccurate or too time consuming for practical
purposes. The empirical method of reference 1 has the
advantage of simplicity and fairly good accuracy compared
with theoretical methods but is applicable only to sym-
metrical lift distributions. .

Although the analysis of this report has been performed
for wings consisting of uncambered_sections, the analysis
is directly applicable as well to the determination of the
additional Ioa.dmg of wings with cambered sections. The

loading of such wings due to the section pitching moment

at zero lift may be determined by modifying the analysis
somewhat.

Subsonic cose
s — —~—Supersonic cose
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FIGURE 6.—Lift coefficient, rolling-moment c&(}mclent, and aerodynamic center of example
wing.

The assumption of an eflective root perpendicular to the
elastic axis made in reference 2 for the purposes of calculating
the structural response is carried over in this analysis. It is
modified, however, to the extent that the root is no longer
considered to be rigid as in reference 2, but flexible, both in
torsion and bending. Tt has been demonstrated in reference
8 that the deflections of a swept beam may be estimated on
that assumption, provided the root-rotation parameters are
known. By assuming the effective root at the interseetion
of the elastic axis with the side of the fusclage, the root
bending due to bending moment and root twist due (o
torque are minimized. The bending due to twist and twist
due to bending are the same regardless of the Jocation of the
effective root.

The method of introducing the root rotations inte the
analysis by means of the matrix {1,’] assures that the strue-
tural twist in planes parallel to the direction of flight, is zero
at the fuselage. In so doing the assumption is made that
the part of the wing structure within the fuselage does not
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deform under load. From figure 2 it is seen that the local
values of the root rotation either tend to approach zero at the
root or tend to cancel each other. (The root rotations shown
in figure 2 do not contain the rotation due to deformation of
the carry-through bay; for cases in which this rotation is
believed to be sizeable it has to be taken into account in the
coefficients Q.,, and @.,.) If the roof-rotation constants

are known, the structural deformations can therefore be
predicted quite accurately by the assumptions made.

The meanner in which the equations of equilibrium are
solved by means of the integrating matrices accounts for the
true chord and stiffness variations. It does not necessitate
replacement of the actual wing by constant-chord segments
with all the flexibility concentrated at the ends of the seg-
ments, an approach which has been used extensively in the
work on aeroelastic problems of unswept wings.

A further refinement which obviates the necessity for
making any structural assumptions other than that of small
deflections is the use of measured influence coefficients or
coefficients calculated by refined structural theories in the
aeroelastic analysis. Wherever such coefficients are avail-
able it is, of course, of advantage to use them.

No explicit account has been taken in the analysis of the
effects of the inertia loadings on the structural deformations
and hence the aerodynamic loading. On swept wings, in
particular, their effects may be considerable. For the pur-
poses of this analysis, however, the structural deformations
due to inertia loading may be considered part of the geo-
metrical angle of attack and the rigid-wing geometrical angle
of attack may be modified aceordingly. The deformations
due to the inertia loading may, incidentally, be calculated
conveniently by means of the matrices [I], [J1], and [I]”.

Some of the general observations made in reference 2 con-
cerning the divergence phenomenon are corroborated by the
example. As expected of & wing with a considerable amount
of sweepback, the divergence dynamic pressure is negative;
consequently, the wing cannot diverge. The divergence
dynamic pressure is useful as a reference value, however;
the values of the load distribution and the stability param-
eters divided either by the corresponding rigid-wing values
or by the section lift-ecurve slope depend only on the ratio
of the actual to the divergence dynamic pressure.

The type of plot shown in figure 4 is therefore quite useful
in the analysis of aeroelastic phenomena. As pointed out in
reference 2, this chart may also be used to estimate the
actuel divergence dynamic pressure where there is a possi-
bility that the wing may diverge. It appears that the crit-
ical values will tend to oecur at either extremity of the
transonic region.

As would be expected qualitatively, the effect of wing
flexibility in the case of the example wing is to unload the
wing tips owing to the fact that they bend up. The lift
carried by the wing is therefore less than that carried by a
rigid wing, the center of pressure being farther inboard and
the aerodynamic center being farther forward.

The difierence between the supersonic and subsonic values
of the loading, the lift and rolling-moment coefficients, and
the aerodynamic center for a given value of ¢fg, is due to .

921

the difference in the values of e;.

Another item of possible interest is the fact that the vari-
ations of the parameters («)p, and (xkg*)p, (the parameters
dp and ap, of reference 2) for the example problem are approx-
imately linear (see fig. 7), as would be expected from the
results of the analysis of reference 2. The deviations from
linearity are most pronounced near the points for (xg),=0
(that is, A=0). They are due to the effects of the root
rotations, in particular, the bending due to torsion, and
torsion due to bending; these effects were neglected in the
approximate analysis of reference 2. The points of figure 7
correspond to the example wing and the wings that would
be obtained by rotating the example wing to the unswept
and 37.5° sweptforward positions in such a manner as to
erc; cos”A, (ED,

b'12 (GJ),
the chord, stiffness, and moment-arm distributions ¢;,. Points
are shown for both the subsonic and supersonic variations
as well as for the case when ¢;=0 over the entire span
((x¢*) p=0). The difference between the subsonic and super-
sonic lines is due entirely to the difference in the distributions
of e, rather than the difference in the magnitudes of ¢, or

in the character of the lift distributions.

The present apalysis is concerned only with wing or tail
loads; the total loads are obtained by adding the fuselage
Ioads (which may be assumed to be unaffected by flexibility)
to the wing or tail loads obtained from the analysis. The
amount of load carried by a flexible wing and the manner
of its distribution can consequently be estimated by the
method presented herein if the contribution of the fuselage
is known at low dynamic pressuree, that is, for the “rigid-
wing” case. '

The fuselage has considerable effect on some of the stability
parameters, although in the case of others, such as (;, the

effect is negligible. Other effects that may have to be
accounted for in calculating stability derivatives are the
boundary-layer behavior and tip suction. The boundary-
layer effect may be accounted for by using a section lift-
curve slope corrected for boundary-layer effects to calculate

keep constant the parameters » as well as

5r

3= O———— Subsoric /
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FicURE 7.—Relation between the parameters (vg*), and (xg) p.
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the angle-of-attack distribution of the flexible wing at the
flight conditions of interest and then obtaining the lift and
drag distributions corresponding to that angle-of-attack dis-
tribution. Lateral tip suction may be important on low-
aspect-ratio and highly swept wings. Since this suction
does not affect the lift distribution, it may be taken into
account by calculating the angle-of-attack distribution of
the flexible wing and estimating the tip suction eorresponding
to the actual angle of attack at the tip.

In calculating stability derivatives it is well to keep in

mind that the method presented in this report is based on.

a modified strip theory, unless aerodynamic influence-
coefficient matrices are used. The calculated derivatives may
therefore. be somewhat in error, particularly if in caleulating
them the moment of a load distribution has to be determined.
If there is reason to suspect that the modified strip theory
is inadequate for calculating a given derivative, the deriva-
tive may be calculated for the rigid-wing case by .2 more
refined method; the results calculated by the method of this

report may then be used to correct the accurate rigid-wing
value for the effect of struetural flexibility.

CONCLUDING REMARKS

A method has been presented for calculating the acrody-
namic loading, the divergence speed, and ceriain stability
derivatives of swept and unswept wings and tail surfaces of
arbitrary stiffness. Provisions bave been made for using
eitherstiffness curves and root-rotation constants or structural
influence coefficients in the structural part of the analysis,
Either strip theory with over-all reduction and rounding off
at the tip or aerodynamie influence coefficients may be used
for the aerodynamic part of the analysis. Computing forms,
tables of numerical constants required in the analysis, and
an illustrative example are included to facilitate caleulations
by means of the method.

LANGLEY AERONAUTICAL LLABORATORY,
National Apvisory CoOMMITTEE FOR AERONAUTICS,
LancrLey Fiewp, Va., December 24, 1948.

APPENDIX

SUMMARY OF MATRIX ALGEBRA PERTINENT TO THE ANALYSIS

For the convenience of the reader unfamiliar with matrix
method, a summary of matrix definitions and operations is
presented herein. For'a more ¢omplete discussion of matrix
methods the reader is referred to any text on matrices—for
instance, reference 13.

DEFINITIONS

A matrix is a rectangular array of numbers, called ele-
ments, written in rows and columns. A column matrix
consists of a single column, a row matrix of a single row.
A square matrix has as many rows as it has columns.

The diagonal of a square matrix from the upper left to the
lower right is called the principal diagonal. A matrix all
the elements of which are zero except for those on the prin-
cipal diagonal is called a diagonal matrix. If all of these
clements are unity, the matrix is termed the unit matrix.

The transpose of a square matrix is the square matrix
which results from interchanging the rows and columns in
the given matrix; it may, consequently, be thought of as
having been obtained by rotating the given matrix about its
principal diagonal.

MATRIX ALGEBRA

Two matrices can be added or subtracted if both have the
The addition or sub-_

same number of rows and columns.
traction is carried out by adding to or subtracting from each
element of the first matrix the corresponding element of the
second matrix.

A matrix is multiplied by a constant by multiplying each
element by that constant.

Two matrices can be multiplied by each other if {he
second has as many rows as the first has columns., Each
element of the resulting matrix is obtained by multiplying
the elements in the corresponding row of the first matrix by
those-of the corresponding column of the second matrix in
the following order: The first element of the row is multi-
plied by the first element of the column, the second, by the
second, and so forth, The sum of the products obtained in
this manner is the value of the element of the product matrix.
Schematically this process may be illustrated as follows:

[m] [M] [m][M]
. I I R
....... . B.
abcdefg . Q. . Q.
....... % . D. =l e e e e e e
....... . B.
....... . F
....... .G,

Q=aA+bB+cC+dD+eE+fF4-gG

It must be emphasized that in multiplying matrices by
each other their order is of importance. As the two matrices
under consideration are written, the matrix [m] is said to be
postmultiplied by the matrix [Af], or the matrix [V/] may be
said to be premultiplied by the matrix [m]. If the two
matrices were written in the reverse order and then multi-
plied according to the foregoing instructions—that is, if the
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matrix [1f] were postmultiplied by the matrix [m}—the ele-
ment of the third row and fifth column of the product
matrix [A] [m] would clearly not have the value ¢ in general;
nor would, in general, any other element have the value it
would have if the two matrices were multiplied in the order
shown. Consequently it is important to observe the order in
which the matrices are written in the computing instruections.

MATRIX ITERATION

The purpose of iterating a square matrix is to determine
the column matrix or matrices which, if postmultiplied by
the given square matrix, yield the same column matrix ex-
cept for a constant multiplier. It is the value or values of
these multipliers which constitute the desired characteristic
values of the matrix.

The iteration is carried out by assuming a “trial” column
(the column shown in table VII (a) is convenient for the pur-
pose of this analysis) and premultiplying it by the given
square matrix to yield a ‘“result” column. The elements of
the result column including the last are divided by the last
element of the result column and entered as a second trial
column. The second trial column is then premultiplied by
the square matrix to yield & second result column. The pro-
cedure is repeated until the same value (within the desired
accuracy) is obtained twice in succession for the last element
of the result matrix. The reciprocal of this value is the de-
sired (lowest) characteristic value of the matrix, that is, the
lowest critical value of (kg*)p, in the analysis of this report.

Another way of estimating a first trial column in this
analysis is to add the elements in each row of the matrix [4],
enter the six sums in the first result column, and treat them
as if they had been obtained by multiplying the matrix [A]
by a first trial column.

DERIVATION OF THE INTEGRATING MATRICES

Although familiarity with the derivation of the integrating
matrices is not essential to the application of the method of
this report, an outline of the derivation is presented because
of its general interest.

The integrating matrices used in this report are based on
the same concept as Simpson's rule—replacement of the
actual function which is to be integrated by parabolic
segments. If the function y has the values ¥..1, ¥, and
Yu11, Tespectively, at the equally spaced points 2,1, zs, and
Iny1, the following relations are true for a second-degree
parabola passed through the three known points:

Y=yatg Wasi—Yn) (x r")

1 —x.\?
'2__ (yu+1—2yn+yﬂ—l) IA::-' ) (Al)

923
o
[ ssen(ga o (ot (s 0

_lydr—(lzm)yn 1+<3Ar)yn+< —Ar)y.+1 (a4)

[ e—zdyde=( — 352 )un-rt O yu (557 s

I MR IS P

(A5)
T 1 1
[ sy de=( g m)vat (557Yun
—AI )yn-}-l (AG)
where
Ar=z,— Ty 1=Ta31—%x (A7)

The different integrations over the parabolic segments
may thus be performed by multiplying the given values of
y by the multiplying factors indicated in equations (A2)
to (A6).

Since load distributions at subsonic speeds go to zero with
infinite slope at the tip and the ordinary second-degree
parabola’ furnishes a poor approximation to such a distri-
bution, V. M. Falkner has suggested that a curve of the type

y= Aot A1 —2)/ 14 A1 —2)¥? (A8)

be passed through the last three points of the load-distribution
curve at the tip (z=1). On the basis of this approxima-
tion, relations equivalent to equations (Al) to (A6) may be
derived. The multiplying factors for the last two segments
are then based on these equivalent expressions rather than
those of equations (A2) to (A6).

The integrating factors of equations (A2) to (A6) may be
assembled directly into integrating matrices. The matrix

I}/, for instance, is set up to perform the int-egrat-ionf Y dx.
[\]

If at the upper limit =0.1 and if the ten-point matrix
(table TII (b)) is to be used, the factors 0.04167, 0.06667,
and —0.00833 may be obtained from equation (A4} since
Lp1=0, 2,=0.1, and Az=0.1; similarly, if for the same case
the integration is extended to z,.;=0.2 as the upper limit,
the integrating factors 0.03333, 0.13333, and 0.03333 will be
obtained from equation (A2).
second and third rows of the matrix [7]"’; since the integra-
tions are independent of the values of y other than the first
three, the other values of ¥ are multiplied by zero in these
two rows. In order to extend the integration to =0.3 an
integration is again performed up to #=0.2 and another

integration, using another parabolic segment, is performed

These factors constitute the _
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from z=0.2 to x=0.3. For the latter integration z,_,=0.2,
2,=0.3, and Az=0.1, so that equation (A4) again yields the
factors 0.04167, 0.06667, and —0.00833. The value of ¥ at
#=0.2 is therefore assigned a multiplying factor of 0.03333
by the first integration and a factor of 0.04167 by the second,
or a total factor of 0.07500. The resulting factors are entered
in the fourth row of the matrix [I]’/. Al other rows are
obtained in a similar manner,

The matrices [I] and [I'] are set up to perform the integra-

'1

tion I y dx. The values of the last row of the ten-pomt

matrix [I'] (table I (b)) are obtained from the equivalent of
equation (A3) for the function given by equation_ (AS),
with z,,=0.8, 2,=0.9, 2,,=1.0, and Az=0.1. Only the
multiplying factors for the values of y at x=0.8 and 2=0.9
are listed, since the value of y at x=1.0 (the wing tip) is
assumed to be zero in this analysis, so that its multiplying
factor is immaterial. The values of the last row but one are
obtained similarly from the equivalent of equation (A2).

The values of the row for b'Lf2=O‘7 are obtained by using

equation (A3) in the interval 2=0.6 to z=0.8 and the equiva-
lent of equation (A2) in the interval 2=0.8 to 1.0. Similarly

the row for 7775 b’ IE) =0.6 is obtained by combining the results of

equation (A2) for the interval 2=0.6 to 0.8 with {he equiva-
lent of equation (A2) for the interval =0.8 to 1.0. All
other rows are obtained in a similar manner.

The matrix [I] is obtained in the same manner as the
matrix [I’], except that equations (A2) and (A3) are used
at the tip instead of their equivalents. This procedure gives
rise to0 a matrix which has one more row and column than the
matrix [I’].  (See tables I and II.) "The matrix [I] performs
the same operation as the matrix [7]’/ except for the direction
of integration. As a result of this difference the matrix [I]"
is essentially a double transpose (first about the principal
diagonal, then about the other diagonal) of the matrix [I],
as hwplied by its symbol.

The matrices [I7] and [II’] are set up to perform the inte-

gration Jz (x—uo)y dx, where z is the variable of integration
0

and %, the value of x at the lower limit. In applying the
integrating factors of equations (A2) to (A6) to this integra-
tion it must be realized that

f—z0)y de=(za—20) [y dz+ [(x—2)y dx  (A9)
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so that the integrating factors for this integration would be
obtained by adding (z,—z,) times the factors of equation
(A2) or (A3) to the factors of equation (A5) or (A6), respee-
tively, the choice of equations depending on the limits of
the integration. The factors for the different segments
(x=0.8 to 1.0, 0.6 to 0.8, and so forth) are then combined for
any given row (with its given value of ) in the manner indi-
cated for the matrix [I’] to yicld the matrix [/1'].

The matrix [Ci] sums up the torques outboard of a given
point, whereas the matrix [Cy] gives the sum of the moments
of forces applied outboard of a given point. Neither requires
any integrations in the sense of ecquations (A2) to (AG). For
the six-point method these two matrices are:

[C]
. I
57 0.2 0.4 0.6 08 0.0 10
0 1 1 1 1 1 1
0.2 0 1 1 1 1 1
0.4 0 0 1 1 1 1
0.6 0 0 o 1 1 1
.8 0 0 a 0 i 1
0.8 e ¢ 0 0 o 1
[Cs]
i
¥a | 02 0.4 0.8 0.8 0.9 10
0 Yoz 0.4 0.6 0.8 0.0 1.0
0.2 0 .3 4 6 7 8
0.4 o 0 2 4 5 [
0.6 0 0 0 2 3 1
0.8 0 o o | @ .1 .2
0.9 0 o . 0 0 0 .1

The moment arms which comprise the matrix [Cy] are frac-
tions of 8’/2, so that the matrix must be multiplied by the
length /2 in order to yield actual moments, as stated in
equation (28).
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TABLE I.—VALUES OF THE INTEGRATING MATRICES [I] ANXD [I']

(a) Six-Point Selution

] r1
k] 3
7R 0 2 4 .6 .8 .9 L0 7B 0 .2 4 .6 -8 .9
0 0.08667 | 0.26657 | 0.13333 | 0.26667 | 0.10000 | 0.13333 | 0.03333 0 0.06667 | 0.26667 | 0.13333 | 0.26667 | 0.09333% | 0.13085
.z || —ow667 | .13m93 [ .125000 [ .26667 | .10000 | .13333 | .08333 .2 —. 01667 | .13333 | .15000 | .20667 | .00338 | .15085
4 0 0 .06667 | .26667 | .10000 | .13333 | .03333 .t 0 o .06667 | .26667 | .00333 | .15085
.6 0 0 —.01667 | .13338 | .Ii66r | .13333 | .03333 .6 ¢ 0 —.01867 | .13388 | 11000 | .15085
.8 0 0 o o | .o3333 | .13333 | .03338 .8 a 0 ) 0 02667 | .15085
.9 0 0 0 a —. 00833 T | -oasr .9 0 0 ) 0 —.01S%6 | .00333
10 0 0 0 0 0 0 0
(b} Ten-Point Solution
(z1

R ¢ 1 .2 3 ¢ 5 s .7 8 .0

0 0. 03333 0.13333 0.06667 0.13333 0.06667 0.13333 0.06667 0.13333 0.06000 0. 15085

.1 ~. 00833 06667 07500 .13333 i .13333 . 06667 . 13333 06000 15085

.2 ¢ e .03333 . 13333 06667 . 13333 . 06667 . 13333 .06000 .15085

.3 o ¢ —.00833 . 06667 07300 .13333 - 06667 .13333 .06000 . 15085

.4 ) 0 0 0 .03333 13333 . 06867 .13333 06000 . 15085

.5 0 ) 0 0 —. 00833 . 06667 07500 .13333 . 06000 .15085

.6 0 ) 0 0 o 0 03333 .13333 06000 15085

.7 0 0 0 a 0 0 —. 00833 . 06667 .06833 . 15085

.8 0 o 0 0 0 0 o 0 02667 - 15085

.9 0 i ) a 0 0 0 0 —.01886 . 08333
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TABLE II.—VALUES OF THE INTEGRATING MATRICES [/I] AND [IT']

(a) Six-Point Solution

un [rry
o ) 2 4 6 8 K3 10 Ve 0 a 8 .8 g
] 0 0.05333 | 0.05333 | 0.16000 | 0.08000 | 0.12000 | 0.03333 0 0 0.05333 | 0.05333 | 0.16000 | 0.07314 | 0, 13792
.2 || —.oower | .otoo0 | .02500 | .10667.| .06000 | .00333 | 02667 .2 —.00167 | .01000 | .02500 | .10067 | .05448 | 10778
4 0 0 .05333 | .04000 | .ose67 | .oz000 o 0 ) 0 .05333 | .03%81 | 07758
.6 0 0 01000 | .01833 | .04000 | 01333 .8 0 0 —.00167 | .01000 | .01348 | 04741
.8 0 0 0o lo 0 .01833 | 00667 .8 0 0 0 - 00152 | 00724
.9 0 0 0 o —.0002 | .00250 | .po2o2 .9 o 0 ) —.00108 | .omM19
10 0 0 0 0 0 0 0
(b) Ten-Point Solution
17} 3
i ¢ 1 2 3 4 5 8 7 8 9
0 0 £. 013333 0.018333 0.040000 0. 026667 0. 066667 0. (40000 0.093333 0. (6476 €. 137820
.1 —~. 000417 . 002500 . 006251 . 026667 . 020000 . 053383 . 033333 . 080000 . 040476 . 122636
.2 0 0 0 . 013333 . 013333 040000 . 026667 . 066667 . 034477 .107750
.3 0 0 —. 000417 . 002500 . 006251 . 026667 . 020000 . 053333 . 025476 . 092665
4 0 0 0 0 0 .013333 013333 . 040000 .022476 . OTT560
.5 0 0 0 0 —. 000417 . 002500 . 006251 . 026667 L B16477 . 062495
.6 0 0 o e 0 i) 0 . 013333 010476 047410
.7 [} [ 0 0 ) o —. 000417 . 602500 . 004060 . 032325
.8 ) .0 0 ) ) [ 0 ¢ —. 001528 . 017240
.9 0 | ) 0 0 0 2 0 —. 001077 . 004100
TABLE III.—VALUES OF THE INTEGRATING MATRIX [I}"
(a) Six-Point Solution
v 0 2 4 6 8 9
0 0 ¢ o 6 ) 0
.2 . 08333 .13333 —. 01667 0 0 0
4 . 06867 . 26667 . 06667 [ 0 0
.6 . 06667 . 26667 . 15000 13333 — 01667 0
.8 . 06687 . 26667 .13333 26667 - 06667 ]
.9 . 06667 . 26667 .13338 . 26067 .10833 . 06667
(b} Ten-Point Sclution
7 0 1 2 3 4 5 6 3 8 s
0 0 Ta 0 0 0 0 ) 0 0 @
.1 .04167 | 06667 | —.00833 0 0 0 0. 0 0 0
.3 . 03333 .13333 © .03338 i) 0 0 0 0 0 0
.3 . 03333 .13333 . 07500 . 08667 —00833 .| o [ 0 0 [
.4 . 03333 *.13333 . . 06667 .13333 .03333 0 ¢ 0 ) 0
.5 03333 13333 06867 13333 07600 06667 —.00833 0 a 0
.6 . 03333 .13338 | _ .00667 .13333 . 06667 .13333 .03333 0 0 0
.7 .03333 © .13333 . 06667 .13333 . 06667 .13333 . 07500 7 —. 00833 o
.8 . 03333 _.-13833 08667 . 18383 . 06667 -13333 . 06667 13333 . 03333 0
.9 .03333 .13383 . 06867 .13333 7 13333 . 06667 .13333 07500 00667
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TABLE IV.—VALUES OF THE LOAD-CONVERSION MATRIX [Cy¥]
(a} 8ix-Point Solution

ﬁz 0 2 4 § T8 9 .
0.2 0.08333 0.13333 —0.01667 0 0 o )
4 —.01667 .13333 08333 0 ) o
6 0 0 08333 13333 —. 01667 0
.8 o 0 —.01667 12333 08333 o
.9 0 0 0 3 04553 04752
LO 0 0 0 0 —. 01886 09333
.
(b) Ten-Point Sclution )
¥R 0 1 2 3 4 5 5 I 8 )
0.1 0.04166 0.08667 —0.00833 0 0 0 0 0 0 0
2 —.00833 06667 04167 0 0 o ) 0 0 )
.3 0 0 04166 06667 —.00833 0 0 0 0 0
N 0 0 —.00833 06667 04167 o 0 0 o 0
.5 0 0 0 0 04166 06667 —.00833 ) 0 o .
.6 0 o 0 0 —.00833 06667 04167 o 0 )
K o 0 ) 0 0 0 04166 06667 —.00833 0
.8 a 0 o 0 0 0 —.00838 06667 04167 0 o
.9 ) 0 ) 0 0 0 o 0 04165 0
1.0 0 0 0 o o 0 0 0 —. 00833 09333 )
TABLE V.—VALUES OF THE LOAD-CONVERSION MATRIX [C}']
(a) Six-Point Solution
¥E a 2 4 £ 2 K}
0.2 0.01667 0. 16667 0.01667 0 0 a o
4 —.00833 03000 . 11667 05000 —. 00833 0
.6 0 0 01667 . 16667 01667 0 i
.8 0 0 —.00833 |- .65000 03846 . 02035
.9 0 0 (] - 00631 . 08360 ' o
Lo o 0 [ 0 —. 01077 . 04190 T
(b} Ten-Point Solution
¥R o 1 2 3 “ 5 & K 5 K
01 0.00833 008383 0.00831 0 ) ) o 0 0 o
.2 ~. 00417 02500 .0583¢ . 02500 —. 0047 0 0 0 0 0
.3 0 0 00833 08333 00833 0 ) ) 0 0
4 0 ' —.00417 02500 05834 02500 —.go417 ) o 0
5 0 0 0 0 00833 08333 00833 0 0 o
.6 0 o ) 0 —. 00417 02500 05834 02500 —. 00417 0
K 0 0 0 0 o 0 . 00833 .08333 00835 o
.8 0 0 0 0 0 0 —.00417 02500 06028 02035
.9 0 0 0 0 o ) 0 0 [ .ocest 08850
L0 o o 0 0 0 0 ° 8 —. Q1077 04150
956646—-51—60
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2} Wing Parameters

TABLE VI.—FORM FOR COMPUTATION OF AEROELASTIC MATRIX

A= bd3
L &
A= b= e=p= Q‘P_w
! tan A= w= Caub ] Qr ~
i cosd= b= Qepr ) QI‘ ars
= e EI
v # et “epr
0
.2
4
-8 .
.8 . -
.9 :
i 9] [
- - - ettt
Lo .z 3 b
5%2‘ N 4 3 g E b 2 4 & ] &
0 0 ) 0 0. LI -.a L 0 0 g o
.2 o 0 QL 0. kil L 0 0 0 ¢ s
.4 =0 0 0. 3 1 0 g 0 e 0
s S 0 a 55 i 0 0 0 o 0
8 [} G : 0 5 x4 1 9 [\ 1] ¢ }]
) . o 0 g 1 o 0 [ 0 o
L e
— - LICEE - -l = o e o —
iy a E0e]
aF . EI
= 0 P IR 6 5. 9 i 0 2 4 6 P ]
5 ) 2 7. o LB . 7 . . .
0 1.000 o 0 S0 Y a o 1.000 )} o o ¢ ]
.2 o - 0 el 0 0 -3 0. _ 0 ) 0 a
4 0 ) 0 ) o 4 8 o ) 0 o
.8 0 K 0 . .0 o -6 0 o D o g
.8 ' 0 o | o - @ § o o 0 o 0
.9 0 e ) 0 -0 e 0 o 0 g a
HOM HOl |
81’_ c"' su b _ o ) r N __elr & apr . L _.
q q g
TE 0 2 4 e 8 g T ] 2 4 £ 3 2
0 1,006 0 o IS 0 1Y 1.600 6 0 0 0 0
.2 0 0 o 0 o k3 0 g o 0 g
4 0 [ 9 o g 4 0 Q 0 0 (]
.6 ) "o S0 ) 0 0. e 0 0 0 6 0
8 0 - 0 0 0 ' 0 .8 0 0 0 0 6
.9 0 0 a o 0 g -0 0 ¢ 0 a
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TABLE VI.—FORM FOR COMPUTATION OF AEROELASTIC MATRIX—Continued .

(b) Computing Instructions

© (e <G~nr'l [ ® EIHEH+e]
) 6T
.
. | Vi 0 .2 ¢ .6 8 g
7o )] 2 -4 6 8 -9
i g 0 ¢ 0 0 a o
0 il o ¢ 0 0 .2 0 0 o _
2 .08333 a 0 0. 4 0 0 0 ’
4 . 06667 [ 0 o .6 0
6 . 06667 ' a .8 0
s . 06667 0 .9
9 . 06667 ' ) SR
: (EI)T_I - - _
rnr
@ [1'1 Er 7] e 3_)2
@ b\ sub
L]
B ¢ a .4 .6 .8 .8
Ve N
vE . a .2 4 .6 s 9
a 0 ] o o a o
.2 .08333 o 0 ] 0 0. 05667
4 06667 ’ o [ 6 -2 —- 01667 g
6 . 06667 o -4 a a
.8 . 06667 0 .6 0 a .
] . 06667 -8 1] a [} [+]
) 0 a a L
(G
® EET";’ (tan? 4) (@] -
r
¥ 0 a o] el s .9 @ el 1o} DY R
0 0 o a ] o b ¥ a .3 ! 6 8 9
.2 a a g
o 5 o 5 0 0 0 0 a 0 0
.6 o -3
8 o -
s .6
.8
(GJ), K] o
_—(EI)r tant A= . — — .
‘&' (Qa _Qa_u tan.\)[l;’] B B .
0 wiz oz © k)
vA a .2 rl 6 .8 g v 0 2 A 6 8 9
0 0 ¢ b o a o 0 0 0 o o ¢ 0
.2 0 o ¢ o a .2 a o
.4 o o 0 o 0 .1 o 0
.6 0 0 o 0 0 .6 0
.8 0 0 0 ¢ 0 .8 o
.9 0 0 0 0 0 .9
r, _ _ (6N, b2
s (Qap— Qay, t2n 1) - T @EDr &% costa tan A= . l )
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TABLE VI..—.FORM FOR COMPUTATION OF AEROELASTIC MATRIX—Continued

(b} Computing Instructions—Continued .

L= - A

® b'f2 €1 6 costa ML i
By 0 2 s 8 9
%,2 ) 2 ¢ .6 8 .9 = =
0 a 0 0 0 o
o o ¢ o ¢ ] ) .2 ¢ 0
.2 0 0 0 0 0 .4 ¢ 0
.4 0 0 0 0 0 -6 a
.6 0 ¢ 0 0 0 .8 0
-8 0 0 0 0 0 L9
.9 0 o 0 0 0 :
w, b'f2
b/ e ¢ costA Qatyp = - U _ o
Subsonic Case
nl L ® {@] (@]
® ur] £
- 'y”— a .3 i .6 .9
ﬁ ) 2 4 6 3 9 ! 2
- > 0 0 Y a 0 0
id P
.2 —. 00167 =
4
A 0 0 0
- .8
.8 0 0 -
.8 0 [} 0 [} ~ '9
.9 0 o o 0 ’
® . {a1=[@]1—[@]
# 0 .2 .4 .6 .8 .9
0 0 0 0 0 0 ¢
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TABLE VIL—FORM FOR COMPUTATION OF AEROELASTIC MATRIX—Concluded

(b) Computing Instructions—Concluded

Supersonie Case

“a (s "| ()
Tr —_f — rleubd
o W AO) = e
2 .
55 0 4 .6 8 g 'a?_m . s . R
0 0 06667 0 -0 o ¢ 0
.2 —. 01667 5
.4 0 0 '*
.6 0 0 , -e
.8 ¢ 0 0 ¢ -s
.8 0 0 0 o '9
(elr)unb_
(elr):'r
®@a [@]11@:] @- Al=[@a] —[@a]
T
ﬁ 0 .4 .6 8 .9 B .4 .6 .8 .9
0 0 0 0 0 a ¢ 0 0 0 0
.2 .2
. 4
.6 .6
.8 .8
.9 .9
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TABLE VII..—FORM FOR SOLUTION OF AEROELASTIC EQUATION

(8) Divergence _ . .

f4]

" =
TE . (_)__ 2 . 4 _ ‘,6 8 9
0 g 0 0 3 o o
.4

8. T

¢ iz

{a.}

. : - : 2
B @ @ @ %{Jh (6)] (6
0 [ ] 6’ KL 0 0

2 .3000 o o . ]

4 . 5000 -

.6 L7000 T

8 . 9000 =S -

9 1.0000 1. 000G 1.0000 Lo%o L. 0000 1. 0000

[A:Hall

L
vz (1) @ @) €3] ®) ©)
0 0 1} 0. 0 0 0
.2 Al

.4 s

.8 =

.8 N _i:: z

.9 2z

kgYo=___ ...
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TABLE VIL—FORM FOR SOLUTION OF AEROELASTIC EQUATION—Continued
(b} Aerodynamic Loading

i = K=
13
(BN -
F’E 0 2 4 6 8 3 {e,} fored i‘_!z}
0 1.0000 0 0 0 0 0 1
.2 1
.4 1
.6 1
.8 3
.9 1
Auxiliary mafrices
0 10006 0 ] 0 0 0 1.0000 :
.2
-4
.6
[ .8
| .9
I
Final matrices
124] Leve] {a] ja} {=}
@ ™ .
7 L] Lees]
o I 1 | .
i oig-— | lel@-— | lelE-__
BlE-__ | lelE-_ | lelE-__
l Cr= l Cpuy = | Ci,= i=
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TABLE VIL.—FORM FOR SOLUTION OF AEROELASTIC EQUATION—Concluded
(e} Solution by Iteration

2
VR

[4] g

Kq‘

(ez*)2

(xg*3?

. . . .
Wl || 2w

(g
1—(¢/en)

{ag) [Alegd | [ABleg) | [APB{eg) [Alrfes} {a} (el {e)

(=)

wlw|o|w]we

Geometrical angle of
attack due to air-
plane altitude

- . . . .
L- N - - NN ]

Geometricat angle of
attack due o roll

@y =



CALCULATION OF THE AERODYNAMIC LOADING OF SWEPT AND UNSWEPT FLEXIBLE WINGS

TABLE VIIIL.—PARAMETERS OF EXAMPLE WING

935

A=4 S=37468 1w,=22.4 Q,,=0
. - S
A=37.5 b=357.4 = =068 Q,, =040
tan A=0.7673 w=43 g =0.25 Qrp=1.60
cos A=0.7934 ¥=3444 8,5, =0.425 Q, =—0.25
L)
VP2 L) < e ‘llllﬁ el"r GJ ET
0 0 122.5 0. 4522 0.202 0.0272 6.56 X 10% 7.02X 100
.2 43.8 110.8 L4403 .19 .0243 5.79 6.28
.4 7.6 99.2 . 4460 197 .0219 3.13 3.65
.8 1313 877 yym 104 L0194 149 189
.8 175.1 6.2 . 4420 .192 . 0150 .68 .94
.9 197.0 70.3 407 .191 L0157 .42 .64
l.i—i m’l
c
2 ) 2 " 6 8 9
. 75 . . . . .
Wﬂ ] .2 .4 .6 .8 .9
0 0 o ¢ 0 0 0
0 1.000 o a 0 ¢ 0 1 0 0 0 0 0
.2 0 .905 0 o 0 0 1 [ 0 a 0 0
0 ¢ 811 0 13 0 .6 1 0 (] ()] (1] 0
.6 [ o 0 .716 ¢ [ .8 1 0 0 0 a 0
.8 ¢ 0 0 .622 0 .9 1 0 0 o (] 0
.9 0 0 0 0 o .574
) (EI),
(@), |_ =7 ]
a7
1 = o 2 4 6 8 9
PR 7 . . . . .
7A o .2 4 .6 .8 .9 2
0 o
0 1.000 o o 0 0 o o Lo 0 0 ¢
. 112 0
.2 a 113 0 0 0 0 2 0 0 0 °
. 192
.4 0 0 2.10 0 0 o * 0 0 0 0 °
. 3.7
.6 o 0 0 4.40 0 o s 0 o 0 0 0
. 0 7.47
.8 0 0 0 0.64 ) 8 0 0 ! 0
. 0 10.
.9 0 0 0 0 15.61 ® ¢ 0 0 0 0.6
L‘x ¢ "I afe "l
1.\ & sub 1.\ % spr
2 N 9 = ) 2 s 6 8 9
A 0 2 . .6 .8 . VR . . . . .
0 1.000 0 0 0 ¢ 0 1.000 0 0 0 0 0
0 .806 0 0 0 [ 0 .72 0 0 0 0
0 0 .642 0 0 0 ] 0 .530 0 0 0
.6 0 0 0 .492 [ ¢ .6 o () 0 .366 0 0
0 0 G 0 .368 0 .8 o [ 0 o .22 0
. 0 [ 0 a [ 312 .9 0 [ 0 0 0 .190
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TABLE IX.—COMPUTATION OF AEROELASTIC MATRIX QF EXAMPLE WING (SUBSONIC CASE)

- L -GJ) -
nr] G0
) . |_ 2 'l
n « S E
i ] .2 4 .6 .8 .8
0 ] 0 L T 0 0
.2 .08333 | 5068 | =051 } 0 0
.4 .00667 | -.30134 .14001 ] 0 0
.6 -00067 | ..30134 | 81500 5865 | —.1600 | 0
.8 . 06667 .30134 27000 | 1.17335 6420 | 0 .
.9 . 06667 .30134 | .27999 | L17335 | 104430 | 1.04072
(ED
L3 r
® o mr| S
12
vi 0 .2 4 .6 .8 .9
0 0 0 o 0 q 0
.2 . 08333 .14033 [ — 03201 0 0 0
.4 .06667 | .2087 | 1301 [0 |0 0
.6 08667 20867 | 28800 A0M85 | -2 | 0
.8 . 06667 20867 25589 93035 49302 | ©
.9 . 06667 . 29867 . 25590 9835 . 80923 . 73070
(a1,
tant A
® —(ﬁ—r( antA) (@]
T - -
Vg 0 .2 4 L .8 S
) 0 0 ¢ 0 0 0
.2 04585 | T.0826 | —.0I761 | O ¢ _le
A . 03668 .16433 07048 | 0 0 0
.6 .03668 | .16433 | 15846 | .27216 | —.06851 | ©
-8 | 0368 .16438 . 14085 . 54434 21401 | o
.90 || .cutes .16433 .14085 .54d34 44524 . 40203
(6J),
&D, tan? A =0.5602
W, . - ,
® iz (Qap— Qu,, tan A} [1;']
T Y L. 8
¥ 0 .2 A ., .8 .9
0 0 ¢ 9 '3 0 ]
.2 —.1629 0 ) 0 o 3
4 —. 1629 o o [ 0 0
.6 ~.1620 0 o L 0 0.
.8 —.1629 0 0 g 0 K
.9 — 1629 0 v ¥. | o 0
We
72 (Quyp— Qay, tan A)=—0.1620
e+
,;,’}5 0 .2 T . .8 .9
0 0 9 fo . o 0 0
2 fl-—.msr2 | .osm2 [—o¥Bee fe | o g
4 -—.05055 | . 46567 B I I 0
.8 —. 05955 46587 47346 85881 | —.om o
.8 —.05955 | .46307 | [ABL | Lvred 01671 | 0
.9 —. 05955 L 46667 L8y | 17rige 1, 48954 1.44275

@ ry Li & "I
1, G rub
2 H
7] [} .2 3 .6 .8 .9
0 0.06667 | 0.21404 | 0.0850 | 003120 | 0.03435 | 0.04707
2 [[—oeer | 1018 | .osa 13120 03435 04707
e | o 0 04280 13120 03435 04707
8 o 0 —. 01070 06500 L0018 L0407
.8 8 0 ) 0 00981 04707
9. |l o 0 0 0 —. 00694 02912
@ @1 E]
¥ 0 .2 “ .6 .8 .9
0 0 o 0 1) 0 0
2 | —wes 01777 | 01728 01922 00503 0089
4 | —.onm 03724 | 04875 . 03089 02118 02002
.6 —.0LI73 03724 05052 AT174 06273 07104
8 f—oum | .o . 03938 L9218 . 10633 . 16293
8 F—oums | o372 03938 22118 10254 . 23190
[ Lf'!
e
0 .2 i .6 .8 .8
o ...fo 0.04826 | 0.08825 | 0.1458 | 0.04560 | 0.07917
2 - o — o067 00006 | 02028 07638 03359 06185
4 0 0 0 03818 02227 04158
.6 ) 0 —.00135 00716 00963 L0271
8 0 o o 3 —. 00005 00050
R 0 0 a 0 —. 00067 00241
@ . [@} (@]
a7 0 2 1 6 8 )
P8 . . . ] .
e flo 0 0 0 ) ¢
.2 —.00199 | .01106 | .0284s 08202 03500 . 06250
1 —0039 | .01543 | 04289 . 20681 09790 18314
6§ —oo3m | .o01513 | 0378 28397 .16542 33750
- f—oose0 | o3 | .oa2m .30252 . 19%08 .48330
~H—o0e | o154 2ot 30252 . 18680 . 52203
®__ 41=[@1—-[@)]
7 .
75 0 .2 4 .6 .8 .9
o Mo 0 0 9 g )
2 -4 —00d 00671 | —.00716 | —.00280 | ~.029¢7 | —. 08897
4 —. 00774 02181 L0088 | —. 12502 | —.07072 | —. 16412
. —. 00774 L0281 | 01327 | —.11223 | —.102%9 | — 26682
8 —.00774 | .oz218I 00717 | —.08134 | —.08G15 | —. 32043
0 J oo | .oms 00717 | —.0813% | —.08126 | —. 20018




TABLE X,—SOLUTION

(a) Divergonoe

{b) Aerodynamic Loading

OF AEROELASTIC EQUATION FOR EXAMPLE WING (S3UBSONIC CASIE)

i
Lm25  gm Xq*=0,552
[4] 2
" [L11-ra*[41]
E'Tf 0 ] oA .8 .8 .9
7
5 0 .2 4 .6 .8 .9 P agl agl
0 0 o o 0 o 0 ) {ae fer {ar
.2 —. 041 . 0067 -, 0072 . (0628 -, 0800 -, 0660 0 1. 0000 0 0 0 0 0 ] 0.1038
N -, 0077 .0218 . 0059 -, 1250 -, 0787 e, 1541 .2 . 0028 . 0883 , 0040 L0847 . 0168 , 0800 1 , a6
L —0077 0218 - 0188 — 1122 - 1027 -, 2668 A .0043 -, 0120 . 9008 . 0805 L0424 . 0851 1 4020
'8 — hor7 - 0218 0072 | -.0813 | -, 0862 | 5304 .8 0048 | —o0120 | —0078 1.8020 . 0567 L1478 1 . 0413
0 —. 0077 08 072 - 0818 | 0848 | —,2002 .8 0048 | —0120 | —0040 0440 | 10478 1769 1 8207
.9 0048 | —0120 [ — 0040 . 0149 . 0405 1.1602 1 ,9108
{aa} Auxillary matrices
" 0 1,0000 0 0 0 0 0 1.0000 0.1083
TE m @ @ 0) ® ) .
.2 . 0023 . 9963 . 0040 . 0348 . 0168 ,0810 10014 , 2834
0 0 0 0 0 0 0 " .0048 —. 0120 , 9908 . 0702 L0427 0857 1.0110 , 4085
2 3000 T8 ) T30 .6 .0043 —0120 | ~— 0078 1.0620 . 0538 , 1896 . 0581 . 6094
4 5000 "L g Ky .8 .0043 — 0120 0039 . 0456 1, 0468 ,1638 .0261 . 7630
.6 7000 1, 0286 1, 0526 1, 0582 .9 .0043 ~ 0120 . 0089 0466 . 0444 1.1478 . 8081 . 7489
.8 . 9000 10775 1.0714 1,0718
9 1,0000 1,0000 1,0000 1,0000 1, 0000 1,0000
Final matrices
[111] lefes] {&} {a) fa)
[A}{ad) _
@ 0. 0667 0. 418 0,1081 0. 1800 0.0881 0.0866 1,0000 0.1083
k]
E m @ &) ) ®) ® %820 - %820
,8518 . 8423
0 0 0 0 Q 0 0 ) 7996 4
,2 1286 | ~—. 1061 | o~ 1676 L1z) Lefer] 7887 , 8412
4 —. 8018 ~ 8851 —. 3567 @ 0 0, 0488 0, 0438 0, 1148 0, 0485 0.0792 . 8081 L7849
.6 — 48 | —.4784 | ~—.4T70 -
.8 — 448 | —.440 | —. 4852
.9 —~ 4198 | —.4h28 | —.4820 | —.4820
@) {5} =0.6524 l@}{a]= lol{=}=
[®]{&}=0.2736 |@]{a}=0.1681 l@){z]=
(x*) p=—2.208
Cp,,=0.740Cr,, cBHu’°'”7CL, c,w-o.osaucl,"‘ E#I-z-a.m
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