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A STUDY OF THE APPLICATION OF POWER-SPECTRAL METHODS OF CIENERMUED

HARMONIC ANALYSIS TO GUST LOADS ON AIRPLANES 1

By HARRYI?RESSand BERNARDMAZFLSKY

SUMMARY

The applicability of some red.% from the thmry of general-
ized harmonic ana=lysia(or power-spectd anulyti) tQ the
analym”soj gust loads on airplirna in continwowsrough air is
examined. The general rehuh%nsfor linear systems betwetm
power spectrums oj a random input dtiturbance and an output
respon8e are used to relate the spectrum of airplane load in
rmqh air to the spectrum of atmosplwric gu# velocity. The
power spectrum of lod i8 shuwn to proviak a meu8ure of the
load intensity in terms of the stmdard deviation (root mean
squure) oj the load dhb-ihtionfor an airplane in jlight through
continm rough air. For the we of a load outpwthaving a
normul distribution, which appearsfrom twperimtmtulevidence
to apply to homogenew r~h air, the Wwao2zrddeviation b
8h0wn to describe the probability distribution of loadk or the
proporlbn oj totu.1time thut the Loadhd.sgiven values. Thus,
for an airplam in jlight through homogeneow rough air, the
probability di8Wution of huh may be okterrninedfhnn a
power-8pectralanu-lyti.

In order to U?mtrate the applicutti of power-spwtral
analysi$ to gu8L?oadanalym%and to obtain aminsight into t.b
relations between loa.akand airpkmw gud-mxponse clwrac.tw-
istic8, two sehcted se?ies of cdcuhztti are presented. In th.t?
fimtseries, the 8tandarddeviation$of ,?.oaa%in continwowsmwgh
air desm”bedby an mwumedpower spectwm are cai%u.htedfor
w~stmuztict+ariatti in & freguen-cy and damping charact.8r-
i8t?k9of tileairplane respome to a step-gwt input. The r&
obtained indicate that the Lx& in rough air are particularly
sensitive to can”ations in. ti damping charact4rMic8 of the
08ciUatonJrtxponse to a 8tep gwt and largely independent of
variaiiom in the freguen.cy. In t.hc 8econd application, the
standard deviation of loads ti calculatedfor selected variations
of each of seceral airplane geometi and aerodynamic param-
et.m oj an (dealizd and stable transport-type airphzne. Tlw
8tandarddeviations obtained are compared with resulti d-er%ed
b~ conventionalMhnigues of tin.g the culcuiiztedpeak response
to an id2alized and represtmtativediscrete gust. The re&
indicute thatfor stahh con.@uratti8 both methods oj analyti
field re8ultsthatare con3iM.9ntto a $r8t approximu.tion.

INTRODUCTION

The study of gust loads on airplanes is a twofold problem
requiring the adequate representation of the characteristics
of atmospheric turbulence and the determination of the air-
plane response (loads or motions) in rough air. These
problems have been recogr&ed since the inception, of gust-
load research but because of the di%icukies involved only
limited approaches to the problems appeared practical.
The methods that have been used are dewnied and discussed
in detail in reference 1. In general, the approach has been
to use simplified airplane-response theory for the determina-
tion of the characteristics of discrete gusts from airplane
meaaurementa of load. The “gusts” derived on this bmis
are then used to calculate loads on other airplanes. Although
these procedures appear reasonable for transferring loads to
similar airplanw, as indicated in the reference, they are of
questionable value for airpku.w of widely difkent character-
isti~ (such as, configurations and stability characteristics).
Tlwe limitations have, however, not proved serious in ‘the
past since’ the transport airplanes which were primarily
aflected by gust standards appeared, in genend, to follow
conventional dwign. Available data indicate that new
transport airplanes experienced gust loads which were, in
general, compatible with those predicted from past work.

Trends in aeronautics toward higher speed and the develop-
ment of missiles have served to introduce a widening range
of unusual configurations and aircraft stability character-
istics. Furthermore, the gustAoad design requirements,
which formerly were of concern for transport and bomber
airplanes only, appear to have become important for other
aircraft as well. As a consequence of these developments,
the need for more generally applicable techniques, both for
the measurements of the characteristic of atmospheric gusts
and for the calculation of the gust loads on new @planesj
has become more urgent.

Developments in the theory of generalized harmonic
analysis (ref. 2) appear adaptable for extending the analysis
of gust loads beyond the discrete-gust case to the case of con-
tinuous turbulence. Techniques iiwm generalized harmonic
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analysis involving the concept of power spectral density have
been used for many years in diverse fields, such as in the
study of random-noise problems in communications and in
the study of small-scale turbulence of wind tunnels. The
concept of the power of a random disturbance, which is
fundamental ti the present study, is defied by analogy to
electrical power to be the time average of the square of the
disturbance. The portion of the power arising from compo-
nents having harmonic frequencies between o and co+oh is
denoted as the power spectral density. For linear systems,
the power-spectral-density functions of a random input dis-
turbance and an output response are related through the
frequency-response characteristics of the system.

Attractive fenturea of spectral analysis for the study of
gust loads are the possibilities that:

(1) Continuous turbulence cm be described in analytic
form by a power spectrum rather than by discrete gusts.

(2) The load response of airplanes to continuous rough air
can be evaluated.

(3) The de&able response characteristics of an airplane
for mkdnizk g gust effects in continuous rough air will be-
come amendable to analy&

In view of the attractive features of power-spectral-
density methods of analysis, an investigation of the applica-
bility and implications of these techniques to guskload
analysis was undertaken and the results obtained are re-
ported herein. In this repor~, the concepts and relations of
generalized harmonic analysis are defined and their method
of application to the guskload problem is indicmkd. The
applicability of the normal probability distribution for the
representation of the probability distribution of loads in
continuous rough air is considered. l?or the “case of a normal
distribution of loads, the standard deviation (root mean
square) of the load history defies the probability distrib-
utionof loads. It is indicated that the standard deviation
may be determined from load power spectrum; thus the re-
sults of a power-spectral analysis per&it the determination
of the prcbabili~ distribution of loads. Finally, in order
to illustrate the app~cation of power-spectral analysis to
gusbload calculations and to obtain an insight into the rela-
tion between loads in continuous rough air and airplane
characteristics, two applications are presented. In both
tipplications, the power spectrum of atmospheric turbukmw
obtained horn flight measurements (ref. 2) is used to repre-
sent the turbulence input. The tit applkdion is intended
to represent the effects on gust loads of variations in airplane
dynamic longitudinal stability. The second application is
intended to illustrate the effects on gust loads of variations
of some geometric and aerodynamic parameters of an ideal-
ized transport airplane. The indicated variations in load
intensity are compared with those derived by conventional
techniques of using the peakload response to an idealized
discrete gust.
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SYMBOLS
response to unit step disturbance
slope of tail lift curve per radian
slope of Wing lift curve per radian
parameters of equation (31)
airplane wing chord, ft
airplane tail chord, ft
pitching moment of inertia about center of gravity,

slug-ft*
reduced frequency, uc/T~, radians/chord
horizontal distance horn center of gravity of airplane

to wing aerodynamic center, ft
horizontal distance from center of gravity of nirphme

to tail aerodynamic center, ft
number of observations
acceleration increment, g
probability
cumulative probability distribution of z, equation (2s)
distance, chords
wing area, sq ft
tail area, sq ft
time, sec
arbikary value of t, sec s
frequency-response function with respect to argu-

ment, w, Q, or v

vertical gust velocity, ft/sec
airplane true airspeed, ft/sec
airplane weight, lb
response to unit impulse disturbance
distance, ft ,
arbitrary value of z, ft
arbitrary random variable
probability density function of variable y, oqun-

tion (23)
arbitrary function of argunmn ts t, z, and s

average power of y(t), equation (4)
standardized variable, An/~
coefficient of skewness, equation (30b)
coefficient of lmrtosis, equation (30c.)
standard deviation of specified rmdom vrwkblo,

equation (24b)
mass izir density, slugs/cu ft
time displacements., sec ,

autocorrelation function, equation (9)
power~pectraldensity function of an arbitrary clis-

turbance with respect to u or Q
power-spectraldetity function of n designated input
power-spectraldensityf unction of a designated output
normal distribution with mean of O and standard

deviation equal to 1, equation (27)
circular frequency, radians/see
reduced frequency, w/V,radiamjft
dowmvash factor

.
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Subscripts:
m maximum load response to a discrete gust
bw”c basic airplane configuration

A bar over a symbol designates the average value of the
quantity.

In this analysis, the use of s&eral independent variables t,
z, ands for an arbitrary disturbance V( ) and their associated
frequency rmguments u, Q, and v has been found necessary.
In order to designate that the several functiom V( ), @( ),
rmd 2’( ) depend upon their arguments a circumflex A and
a tilde - have been used over the appropriate sets of functions
in accordance with the scheme shown in the following table:

Var!abla
FlmatfOn

Lseo

r

z,ft 8,chords

DhtnrMm ------------------------------------------w) ;(r) i(8)
Fmqwoyn~t ---------------------------------n
Powewtimldmlty titilm----------------------& A :;,)
Fmqucnoy+HPOK@fmdlm -------------------------T(fw) ~~ T(b)
Irnpulm~-------------------------------------TV(t) ;::;
stopmom----------------------------------------A(t) i(z)

ANALYSIS

DASICCONCEPTS AND RELATIONS OF POWER43PECTFL4LANALYSIS

The theory of generalized harmonic analysis is an out-
rrowth and ~eneralization of harmonic analysis and is
~argely the w~rk of Norbert Wiener (ref. 3). Accounts of
the theory and method of application are ako given in
references 2, 4, and 5. In order to orient the reader, a brief
account of the background, the basic concepts, and the
relations is presented.

The theory of harmonic analysis indicates that an arbi-
tmry periodic function can be represented by a Fourier
scwies in the following manner:

where

J
~;=; o%(t)COSnd dt

J
lln=~ ~T1’ (t) sin mot d

and T is equal to 2r/cO and is the period of the function. In
order to apply this technique to nonperiodic phenomena,
the limit of equation (1) m T goes to infinity must be con-
sidered. For this case of a nonperiodic function, the Fourier
series takes the form of the Fourier integral and is given by

‘(”=+J:’’”’[LF(’)’-’”’”Y” ‘2)
If the second integral on the right is denoted as G(u) then

equation (2) can be written in the reciprocal form

.F(t)=+J”(7(fJ)e’w’cib
.

‘ (3}

where
P-

G(co)= I I’(T) e-f”rd7
d -m

The Fourier transform pair thus provides reciprocal relations
between the time function F(t)and its frequency represen-
tation (7(u). The quantity (?(u)du gives the contribution
of those harmonic components of F(t) whose frequencies
lie betm%n a and Q+G?CO.

A necessary condition for the application of equation (3)
is that the integrals involved be convergent. This condition
acts as a severe limitation on the applicability of the Fourier
integral relations. In many problems, such as noise in an
electric circuit or turbulence encountered by an airplane
in flight, the disturbance is nonperiodic, persists for a
relatively long period of time, and shovw no tendency of
dying out. In these cases the required integrals do not
converge and, as a consequence, the frequency representation .
in terms of equations (2) and (3) is not possible directly.

In order to develop a frequency representation which
would be applicable to continu@ disturbances, the theory
of random processes makes use of the concept of a stationary
random process. The characteristics of a stationary random
pro&ss are described in detail in lwference 4. Essentially,
the aemmption is that the underlying mechanism which
gives rise to the disturbance does not change in time and
that a statistical equilibrium exists. Thus, the statistical
characteristic of the distribution are inva.rimt with time
and statistical prediction becomes possible. For the case
of a stationary random function of time y(t), the mean

square ~) is deiined by

(4)

The mean square will usually exist and represent a measure

of disturbance intensity. Since ~) is a “quadratic function
of y(t), it has been termed the “average power” of y(t) in .
a&logy to electrical power w%.ichis proportional to the square
of the current. The function y(t) is considered to be com-
posed of an infinite number of sinusoidal components with
circular frequencies a, between O and co. The portion of

~) arising horn components having frequencies between
u and 0+G2J is denoted herein by @(Q)dw. The function
@(ti) has been called the pomr-spectraldensity function in
the literature. From this definition, @(u) has the property
that

(m
.

The pomwspechaldensity function of a random variable

.



-———— — —-

374 REPORT 117*NATIONAL ADVISORY COMMITI’EE FOR AERONAUTICS

?/(0 iS gendy defined in the following manner (see, for
example, ref. 4)

(6)

where the notation I] indicates the modulus of the complex
quantity. If @(u) is defined in this manner, it has the prop-
erty that its integral over the limits O to co is equal to the

power ~. That this expression for @(u) is consistent
with the preceding discussion is seen to be plausible horn the
fact that, for each frequency, *(o) is proportional to the
square of the amplitude of the component of y(t)” at that
frequency. Thus, ~(u)h is a measure of the contribution

of that frequency to @~. It should be mentioned that the
definition equation (6) diifem in minor detail from that used
in reference 2 but agrees substantially with those used in
references 4 and 5.

A signihnt and useful relation for linear systems exists
between the power-spectral-density function %(0) of a
random input disturbance and the pomr-spectraldensi~
function @o(u) of an associated output through the system
frequency-response function l’(b). The system frequency-
response function (or admittance) ?’(b) is defined such that
Z’(b)ei”’ is the system response to the sinusoidal input
et”’. In these terms, the relation between the power-
spectraldensity functions is given by

@o(co)=@*(co) Iz’(h) p (7)

For a given linear system, the function Z’(zk) may be con-
veniently obtained from either the unit impulse. response
or the unit step response, respectively, by means of the
following relations:

S
T(b)= mW(t) e-f”’ dt

o )

T(ia)=h
J ~
mA(t) e-f”’ d

o

(8)

where W(t) is the response to a unit impulse and A.(t) is the
respons8 to a unit step.

Equation (6) may be used to evaluate the pomwspectral-
density function from observed data. However, in practice,
the power-spectraldensi@ function may be determined more
conveniently and less tediously by using a related function,
the autocorrelation function R(T),defined by

(9)

The rtutocorrelation function has the symmetrical property
R(r) =l?(— ~) and is reciprocally related to the power-
spectral-density function by the Fourier cosine transforma-
tion in the following manner:

~(~)=~o” @(u) COS COTda

\ (lo)
n i-.

@(&l)=:JoR(7) Cos UT (i%J
Reference 4, for example, shows that this definition of the

power+pectraldensity function is consistent with the
preceding definition of equation (6).

SOME FORMS OF POV?ER4PECA’RALRELATIONSFOR GUST APPLICATIONS

In this section, the method of application tc gust lords on
airplanes of the aforementioned concepts and relations is
considered. Some available information is presented on the
frequency-response function Z’(h) for the gustAoad condi-
tion and on the powmr-spectraldensity functions for atmos-
pheric turbulence. Finally, for convenience in’ gustAoad
applications of power-spectral methods, the functions and
relations are presented in tams of distancea rather than tinm.
Use is made of the distancea z in feet and 8 in chords and
their associated frequency arguments Q and V, These
changes of variables are subsequently shown to be particu-
larly appropriate in the gust case because in these terms tho
power spectxums are independent of airplane forward speed.

II atmospheric turbulence can be considered a stationary
random process, then the basic requirement for the applica-
tion of the foregoing power-spectral concepts and relations
is satisfied. Evidence that this assumption is plmusible
under some conditions exists and is discussed subsequently,
On the basis of this assumption, the turbulent-verticcd-
velocity distribution along a line in space cm at an inshmt
in time be considered to represent a stationary random func-
tion of space consisting of an iniinite number of hmmonica
of various frequencies or wave lengths. For this condition of
spatial wave lengths, a naturaI unit for the associated fre-
quencies would appear to be radians per unit distanco or
radians per foot. The description of the pow-er-spectrtd-
density function of atmospheric turbulence must thus be given
basically in terms of units such as radians per foot. Howover,
for an airplane in fight through rough air, consideration of
the airplane as penetrating the gusts and experiencing the
associated loads in terms of time is frequently convenient.
Thus, the powwr-spectraldensity functions of gust velocity
and loads experienced by the airplane may be considered
expressible in terms of the frequency argument u in radians
per second used in the preceding section. It is, therefore,
pe rmkible to express the relation be~een the power spm-
truma of gust velocity and loads or normal acceleration in
terms of equation (7) aa

where @o(a) is the power-spectral-density function of airplano
normal acceleration, %(~) is the pow-er-spectml-density
function of gust velocity experienced by the airplmmj wnd
T(ti) is the airplane normal-acceleration response function
for a sinusoidal gust velocity input.

The present study is primarily conccumed with vertical
gust velocity inputs and acceleration increment An (load
factor) outputs. The function %(u) will have the dimensions
of (ft/seep

()
. Il’(b)]’ will be given in &c ‘. Conae-

radian/sec’

quently, @Ju) -will have the dimensions of ~d~.,sec. In

this form, the power-spectral-density functions; having

the dimensions of ra~?l~ecJ ~efer to a particular airspeed,

Before considering the representation of these functions in m
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form independent of airplane speed, some remakks on the
determination of the frequency-response function for the
gust-load condition and on available information concerning
the power-spectral-density function for atmospheric turbu-
ence appear appropriate.

Frequency-response function,-ExperimentsJ methods for
determining the frequency-response function of an airplane
for a gust velocity disturbance have unfortunately not yet
been developed. The frequency-response function for aii-
planes for a gust disturbance can, however, be estimated by
theoretical methods by solution of the airplane equations of
motion for a gust disturbance. Methods for the determina-
tion of the frequency-response function for a linear system
are described in chapter 2 of reference 4, for example. The
crdculation of the frequency-response function may some-
times be more conveniently performed by first determining
the airplane respo~ to a step gwt by methods such as those
described in reference 6. The response of a step gust may
then be used in equation (8) in order to determine the
frequency-response function for a continuous sinusoidal gust
input.

Power spectrum of atmospheric turbulence,-The powr-
~pectraldensity functions of atmospheric gust veloci~ have
been studied from airplane flight measurements (ref. 2).
Measurements of pitching velocity of a B-25 airplane in
flight through rough air were used to determine the power-
spectral-density function of atmospheric turbulence for four
weather conditions. Clementson determined the reduced
auto correlation function l?(7) /l?(0) of pitching velocity and
obtained the output pover-spectral-densi~ functioD by
taking its Fourier transform The appropriate frequency-
response function as determined from simplified theoretical’
calculations was then used in equation (7) to obtain the
input spectrum. The normalization of the autocorrelation
function R(7) by dividing through by R(O) is arbitrary and
ma made on the basis of yielding a pitching-velocity powwr
of 1 (deg/sec)z for the airplane used in that investigation.
The norrmdized pow-er~pectraldensity functions of atmos-
pheric turbulence derived in this manner did not vary
upprecifibly between weather conditions; although, as might
be expected, the value of I?(O) for the pitching velocity out-
put did vary appreciably, and reflected variations in the
average power of turbulence with wwther condition. On
the basis of the results obtained in reference 2, the conclusion
was reached that “atmospheric turbulence is a stationary
random process that can be statistically described by a
single reduced power~pectral-density curve.” Although
additional tests under a wide variety of atmospheric condi-
tions and the use of other airplanes are needed to verify this
conclusion, the spectrum obtained appears to be representa-
tive at lenst of the conditions covered by the tests. The
results obtained in reference 2 for the power-spectraldensity
function of atmospheric turbulence thus provide a turbulence
input and are used in subsequent applications in the present
study.

“ The average reduced power-spectmildensity function ob-
tained in reference 2 for an airplane true flight speed of 300
feet pm second is shown in iigure 1. The results shown are
corrected for two errors made in reference 2 and pointed out

308GlM-5&26

FI~TJRE I.—Normalized power-speotrsl-deneity function for atrnos-
pherio vertical gust velocity @i(u) for airspeed of 300 feet pa second.

in reference 7. In addition, the results of reference 2 have
been divided by 2~.in order to conform to the definition of
the pow-er-spectraldensity function used herein, equation (6).
The pover-spectraldensity function shown in figure 1 has

(ft/see)’ ‘and appti. ~ ~ &lane ah
dimensions of ~dw,sec

speed of 300 feet per second.
Changes in the frequency brgument.-As pointed out

previously, @(u) has the dimension of a ~$~ec and thus

depends upon the airplane forward speed. fi order to ex-
press the power-spectraldensity functions in terms inde-
pendent of airplane flight speed, the change of variables

fl=~
v

X=vt }

(11)

is introduced. The variable Q is a reduced frequency in
radians per foot. The variable z is the airplane flight dis-
tance in feet. In terms of these variables, tie average
power of a disturbance ~(z) is given by

(12)

(The’ use of the circumflex is explained in the sectioD
“Symbols.”)

If the power-spectraldensity function $(Q) is given by

IJ $$(Q)=x@m+ x (z)e-fQx& ‘
o

then $(Q) gives the average power of the disturbance
from components having frequencies between Q and

(13)

arising
Q+-dtJ.
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Inasmuch m

J J
“ $(Q) dQ= ‘Q(u) d(o=~

o 0
(14)

it follows from equation (11) that

$(Q)=v@(td)= m(v”fl) (15)

As pointed out in reference 7, the power-spectraldensity

function for atmospheric turbulence representing $,(Q) is
incorrectly given in reference 2. The powerapectraldensity

function $~(fl), which corresponds to the function shown in
figure 1, was obtained by equation (15) and is shown in figure
2. The remdting power spectrum of atmospheric turbulence
is independent of airplane speed and in a limited sense may
represent a universal reduced power-spectraldensity function
of atmospheric turbulence.

The relation between the frequency-response functions for
the sinusoidal input efti’ and ei@ is now considered. Site for
a given airspeed the gusts represented by efm~and efm are,
from equations (11), the same gusts, the load responses when
expressed in terms of time t and distance z will only involve

a change of scale. If $(iQ)ef@ is the airplane load response
to the gust e-, then the fkequency-response functions are
simply related in the following manner:

f(m)=T(ia)=z’(ivQ) (16)

* .
The frequency-response function (JI.Q)maybe obtained from
relations similar to those of equation (8) and given by

@(iQ)=~mb(z)e-fbdz

!f@)=ifjmA 1 (17)
A(z) e-fmdz

o

where fi(z) and ~(z) are the response functions of the unit
&pulse and unit step disturbances, respectively, expressed
as a function of fight distance. Thtwe response functions
are related to W(t) and A(t), respectively, by the relations

b(z)=+ w’(t)

1(z)=A (t)

In terms of the variable Q, the input-output relation can,
from equations (15) and (16), be expressed by the relation

$o(Q)=$,(Q)]T(i-fl)j’. (18)

The average power for a given input and output in terms of
the frequency Q may from equations (14) and (18) be ob-
tained by the relations

Jm$.,q$(if-l,,%fl (19,FG)=JO%O(Q)dfl= o

Another set of variables is useful in the applications of
power-spectral analysis to gust loads. This set involved the
reduced frequency v in radians per chord and the non&cen-
sional distance g in chords. Because of the need for con-
sideration of unsteady aorodynmrics in gustAoads analysis,

14
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l?IGmiE2.—Normaliztxi powe~spectral-deneity funotion for atmoe-
pheric vertical gust velocity ${(0).

calculated re9ponse9 to step gust velocity inputs may fre-
quently be given in terms of the nondimensional distance s
and the frequency-response function in terms of the reduced
frequency v. These variables v and s are related to u and Q
and to t and z in the following manner:

Vt ‘xs=T=—
c

V=%c=cfj
v /

. (20)

If ?’(iV)ef” is the acceleration resp&se to the gust ei~, then

?(iv) may also be obtained from the impulse or-step responm
by the relations

J

“-
z?(h)= ‘W(8) e-iNd4

0

s 1

(21)
? (h)=iv “X(8) e-i-a%

o

w-here t%(s) and ~(s) are the responses to the i&pulso and
step gust inputs in tmns df the variable 8. These response
functions are related to W(t) and A.(t),respectively, by the
relations

W(8)=+ w(t)

~(s)=A(t)

The frequency-response function ?’(h) is related to the

functions Z’(h) and ~(zQ) in the following manner:

f“(?l-l)=?(im)=z’(ivQ) (22)

and involves only a change of scale of the frequency axis,
These relations are used in the subsequent applications.

RELATION OF POWER-SPECTRALDENSITY FUNCTION TO APPLIRO GUST
LOADS

In order to apply the foregoing methods of analysis to the
stud y of gust loads, the power spectral density of loads must
be related to the intensities of the actual loads. The power-
spectraldensity function, which provides CLmeasure of the



APPLICATION OF GENERALIZED HARMONIC ANALYSIS TO GUST LOADS ON AIRPLANES 377

average power mising from components at various frequen-
cies, does not directly reflect the load intensities since the
actual load at a given time represents the combined output
at the various frequencies. Thus, it is d=irable to relate
the povrer spectrum of loads to specfic quantities of con-
cern in load studies, such as the-proportion of total time at
u given load intensity (probability distribution of load in-
tensity), the number and intensity of peak loads, and other
such particular quantities that may be of interest for struc-
tural analysis. In the presmnt report, only the relation of
the power-spectraldenaity function to the probability
distribution of load is considered in detd and more speciii-
tally the signiikance of the normal distribution for loads
is considered.

Probability distribution of output.—When a linear system is
exposed to an input varying in a random manner with time,
the probability distribution of the system output y can
frequently be represented by a normal probability density
distribution defined by the relation

-w)’
f iY)=&e

(23)

where ~ and u are the mean and standard deviation and are
defied by

(24a)

“=[R$JT@-@2d’T’(24b)

Investigations of communication problems associated with
noise, which has many obvious similarities to turbulence,
have show-n that normal distributions are frequently en-
countered. Rice in reference 8 has, for example, shown that
for a linear system the shot effect in a vacuum tube &ives
rise to a noise current which has a normal distribution of
current intensity. Investigation of fluid turbulence fi-e-
quently yields normal distributions of velocity fluctuations.
These results appear to be explained by the central limit
theorem of probability (ref. 9) which states thatj under gen-
eral conditions, the distribution of the sum of a large nnm-
ber of random variables tends toward a normal distribution.

The theoretical derivation of the probability distribution
of loads for an airplane in flight through rough air is math-
ematically diflicult and appeara to involve assumptions
regarding the nature of turbulence that are, for the present,
questionable. However, as previously noted, turbulent
velocity fluctuations have been observed to approximate
a normrd distribution. For the condition of normally dis-
tributed velocity fluctuations, it may be expected that the
loads experienced by an airplane in flight through the
turbulent air would likewise be normally distributed. Some
experimental data on the normality of the frequency dis-
tribution of loads will be presented in a subsequent section
of this report. The significance of the question of normality
stems from the fact that, for the caae of a normal distribution,

‘the pow-or spectrum alone deilnes a number of useful statis-
tical chaxacteriatics of the time history: Some of these
Telations between the spectrum and the time history statis-
tics are discussed in the following paragraphs.

Signiflcamce of the normali~ of the distribution of loads,—
If the distribution of airplane acceleration increment in
continuous rough air is normal with a zero mean value, the
probability density distribution of the acceleration in&e-
ment An is completely described by the standard deviation
and from equation (23) is given by-

+(%)
j (An)=~ e

U.JZ

Equation (25)is tanned the probability

(25)

density function of
An, and j(An) d(An) can be considered to represent the pr-
oportion of’ total time (or total flight distance) that An has
a value between An and An+d(An).

In order to examine the properties of equation (25), it is
convenient to consider the distribution of the variable

(26)

where z is the so-called s&dardized variable and has the
probability density distribution

(27)

The function #(z) is the normal distribution with a mean of
zero and a standard deviation equal to 1 rmd is the error
function commonly tabulated. The probability that a
random value of z will exceed a given value is given by the
integral of equation (27) as follows:

P (z)=J” *(Z) (?~
z

(28)

Equation (28) deiinea the cumulative probability distribu-
tion of the reduced variable z and in the case of time-history
data may be considered to represent the proportion of totaI
time that the value of z exceeds a given value. For a fixed
value of probability P, z is fixed and can be obtained from
tabulations of the integral of the error function. Thus, for
example, for P= O.02276, 2=2.

Equation (28) indicates that the probability of exceeding
a given value of z is a function of only the given value. Con-
versely for a given value of probability, the largeat value of
z exceeded is also tied and depends only upon the probabil-

ity. Making the substitution z=$ into equation (28)

yields the result that the probability of exceeding a given
value of An/r is likewise a function only of the value of An/u

()andisgivenby_P~. The converse also applies that, for

~ given value of probability, the largest value of An/u ex-
ceeded is fixed and depends upon the, probability. Con-
sequently, the largmt value of An exceeded with a given
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probability depeqds upon the value of u and is given by UZ.
The largest value of An exceeded with a given probability.
is thus seen to be directly proportional to the standard de-
viation. For example, w-hen the standard deviation is
doubled, the largest value of An exceeded with a given prob-
ability is also doubled. This direct relationship behveen
the value of the standard deviation and the load probability
distribution makes the standard deviation an importmt
and significant measure of the load experience for the case
of gust loads-having a normal distribution. Because of this
direct relation between the standard deviation and the load
probability distribution, the standard deviation will be useful
as a measure of load intensity in the present study.

The foregoing discussion has served h establish the plausi-
bility of gust loads having a normal distribution uqder some
cmditions and the significance of the stidard deviation of
lords for the case of a normal distribution. The standard
deviation of loads can be derived from a pomr~pectral
analysis in the following manner: From its definition (eq.
(24b)), the standard deviation of load increment output
having a zero mean value is the square root of the average
power. Thus, the power-pectraldensity function of loads
and the standard deviation of tbe probability distribution of
lords are related. The standard deviation u may thus be
obtained directly from the power-spectraldensity functions
by the relation

J
u’= - @o(co)d@=

J
m &(Q)dQ

o 0
(29)

This relation between the probability distribution and power-
spectraldensity function for the case of a normally distrib-
uted output ties the power spectrum to a basic characteristic
of the load history and is thus of importance for applications
to gust-load analysis.

In addition to the foregoing relation between the pomr
spectrum and the probabili~ distribution, a number of other
useful relations exist for particular cases between the pomm
spectrum and the statistical characteristics of the time
history. Rice in reference 8 has derived expressions which
permit the determination born the povmr spe’ctrum of such
quantities as the average number of crossings per second of
given values of disturbance intensity and the average
number of peak values per second exceeding given values of
intensity. These quantities are of particular interest in
studies of airplane fatigue life. These. additional relations
substantially increase the nsefullness of the power spectrum.

APPLICATION TO GUST-LOAD PROBLEMS

In view of the simple reIations between the loads and the
power-spectraldensity functions for the case of normal
distribution of loads, the determination of the normality of
load distributions appears to be an important problem in the
application of porverapectral analysis to gust-load problems;
therefore, some experimental gus&load distributions are
examined for normality. TWO applications of powwr~pectd
methods to the calculation of gust loads are also given in
this section in order to obtain some insight into the relations
between airplane characteristics and loads in mntinuous
rough air. In the first series of calculations, the input-

output relations are used to calculate the standard deviation
of loads for a selected series of idealized respomms to a step
gust. The second series of calculations is made to determine
the variations in the standard deviation of lend for indiv-
idual variations of certain geometric and aerodpmrnic
parameter of an idealized transport airplane. The indicated
variations in load intensity in this application are compared
with those derived by conventional techniques of using the
peak load response to an idenlized discrete gust,

OESERVEO DISTRIBUTIONSOF LOADS

In order to determine whether frequency distributionsof

‘loadare actuallynormal distributions,recourse was made to

some available ~erimental gust-load time-history data.

Time-history records of the normal accelerationfor two air-

planes of the same type (dif7ering only slightly in center-of-
gravity position) in side-by-side flight through continuous
rough air at low altitudes above generally flat terrain were
available fim a recent investigation. The test conditions
and summaries of the data are presented in refercmce 10,
The normal-acceleration time-history. records for about a
2-minute section of one run at 46o miles per hour were evalu-
ated in detail by ttilcing readings at intervals of MOsecond,
roughly one reading for each 4 chords of airplane travel,
The frequency distributions for the two airplanes are sum-
marized in table I. (Additional data of the same type were
also examined but do not appear to warrant reporting in
detail at this time.) In determining these distributions, the
1 g level was assumed to be at the man value of the disturb-
ance. (This assumption is frequently used in gust evrdua-
tions in view- of the difficulty in exactly determining the 1 Q
line for the &~ht condition.) The other primary charac-
teristics of the observed frequency distribution, standard
deviation u, coefficient of skewness a$, and coefficient of

TABLE I.—FREQUENCY DISTRIBUTIONS OF
ACCELERATION INCREMENT
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kurtosis a, me also given in table I where the statistical
chmacteriatica of the distribution were determined by the
following relations:

whero IV is the

tribution ai=O

“=I?(AY7T
1 Z(An–~3

ffg=>
N

(30a)

(30b)

(30C)

number of observations. For a normal dis-
and q=3. The distributions of table I are

shown as frequency polygohs in &urea 3 (a) and 3 (b). Also
shown in the figures are the normal d&ributions fitted in
accordance with standard statistical procedures by means
of the calculated standard deviations of table I.

The fit of tho normal distribution to the data for airplane A
shows some tendency of the normal distribution to under-
estimate the concentration of values about the mean of the
distribution, whereas the fit of the data of airplane B appea=
gcmerdly good. In order ta test the hypothesk that the
observed samples are from a normal distribution; statistical
procedures were applied to the observed statistical parameters.
The results of these tests indicated that the distribution of
An for airplane B codd be considered from a normal dis-
tribution, whereas the distribution for airplane A would not
be assumed from a normal distribution. The magnitude of
the departure from normality did not, however, appear large
in this case.

In order to permit examination of the behavior of the
distributions at the larger values of load factor which are of
concern, the observed relative cumulative frequency dis-
tributions and the fitted cumulative probability distributions
me shown in figure 4. The curves for both the probability
of exceeding given values and the probability of being less
than given values are shown on semilogmithmic paper in
order to permit comparison at both the large positive and
negative acceleration increments. Examination of these
figures indicates that the data for airplane B are in excellent
agreement with the fitted curves. I?or airplane 4 the
overall agreement between observed data and fitted curve
Qppema reasonable although some discrepancy between the
observed distribution and the’ fitted curve is apparent par-
ticularly at the larger negative values of An. These die-
creprmcies are, in genertd, not large, however, and might,
for emmple, be due to piloting-technique effects. How-ever,
the lack of consistency in the results indicates the need for
further study of the question of the normality of the dis~
tribution of load.

In order to examine the question of normality somewhat
further at this time, recoume -me made to additional data
on frequency distributions of load increment under condi-
tions similar to those represented in figures 3 and 4. Exami-
nation of these additional data indicatea that although the
distributions were generally close to normal, in a number of
cases, more large accelerations were experienced than might
be expected for a normal distribution. Consideration of the

.

time-history records tim which these distributionswere

obtained indicated that these departures from normality

were associatedwith lack of homogeneity in the turbulence

intensity during the ilight run. Only for short runs of

constant levelturbulence did the distributionsappear normal.

The manner in which the departures from normality arise

in nonhomogeneous turbulence may be clarifiedby an ex-

ample. Consider a flightrun through rough air consisting

of somewhat more severe turbulent conditions du.rirgthe

second part of the run. The oveml.1 distributionof loads

may for thiscondition be expected to consistof two normal

distributions,one for each part of the run. The two normal

distributionswould be expected to have mean values of zero

1 I 1 i 1 I

it

i \
–— -– Observsd rhto0

360 I \ Fittednonnol—
I A II d$lnka$icm,

Y

I
i

\
.

\

+
\

I

4
I

)
\

120

80

40

‘.8 -.6 -.4 -2 0 .2 .4 .6
An, g units

(a) Airplane A.
(b) Airplane B.

FIGUEB3.—Comparison of observed frequency distribution with fitted
normal frequenoy d~tribution.
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for the load factor increment but cWlerent standard
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devia-
tions. The combined distribution for the w-hole run can be
show-n (appendix) to depart from normali~ -with an excess
of observations at the center and at the larger values of
load increment. This mechanism can account for the de-
partures from normality observed in.the data examined.

In view of the foregoing indications, it would appear
reasonable for the present to assume that for locally homo-
geneous turbulence of the type represented in figures 3 and
4 the frequency distribution of load increments may be
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expected to approximate a normal distribution. The approx-
imate normality of the load distribution for homogeneous
turbulence permits the use of the relations derived m.rlier
between the frequency distribution of loads and the powwr
spectrums and permits the representation of the load inten-
sity by a single number, the standard deviation of the fre-
quency distribution of load. This tication of the povw-
spectraldensity function and the probability distribution of
loads even for limited conditions is of considerable impor%mce
since in many load studies the relative loads in continuous
rough air of two airplanes (or one airplane at two flight
conditions) are of interest. For this case the use of tho
standmd deviation as derived from the powwr-spectral mmly-
sis appeara to provide a direct measure of the relative loads.

In view of the foregoing indications that D lack of turbu-
lence homogeneity can cause significant departures from a
normal distribution of loads, further studies of the distribu-
tion of loads under various atmospheric conditions am needed.
It maybe expected that the turbulence connected with such
dynamic phenomena as thunderstorms which have w largo-
scale physical structure and short life cycle may not be
stationary random. For these conditions, the airplane load
histories might have distributions that depart significantly
from normality. This limitation may not, however, be too
serious since even in these cases the standard deviation of
loads may still provide a measure of load intensity although
one not as simply interpretable in terms of the probability
distribution as in the case of the normal distribution.

RELAITON OF STEP EESPONSE CEARAmERLTI’1~ TO L&ilX3IN
CONTINUOUS ROUGH AIR

E xamination of calculated responses to entry of a shmp-
edge gust for airplane9 representative of conventional trans-
port types has indicated that the shape of the responm
curve up to the peak acceleration depends primarily on the
gist penetration function (l@sner function). After tho
peak value which occurs close to 6 chords of gust penetra-
tion, the character of the response appears to be primarily
a function of airplane stability and to nppro.xinmte the short-
ptiod oscillation of the airplane. On the bask of them
properties, a limited series of response curves to a slump-edge
gust mire selected to represent variations in airplane cly-
namic longitudinal ‘stability. The incremental accoloration
rmponses in g’s to a l-foot-per-second sharp-edge gust wero
assumed to be given by the following expressions:

An(s)=& sin ~~‘S

,

An(8)=; e‘b “-rnCOS ?CO(8-6) (6s8s ~)
)

Equations (31) represent a quarter sine wave up to a fixed
peak value of 0.033g at 6 chords and n damped oscillatory
function for the remaining portion of the response. The
parameters b and Ico cnn be considered to represent the
damping and frequency parameters, respectively, of tho
response following the peak load. In figure 5, plots of equa-
tions (31) are show-n for nine selected cases covering three
values for each of the two parameters. The values were
selected to sample a tide range of airplane response charac-
teristics and represent variations in wave length from 40 to
150 chords and variations in damping from light to ahnost
critical damping.

.
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In view of the linearity of the systems being considered,
the multiplimtion of the response An(s) of equations (31)by

a constant remdta in the multiplication of the frequ8ncy-

response function and the standard deviation of the output

in turn by the same constant. Thus, the effecton tie

standard deviation of load of variations in the peak WLIues

of An for given values of & and b is apparent aqd the con-

siderationof an amplitude factor in equations (31) does not

warrant more detaileddiscwion.

The frequency response function ?(iv) was determined

analytically from the sharp-edge-gust response given by

equations (31) by using equations (21). The amplitude

squared of the transferfunction I~(i~)I*isgiven by

~ {[

*’(fi-v) ‘++’)+]Z(iv)p+’ ; ~_v –
$+V

1

2

1(b2+k02+v’) b Sill ‘v+(b’–kt?+v? v’COS ‘v +
(b2+k/–v~’+4v’b*

{

1 (b’+ko’+v~ bvCOS6v–(b’–ko2+v%’ sin6v_
(30)’ (b’+ko’-v’)2+4v’b’

[

() ()
2

COS 6 ‘—V —1 COS 6
12

$+V –1

; +

1

(32)

5—V
“~+v

Plots of equation (32) are shown in figure 6 for the nine

cases considered in figure5.

The reduc+ power-spectmd-densi@ function of atmos-

pheric turbulence,shown in figure2, was used as the input.

For any particular weather condition, the power-spectral-

density function would have to be adjusted by taking into

account the actual average power of the input. “This change

would, however, only involve an appropriate linearchange in

the ordinate scaleand would not atTectthe relativeindications

of the present comparisons.

Examination of figure6 indicatesthat,as the damping of

the oscillationis decreased (b decreased), the amplitude
increnses rapidly in the neighborhood of the oscillation
frequency ko. The frequency response function remains
relatively unchanged over the rest of the frequency range.
On the other hand, variations in the oscillation frequency IcO,
for fied values of b, have a minor eflect on the shape of the
function but the peak values change (note changes in the
ordinate scale) and occur at values of v close to ko. ,

The power-spectraldensity function of the acceleration-
increment output was obtained from equations (18) and (22)
by the relation

%(!2)=${(Q)I?(w) ]’ (33)

For convenience, an airplane chord of 9.67 feet, the we
value as the chord of the airplane used to obtain the input
Specm, was SE9umed for this series of calculations.. The

power-spectral densitiesof the acceleration-incrementoutput
A
@JQ) forthe conditionsbeing consideredare shown infigure7,

Since the power-spectmd-density function of atmospheric

turbulent was not known for frequenciesQ lessthan 0.0016

radian per foot,the output spectrum could not be determined

in this region. The output spectrums were, however,

extrapolated to zero at fl=O in order to complete tlm output

spectrum at the low frequencies The extrapolations aro

indicated in figure7.

Examination of figure 7 indicates that as damping is

decreased the output spectrums for each value of kO increase

rapidly in the neighborhood of the oscillatoryfrequency

~_~_ &J
~ ~. For given values of damping, however, tho

power spectrums do not vary appreciably in shape bu~ the

peak values shiftinfrequency with ko. Thus, the tital powor

of the spectrum as measured by the integral of the spectral
function appears to be lar@ly independent of koand primarily
~ function of b for the conditions investigated. This result
can be s;en horn figures 6 and 7 to be a consequence of both
the variations in response functions and the rapid decrease
of powwr of the gust spectrum with increasing frequency.

The rapid increase of the loads with decreased damping is
more clearly illustrated in figure 8, which show-s the strmdcwd
deviation of loads u (the square root of the integral of tho
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power spectrum) as a function of frequency for the several
values of b considered. The standard deviations of the
acceleration increment u were obtained horn the output
spectrums by using equation (29). In the evaluation of
equation (29), the output spectrums as extrapolated from a
frequency of 0.0016 radian per foot to O (fig. 7) was used and
the area of the output spectrums for values of Q greater than
0.028 was asaumed negligible. The figure indicates clearly
that the load level, as measured by the standard deviation,
is largely independent of the frequenq paramete~ )iObut
varies appreciably when the damping parameter 6 is changed,
the variation of the standard deviation being of the order of
two to one for the conditions considered.

The results imply that the shor~period response character-
istic and particularly the damping characteristics have an
appreciable effect on the airplane loads in continuous rough
air. In contrast, the airplane peak-load response to discrete
gusts cm be shown for the present example to be affected only
to a minor intent by the shorhperiod damping characteristics.
In view of these diilerencea between the indications of power-
spectrnl and discrete-gust calculations, discrete-gust cxdcula-
tions may not adequately reflect differences in the gust loads
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in continuous rough air between airplanes diflering in
dynamic stabili~ characteristics. In particular these results
indicate that discrete-gust calculations may not be adequate
for the determination of loads in continuous rough air for
modern high-speed airplanes which in contrast to the air-
planes of the past have relatively poor shorhperiod damping.
More complete accounting of airplane shorkperiod charac-
teristics in gus~load analysis would appear to be required in
these cases.

The variations of the response to a step gust assumed in
the present illustration repremnt idealized conditions in
which the chamcteristica of the airplane response to a step
gust were changed in a simple manner. In practice, the
change of almost any airplane parameter will mo@ the
rwponse to a step gust in a complex manner. Thus, a
change of an airplane parameter will affect the peak-load
value, the location of peak, and both the frequency and
damping of the subsequent oscillation. consequently, the
problem of optimum design for gust-load reduction is
extremely complicated and beyond the scope of the present
study. The effects of variations in airplane geometry on
gust loads are, to some extent, indicated in the second
illustration in which the complete changes in the response
to a step gust for limited variations in each of selected

parameters of an idealized airplane are considered.

EFFECT ON LOADS OF SOME VARIATIONS IN AIRPLANEGEOMETRICAND
AERODYNAMIC PARAMETERS

b order to obtain an indication of the relation between
some airplane geometric and aerodynamic parameters and
loads in continuous rough air, the power-spectraldensity
functions of load based on the turbulence spectrum of
@e 2 w-ere calculated for selected variations in airplane
chmteristica. An idedized transport airplane was used
as a basic configuration. Characteristics of this basic con-
figuration are listed in table Il. In addition, values of each
of 11 airplame parametem listed were varied separately in
order to obtain an “increased” condition and a “decreased”
condition, m indicated in the table. (In the case of the
center-of-gravity position, the increased condition represents

.30
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FIc+mm8.-8tandard deviation of loads as a funotion of the frequenoy
parameter kofor various vrduesof the damping pararoeter b.
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TABLE IL—VALUES OF AIRPLANE PARAMETERS
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same 09 besla condltlm

b Center of mavfty rmrward.

the forward center-f-gravity position.) The 23 conditions
cmered in these calculations represented stable airplanes
with static margins varying ilom —0.256 to —0.507 where Z
is mean aerodynamic chord.

The responses to a unit step gust with a velocity of 1 foot
per second A.(z) for the twodegre~f-freedom case, vertical
motion and pitch, were available for the 23 cases of table II
from an unpublished study based on the methods of
reference 6. The frequency-response functions were deter-
mined by means of equations (17). The povrer*pecti-
density function for acceleration output corresponding to
the turbulence input of iigure 2 w-as obtained for each
condition by use of equation (18). The standard deviation
of acceleration increment was determined for each case
horn equation (29) by the relation

“=[J”$O’”)’QT

In performing this integration, it was assumed that the
output for frequencies of Q greater than 0.028 was negligible.
The output spectrums were also faired to a value of zero
at Q equal to zero as in the previous application.

As a basis for comparing the results of the indications of
the spectral analysis with the indications of conventional
types of analysis based on responses to single representative
gusts, a triangular gust with a gradient. distance (distance
fim zero to peak value) of 10 chords Was selected as a
representative gust condition. This gust condition repre-
sents an avera~e gradient distance for the more severe gust
loads and is frequently used for analysis purposes as a
measure of the airplane loads in rough air. The peak load-
factor value A%= for a l-foot-per-second tiangular gust
having a gradient distance of 10 chords was calculated for
the tvm-degree~f-freedom case for each of the 23 conditions
considered.

The results of the power~pectral and single-gust calculat-
ions are compared in figure 9 for each of the 23 conditions.
The abscissa in the figure represents the single-gust peak
response and the ordinate, the power-spectraldensity
meafme of load intensity. For ease in comparing the rela-
tive changes, both single-gust and spec.traldcilation results
are shown in terms of the basic airplane response. Thus, the

abscissa is given as Ati/(AnmJ tit. and the ordinda, as

ujuti,e. The line of equa~ity ~A~-~ti,O=&O is shown m

a reference. If both methods of analysis gave the samo pm-
centage change in load for a given change from the basic Iiir-
plane, the plotted point would fall on the line of equality.

Examina tion of the results shown in figure 9 indicates
that to a tit approximation both the standard deviation of
loads and the maximum load for a 10-chor@radient triangu-
lar gust ihow the same trends for variations of the airphmo
parametem considered. The largest changes in load Iovel
are associated -with changes in airplane weight, wing area, air
density, and slope of the -wing lift curve as might be mpectcd
from the sharp-edge-gust relation. Inspection of the figure
indicates that complex second-order diilerences that may be
important exist in the indications given by the two measums
of loads. As an example, for the variations of loads for
changes of wing area the figure indicates that, for the 20-
percent increase in wing area (represented by the square),
the ‘value of An_/(AnJ tii. increases about 18 percent.
The relative standard deviation u/utiit, however, increases
only about 7 percent. This difference appears to be a con-
sequence of the greater sensitivity of the power-spectral
analysis to the changes in airplane stability introduced by
the increased wing area; the increaae in wing area results in a
small decrease in the frequency of the response to a step
gust but a more pronounced increase in the damping. The
present results also suggest similar dif3brences between the
two analyses for changes in airplane w-eight and slope of the
wing lift curve.

The variations considered for the remaining parametcm
such as tail length, tail area, and tail slope of the lift curve,
in general, yield minor variations in loads. The variations in
An_/(A&U) wt.for these cases are however less than +2 per-
cent, whereas the variations for the standard deviations are
generally somewhat larger, +4 percent. h figure 9 the 12-
percentihord rearward movement of the center-f-gravity po-
sition i&yields about a 3-percent increase m An~u/(An~Jti,io
but a 9-percent increase in the relative standard deviatiom
In this case, the larger increase in the standard deviation
appears largely associated with the movement of the peak
of the frequency-response function to lower frequency and
thus larger gust spectral. power.

For the stable airplane configurations considered, tho
pow-er-spectral analysis and the single-gust peak-load ro-
sponae yield trends for changes in parameter values that aro
generally consistent. Differences that may be important

are, however, discernible and appear associated with the

greater dependence of the standard deviation of loads on the
dynamic stability characknistics of the airplane. It would
be expected from the first application that, for larger +aria-
tions in the damping characteristics of the short-period oscil-
lation, the ditlerencea between the two types of analysis
would be appreciably larger than obtained in the prosm t.
illustration.
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SUMMARY OF RESULTS

The analyais of the application of power-speclml methods
of analysis to gust-load problems has indicated the following
rcwlts:

1. The application of power-spectral methods of analysis
to load calculations provides a measure of load fitensity for
continuous rough air in terms of the standard deviation
(root mean square) of the load output.

2. The probability distribution of load intensity in homo-
geneous rough air appeam to approximate a normal
distribution.

3. I?or the case of the normally distributed output, the
standard deviation of load completely describes the prob-
ability distribution of loads specifying the proportion of total
time that various load value+ are exceeded.

4. The application of power-spectral relations to a selected
series of systematic variations in the frequency and damping
characteristics of the airplane load response to a stej-gust
input indicates that the damping ckracteristics of the indi-
cird response are the primary characteristics in determin@
the loads in continuous rough air. This result appeara of
significance in regard to high-speed airplanw and missiles
where the short-period longitudinal damping may be poor.

5. Calculations for a limited series of conventional and
stable airplane configwations indicate that the loads in
continuous rough air for variations in individual airplane
geometric and aerodynamic parameters are to a fit
approximation adequately reflected by the peakload response
to the arbitrary 10-chord triangular gust commonly used.

If the two normal
ment with zero man

However, differences are discernible
of the continuous-gust and discrete-gust calculations and
appear largely associated with differences in the eflects of
stability changes on the loads for the tw-o gust conditions,

SUGGESTIONS FOR FUTURE RESEARCH

The foregoing results appear to indicate that power-
spectral methods are well suited to the calculation of loads
in continuous rough air. A number of problems exist and
require further investigation. These include

(1) The determination of the powwr-spectral-density func-
tions of atmospheric turbulence for a tide rrmge of atmos-
pheric conditions

(2) The determination of the conditions under which
normal distributions of the load time history apply

(3) The investigation of the effects of the nonuniformity
of gusts across the airplane span on the application of them
technique9

(4) The experimental verification of theoretical determi-
nations of airplane indicial responsm over the range mquiml
to determine usable frequency-response functions

(5) The investigation of the relations between tlm powwv
spectrums and the frequency distribution of load-increment
peaks and other quantities of interest in structural design.

LANGLEY AERONAUTICAL LABORATORY,

NATIONm ADVISORY COMMITTEE FOR bRONAUTICS,

LANGLEY FIELD, VA., 5’eptemberI?9, 196g.

APPENDIX

DISTRIBUTION OF GUST LOADS IN

frequency distributions of load incre-
are deti.ned by

()lAn2——

“f’ ‘An)=u% e 2 ‘“

()

/

(Al)
lAn2

iv, ——
N’, f, (An]=—

r
e20z

rz 2X
where

ffi(A:~f@n) rmpective probability density-functions
1) respective number of observations for each

distribution
%>fJ2 standard deviations of respective distributions
the combined distribution is defined by

Nf (An)=Nl f,(An) +N2f,(An) (A2)

where N = iVl + Nz. This distribution is examined for
normality.

Since the two frequency distributions, fl(An) andN2f,(An)
are each normal with mean zero, the combined distribution
Nj(An) is also symmetrical about zero. Consequently, for
the moments of the frequency distribution ~= dei3ned by

p==
J

“ (An..)mf(An) d(An) (A3)
-m

between the indications

NONHOMOGENEOUS ROUGH AIR

where m is a positive number and designates the moment
order, the following relations apply

pm=o (m odd)

J1.+o (m even) 1
(A4)

For a normal distribution, the coefficient of kurtosis a4
defined by

(A6)

has a fixed value

Q= 3 (A6)
.

In order to examine the normality of the distribution
defied by equation (A2), consider only the value of a4, the
coefficient of kurtosis, for that frequency distribution.

By definition, the coefficient of kurtosis a4 for tho distrilm-
tion of equation (A2) is given by

1 Lf J
m (An)4N,j,(An)d(An)+ “ (An)4NJ,(An)d (An)

~_N,+N -m -m 1— .-- ..
{J- /

(*n)’ [NIfI(An)+~J, (An)] d(An) “
-.

N,+N,
(A7)
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which when simplfied yields

.
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From equation (A6), a necessary condition

“ (A8)

for the distri-
bution N,,(An) to be normal is that w be equal to 3. From
equation (AS) this condition is obviously true only when

Expanding the term on the right and simplifying yields

al’ + q’= 2a12uj3 (A1O)

Equation (A1O) is thus a necessary condition for the distribu-
tion defined by (A2) to be normal. However, from the
inequality

a%+bs>%b (a#b) (All)

the. only condition for which equation (A1O) holds is when
u~=u~. Thus the distribution ~(An) has a normal distribu-
tion only for the trivial case al= uZ. If al # aj, it also follow-s
from equation (A1O) that the coefficient of kurtosis Q for
Nf (An) given by equation (A8) is greater than 3. The com-
bined distribution consequently has an excess bf kurtosis.
Before considering the significance of the excess kurtosis, it
is well to note that the present derivation was resticted to
the combination of two distributions for simplici~. It is
simple although tedious to verify that similar results are
obtained for the combination of three or more distributions.

The signiiimnce of the excess kurtosis for the combined
distribution may perhaps be best indicated with a sketch.
Tho sketch shows two symmetrical relative frequency dis-
tributions having the same standard deviations, one a
normal distribution (Q=3) and the other a nonnormal dis-
tribution with a4>3. The nonnormal distribution is derived
from the normal by a shift of mass outward from the central
portion of the distribution and also a shift of mass inward
to maintain the same standard deviation for the two cases.
Thus, it is apparent that the predominant feature of the distri-
bution having excess kurtosis is a greater concentration of
mass at the center and at the outboard regions of the dis-
tribution than for the norm&distribution case.
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