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A STUDY OF EFFECTS OF VISCOSITY ON FLOW OVER
SLENDER INCLINED BODIES OF REVOLUTION'

By H. JuriaNn ALLenx aND Epwary W. PERKINS

S'UMMARY

The observed flow field about slender inclined bodies of
revolution 18 compared with the caleulated characteristics based
upon potential theory. The comparison s instructive in
indicating the manner in which the effects of wviscosity are
manifest.

Based on this and other studies, a method is developed to
allow for viscous effects on the force and moment characteristics
of bodies. The calculated force and moment characteristics of
two bodies of high fineness ratio are shown to be in good agree-
ment, for most engineering purposes, with experiment.

INTRODUCTION

The problem of the longitudinal distribution of cross force
on inclined bodies of revolution in inviscid, incompressible
flow, which was primarily of interest to airship designers in
the past, was treated simply and effectively by Max Munk
(reference 1). Munk showed that the cross force per unit
length on any body of revolution having high fineness ratio
can be obtained by considering the flow in planes perpendicu-
lar to the axis of revolution to be approximately two-dimen-

sional. By treating the problem in this manner, Munk
showed that
ds .
f—qgﬁsm 2a (1)

where
f cross force per unit length

stream dynamic pressure
rate of change in body cross-sectional area with
longitudinal distance along the body

a angle of inclination
Tsien (reference 2) investigated the cross force on slender
" bodies of revolution at moderate supersonic speeds—a prob-
lem of more interest at the present to missile and supersonic
aircraft designers—and showed that, to the order of the
first power of the angle of inclination, the reduced Munk
formula

o
dS/dr

f=QQO%a (2)

was still applicable. This is not surprising when it is realized
that the cross component of the flow field corresponds to a
cross velocity

Vye="Vosin a

1 Supersedes NACA TN 2044, “Pressure Distribution and Some Effects of Viscosity on
Slender Inclined Bodies of Revolution” by H. Julian Allen, 1950.

where 17 is the steam velocity. Thus the cross component
of velocity, and hence, the cross Mach number will, for
small angles of inclination, have a small subsonic value so
that the cross flow will be essentially incompressible in
character.

Using equation (1) for the cross-force distribution, then,
the total forces and moments experienced by a body in an
inviscid fluid stream can be calculated. Comparison of the
calculated and experimental characteristics of bodies has
shown that the lift experienced exceeds the calculated lift
in absolute value by an amount which is greater the greater
the angle of attack; the center of pressure is farther aft than
the calculations indicate, the discrepancy increasing with
angle of attack; while the absolute magnitude of the moment
about the center of volume is less than that calculated. Tt
has long been known that these observed discrepancies are
due primarily to the failure to consider the effects of viscosity
in the flow.

Experience has demonstrated, notably in the development
of airfoils, that the behavior of the boundary layer on a
body is intimately associated with the nature of the pressure
distribution that would exist on the body in inviscid flow.
In particular, boundary-layer separation is associated with
the gradient of pressure recovery on a body. The severity
of the effect of such separation can be correlated, in part,
with the magnitude of the total required pressure recovery
indicated by inviscid theory. It is therefore to be expected
that it will be of value to compare the actual pressure dis-
tribution on inclined bodies of revolution with that calculated
on the assumption that the fluid is inviscid. For the purpose
of this study, a simple method is developed for determining,
for an inviscid fluid, the incremental pressure distribution
resulting from inclined flow on a slender body of revolution.2
The experimental incremental pressure distributions about
an airship hull are compared with the corresponding dis-
tributions calculated by this method. The comparisons are
instructive in indicating the manner in which the viscosity
of the fluid influences the flow. In the light of this and other
studies, a method for allowing for viscous effects on the force
and moment characteristics of slender bodies is developed
and the results compared with experiment.

2 The problem of determining the pressure distribution on inclined bodies has been treated
by other authors, but for several reasons these methods are not satisfactory for the present
purposes. For example, Kaplan (reference 3) treated, in a thorough manner, the flow about
slender inclined bodies, but the solution, which is expressed in Legendre polynomials, is
unfortunately tedious to evaluate. On the other hand, Laitone (reference 4), by linearizing
the equations of motion, obtained a solution for the pressure distribution on slender inclined

bodies of revolution, but, as will be seen later, the solution is inadequate in the general case
due to the linearization.

1
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SYMBOLS

reference area for body force and pitching-
moment coefficient evaluation

L
plan-form area <2f Rdz)
0

circular-cylinder section drag coefficient based
on cylinder diameter

local cross-flow drag coefficient at any z station
based on body diameter

constant of integration

L
f 2¢4, g0 Rdz
cross-flow drag coefficient LE*“"
14
fored
body foredrag coefficient < orec lag
body foredrag -coefficient &t zero angle of
inclination

incremental  foredrag coefficient due to
inclination
’ : lift
body lift coefficient ,
QoA

body pitching-moment coefficient about station
pitching moment)
Jo AzY

mean body diameter (%)

Lm

local cross force (normal to body axis) at any
station z on body

body length

free-stream Mach number

cross-flow Mach number (M, sin «)

local surface pressure

free-stream static pressure

local surface pressure at zero angle of inclination

local surface-pressure coefficient (A_q-—p‘)
2 0

local surface-pressure coefficient at zero angle of

inclination (M(’)

. qo

incremental surface-pressure coefficient due to

angle of inclination (%’)

0 -

free-stream dynamic pressure

body volume

polar radius about axis of revolution

local body radius at any station z

free-stream Reynolds number based on maxi-
mum body diameter

cross-flow Reynolds number (7, sin «)

cross-flow Reynolds number based on diameter
DI

body cross-sectional area at station

Sy body base area (at x=1L)

t time

o free-stream velocity

15 local axial velocity at body surfuce at any
station z

Va axial component of the stream velocity (V7 cos a)

Vo cross-flow component of the stream velocity
(Vo sin «)

T axial distance from bow of body to any body
station <

T axial distance from bow of body to pltchmcr-

moment center

T e axial distance from bow of body to center of
viscous cross force

X reference length for moment coefficient
evaluation

i ordinate in plane of inclination normal to axis of
revolution

z ordinate normal to plane of inclination and to
axis of revolution

a angle of body-axis inclination relative to free-
stream-flow direction

AR

B8 tan C_l?

v fluid kinematic viscosity

6 polar angle about axis of revolution measured
from approach direction of the cross-flow
velocity

p fluid mass density

@ velocity potential

PRESSURE DISTRIBUTION ON SLENDER INCLINED BODIES
OF REVOLUTION

POTENTIAL FLOW THEORY

Consider the flow over the body of revolution shown in
figure 1 which is inclined at an angle « to the stream of
velocity V,. If the body is slender, the axial component
velocity V, at the body surface will not differ appreciably
from the axial component V,, of the stream velocity, With

this condition, it is clear that the cross flow may be treated

FIGURE 1.—Body of revolution in inelined flow field.
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approxunately by consldeunv it to be two-dimensional in a
plane which is parallel to the yz plane and is moving axially
with the constant velocity 17, . In other words, the problem
may be treated by (letelnnmn,, the two-dimensional flow
about a circular eylinder which is first growing (over the fore-
body) and then collapsing (over the afterbody) with time.

The velocity potential for the cross flow at any  station is
given in polar coordinates as

R* ,
o=—1 ,,“(/—}— )('os 0 (3)
which in this moving reference plane is a function of time.

Bernoulli's equation for an incompressible flow which
changes with time is

(7

Now from equation (3)

100 :|+C | )

bq& I\’ d[? 2
i uo ( (5)
but
di dzdR. . :
—d—fzg{ (—l-;= 1! 2o tan B (6)
so that equation (5) becomes
B gilse i .
67——21 T,otnnﬂ<r>(,osﬁ 7
Also, by differentiation of equation (3),
o R
a_‘:__ Y (1'—?>
(8)

¢ e R?
m: I,uo sin 6 <1 +;§)

so that equation (4) for the pressure at any point in the flow

field becomes
oo [1-(B
st o[ 14+(E) || +c ©)

r—> © ,p-—)po

i) 2‘,,0 zotan/3< >cos€—

For

S0
_Do Vit
P 2

OVER SLENDER INCLINED BODIES OF REVOLUTION h‘ﬂ

(¢, for the pressure at the surface of the

body becomes for r==R

)
and hence equatiol

o Vi Ve, tan B cos 6+ ¥ "0 (1—4 sin*6) (10)

' p
and writing

Viy=Vosin a
V=V, cos a

the surface pressure in coefficient form becomes
P—Do o S ey T2 h2
P=_q ~=2 tan B cos 6 sin 2a+(1—4 sin’ §) sin®* « (11)
0

For bodies of moderate fineness ratio at zero angle of
inclination, the surface pressure at any station, designated
Pa=o, Will differ slightly from the static pressure p, but, if
the fineness ratio is not too low, the pressure, pe-o, In any
yz plane will be approximately constant for several body
radii from the surface. Under the assumption that the
pressure at the surface at zero inclination applies uniformly
in the portion of the yz plane for which the major effects of
the cross-flow distribution are felt, the change in pressure
from p, t0 Pa-=e Will be additive to, but will not otherwise
influence, the cross-flow pressure distribution. Hence for
any station on a body of high fineness ratio for which at
zero inclination the pressure is pa-o, the pressure coefficient
distribution at this same station under inclined flow con-
ditions will be, from equation (11),

P=P,._,+ (2 tan B cos #) sin 2a—+ (1—4 sin® §) sin® « (12)
For very slender bodies at small angles of inclination
tan B=~pB
sin 2a=~2a
sin‘az~a’
so that equation (12) becomes?®

P=P,_,+ (4 cos 8) Ba+(1—4 sin® §) &* (13)

The cross force per unit length of the body is then found as

f= fzi pR cos 6 d0-—=2q_0f’ PR cos 6 d(;’—i—ZJ:r polt cos 6 db
J 0 0

3 Equation (13), for the case in which B is constant, reduces to that derived by Busemann
(reference 5) for the flow over an inclined cone. Laitone’s linearized solution (reference 4)
for the pressure distribution over bodies at supersonic speeds agrees with equation (13) except
that the a? term, of course, is absent. This linearized solution is inadequate in general since,
for the cases of usual interest, the values of « are of the same order of magnitude as g, thus
the o term is as important as the « term.
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and clearly

J 2]' PoR cos 8d6=0
! 0
Substituting P from equation (12) gives

f:‘)RQOPm,OfT cos 0d6-+4Rq, tan 8 sin ‘.,hxf,r cos’ 8do+
0 0

( 2Rq, sin’ af*(l —4 sin® ) cos 0d6
0

The first and third integrals are zero, while the second
integral yields
‘ f=2rRq, tan B sin 2«

and since

dR _dS
\ 27R tan f=27R a‘;=g&—_

( then

f=QoZ—;S; sin 2o

/ which is equation (1) derived by Munk for the cross force
" on slender airship hulls and, in the form,

| that derived by Tsien for the cross force, to the order of the
first power of the angle of inclination, for slender bodies at
. moderate supersonic speeds. This development shows that
} these equations for the cross force are also correct to the
second power of « for inviscid flow.

COMPARISONS WITH EXPERIMENT AND DISCUSSION OF THE
EFFECTS OF VISCOSITY

‘ In reference 6, a thorough investigation at low speeds
was made of the pressure distribution over a hull model of
the rigid airship “Akron.” Incremental pressure distri-
" butions due to inclination calculated by equation (12) for
‘ four stations along the hull at three angles of attack are
compared with the experimental values in figures 2(a) to
2(d). In each of the figures is shown a sketeh of the airship
" which indicates the station at which the incremental pres-
‘ sure distributions apply. This comparison represents a
severe test of the theoretical method of this report since the
method was developed on the assumption that the fineness
ratio of the body is very large, while for the case considered
| the fineness ratio is only 5.9.
‘ At the more forward stations (figs. 2(a) and 2(b)), the
agreement is seen to be essentially good * but some discrep-

4 At stations extremely close to the bow the method must be inaccurate as evident from the
work of Upson and Klikoff (reference 7).

ancy, particularly at values of 8 near 180°, is evident which
increases with increasing distance from the bow. Down-
stream of the maximum diameter section (figs. 2(c) and 2(d))
the discrepancy increases very rapidly.

The disagreement that exists at the afterbody stations
results from effects of viscosity not considered in the theory,
as will be seen from the following: R. T. Jones, in reference
8, showed that, for laminar flow on an infinitely long yvawed
cylinder of arbitrary cross section, the behavior of the com-
ponent flow of a viscous fluid in planes normal to the cylinder
axis was independent of the component flow parallel to the
axis.’ For an inclined circular cylinder, then, viewed along
the cylinder axis the viscous flow about the cylinder would
appear identical to the flow about a circular cylinder section
in a stream moving at the velocity V, sin . Hence separa-
tion of the flow would occur in the yz plane as a result of
the adverse pressure gradients that exist across the cylinder.
Jones demonstrated that this behavior explained the cross
forces on inclined right circular cylinders that were experi-
mentally observed in reference 10. That such separation
effects also occur on the inclined hull model of the “Akron™
is also evident from the pressure distributions in figures
2(¢) and 2(d). :

While the treatment of reference 8 explains qualitatively
the observed behavior of the flow field about the hull model
considered, it cannot be used quantitatively for a low fine-
ness ratio body such as the “Akron’ for at least two reasons.

First, the influence of the term

2 tan B cos f sin 2«

of equation (12) is to distort the typical circular-cylinder
pressure distribution, given by the term

(1—4 sin? 6) sin® «

so as to move the calculated position of minimum pressure
away from the §=90° point and to change the magnitude of
the pressure to be recovered on the lee side of the body. Over
the forward stations of the body, where tan 3 is positive, the
position of minimum pressure lies between 90° and 180° and
the theoretical pressure recovery is small and even zero at the
most forward stations. For the rearward station where tan 3
is negative, the minimum pressure lies between 0° and 90°,
and the theoretical pressure recovery is large and increases
proceeding toward the stern. For the hull of the “Akron”
model, the theoretical line of minimum pressure along the
hull is shown in figure 3 for the angles of attack of 6°, 12°,
and 18°5 Since separation can only occur in an adverse

5 The recent work of A. P. Young and T. B. Booth (reference ) indiented that this
true for the turbulent flow case as well.

8 It is of interest to note in this figure that even for smail angles of inclinacion

minimum pressure becomes oriented close to the direction of the axis ol revolution, whil
zero inclination it must, of course, be normal to this axis.
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FIGURE 2 —Calculated and experimental pressure distribution on a model hull of the U. 8. 8. Akron.



Angle of attack

S, Akroun at three

FIGURE 3.—Calculated lines of minimum pressures for a modei hull of U. S.
angles of attack.

eradient, it is clear that the line of separation will roughly
parallel the line of minimum pressures. Hence, the flow about
forward stations will be, or will more nearly be, that cal-
culated for a nonviscous fluid. Over the rearward stations
the flow separation should tend to be even more pronounced
than would occur on a right circular cylinder. That such is
the case is shown by the flow studies on the ellipsoid of revolu-
tion of reference 11. In those studies, the flow on the model
surface was investigated by lampblack and kerosene traces.
The traces showed the line of separation followed the trend
indicated above. From the foregoing, it is evident that the
potential flow solution for the pressures on inclined bodies
can only be expected to hold over the forebody, and that over
the afterbody the pressure distribution, particularly on the
lee side, will be importantly influenced by the fluid viscosity.

Second, it is evident that there exists a certain analogy
between the cross flow at various stations along the body and
the development with time of the flow about a cylinder start-
ing from rest. This may be seen by considering the develop-
ment of the cross flow with respect to a coordinate system
that is in a plane perpendicular to the axis of the inclined
body. Let the plane move downstream with a velocity V.
and Jet the coordinate system move within the plane such
that the axis of revolution of the body is always coincident
with the z axis of the coordinate system. The cross velocity
is then V, sin a. At any instant during the travel of the plane
from the nose to the base of the body, the trace of the body in
the plane will be a circle and the cross-flow pattern within the
plane may be compared with the flow pattern about a circular
cylinder. Neglecting, for the moment, the effect of the taper
over the nose portions of the body, it might be anticipated
that over successive downstream sections, the development
of the cross flow with distance along the body as seen in this
moving plane would appear similar to that which would be
observed with the passage of time for a circular cylinder
impulsively set in motion from rest with the velocity 17, sin a.
Thus the flow in the cross plane for the more forward sections
should contain a pair of symmetrically disposed vortices on
the lee side (cf. reference 12). These vortices should increase
in strength as the plane moves rearward and eventually, if the
body is long enough, should discharge to form a Karmin
vortex street as viewed in the moving cross plane. Viewed in

REPORT 1048—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

this moving plane the vortices would appear to be shed and
slip rearward in the wake, but viewed with respect to the
stationary body the shed vortices would appear fixed. This
process of the growth and eventual discharge of the lee-side
vortices should occur over a shorter length ot body the higher
the angle of attack since the movement of the cylindrical
trace in the cross plane at any given station is greater the
greater the angle of attack. For a low fineness ratio body,
however, the development of the lee-side vortices would be
expected to have progressed no farther than the “symmetrical
pair’’ case even at the highest angles of attack of interest.
This is corroborated by the flow surveys of Harrington
(reference 11).

For bodies of high fineness ratio, such as those used for
supersonic missiles, it was clearly of interest to determine
experimentally the nature of the anticipated growth and
discharge of lee-side vortlces In the course of an investiga-
tion of a series of bodies’ with ogival noses and cylindrical

afterbodies conducted in the Ames Laboratory 1- by 3-foot
supersonic wind tunnels, it was determined that the growth
and discharge of lee-side vortices did occur for such bodies
at angle of attack as was evidenced in two ways. The
schlieren picture for one of the bodies (fig. 4 (a)) showed a line
on the lee side at the more forward stations which drifted
away from the body surface and eventually branched into a
series of lines trailing in the stream direction. The “line” at
the more forward stations was indicated to be the cores of the
symmetrical vortex pair, which in this side view would appear
coincident. The branches were indicated to be the cores of
the alternately shed vortices. In order to make the vortices
visible in a more convincing manner, use was made of a
technique which we have termed the “vapor screen’”” method.
With this technique, the cross flow is made visible in the
following manner (see fig. 5): A small amount of water
vapor, which condenses in the wind-tunnel test section to
produce a fine fog, is introduced into the tunnel air stream.
A narrow plane of bright light, produced by a high-pressure
mercury-vapor lamp, is made to shine through the glass
window in a plane essentially perpendicular to the axis of the
tunnel. In the absence of the model this plane appears as a
uniformly lighted screen of fog particles. When the model is
put in place at any arbitrary angle of attack, the result of any
disturbances in the flow produced by the model which
affects the amount of light scattered by the water particles
in this lighted plane can be seen and photographed.

In fieures 4 (b) and 4 (¢) are shown photographs of the

vapor screens corresponding to the indicated stations for
the hodv of igure 4 (). The photographs are three-quarte:
views from a vantage point similar to that of the skeicl

e 5. In these photographs vortices made themselves

evident as black dots on the vapor screens due to the absence
of scattered light, which is believed to result from the action
of the vortices in spinning the fine droplets of fog out of the

fast turning vortex cores. Other details of the flow, particu-
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(a) Side view schlieren photograph;
(b) Vapor-screen photograph rearward station;
(¢) Vapor-screen photograph forward station.

FIGURE 4.—Schlieren and vapor-screen photographs showing vortex configuration for an inclined
body of revolution (a2225°) at supersonic speed (M=2).

larly shock waves, are evident as a change in light intensity.
Figure 4 (c¢) shows the symmetrical vortex pair to exist as
previously indicated at the more forward stations, while
figure 4 (b) demonstrates that the vortices are shed at
stations far removed from the bow. Other observations at
different angles of attack demonstrated that the shedding of
vortices began, as indicated previously, at the more forward
stations the higher the angle of attack. It is of interest to
point out that in these wind-tunnel tests the order of dis-
charge of the vortices was aperiodically reversed. Thus, In
any cross-flow plane, the discharged vortex closest to the
body would at one instant be on one side of the body and at
the next instant, or perhaps several seconds later, on the
other. No regularity in this change in the distribution of the
vortex street has been found.

METHOD FOR ESTIMATING FORCE AND MOMENT CHAR-
ACTERISTICS OF SLENDER INCLINED BODIES IN VISCOUS

FLOW

For bodies of high fineness ratio at high angles of attack
when the cross force is important, it is clear that the third
term of equation (13) must predominate since B is small, so
that the pressure distribution increment due to angle of
attack will closely approximate the pressure distribution for
a circular-cvlinder section at a velocity equal to the cross
component of velocity for the body. Moreover, except for
the sections near the bow, development of the cross-flow

boundary laver will have been sufficient to promote the flow

that is characteristic of the steady-state flow for a circular-

| cvlinder section at the Mach and Reynolds numbers corre-
| sponding to the cross velocity over the body.
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FicUvre 5.—Schematic diagram of vapor-screen apparatus showing vortices from a lifting body of revolution.

For the limiting case of a slender body, the appropriate
value of the cross-wise drag coefficient is, of course, the value
of the drag for an infinite cvlinder. As will be shown Iater,

experiments indicate that for actual bodies of finite leneth
-a somewhat smaller value should be used.  Since the acing
cross-wise drag coefficient of a body of finite length is always
?“(\llll‘\\'ll:l( less than the coefficient for an infinite hodyv,

' reduced value sugeests itself. Thus it micl expect
that the viscous cross-force distribution on <uch o bodn

be calenlated on the assumption that

along the body experiences a cross force 3
force the section would experience with th

normal to a stream moving at the velocity 17, s [l
viseous contribution is given by

00 Qo SIN° @ dr

10

| 2]{(1

where R is the body radius at » and ¢, IS

coefficient at z for «=90° corresponding to the Reynolds
number

R.=R, sin «
and the Mach number

M, =M, sin «

\~ 2 first approximation to the total cross force we may
: potential cross force to the viscous contribution.
The total cross force at r would then be 7
) sit 2@ cos =42 Re sin?
o - S 2a Cos 5 _./u‘;‘_qo. ¢o SID° «
With this simple allowance for viscous effects the lift
coefficient,” the foredrag coefficient, and the pitching-moment

e work of Ward (reference 13), it may be shown that the potential cross force is
dway between the normal to the axis of revolution and the normal to the wind

ssion for €, the contribution of the axial drag fo
cquentially small and has been ignored.

e —Ch, cos? e sin a
“la=0)
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coefficient about an arbitrary moment center z, from the
nose are given by

Sei @ v A A
(‘L=j sin 2a cos 5+ Cu, g0 —f sin® a cos o
S a A
= 3 Pbsin 2« sin = 277 qind
pp=Cb;__, COS a7 sin 2a sin 2+(’da_mo - sin’ «
_ > (13)
— Sy(L— «
Cy= Q EEY— M) sin 2a cos Bis
T —J: - »
a-go {( = P J
where
L
- L Cay_ g0 2Bd2
du_00°=————-——‘
.
and
7
Cag om0 2Rzrdzr
L9’ = 9
‘_1‘7("‘«-000
where

A, plan-form area
base area
@  body volume
L  body length
A reference area for coefficient evaluation

reference length for pitching-moment-coefficient eval-

uation

Because of the approximate nature of the theory, it is not
considered justified to retain the complex forms of these
equations. Accordingly, it is assumed that, for the functions
of the angle of attack, cosines may be replaced by unity and
sines by the angles in radians to give °

0m2 (5) atCupon ()

ACD;"”__-CDP__CDP,,, '_& o +p‘m-uo° (A__;> o
Q—SyL—zn,) Zh :c,,.—r,,_,,oo %
Cy=2 AX ] =Gt ( )( >

(15)

To assess the adequacy of these equations for predicting
the force and moment characteristics of high fineness ratio
bodies. two bodies of revolution were tested in the
3-foot supersonic wind tunnel at a
from angles of attack of zero to more than _‘H“ and in the
I- by 3l-foot high-speed wind tunnel {ror [ y
of 0.3 to 0.7 at 90° angle of attack
flow drag coefficient 'y, _,. and the center of application
Zacee Of this foree.® The bodies

1- by

N T y o
Mach number of [.98

mvesti

3 In the expression for ACh,. the term —=Cp, of. which should properiv annear an th

ts contribution s

right side of this equation, has been omitted since, for practical cas

1 Although the cross Reynolds numbers for the 1- by -
twice that for the 1- by 3-foot wind-tunnel tests. the
in the range of Reynolds numbers investigated the drug characteristics «
are insensitive to change in Reynolds numbers.

resnlts are con

ol cireniar ey iinders

L 4314 ! 11500 >

| T 1

e 750
{-25.000 generating All dimensions in inches T

radius
Bodly 1(fineness ratio 2//)

L 4314 b 5.500
| < ol
Lot — 750
£-25.000 generating i
radius

Body 1l (fineness ratio /3.])

Fi1cURE 6.—Bodies of revolution.

each had a 33%-caliber ogival nose and constant diameter
afterbody of such length as to make the fineness ratios 21.1
for body I and 13.1 for body II. Shown in figures 7 and 8
are the lift coefficient, foredrag-increment coefficient, pitching-
moment coefficient about the bow, and center of pressure
as a function of angle of attack for the two bodies as deter-
mined from the tests in the 1- by 3-foot wind tunnels.
Also shown are the calculated characteristics (indicated by
the solid-line curves) using the experimental values of
Cay g 20d ZToogeo (see figs. 9 and 10) obtained from the
90° angle-of-attack tests in the 1- by 3J-foot wind tunnel
as well as calculated characteristics obtained from potential
theory (indicated by the dotted-line curves). The reference
area A for coefficient evaluation for these data is the base
area and the reference length X for moment-coefficient
evaluation is the base diameter.

It is seen that for the higher fineness ratio body (body I),
the calculated characteristics which include the allowance
for viscous effects are in good agreement with experiment
and that the potential theory is clearly inadequate at all
but very small angles of attack. For the lower fineness ratio
body (body II), the calculated allowances for viscous effects
depart further from experiment than they do for body I,
as would be expected, although again they are in much
better agreement with experiment than are the calculated
characteristics based only on potential theory.

While the comparisons made demonstrate that the indi-
cated allowance for viscous effects is adequate for very high~
fineness-ratio bodies, the calculated characteristics were,
themselves, based on experimentally determined values of
Cuy e AN Zaoye.  For the method to be useful in design,
nf course. some means for calculating these parameters must
exist. In many cases, there are available sufficient experi-
mental drag data on cylinders to provide the required
In the appendix one approximate method is
and Z, g0 for

nformation.
civen for determining the values of 'y, _ .
the bodies T and IT previously considered.

The variations of the coefficients of lift, foredrag increment,
and pitching moment and of the center-of-presstre position
with angle of attack for the two bodies as estimated using
the caleulated cross-flow drag characteristies given in the
appendix are shown in figures 7 and 8 (as the dashed-line
curves).  The estimated characteristics are seen to be in
even better agreement with experiment than are the calcu-
lated variations using the experimental cross-flow drag
characteristies.
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FiGURE 8.—Force, moment, and center-of-pressure charaeteristics for body IT (fineness ratio 13.1).
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APPENDIX

ESTIMATION OF CROSS-FLOW DRAG COEFFICIENT

A procedure which suggests itself for estimating the mag-
nitude of the cross-flow drag coefficient 'y, _, . as a function
of angle of attack for the two ogival-nosed bodies treated
in the text is to consider them to have the same characteris-
tics as circular cylinders of constant diameter.

4,
sy

The cross-flow drag coefficient of this fictitious eylinder of
finite length can then be approximated by first determining
the drag coefficient, ¢4, of a circular-cylinder section of
diameter D’ at the cross-flow Mach number

M. =M, sin «

and cross-flow Reynolds number

VD ..
R/="""sin «
14

and then correcting this drag coefficient for the effect of the
finite fineness ratio, L/D’.

From references 14 and 15, it is found that for the values of
D’ corresponding to the two bodies considered the circular-
cylinder section drag coefficients, ¢, , are the same for both
bodies and dependent only on the Mach number. The
values at various cross Mach numbers are given in figure 9.

From reference 16, it is found that for a finite-length cir-
cular cylinder in the range of Reynolds numbers for which the
cross-drag coefficient, as for the present cases, is 1.2 at low
Mach numbers, the ratio of the drag of the circular cylinder
of finite length to that for the circular cylinder of infinite
length is 0.755 for body I and 0.692 for body II. Assuming
that this ratio is independent of Mach number,
the estimated values of Cy _ . for the two bodies are as
given in figure 9 wherein they may be compared with the
experimental values obtained from the 1- by 3%-foot wind-
tunnel tests. :

The value of rq-g is logically assumed to be the distance
from the bow to the centroid of plan-form area. This

assumed position which is independent of Mach number is
compared with the experimentally determined values from
the 1- by 3%-foot wind-tunnel tests for the two bodies in
figure 10.
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