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COMPRESSIVE STRENGTH OF FLANGES 1 
By ELBRIDCE 2. STOWELL 

SUMMARY 

T?he maximum compressive stress carried by a hingedJLEange 
is computed from a deformation theory of plu,sticity combined 
with the theoryfor$nite d&ections for this structure. The eom- 
puted stresses agree well with those found experimentally. 
Empirical observation indicates that the results will a,lso apply 

.fa,irly well to the more commonly used$anges which are not 
hinged. 

INTRODUCTION 

Ordinarily the ability of columns ancl plates to carry 
additional load does not entirely cease when they buckle. 
If the load is increased sufficiently beyond the bucxkling 
load, they will ultimately refuse to carry more load, with 
subsequent permanent distortion. In the case of columns, 
the maximum load is not far above the buckling load (see 
reference 1); in the case of plates, there may be a consider- 
able spread between the two loads. 

The maximum load carried by a long hinged flange is 
computed as follows: The strain distribution across the 
flange at any angle of twist is found from knowledge of non- 
linearity due to finite deflection. This elastic strain dis- 
tribution is assumed to persist into the plastic region. This 
strain distribution is transformed, with the aid of knowledge 
of nonlinearity due to plasticity, into a stress distribution 
by means of some appropriate stress-strain relation. The 
load carried by the flange at the particular twist is then 
obtained by integrating the stress distribution across the 
flange. The load is then investigated to see if it has a 
maximum value as the twist increases; the maximum load 
should correspond with t.he experimentally observed maxi- 
mum loacl. 

The first essential requirement for the solution of the 
problem of maximum load is the existence of a finite- 
deflection theory for the behavior of the structure. Maximum 
load always occurs at some finite deflection or distortion 
beyond the buckling load. The problem of the load for a 
given distortion is thus nonlinear even without the intro- 
duction of plasticity. Few such solutions exist for post- 
buckling behavior of structures even in the elastic region. 

Experimental data on the behavior of hinged flanges have 
been obtained in t.he Langley Structures Research Division 
by the methods of reference 2. These data are used in the 
present report for comparison with theoretical relations. 

The theoretical treatment of the behavior of a hinged 
flange commences in the next section with a discussion of the 
efl’ects due to finite deflections. Details of the theoretical 
calculations are presented in two appendixes. 

NONLINEAR BEHAVIOR DUE TO FINITE DEFLECTION 

The second essential requirement for computation of 
maximum load is the ability to describe the nonlinear be- 
havior of the structure that results from plasticity of the 
material. Neither columns nor plates would ever possess 
a maximum load in compression, if the material of which the 
structure was made obeyed Hooke’s law at all times, al- 
though they might be tremendously distorted. In such a 
structure it would always be possible to add still another 
increment of load, which would result in still another incre- 
ment of distortion. The question of a maximum load must 
therefore be directly linked with the failure of the material 
to obey Hooke’s law-that is, with the plasticity of the 
material and the nonlinear behavior of the structure which 
results from that plasticity. 

Theoretical strain relations--A flange of length L, width 
b, and thickness t is shown in figure I together with t,hc 
coordinate system. The flange is hinged along the line z=O 
and has a free edge along the line z=b. C!omprcssion is 
applied longitudinally . 

The load is applied uniformly at first. The theory of 
appendix A shows that, for strains below a certain critical 
strain ecr, the ‘flange will shorten without twisting. The 
critical strain Q, at which twisting begins is shown to be 

where p is Poisson’s ratio. 

For the calculation of the maximum load carried by a 
buckled structure, these two essential but difhcult require- 
ments must be met. This report treats the maximum com- 
pressive strength of a simple plate structure for which the 
effects of both types of nonlinearity can be found-that is, 
the compressed flange hinged along one side edge. 

As the load is increased beyond that required to start 
twisting, both the middle-surface strain and the stress dis- 
tribution across the flange width become nonuniform, larger 
than the average at the hinge, less than the average at the 
free edge. The middle-surface strain at any point (x,2) of 
the flange is shown by the theory of appendix A to be 

1 Supersedes NACA TN 2020. “Compressive Strength 01 Plangcs” by Elbridge Z. Stowell, 1950. 
964418-52 
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in which 1~’ is a parameter lying between 0 and 1 which 
specifies the amount of twist, 

s 

s/2 
K= 

0 

is the complete elliptic integral of the first kind, and 

The average middle-surface strain eav in the elastic range is 
the average stress divided by the elastic modulus E. 

- 
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2 
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(a) Without distortion. (b) With lnrpc distortion. 
(12) Enlargcmcnt of section nnc’c. 

FIGURE I.--Cruciform section, consisting of four identical flanges, hefore and after buckling. 
Coordinate system is shown on ow flmw 

Thus, if a value is assigned to k2 (a certain amount of 
twist), both the quantities K and m2 are determined; the 
strain at any point (z,z) may then be computed. 

Equation (2a) may be simplified as shown in appendix A 
to the following expression which holds over the essentially 
straight part of the flange: 

Theory also shows that over most of the flange length 
(except at the middle and extreme ends) the relation between 
the middle-surface strain at the hinge eh, the average middle- 
surface strain over the width of the flange eav, and the critical 
strain cCr is 

4 5 
E Cl”- -5 cl&+-- EC, 9 (3) 

and fhc rotaf,ion c$,~~, at the middle of t,hc flange is 

4 “nm= J5 J b cash-’ j 1 
\/l-f+2 

01’ npprosimal~cly 

(44 

L I- &az=1.37 -- YE.,--E,,-l.55 - 
6 i (4b) 

Relations (I), (2)) (3)) and (4) are susceptible to experimental 
check, and the following section describes t,he results of 
esperiments designed to test these relations. 

Experimental check of strain relations.-The hinged 
flange shown in figure 1 was realized experimentally by the 
cruciform column shown under test in figure 2. Tht~ cruci- 
form column has four identical flanges which, if equally 
loaded, will twist. at the same time without restraint, t,o each 
ot.her; t,hus tbc condition of zero restraint, against rotation is 
flllfillN1. The columns wcrc all sufficiently short to cause 
them to buckle by twisting rather than by Euler bending. 

‘l’hc~ tests included measurement of the st,ress-strain curve 
for the matrrial from which the tlificrcnt. groups of specimens 
WPI’P made, tlctcrmination of t.he buckling and maximum load 
for each specimen, a st,utly of t.hr strain dist.rihut.ion across 
the flanges of two specimens, and a mrasurtmcnt of rotation 
of each specimen at the middle. 

Results of the buckling-load measurements and their con- 
nection with the stress-strain curves for the specimens were 
given in refcrcncc 3 and arc shown in figure 3 of this report 
where t,hc buckling stress is plotted against the calculat,ed 
elastic buckling strain. Bccnusc thcl espcriment.al points 
follow along t,he stress-strain curve, the proper reduced 
modulus for pure twisting in the plastic range is concluded 
to be the secant modulus, which agrees with the theoretical 
value of reference 3. 

The relation between the computed and experimental 
middle-surface strain clistribut,ion over the width of the 
flange for one specimen at the quarter height for a number 
of different loads is shown in figure 4. The highest average 
stresses exceeded the proportional limit of the material. 
The measured strains for the four flanges were averaged 
to give the points shown in the figure. These average strains 
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were somewhat larger than the ratio of average stress to E 
at the very highest loads where plasticity reduced the aver- 
age effective modulus. From the experimentally observed 
average strain across the flange at each load and the critical 
strain at which buckling began, the corresponding theoretical 
strain distributions were computed from equation (2b) and 
are presented as the curves in figure 4. This calculated 
strain distribution agrees fairly well with that observed 
experimenttilly.. 

FIGURE Z.-Buckling of a cruciform section in compression. 

0 20 40 60 80 IO0 I20 I40 /~OXIO-~ 
Strafn 

I / I I I I I 
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I I I 
.2 I 

.4 .6 .8 LO 
; 

FICIUBE: 3.-Experimental values of the buckling stress for cruciform-section columns of FIGURE 4.-Theoretical middle-surface strain distribution acrass a hinged flange at the 
24S-T4 extruded r\luminum alloy cnmpnred with the compressive stress-strain curw for quarter-length station along a cruciform-section column compared with expximent. 
that material. (Experimentnl values are avcrnge for the four fIang@s; an=0.0016.) 

The relation between average strain, corner strain, and 
critical strain given by equation (3) was investigated experi- 
mentally. From measurement of the strain in two opposite 
flanges of one buckled specimen, averages were taken to 
give mean values of eao and Q. The critical strain e,, was 
also accurately known. Figure 5 shows the theoretical rela- 
tion of equation (3) compared with the averaged experi- 
mental points. The agreement is good. The strain ei, 
ceases to be elastic at a value of 0.0025, so that both the 
curve and the points extend well into the plastic region. 
The persistence of the agreement between equation (3) and 
the experimental points up to the highest strains indicates 
that, even though equation (3) was derived on an elastic 
basis, it is a good approximation in the plastic region also. 

Figure 6 compares the theoretical rotation of three cruci- 
form specimens of widely different lengths with the meas- 
ured rotations. The ordinate in figure 6 is t.hc shortening 
S/L, which is the hinge strain E,,. Rotation was measured 
by a pointer attachccl to the flange ancl moving past a 
circular scale. Equation (4b) was usecl to compute the 
theoretical rotations. The agreement between theory and 
cxpcrimclnt is good in-this case also. 

NONLINEAR BEHAVIOR DUE TO PLASTICITY OF THE 
MATERIAL 

‘ho JIM Lcld of 111~ flanges (245-T alurnilltrm alloy) is 
drfint~tl t)y the strc3s-st,rain curve’ of figure ;3. The figure 
SLOWS thal abow 25 lrsi the ma.tcrial starts to depart from 

6x/O+ 

5- 

4 ~- 

2- 

-.e 

/- 

o- 

/- 

Free edge--.. 
-\ 

I 

._ __--.-..--~ 



REPORT lO’L%-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 4 

5 

4 

ii 

cw 

2 

I 

G 

D-3 

I I I I I I , I 
2 4 6 8x10 -3 

rh 

flmgr~ compnrcd with espcrimrnt. &; eh+; C<r for e..>c,,.) 

purely elastic behavior and becomes partly plastic. As a 
result of this plasticity, the flanges exhibit nonlinear behavior 
above about 25 Bsi. 

The most clemtntary consequence of the plastic nonlinear 
behavior is the substitution of ES,, for E in t.hc formula for 
critical stress which, for a hinged flange, is (reference 3) 

UCT=&&7 (5) 

Another consequence of the nonlinear behavior due t’o 
plasticity is the existence of a maximum load. Ksperi- 
mentally-, as the load is increased more and more, tlic twist 
of the flange will increase until a value of load is reached at 
which the flange ceases to carr\- more load; this value is the 
maximum load. As was pointecl out in the introduction, 
if the material of the flange obeyed Hooke’s law strictly 
at all times, the rotation of the flange would increase 
indefinitely with increase in load. The existence of a masi- 
mum load is therefore directI?- attributable to plast,icit\ 
of the material. 

As the structure twists more and more beyoncl the buck- 
ling load, greater and greater shear strains are set. up through 
the t,hickness of the flange. The shear strains are zero at 
the middle surface and have opposite signs at the faces. 
These shear strains will combine with the compressive 
strain already present to form a strain intensity; at a point 
where th’e compressive strain is e, and the shear strain is 7, 

the strain intensity is el== 
J 

Z$. (In order not to have to 

consider variat.ions of y through the thickness, a mean value 
of y* is used.) According to the deformation theory of 

6 

4 

d 
i 

3 

plasticity used herein (refcrcncc 3), the value of C?i at any 
stage of deformation determines the recluced modulus of the 
material at that stage. 

Since the maximum load nlwa~-s occurs at a finite rotation 
of the flange, t,he two effects of nonlinearity must be combined 
in order to account for the maximum loacl. Such a com- 
bination is effected in appcndis B and the results arc given 
in the following section. 

MAXIMUM LOAD OF A FLANGE 

It is shown in appendix B how the maximum load on a 
hinged flange may be computed from the dimensions of the 
flange and the stress-strain curve for the material. 

The middle-surface strain distribution across the flange 
is given b\- equation (2a). In aclclition to these strains which 
arise directly from the compressive load, there are also 
shear strains in the flange tluc to its twist. ‘These shear 
strains bcromc as large as two-thirds of the compressive 
strains upon which they arc superposed. Although, strktly 
speaking, the deformation theor>- of p1asticit.v has only been 
shown to hold for simple loading (reference 4), its validity is 
also assumed herein for complex loading. The square of 
the compressive strains and t.he mean square of the shear 
strains were acldctl in the proper manner to give a strain 
int(9sit.y. (The highly localized effects of bending at the 
middle and ends have been neglected.) From the com- 
pressive stress-strain curve for the material the value of the 
secant modulus ES:,,, was read at this strain intensit)-. For 
increasing strain intensities the comprcssivc stress c at 
an>- point across the width of the flange is then simply 
E,,, times the compressive strain at the point.. Near the 
free edge the strain intensity decreases; in such a case, the 
elastic modulus E is used to compute the corresponding 
stress reduction. The averngc stress g,,, across the Aangc 
is then 

1 b 
IS=“=- 

s b o 
adz 

The value of c,, is computed for a number of different twists 
until a maximum average stress umaz is found. 
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Figure 7 shows the results plotted in a nondimensional 
form similar to that employed in reference 2. The param- 
eters used have some theoretical justification and have the 
effect of making the information given by the plot largely 
independent of the material. The agreement between the 
computed curve and the experimental points for cruciform- 
section columns is satisfactory. 

The fact that maximum loads may be computed in this 
case solely on the basis of deformation theory suggests that 
the theory is sufficiently accurate when the stress state 
changes from pure compression to combined compression 
and shear, for shear strains up to two-thirds of the largest 
compressive strains. 

An interesting side light on this computation is revealed 
by the values of stress intensity at the supported edge when 
the load is a maximum. The stress intensity for eight widely 
different cruciforms is a constant, to about 1 percent, equal 
to about 47 ksi. (See table 1.) This value is close to the 
yield stress for the material (46 ksi). 

When the flanges are present in actual structures, they 
are generally connected to other members which offer a 
certain elastic restraint against rotation along the supported 
edge. The question arises as to what cffcct this connection 
has upon the calculations based on the assumption of a 
hinge connection. The elastic restraint along the supported 
edge will have two major &ects: The critical strain will bc 
apprcciahly raised and the effective length L of the buckles 
will be appreciably short.encd. A necessa.ry conscquencc is 
that the rot,at.ion (which is proportional to L) is rcducccl 

L2 0 

+ 24S-T4 Cruciform 
o 24S-T4 H-sec’ion 
q 75S-T6 H-secfion 
o R303-T H-secfion 
a l4S-T4 H-section 

.4 6 .6 .8 / 
--ET- a mos 

Frcr;n~ i.-Comparison of theoretical curve for the maximum strength of 24S-‘I’4 aluminum 
fllloy cruciforms wit.h test results. Compressive yield stress .~.~=46 ksi. (Experimental 
relues for E-sections of various aluminum alloys have been added for comparison with 
the theoretical curve.) 

and, therefore, is more nearly of the shape of a circular sine 
along the length of the flange than it would be when a hinge 
is present along the joint. A third effect is the introduction 
of a slight curvature across the width of the flange. When 
the revised critical strain and the revised length are inserted 
into the formulas of appendix A, which were derived for a 
flange supported along a hinge, it is found that the rotation 
and the strain relations may still be accurately predicted 
for flanges with restraint along the supported edge. Such 
a result seems to indicate that the small amount of trans- 
verse curvature introduced by the restraint does not have 
an important effect on the formulas. 

In view of the fact that the theory of appendix A applies 
fairly well to flanges with restrained edges, it might be 
expected that the maximum strength, also, might be given 
by the same theory. Experiment shows that such is the 
case; the values of maximum strength for H-sections are 
included in the experimental points shown in .figure 7 and 
the points intermingle with the cruciform points such that 
one set cannot be distinguished from the other. The 
theory of this report may then be said to apply approximately 
to flanges with elastic restraint along one siclc edge as well 
as to flanges without elastic restraint. 

CAUSE OF MAXIMUM LOAD 

~Iasimum load occurs when it is no longer possible for the 
stress, on the avemgc, to grow with increasing strain. TiK 
natural t,cndency for the stress to grow is dcfcatcd by the 
clccrrssc in cffcctivc modulus. 

In orclcr to illustrate this cffcct graphically, figures 8(a) 
and 8(b) have been prepared. These figures illustrate the 
calculated strain and stress distributions across a hinged 

flange of 24%T4 aluminum alloy and of proportions I= 14 

L 
and b= 12. These clist,ributions hold over the greater part 

of the flange whcrc the bending is negligible. Up to the 
critical strain of 0.002 and the critical stress of 21.5 psi, the 
distributions are uniform. As the load is increased beyond 
the critical value, the distributions become more and more 
nonuniform as a result of twisting of the flange. With in- 
creasing load, the strain increases faster at the hinge than at 
the middle of the flange as shown in figure 8 (a). For a time, 
the corresponding stress also increases faster at the hinge 
than at the middle of the flange, as shown in figure 8(b). 
Eventually, however, the strain intensity at the hinge 
(averaged over the thickness) becomes so large that the 
modulus is greatly reduced. When that occurs, the stress at 
the hinge line ceases to grow with increase in strain and even 
TABLE l.-SHOWING CONSTANCY OF STRESS INTENSITY 

AT HINGE LINE AT MAXIMUM LOAD 

specimen At failure 

8 12 
1: 7 

ii:: 
44.8 

:: :i 
37.6 
33.4 

:; 
4 37.3 

25.8 
14 :i 21. 7 

45.7 46.6 
40.0 
44.0 ::kf 
38.0 47: 5 
2; 

47. 1 
31: 5 

46.6 
48.2 

31.3 48.2 

I I 



. 
G REPORT 102Y-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

/5x/P 1 

C i free edge-. 
/5x/P 1 

--Cenferlhe 
- 8 

I I I I I I I .,A 
.5 LO 

5 
(n) Strain distribution. 

free edge-- 
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(h) Slrrss distribution. 

starts to decrease (see fig. S(b)). The masimum arca under 
the stress curve, and therefore the maximum load, occurs 
just as the hinge stress starts to recede. 

CONCLUSIONS 

A theoretical analysis of the compressive strength of 
flanges, based on a deformation theory of plasticit)- combined 
with the theory for finite deflections for this structure, and 
compkson with experimental data lend to the following 
conclusions: 

1. The maximum load for a flange under compression and 
hinged along one edge may be accurately computed from the 
dimensions of the flange and the compressive stress-strain 
curve for the material. 

2. XIasimum load occurs when, because of the onset of 
plasticity, the effective modulus has been reduced to such a. 
low value that it is no longer possible for the average stress 
to increase with increasing strain. Failure is not a local 

phenomenon but is an intcgratcd effect over the cross section 
of the flange. 

3. For a wide variet)- of cruciform sections, the stress in- 
tensity (averaged over the thickness) along the hinge line at 
maximurn load is a constant to about 1 percent. This value 
of stress inttnsit,J- is ver?- close to the yield stress for the 
material. 

4. The fact, that maximum loads may be computed in this 
case suggests that the deformation theory of p1asticit.v is 
suffirientl~- accurate when the stress state changes from com- 
pression t,o combined compression ancl shear in the case when 
the shear strains arc less than about two-thirds of thr com- 
pressive strains. 

LANGLEY Amoxam~ca~ LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., December 9, 1949. 



APPENDIX A I 
FINITE DEFLECTION THEORY FOR A HINGED FLANGE UNDER COMPRESSION 

ELLIPTIC-FUNCTION SOLUTION 

The coordinate system and dimensions of the hinged flange 
(one-fourth of a cruciform-section column) are shown in 
figure 1 (a) ; the form of the distorted shape is shown in figure 
1 (b). The fundamental hypothesis of the calculation is 
that at any sect,ion r=Constant there is no curvature of the 
flange in the direction of z. The correctness of this hypothe- 
sis is amply borne out by tests on the flanges while under 
twist. With this:assumption it becomes possible to avoid a 
formalized plate treatment of the problem. 

For infinitesimal rotations, the cliffrrential equation of 
equilibrium for a column undrr the simultjancous act.ion of a 
compressivr stress c and torque T has been shown by Wagnci 
(reference 5) to br 

(GJ--uI,) $E(‘,, 2-T (Al) 
WllClY 

GJ ti 
dx 

St. Vemmt compolw~~l of iuterna,l rrsistillg 
torque 

ar. +i! 
p dx component of internal torque due to applica- 

tion of compressive force. (This component 
is not a resisting torque but aids the applied 
torque T in t,wisting the column; its sign is 
therefore ncgativc.) 

- ICCl,, 2 component of iiitcrnal resisting torque due to 
brnding of column as it twists 

For the case in l~hich the applictl torque 1’ is zero, such 
as for a comprcsse 1 hingctl fiangc, equation (AI) bccomcs 

$ 

As previously mentioned, equations (Al) and (-42) arc 
limited to infinitesimal rotations and thus cannot be usccl to 
determine the behavior of a column above the buckling load 
where rotations may become large. 

In order to investigate the behavior of a compressed hinged 
flange above buckling, a theory which permits the calculation 
of the large deformations which may occur after buckling 
must be employed. The differential equation (A2) must 
therefore be amended to include the effects which appear at 
finite values of the rotation I$. 

DERIVATION OF THE BASIC DIFFERENTIAL EQUATION FOR 
FINITE ROTATIONS 

The effects of finite rotation involve the changes in the 
middle-surface strain that occur after buckling. As the 
plate twists, the longitudinal fibers will be inclined at a small 
angle to the hinge line as shown in figure 1 (b). As a result, 
the longitudinal fibers are stretched in varying amounts and 
the horizontal components of the forces along the fibers pro- 
duce a torque which resists twisting of the plate. The re- 
sisting t(orque increases very rapidly with twisting of the 
plate, which t,hus becomes progressively stiffer. The rapid 
increase of stiffness with rotation provides the requirecl 
mechanism for maintaining t.hc rot)ation at a finite value. 

Stretching of middle-surface fibers after buckling--A 
short, section of thr plate as shown in figure 1 (c) will have 
the 1cngt.b ac before t’he plat,e buckles. After buckling, the 
Icngt 11 ac’ will br great PI than ac bccnusc ac’ is inclined at an 
auglc yb with tlic lriugr lint. (Scr fig. 1 (c).) Thus t11c 
stwin :11 the free ctlgc Ed tluc to slr*c~lcbing for small vnlucs of 

(As) 

(The strain Ed is positive when compressive.) 

If the line aa (fig. 1 (c)) has been rotated an angle 4 from 
it.s original position, tht free-edge fiber at c moves a distance 
b(4+r1+). Tbc angle of inclination of the frtc-edge fiber 
is thus 

y,,,b(d+W-bh (14 
-----=birx dX 

(A41 

If the point c is not at the free edge but at some interior 
posit,ion a distance z from tlir hinge line, it can similarly 
bc shown that 

From equations (As) and (AG), the strain E, resulting from 
the stretching action can be given as 

Equation (A7) gives the difference between the hinge-line 
strain and the strain at any fiber due to the stretching action, 
for a given position along the width of the flange. It is this 

7 
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difference which causes the middle-surface strain distribution 
after buckling to differ from the uniform strain distribution 
at the instant of buckling and which will now be considered. 

Middle-surface strain distribution after buckling.-A 
compressive load P applied to the hinged flange will cause the 
ends to approach each other by a distance 6. The unit 
shortening e is S/L. Equilibrium of the internal compressive 
forces with the applied force P requires that 

r=tE 
J’ 

“~(efe,)cos yz dz (W 

The angle yz is usually so small that cos yz may be taken 
as unity. Then, substituting the expression for E, from 
equation (A7) into equation (A8) yields 

P=tEj;[e-;($>]ds=EA[e-;($y] (Ag) 

The unit shortening e is thcrcforc 

(Alo) 

The ratio P/AE is the average strain over the cross section. 
If P/AE is denoted by E,~, equation (AlO) becomes 

The longitudinal middle-surface strain E, at any fiber z in the 
cross section is therefore 

Moment due to axial stress after buckling.-The longi- 
tudinal st,rain e, does not have the direction of the hinge line 
but of the slightly inclined longitudinal fibers (the angle yz, 
equation (A6)). Consequently, Ee, has components per- 
pendicular to the hinge line which. create the moment Add 
resulting from the applied compressive force. 

The component of EC, perpendicular to the binge lint at. 
any fiber z is EE, sin yp and for small angles is approximately 

equal to Ee,z 2. As this component has a lever arm z, the 

internal resisting moment Ai!4 is 

(1113) 

Substituting the expression for E, from equation (A12) into 
equation (Ala) results in the following relationship: 

s>[=-,,I %+TEb’I 
’ dx 15 (A14) 

The term ~~1~2 is the same term that appears in equation 

(A2). The last term of equation (A14) is the required 
additional term which takes into accourlt the stretching 
actions, which occur for finite rotations of the flange, and 
permits the computation of the rotation +. 

Basic differential equation of torque for a compressed 
hinged flange which includes the effects of finite rotation- 
The complete differential equation of torque which replaces 
equation (AZ) and includes the last term of equation (A14) is 

3=o (A15) 

‘l’hc constants of equation (AIM) are 

Substituting equalions (Alo) iuto (A15) ~yicltls 

(Alti) 

A further simplification is cli’ccted by t.hc use of 

(Al8) 

The substitution of relations (A18) into equation (A17) 
gives the basic tliffercntial clquation for a comprcssctI hinged 
IlUIlW 

SOLUTION OF THE BASIC DIFFERENTIAL EQUATION 
FOR FINITE ROTATION 

The basic cliffcrt!ntial cquatiori (A19) has t,ho solutiori 

dYb 

J 
4 

c2-m2yb2+5 yb4 (AW 

where c and &, are constants of integration. (The sign of 
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the radical must be chosen so as to keep dg positive.) With 

the condition that y = 0 for ,$= 0 equals zero at the ends 
> 

and the substitutions 

equation (A20) may bc written 

1. b421) 

+ ?,lr J’ 4-d) 
0 J [l -LT2(Yb~~)21 [I -~‘(r*lC)21 

WW 

With new variables q ancl lc defined by 

equat.ion (A22) is transforrncd inlo 

(A23) 

(A24) 

III ortlrr to tlctcrininc lho constant c, use is made of the 
L L condition that ro=O for l=% or 2= 2. The upprr limit 

for equation (A24) corresponding to x=$ must then bc \k=a 

in order to satisfy the first of equa ,ions (A23): 

C-425) 

In elliptic-function notation, 

(A261 

Equation (A25) thcrcfore may bc written 

4Kt 
.Lz=L 

and equation (A24) becomes 

(A27) 

4Kx U-s 
-=J 

da 
L 

=sn-’ 
0 &Ic* s111* Ly 

so that taking the elliptic sine of both sides gives 

WW 

The coefficient c/g is readily found from the definitions of g 
and h in equations (A21). Prom the first of these equations 

h= Jzq+lZ li 
(t/b)’ g* 

Eao-zqiq4)-12 
and from the second 

r=f h=,/15 
-4 

W)2 g* 
g 

‘an-y(~-iij 

Making use of equation (A27) Icacls to the general solution 

Another form of th(l solution which is sometimes convcnicnt 
may be obt~ainetl b.y using a difYcrcnt. expression for h: Since 
atldi~ion of equations (A21) gives 

it follows that 

and that 

HCIKC, 

g=~: 
+1+/F 

h-kg=& 

4s km = 
2 T’1+k2 

(A3 1) 

With either equation (A29) or equation (831) now avail- 
able as an accurata csprcssion for the fiber slope ye, it is 
possible, bcsiclcs chcclrin, m the known formula for the critical 
comprcssivc stress, to write formulas also for the rotation 
at any station along the flange, for the middle-surface strain 
clistribut,ion along ancl across the flange,, for the relation 
between hinge-line, avcragc, and critical strains, and fol 
the fractional shortening. The formulas will now be given 
in that order. 

Check of critical compressive stress.-In order to show 
that equations (A29) or (A31) give the correct buckling 
stress at the start of the rotation (~~=0), the behavior of the 
elliptic funct,ion is considered as the rotation approacheszero. 
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The preceding section showed that the angle Yb is propor- 
tional to h, and therefore to k. As k approaches zero, K 
approaches r/2, and the elliptic sine approaches the circular 
sine. Hence for loads only slightly above the critical, from 
rquation (A29), 

yb= ,I&? (t/b)* ._-~ 1 27rtz 
eaD--2(lqy)-12 L (-) sin EY!? L 

At the critical load, Y~=O, ancl for loaclccl edges clamped, 

(41b=,=Eer=gl +p) 12 L 
(t/‘b)* I 1 (“7 (832) 

This is the clxpression given as equation (1) in the body of 
the report. The critical ctompressivr stress gCr is obt.ained 
by mult,iplying both sides of equation (A32) by the effective 
moduIus in compression E,,,. Then 

This is the expression given as equation (5) in the body of 
the report. 

Rotation of any station along the flange.-By symmetry, 
the rotation of any station a distance x from either end is 
given by 

(A34) 

and so is obtainecl by a simple integration of the fiber angle 
distribution along the length of the flange, subject to the 
condition that the rotation is zero at both ends of the flange. 

If an analyticd expression for 4 is desired, cit,her equation 
(A29) or its alternate (A31) may bc integratccl. Integration 
of equation (A3l) gives 

‘- km +A L (.41fzi~s,l(~~.r) d(&..T) 
2 ,il+k* 4bK. o 

JS m L 

CoSh-’ 

1 

- 2 Ji+lci 4bK P-cash- 

1 t’=(4Kx/L) --- 

-\il -k2 1 
(A35) 

Since 

the general integral becomes 

m.=g, ] Sk*=? 41 +k* 

1 
cash-’ J1-~~ -cash-l 1;1 -k%n2(4Kx/L) 

41 -k* 

co&-’ ~ lii-ik2sn2(4Kx/L) 
,,+2+cosh-1 __ 

Jl -k2 1 

4 “,“I= Jz $ cash-1 -A- 
-,/l -k2 

Variation of middle-surface strain over length and width of flange.-Thr middle-surface strain E, at any distance z 
from the hinge line was given in equation (Al2) n.s 

a,=a,,+$+-3 $) 

The slope of the free-edge fiber Yb may 110~ be inserted in this expression from either equation (A29) or equation (A31). 
Thus 

or 

S,=C.,+; 1 eau 2(1$/J) 12 
-JL!L’(~y](l-3$)sn2(~~?) 

eZ=e,,+z 1 +k2 5 k21n2 (1-3$)sn2(!p) 

(A36a) 

(A36b) 

(836~) 
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Relationships between hinge-line, average, and critical 
strains.-Along the hinge lint z=O, and equations (A36) 
give 

OP 

5 k*m* 
(tz)r=O=h+~ j-j-+ sn* 

Along the hinge line at z-c=: and X=~J 

or 

(A37b) 

Along the hinge line at x=0, and x = L, 

(4=0=Gzu 

Thus at the ends and at the middle the strain is uniformly 
distributed across the width of the hinged flanges. 

Fractional shortening.-The fract,ional shortening of the 
flange S/L (l/4 of its length is considcrcd for convenience) is 

4 
f 

L/4 
=-, o (4z=o dx L 

whcrc -E;= (’ 
*/Z 

JiJi’sin’ da. From equation (A30) 

,n=F nfjL*i and by use of this value of WL, 

e +,,+10 4  3 L *K(K-E) 
0 

(A38) 

APPROXIMATE RELATIONSHIPS FOR POSTBUCKLING BEHAVIOR 

The preceding relationships for the behavior of a hinged 
flange when compressed beyond the buckling load may be 
greatly simplified if the flange is long enough so that bending 
is negligible compared with the twist. Under such conditions 

d3+ the term KCBT z3 in the differential oquation (A15) may bc 

neglected. The basic differential equation (A19) then 
reduces to a simple algebraic equation 

8 m2yb-5 yb3= 0 

The fiber angle yb.-Solutions of the preceding equation 
are 

-tb=O 

and 

yb= i&m= ;.g JG, (A39) 

W)* in which By,= -- 
5a +r> 

, the term in length now being omitted. 

The same quantities which were computed under “Elliptic 
Function Solution” may now be expressed once more in 
terms of the approximate SOhtiOn for To. 

Rotation of flange---The approximate rotation will be 
the integral of the approximate value of Tb) or 

A reference to figure 2 shows that. the dist.ribut,ion of the 
angle 4 is nearly linear for large rot.alions. 

The masimum value of 4 is f 
J- 

!i ,‘E,,,-e, 4 or 
0 

4 

A second approximation, which contains a small correctsion 
km to equation (A40), may be found from the relations 

1 lim cosli-’ v -log -2L 
k-11 ,I1 -k2 Jl -k? 

and 

lim K=log __-. 
/L-+1 J&F 

Since 

log &*=log ___- -. 
Jl:F’ log 2 ~. 

as k-+1, 

cash-’ r&z=K-log 2 

The exact rotation at the middle of the column is given by 
equation (835): 

4 
l-t 

“*az= $5 - cash-’ 
1 

b ji=F--kZ 
thcreforc, as k-1, 

4 mm= fi $ (K-log 2) 

=l:z - 
L ( mL ---log 2 

viz 4t > 

=1.37 ; 1/Enn--err-l.55 f (A41) 

This corrective term 1.55 i is always a small pa,rt of +,, 
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Variation of middle-surface strain over width of flange.- 
The approximate strain distribution is obtained from equa- 
tion (A12) by using the approximate value of Tb from equa- 
tion (A39) : 

Relationship between the hinge-line, average, and critical 
strains-Along the hinge line z=O, so that, approximately 

(A421 

‘l’his result holds over most of the length of the flange but is 

in error near the ends and the middle where sn 

a value different from unity. 

(A43) 

I Fractional shortening.-The approsimato shortening is 

e=l = g SC 
5 

> 
9 5 

L o z w-~ ecr dx=z w--4 ecr (A441 

1 and th ere ore is identical with ez along t,he hinge line e=O. f 



APPENDIX B 
MAXIMUM STRENGTH OF A CRUCIFORM-SECTION COLUMN 

The deformation theory of plasticity used here states that 
a relation exists between the stress intensity ut and the 
strain intensity ei which is of the following form: 

for loading (ai increasing) 

ui= zcb&i 

for unloading (ei decrcnsiJJg) 

(lUi=EdPi 

wllcl-c 

in which 
uz= a& 

Tho value-of -6; at any point (x, z) of a cruciform flange is 
assumed from appendix A to be as in equation (A36c) 

where lc2 is a parameter lying between 0 and 1 which specifies 
the amount of twist, 

KY r’z S 0 

m2=12 E 
C 

(f/h)2 ,l,~--]=Kyl +x,2) (g 
2(1 -1-p) 

As soon as a value is assignctl to k2 corrcsponcling to a certain 
amount of twist, the quantities K and m2 arc fixed and + 
may bc computed. 

Ovrr most of the length of the column, sn ~1 and, 

thcreforc, the variation of e, with x may hc ncgloctccl by 
tnldng 

The shcnr strnin y arises from the twist 2 of the flange 

after buckling nnd is proportiona. to t.hc clistnncc T a.way 
from 010 ccntn. line of the cross section: 

I~Iowcvcr for inscrt,ion into l#hc formula for st.rain intrnslty, 
n vnluc of y2 is desired which is independent of T. Such a 
vnlue may be obtained by taking the average value of y2 
over the thickness. The mean value of y2 over the cross 
section is 
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From the theory of appendix A (equation (Asl)), 

fi km 
Yb=-%i- dl+k2 

over most of the section for which sn Hence 

0 

and thus the strain intensity 
J 

cz2+$ is completely de- 

termined as soon as a value of t,he paramct.cr k2 is selected. 
From tbc st.rcss-strain relat,ion the value of the sl.rcss 

intensity and of course E,,, is clctrrmincd by (lit value of 
t.he strain inknsity. (‘I’1 I(: elastic modulus E is used if the 
strain intensity is dccrcasing.) The stress CT= may t.hen be 
computed by the relation uz=EBee~z as a function of the 
z-coordinate across the flange. The average value of uz 
across the width of the flange is then 

and is the average stress that would be determined from a 
testing machine at the value of k2 selected. 

In the actual calculations, the width b of the flange was 
divided into ten equal strips and the value of u,, was found 
by a numerical summation. As the twist of the flange 
varies from zero to infinity, the parameter k2 varies from 
zero to 1. The value of u,, may be investigated as a func- 
tion of k2 and will have a maximum at some value of k*. 
This maximum value of uao multiplied by the total area 
gives the maximum load for the cruciform flange under 
consideration. 

REFERENCES 

I. Duhcrg, John E., and Wilder, Thomas W., III: Column Behavior in 
the Plastic Stress Range. Jour. Aero. Sci., vol. 17, no. 6, June 
1950, pp. 323-327. 

2. Hcimerl, George J.: Determination of Plate Compressive Strengths. 
XACA TN 1480, 1947. 

3. Stowell, Elbridge Z.: A Unified Theory of Plastic Buckling of 
Columns and Plates. NACA Rep. 898, 1948. (Formerly 
NACA TN 1556.) 

4. Ilyushin, A. A.: Plastichnost. OGIZ, ?vIoskva-Leningrad, 1948, 
p. 115. 

5. Wagner, Herbert : Torsion and Buckling of Open Scciions. N.4Cb4 
T1\4 807, 1936. 


