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A STUDY OF THE APPLICATION OF POWER-SPECTRAL METHODS OF GENERALIZED
HARMONIC ANALYSIS TO GUST LOADS ON AIRPLANES!

By Harry Press and BERNARD MAZBLSEY

SUMMARY

The applicability of some results from the theory of general-
ized harmonic analysis (or power-spectral analysis) io the
analysis of gust loads on airplanes in continuous rough air s
examined. The general relations for Linear systems between
power specirums of a random input disturbance and an output
response are used to relate the spectrum of airplane load in
rough air lo the spectrum of atmospheric gust velocity. The
power spectrum of loads is shown to provide a measure of the
load intensity in lerms of the standard deviation (root mean
square) of the load distribution for an airplane in flight through
continuous rough air. For the case of a load output having a
normal distribution, which appears from experimental evidence
{0 apply to homogeneous rough air, the standard deviation is
shown lo describe the probability distribution of loads or the
proportion of total time that the load his given values. Thus,
for an airplane in flight through homogeneous rough air, the
probability distribution of loads may be determined from a
power-speciral analysis.

In order lo illusirate the applwatwn of power-speciral
analysis to gust-load analysiz and lo obtain an insight into the
relations between loads and airplane gust-response character-
18tics, two selecled series of calculations are presented. In the
first series, the standard deviations of loads in continuous rough
air described by an assumed power spectrum are calculated for
systemaltic varialions in the frequency and damping character-
1stics of the airplane response to a step-gust input. The resulls
obtained indicate that the loads in rough air are particularly
sensilive lo rariations in the damping characteristics of the
oscillatory response to a step gust and largely independent of
varialions in the frequency. In the second application, the
standard deviation of loads is calculated for selected variations
of each of several airplane geometric and aerodynamic param-
eters of an idealized and siable transport-type airplane. The
standard deviations obiained are compared with results derived
by conventional techniques of using the calculated peak response
to an idealized and representaiive discrete gust. The resulis
indicate that for stable configurations both methods of analysis
yield resulls that are consistent to a first approzimation. -

INTRODUCTION

The study of gust loads on airplanes is & twofold problem
requiring the adequate representation of the characteristics
of atmospheric turbulence and the determination of the air-
plane response (loads or motions) in rough air. These
problems have been recognized since the inception, of gust-
load research but because of the difficulties involved only
limited approaches to the problems appeared practical.
The methods that have been used are described and discussed
in detail in reference 1. In general, the approach has been
to use simplified airplane-response theory for the determina-
tion of the characteristics of discrete gusts from airplane
measurements of load. The “‘gusis” derived on this basis
are then used to calculate loads on other airplanes. Although
these procedures appear reasonable for transferring loads to
similar airplanes, as indicated in the reference, they are of
questionable value for airplanes of widely different character-
istics (such as, configurations and stability characteristics).
These limitations have, however, not proved serious in the
past since the transport airplanes which were primarily
affected by gust standards appeared, in general, to follow
conventional design. . Available data indicate that new
transport airplanes experienced gust loads which were, in
general, compatible with those predicted from past work.,

Trends in aeronautics toward higher speed and the develop-
ment of missiles have served to introduce a widening range
of unusual configurations and aircraft stability character-
istics. Furthermore, the gust-load design requirements,
which formerly were of concern for tramsport and bomber
airplanes only, appear to have become important for other
aircraft as well. As a consequence of these developments,
the need for more generally applicable techniques, both for
the measurements of the characteristics of atmospheric gusts
and for the calculation of the gust loads on new airplanes,
has become more urgent.

Developments in the theory of generalized harmonic
analysis (ref. 2) appear adaptable for extending the analysis
of gust loads beyond the discrete-gust case to the case of con-
tinuous turbulence. Techniques from generalized harmonic

1 Supersedes NACA TN 2853, A Study of the Application of Power-Spectral Methods of Generalized Harmonic Analysis to Gust Loads on Airplanes” by Harry Press and Bernard

Mazelsky, 1053,
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analysis involving the concept of power spectral density have
been used for many years in diverse fields, such as in the
study of random-noise problems in communications and in
the study of small-scale turbulence of wind tunnels, The
concept of the power of a random disturbance, which is
fundamental to the present study, is defined by analogy to
electrical power to be the time average of the square of the
disturbance. The portion of the power arising from compo-
nents having harmonic frequencies between » and w+dw is
denoted as the power spectral density. For linear systems,
the power-spectral-density functions of & random input dis-
turbance and an output response are related through the
frequency-response characteristics of the system.

Attractive features of spectral analysis for the study of
gust loads are the possibilities thatb:

(1) Continuous turbulence can be described in analytic
form by a power spectrum rather than by discrete gusts.

(2) The load response of airplanes to continuous rough air
can be evaluated. .

(8) The desirable response characteristics of an airplane
for minirmizing gust effects in continuous rough air will be-
come amendable to analysis.

In view of the attractive features of power-spectral-
density methods of analysis, an investigation of the applica-
bility and implications of these techniques to gust-load
analysis was undertaken and the results obtained are re-
ported herein. In this repor}, the concepts and relations of
generalized harmonic analysis are defined and their method
of application to the gust-load problem is indicated. The
applicability of the normal probability distribution for the
representation of the probability distribution of loads in
continuous rough air is considered. For the case of a normal
distribution of loads, the standard deviation (root mean
square) of the load history defines the probability distribu-
tion of loads. It is indicated that the standard deviation
may be determined from load power spectrum; thus the re-
sults of & power-spectral analysis permit the determination
of the probability distribution of loads. Finally, in order
to illustrate the application of power-spectral analysis to
gust-load calculations and to obtain an insight into the rela-
tion between loads in continuous rough air and airplane
characteristics, two applications are presented. In both
applications, the power spectrum of atmospheric turbulence
obtained from flight measurements (ref. 2) is used to repre-
sent the turbulence input. The first application is intended
to represent the effects on gust loads of variations in airplane
dynamic longitudinal stability. The second application is
intended to illustrate the effects on gust loads of variations
of some geometric and aerodynamic parameters of an ideal-
ized transport airplane. The indicated variations in load
intensity are compared with those derived by conventional
techniques of using the peak-load response to an idealized
discrete gust.
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SYMBOLS

response to unit step disturbance

slope of tail lift curve per radian

slope of wing lift curve per radian

parameters of equation (31)

airplane wing chord, ft

airplane tail chord, ft

pitching moment of inertia about center of gravity,
slug-ft? .

reduced frequency, we/V, radians/chord

horizontal distance from center of gravity of airplane
to wing aerodynamic center, {t

horizontal distance from center of gravity of airplane
to tail aerodynamic center, ft

number of observations

acceleration increment, g

probability

cumulative probability distribution of z, equation (28)

distance, chords ,

wing area, sq ft

tail area, sq ft

time, sec

arbitrary value of ¢, sec

frequency-response function with respect to argu-
ment, w, 2, or »

vertical gust velocity, {t/sec

airplane true airspeed, ft/sec

airplane weight, 1b

response to unit impulse disturbance

distance, ft

arbitrary value of z, ft

arbitrary random variable

probability density function of variable y, equa-
tion (23)

arbitrary function of arguments ¢, z, and s

average power of y(¢), equation (4)

standardized variable, Anje

coefficient of skewness, equation (30b)

coefficient of kurtosis, equation (30c)

standard deviation of specified random variable,
equation (24b)

mass air density, slugs/cu It

time displacements, sec

autocorrelation function, equation (9)

power-spectral-density function of an arbitrary dis-
turbance with respect to w or ©

power-spectral-density function of a designated input

power-spectral-density function of a designated output

normal distribution with mean of 0 and standard
deviation equal to 1, equation (27)

circular frequency, radians/sec

reduced frequency, «/V, radians/ft

downwash factor
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Subscripts:
max  maximum load response to a discrete gust
basic  basic airplane configuration

A bar over a symbol designates the average value of the
quantity. .

In this analysis, the use of several independent variables f,
«, and s for an arbitrary disturbance y( ) and their associated
frequency arguments w, 2, and » has been found necessary.
In order to designate that the several functions y( ), &( ),
and T( ) depend upon their arguments a circumflex A and
o tilde ~ have been used over the appropriate sets of functions
in accordance with the scheme shown in the following table:

‘Varlable
Function
‘ t, sec I, ft |s, chords
Disturbanco 0] 7@ 70)
Froquency argument. @ Aﬂ >
Power-spectral-density functlon . ..o _oocoeeeo- &(w) () &)
Frequenoy-responss function. . - . ooomocoeoemeoemane- To) | T2 T(ty)
Impulso response. wo | Vo | W
8tep response..oo---- AQ®) A@) A

ANALYSIS

BASIC CONCEPTS AND RELATIONS OF POWER-SPECTRAL ANALYSIS

The theory of generalized harmonic analysis is an out-
growth and generalization of harmonic analysis and is
largely the work of Norbert Wiener (ref. 3). Accounts of
the theory and method of application are also given in
references 2, 4, and 5. In order to orient the reader, a brief
account of the background, the basic concepts, and the
relations is presented.

The theory of harmonic analysis indicates that an arbi-
trary periodic function can be represented by a Fourier
sories in the following manner:

F (t)=£;£+i (A, cos nwt-+ B, sin not) ¢))
n=l
where '
=2 f "F ¢ dt
A,,—-T 5 (0) cos nw
2 [T .
B“=Tf F () sin net dt
0
and 7 is equal to 27 /w and is the period of the function. In
order to apply this technique to nonperiodic phenomena,
the limit of equation (1) as T goes to infinity must be con-

sidered. TFor this case of a nonperiodic function, the Fourier
series takes the form of the Fourier integral and is given by

FO=o J:e‘“‘ [ f :F(T) e"""d'r:ldw @)

If the second integral on the right is denoted as G(w) then
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equation (2) can be written in the reciprocal form

| F)=oe f_:G(w) et de (3)
where

G ()= f :F(T)e—fwdf

The Fourier transform pair thus provides reciprocal relations
between the time function F(f) and its frequency represen-
tation G(w). The quantity G(w)dw gives the contribution
of those harmonic components of F(f) whose frequencies
lie betwéen w and w3-do.

A necessary condition for the application of equation (3)
is that the integrals involved be convergent. This condition
acts as a severe limitation on the applicability of the Fourier
integral relations. In many problems, such as noise in an
electric circuit or turbulence encountered by an airplane
in flight, the disturbance is nonperiodic, persists for a
relatively long period of time, and shows no tendency of
dying out. In these cases the required integrals do not
converge and, as a consequence, the frequency representation
in terms of equations (2) and-(3) is not possible directly.

In order to develop a frequency representation which
would be applicable to continuing disturbances, the theory
of random processes makes use of the concept of a stationary
random process. 'The characteristics of a stationary random
process are described in detail in reference 4. Essentially,
the assumption is that the underlying mechanism which
gives rise to the disturbance does not change in time and
that a statistical equilibrium exists. Thus, the statistical
characteristics of the distribution are invariant with time
and statistical prediction becomes possible. For the case
of a stationary random function of time %(f), the mean

square °(?) is defined by
—— Vi
7O=lim 5[ wora @

The mean square will usually exist and represent a measure
of disturbance intensity. Since 3%(f) is & quadratic function
of y(#), it has been termed the “avernge power” of y(f) in
anslogy to electrical power which is proportional to the square
of the current. The function ¥(f) is considered to be com-
posed of an infinite number of sinusoidal components with
circular frequencies », between 0 and . The portion of

22(t) arising from components having frequencies between
w and w-+dw is denoted herein by ®(w)dw. The function
®(w) has been called the power-spectral-density function in
the literature. From this definition, ®(w) has the property
that

7O, 26 do )

The power-spectral-density function of a random variable
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y(t) is generally defined in the following manner (see, for
example, ref. 4) )

O I | - ®

where the notation || indicates the modulus of the complex
quantity. If ®(w) is defined in this manner, it has the prop-
erty that its integral over the limits 0 to o is equal to the
power %°(f). That this expression for ®(w) is consistent
with the preceding discussion is seen to be plausible from the
fact that, for each frequency, ®(w) is proportional to the
square of the amplitude of the component of y(f) at that
frequency. Thus, #(w)dw is a measure of the contribution
of that frequency to 72(). It should be mentioned that the
definition equation (6) differs in minor detail from that used
in reference 2 but agrees substantially with those used in
references 4 and 5.

A significant and useful relation for linear systems exists
between the power-spectral-density function ®;(w) of a
random input disturbance and the power-spectral-density
function ®,(w) of an associated output through the system
frequency-response function T'(fw). The system frequency-
response function (or admittance) 7'(iw) is defined such that
T(iw)ets* is the system response to the sinusoidal input
et*t, In these terms, the relation between the power-
spectral-density functions is given by

Do) =By(w)| T(@w)* )

For a given linear system, the function 7(iw) may be con-
veniently obtained from either the unit impulse.response
or the unit step respomnse, respectively, by means of the
following relations:

T(iw)= L T W (@) e-tet dt
he 8
T (fe)=iw fo A@eto dt

where W(t) is the response to a unit impulse and A(f) is the
response to a unit step.

Equation (6) may be used to evaluate the power-spectral-
density function from observed data. However, in practice,
the power-spectral-density function may be determined more
conveniently and less tediously by using a related function,
the autocorrelation function R(7), defined by

R@=Jim [ “v@ue+n ©

The autocorrelation function has the symmetrical property
R(:)=R(—+) and is reciprocally related to the power-
spectral-density function by the Fourier cosine transforma-
tion in the following manner:

R(-r)=J;:ID ®(w) cos wr dw
. 10)
a(w)=2 fo B() cos wr dr

Reference 4, for example, shows that this definition of the
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power-spectral-density function is consistent with the
preceding definition of equation (6).

SOME FORMS OF POWER-SPECTRAL RELATIONS FOR GUST APPLICATIONS

In this section, the method of application to gust loads on
airplanes of the aforementioned concepts and relations is
considered. Some available information is presented on the
frequency-response function 7'(iw) for the gust-load condi-
tion and on the power-spectral-density functions for atmos-
pheric turbulence. Finally, for convenience in‘ gust-load
applications of power-spectral methods, the functions and
relations are presented in terms of distances rather than time.
Use is made of the distances z in feet.and s in chords and
their associated frequency arguments € and ». These
changes of variables are subsequently shown to be particu-
larly appropriate in the gust case because in these terms the
power spectrums are independent of airplane forward speed.

If atmospheric turbulence can be considered a stationary
random process, then the basic requirement for the applica-
tion of the foregoing power-spectral concepts and relations
is satisfied. Evidence that this assumption is plausible
under some conditions exists and is discussed subsequently.
On the basis of this assumption, the turbulent-vertical-
velocity distribution along a line in space can at an instant
in time be considered to represent g stationary random func-
tion of space consisting of an infinite number of harmonics
of various frequencies or wave lengths. For this condition of
spacial wave lengths, a natural unit for the associated freo-
quencies would appear to be radians per unit distance or
radians per foot. The description of the power-spectral-
density function of atmospheric turbulence must thus be given
basically in terms of units such as radians per foot. However,
for an airplane in flight through rough air, consideration of
the airplane as penetrating the gusts and experiencing the
associated loads in terms of time is frequently convenient.
Thus, the power-spectral-density functions of gust velocity
and loads experienced by the airplane may be considered
expresgible in terms of the frequency argument « in radians
per second used in the preceding section. It is, therefore,
permissible to express the relation between the power spec-
trums of gust velocity and loads or normal acceleration in
terms of equation (7) as

Bo(w)=0(w) | T(Ew)|?

where &,(w) is the power-spectral-density function of airplane
normal acceleration, ®;(w) is the power-spectral-density
function of gust velocity experienced by the airplane, and
T(1w) is the airplane normal-acceleration response function
for a sinusoidal gust velocity input.

The present study is primarily concerned with vertical
gust velocity inputs and acceleration increment An (load
factor) outputs. The function ®;(w) will have the dimensions
of (ft/sec)?

radian/sec
quently, &,(w) will have the dimensions of tadian/soc
this form, the power-spectral-density functions, having
the dimensions of —Dovor

- radian/sec
Before considering the representation of these functions in a

. C 1z s . . gV i
3 |T(iw))* will be given in (f——t Taoc Conse

2

» refer to a particular airspeed.
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form independent of airplane speed, some remarks on the
determination of the frequency-response function for the
gust-load condition and on available information concerning
the power-spectral-density function for atmospheric turbu-
ence appear appropriate.

Frequency-response function.-—Experimental methods for
determining the frequency-response function of an airplane
for a gust velocity disturbance have unfortunately not yet
been developed. The frequency-response function for aif-
planes for a gust disturbance can, however, be estimated by
theoretical methods by solution of the airplane equations of
motion for a gust disturbance. Methods for the determina-
tion of the frequency-response function for a linear system
are described in chapter 2 of reference 4, for example. The
calculation of the frequency-response function may some-
times be more conveniently performed by first determining
the airplane response to a step gust by methods such as those
deseribed in reference 6. The response of a step gust mey
then be used in equation (8) in order to determine the
frequency-response function for a continuous sinusoidal gust
input.

Power spectrum of atmospheric turbulence.—The power-
spectral-density functions of atmospheric gust velocity have
been studied from airplane flight measurements (ref. 2).
Measurements of pitching velocity of & B-25 airplane in
flight through rough air were used to determine the power-
spectral-density function of atmospheric turbulence for four
weather conditions. Clementson determined the reduced
autocorrelation function R(7)/R(0) of pitching velocity and
obtained the output power-spectral-density function by
taking its Fourier transform. The appropriate frequency-

response function as determined from simplified theoretical

caleulations was then used in equation (7) to obtain the
input speetrum. The normalization of the autocorrelation
function R(+) by dividing through by E(0) is arbitrary and
was made on the basis of yielding & pitching-velocity power
of 1 (deg/sec)? for the airplane used in that investigation.
The normalized power-spectral-density functions of atmos-
pheric turbulence derived in this manner did not vary
appreciably between weather conditions; although, as might
be expected, the value of R(0) for the pitching velocity out-
put did vary appreciably, and reflected variations in the
average power of turbufence with weather condition. On
the basis of the results obtained in reference 2, the conclusion
was reached that ‘“atmospheric turbulence is a stationary
random process that can be statistically described by a
single reduced power-spectral-density curve.” Although
additional tests under a wide variety of atmospheric condi-
tions and the use of other airplanes are needed to verify this
conclusion, the spectrum obtained appears to be representa-
tive at least of the conditions covered by the tests. The
results obtained in reference 2 for the power-spectral-density
function of atmospheric turbulence thus provide a turbulence
input and are used in subsequent applications in the present
study.

" The average reduced power-spectral-density function ob-
tained in reference 2 for an airplane true flight speed of 300
feet por second is shown in figure 1. The results shown are
corrected for two errors made in reference 2 and pointed out

308566—56——25
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Figure 1.—Normalized power-spectral-density function for atmos-
pheric vertical gust velocity ®;(e) for airspeed of 300 feet per second.

in reference 7. In addition, the results of reference 2 have
been divided by 2#.in order to conform to the definition of
the power-spectral-density function used herein, equation (6).
The power-spectral-density function shown in figure 1 has

(ft/sec)?
radians/sec
speed of 300 feet per second.

Changes in the frequency argument—As pointed out

. . . power

prewgusly, ®(w) has the dimension of a radian/ses and thus
depends upon the airplane forward speed. In order to ex-
press the power-spectral-density functions in terms inde-
pendent of airplane flight speed, the change of variables

dimensions of and applies to an airplane air-

Q==
4 (11)
2=Vt

is introduced. The variable @ is a reduced frequency in
radians per foot. The variable z is the airplane flight dis-
tance in feet. In terms of these variables, the average
power of a disturbance 9 (z) is given by

Fo=lim 4 [ B (12)

(The use of the circumflex is expiained in the section
“Symbols.””)
If the power-spectral-density function @(&2) is given by

2

A . X .
§@)=1im < I L Hx)e=toxdz (13)

then @(Q) gives the average power of the disturbance arising
from components having frequencies between Q and Q-}+dQ.
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Inasmuch as

fo 8@ do= L " 3(e) do=77 (14)
it follows from equation (11) that
8(Q)=Va(w)=Va(Ve) (15)

As pointed out in reference 7, the power-spectral-density

function for atmospheric turbulence representing 8,9) is
incorrectly given in reference 2. The power-spectral-density

function @,(Q), which corresponds to the function shown in:
figure 1, was obtained by equation (15) and is shown in figure
2. 'The resulting power spectrum of atmospheric turbulence
is independent of airplane speed and in a limited sense may
represent a universal reduced power-spectral-density function
of atmospheric turbulence.

The relation between the frequency-response functions for
the sinusoidal input e*+* and ¢'** is now considered. Since for
a given airspeed the gusts represented by ef* and ¢'% are,
from equations (11), the same gusts, the load responses when
expressed in terms of time ¢ and distance z will only involve

a change of scale. If f’(’iﬂ)e“” is the airplane load response
to the gust ¢, then the frequency-response functions are
simply related in the following manner:

PaQ)= T(iw)=TGEV) (16)

The frequency-response function f'(iﬂ) may be obtained from -

relations similar to those of equation (8) and given by
.’? (‘iQ)=J;m ﬁ7(a:) e~ dy

- amn
Pagy—=ie f A@)etodz
0
where ﬁ’(a:) and ﬁ(:c) are the response functions of the unit
impulse and unit step disturbances, respectively, expressed
as o Tunction of flight distance. These response functions
are related to TW(t) and A(2), respectively, by the relations

¥ @=1 W o

A@)=40

In termes of the variable Q, the input-output relation can,
from equations (15) and (16), be expressed by the relation

,(2)=2,(Q)| TG)J? (18)

The average power for a given input and output in terrs of
the frequency € may from equations (14) and (18) be ob-
tained by the relations
— LN LN .
Fa=[ t@a=["de@bra a9
Another set of variables is useful in the applications of
power-spectral analysis to gust loads. This set involved the
reduced frequency » in radians per chord and the nondirren-

sional distance s in chords. Because of the need for con-
sideration of unsteady acrodynarrics in gust-loads analysis,
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Figure 2.—Normalized power-spectral-density function for atmos-
pheric vertical gust velocity &:(0).
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calculated responses to step gust velocity inputs may fre-
quently be given in terms of the nondimensional distance s
and the frequency-response function in terms of the reduced

frequency ». These variables » and s are related to » and Q
and to ¢ and z in the following manner:
Vi 2
s=—c—=E-
_we_ (20)
y== vV

Tf T'(iv)e™* is the acceleration response to the gust e, then

T'(iv) may also be obtained from the impulse or step responso
by the relations

F ()= f T (5) s
e (21)
F (i) =iv L A(s)e-inds

where W(s) and Z(s) are the responses to the impulse and
step gust inputs in terms of the variable s. These response
functions are related to W() and A(¢), respectively, by the
relations

We)=3 W0
A@@=AQ@
The frequency-response function f’(iv) is related to the
functions 7T'(iw) and f(iﬂ) in the following manner:
P(i9) = T(ic@) = TEVQ)

and involves oply a change of scale of the frequency axis.
These relations are used in the subsequent applications.

(22)

RELATION OF POWER-SPECTRAL-DENSITY FUNCTION TO APPLIED GUST
LOADS '

In order to apply the foregoing methods of analysis to the
study of gust loads, the power spectral density of loads must
be related to the intensities of the actual loads. The power-
spectral-density function, which provides a measure of the
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average power arising from components at various frequen-
cies, does not directly reflect the load intensities since the
actual Joad at a given time represents the combined output
at the various frequencies. Thus, it is desirable to relate
the power spectrum of loads to specific quantities of con-
cern in load studies, such as the proportion of total time at
a given load intensity (probability distribution of load in-
tensity), the number and intensity of peak loads, and other
such particular quantities that may be of interest for struc-
tural analysis. In the present report, only the relation of
the power-spectral-density function to the probability
distribution of load is considered in detail and more specifi-

cally the significance of the normal distribution for loads.

is considered.

Probability distribution of output.—When a linear system is
exposed t0 an input varying in & random manner with time,
the probability distribution of the system output y can
frequently be represented by a normal probability density
distribution defined by the relation

()

. (23)

b Ey)=

oy 27

where % and ¢ are the mean and standard deviation and are
defined by

_ . 1T
y=}l_§3jﬁ y dt (24a)
1 (T 13

o=| Jim 7 L (y—g'/)’dt] (24b)

Investigations of communication problems associated with
noise, which has many obvious similarities to turbulence,
have shown that normal distributions are frequently en-
countered. Rice in reference 8 has, for example, shown that
for a linear system the shot effect in & vacuum tube gives
rise to a noise current which has a normal distribution of
current intensity. Investigation of fluid turbulence fre-
quently yields normal distributions of velocity fluctuations.
These results appear to be explained by the central limit
theorem of probability (vef. 9) which states that, under gen-
eral conditions, the distribution of the sum of a large num-
ber of random variables tends toward a normal distribution.

The theoretical derivation of the probability distribution
of loads for an airplane in flight through rough air is math-
ematically difficult and appears to involve assumptions
regarding the nature of turbulence that are, for the present,
questionable, However, as previously mnoted, turbulent
velocity fluctuations have been observed to approximate
a normal distribution. For the condition of normally dis-
tributed velocity fluctuations, it may be expected that the
loads experienced by an airplane in flight through the
turbulent air would likewise be normally distributed. Some
experimental date on the normality of the frequency dis-
tribution of loads will be presented in a subsequent section
of this report. The significance of the question of normelity
stems from the fact that, for the case of a normal distribution,
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‘the power spectrum alone defines a number of useful statis-
tical characteristics of the time history. Some of these
Telations between the spectrum and the time history statis-
tics are discussed in the following paragraphs.

Significance of the normality of the distribution of loads.—
If the distribution -of airplane acceleration increment in
continuous rough air is normal with a zero mean value, the
probability density distribution of the acceleration incre-
ment An is completely described by the standard deviation
and from equation (23) is given by

1/7A
1 2 _c_n)
[
o27

Equation (25) is termed the probability density function of
An, and f(An) d(An) can be considered to represent the pro-
portion of total time (or total flight distance) that An has
2 value between An and An-+-d(An).

In order to examine the properties of equation (25), it is
convenient to consider the distribution of the variable

f(an)= @5)

An

z=—

(-3

where z is the so-called standardized variable and has the
probability density distribution

(26)

__.__1__ —1%2
¥(2) o 27)
The funetion ¢ (2) is the normal distribution with a mean of
zero and a standard deviation equal to 1 and is the error
function commonly tebulated. The probability that a
random value of z will exceed a given value is given by the
integral of equation (27) as follows:
P)= v de (28)
Equation (28) defines the cumulative probability distribu-
tion of the reduced variable z and in the case of time-history
data may be considered to represent the proportion of total
time that the value of z exceeds & given value. For a fixed
value of probability P, z is fixed and can be obtained from
tabulations of the integral of the error function. Thus, for
example, for P=0.02275, z=2.
Equation (28) indicates that the probability of exceeding
a given value of zis a function of only the given value. Con-
versely for a given value of probability, the largest value of
z exceeded is also fixed and depends only upon the probabil-

ity. Making the substitution z=A—o_73 into equation (28)
yields the result that the probability of exceeding a given
value of An/s is likewise a function only of the value of An/e
and is given by P(%)- The converse also applies that, for

a given value of probability, the largest value of An/o ex-
ceeded is fixed and depends upon the probability. Con-
sequently, the largest value of An exceeded with a given
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probability depends upon the value of ¢ and is given by oz.

The largest value of An exceeded with & given probability.

is thus seen to be directly proportional to the standard de-
viation. For example, when the standard deviation is
doubled, the largest value of An exceeded with a given prob-

ability is also doubled. This direct relationship between .

the value of the standard deviation and the load probability
distribution makes the standard deviation an important
and significant measure of the load experience for the case
of gust loads having a normal distribution. Because of this
direct relation between the standard deviation and the Joad
probability distribution, the standard deviation will be useful
as a measure of load intensity in the present study.

The foregoing discussion has served to establish the plausi-
bility of gust loads having a normal distribution under some
conditions and the significance of the standard deviation of
loads for the case of a normal distribution. The standard
deviation of loads can be derived from a power-spectral
analysis in the following manner: From its definition (eq.
(24b)), the standard deviation of load increment output
having a zero mean value is the square root of the average
power. Thus, the power-spectral-density function of loads
and the standard deviation of the probability distribution of
loads are related. The standard deviation ¢ may thus be
obtained directly from the power-spectral-density functions
by the relation

e L " &u(w)do= L " $,@de | (29)

This relation between the probability distribution and power-
spectral-density function for the case of & normally distrib-
uted output ties the power spectrum to a basic characteristic
of the load history and is thus of importance for applications
to gust-load analysis.

In addition to the foregoing relation between the power
spectrum and the probability distribution, & number of other
useful relations exist for particular cases between the power
spectrum and the statistical characteristics of the time
history. Rice in reference 8 has derived expressions which
permit the determination from the power spectrum of such

quantities as the average number of crossings per second of ,

given values of disturbance intensity and the average
number of peak values per second exceeding given values of
intensity. These quantities are of particular interest in
studies of airplane fatigue life. These additional relations
substantially increase the usefullness of the power spectrum.

APPLICATION TO GUST-LOAD PROBLEMS

In view of the simple relations between the loads and the
power-spectral-density functions for the case of normal
distribution of loads, the determination of the normality of
load distributions appears to be an important problem in the
application of power-spectral analysis to gust-load problems;
therefore, some experimental gust-load distributions are
examined for normality. Two applications of power-spectral
methods to the calculation of gust loads are also given in
this section in order to obtain some insight into the relations
between airplane characteristics and loads in continuous
rough air. In the first series of calculations, the input-
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output relations are used to calculate the standard deviation
of loads for 2 selected series of idealized responses to a step
gust. The second series of calculations is made to determine
the variations in the standard deviation of load for indi-
vidual variations of certain geometric and aerodynamic
parameters of an idealized transport airplane. The indicated
variations in load intensity in this application are compared
with those derived by conventional techniques of using the
peak load response to an idealized discrete gust.

OBSERVED DISTRIBUTIONS OF LOADS

In order to determine whether frequency distributions of

‘load are actually normal distributions, recourse was made to

some available experimental gust-load time-history data.
Time-history records of the normal acceleration for two air-
planes of the same type (differing only slightly in center-of-
gravity position) in side-by-side flight through continuous
rough air at low altitudes above generally flat terrain were
available from a recent investigation. The test conditions
and summaries of the data are presented in reference 10.
The normal-acceleration time-history. records for about a
2-minute section of one run at 450 miles per hour were evalu-
ated in detail by taking readings at intervals of %, second,
roughly one reading for each 4 chords of airplane travel.
The frequency distributions for the two airplanes are sum-
marized in table I. (Additional data of the same type were
algo examined but do not appear to warrant reporting in
detail at this time.) In determining these distributions, the
1 g level was assurmed to be at the mean value of the disturb-
ance. (This assumption is frequently used in gust evalua-
tions in view of the difficulty in exactly determining the 1 g
line for the flicht condition.) The other primary charac-
teristics of the observed frequency distribution, standard
deviation o, coefficient of skewness a; and coefficient of

TABLE I—FREQUENCY DISTRIBUTIONS OF
ACCELERATION INCREMENT

Alrplane A Afrplane B
Acceleration increment, Acceleration incroment,

Afl, ¢ units Number An, g units Number
—0.777 to —0.727 2 —0.719 to —0, 069 1
—.727to —.677 0 -, 860 to —,010 1
—.6T7 to —. 627 1 —.819to —, 560 2
—.627 to —.577 0 —.560to —.519 4
—. 577 to —.527 2 —.519t0 —.409 11
—.527Tto —.477 2 —~. 460 to —.410 12
—.4T7to —.427 7 —~.419to —, 309 22
—. 427 to —-.377 11 —~.360to —.319 35
—. 87 to —.327 16 —.319t0 —.269 60
—.321t0 —.277 33 - to — U9 99
— 27 to —.227 67 —~.218t0 —.169 119
—27t0 —.177 104 —.169to —.119 200
—. 177 to —.127 157 —~.119t0 —.060 45
—.127to —.07T7 H1 —-.063to —.019 854
—.07T7t0o —.027 315 -.019t0 ,031 260
—027to  .023 .031t0 .081 bird

@23to  .073 338 Blto ,131 215

.073t0  .123 131 to 181 172

18to 173 140 181 to 81 128

A78t0 .22 125 21 to 281 7

.2Bto .27 [15] 281 to 1 50

.23t .32 331 to 381 a0

323t .373 16 38l to 431 2

.3783to .423 10 431 to 481 16

423t0  .473 9 481 to 631 0

AT3to .53 7 531 to 681 2

.523to  .673 1 581 to 631 2

b573t0  .623 1

Total 2339 Total 231
An [ aAn 0
o 0.1503 o 0, 1503
o —0.049 a3 —0.013
ay 4.43 .71 3, 360
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kurtosis «, are also given in table I where the statistical
characteristics of the distribution were determined by the
following relations:

—\271/2
— E(AnZ;An) (308)
_ 3
- ja E(AnN'&D (30b)
1 =(an—Aan)*
a{’_'a_‘ N (300)

where &N is the number of observations. For a normal dis-
tribution «;=0 and «,=3. The distributions of table I are
shown as frequency polygons in figures 3(a) and 3 (b). Also
shown in the figures are the normal distributions fitted in
accordance with standard statistical procedures by means
of the calculated standard deviations of table I.

The fit of the normal distribution to the data for airplane A
shows some tendency of the normal distribution to under-
estimate the concentration of values about the mean of the
distribution, whereas the fit of the data of airplane B appears
generally good. In order to test the hypothesis that the
observed samples are from a normal distribution; statistical
procedures were applied to the observed statistical parameters.
The results of these tests indicated that the distribution of
An for airplane B could be considered from a normal dis-
tribution, whereas the distribution for airplane A would not
be assumed from a normal distribution. The magnitude of
the departure from normality did not, however, appear large
in this case.

In order to permit examination of the behavior of the
distributions at the larger values of load factor which are of
concern, the observed relative cumulative frequency dis-
tributions and the fitted cumulative probability distributions
are shown in figure 4. The curves for both the probability
of exceeding given values and the probability of being less
than given values are shown on semilogarithmic paper in
order to permit comparison at both the large positive and
negative acceleration increments. Examination of these
ficures indicates that the data for airplane B are in excellent
agreement with the fitted curves. For airplane A, the
overall agreement between observed data and fitted curve
appears reasonable although some discrepancy between the
observed distribution and the fitted curve is apparent par-
ticularly at the larger negative values of An. These dis-
crepancies are, in general, not large, however, and might,
for example, be due to piloting-technique effects. However,
the lack of consistency in the results indicates the need for
further study of the question of the normality of the dis-
tribution of load.

In order to examine the question of normality somewhat
further at this time, recourse was made to additional data
on frequency distributions of load increment under condi-
tions similar to those represented in figures 3 and 4. Exami-
nation of these additional data indicates that although the
distributions were generally close to normal, in a number of
cases, more large accelerations were experienced than might
be expected for a normal distribution. Consideration of the

.
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time-history records from which these distributions were
obtained indicated that these departures from normality
were associated with lack of homogeneity in the turbulence
intensity during the flight run. Only for short runs of
constantlevel turbulence did the distributions appear normal.

The manner in which the departures from normality arise
in nonhomogeneous turbulence may be clarified by an ex-
ample. Consider a flight run through rough air consisting
of somewhat more severe turbulent conditions during the
second part of the run. The overall distribution of loads
may for this condition be expected to consist of two normal
distributions, one for each part of the run. The two normal
distributions would be expected to have mean values of zero
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for the load factor increment but different standard devia-
tions. The combined distribution for the whole run can be
shown (appendix) to depart from normality with an excess
of observations at the center and at the larger values of
load increment. This mechanism can account for the de-
partures from normality observed in.the data examined.

Tn view of the foregoing indications, it would appear
reasonable for the present to assume that for locally homo-
geneous turbulence of the type represented in figures 3 and
4 the frequency distribution of load increments may be
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expected to approximate a normal distribution. The approx-
imate normality of the load distribution for homogeneous
turbulence permits the use of the relations derived earlier
between the frequency distribution of loads and the power
spectrums and permits the representation of the load inten-
sity by a single number, the standard deviation of the fre-
quency distribution of load. This unification of the power-
spectral-density function and the probability distribution of
loads even for limited conditions is of considerable importance
since in many load studies the relative loads in continuous
rough air of two airplanes (or one airplane at two flight
conditions) are of interest. For this case the use of the
standard deviation as derived from the power-spectral analy-
sis appears to provide a direct measure of the relative loads.

In view of the foregoing indications that a lack of turbu-
lence homogeneity can cause significant departures from a
normal distribution of loads, further studies of the distribu-
tion of loads under various atmospheric conditions are needed.
It may be expected that the turbulence connected with such
dynamic phenomena as thunderstorms which have o large-
scale physical structure and short life cycle may not be
stationary random. For these conditions, the airplane load
histories might have distributions that depart significantly
from normality. This limitation may not, however, be too
serious since even in these cases the standard deviation of
loads may still provide a measure of load intensity although
one not as simply interpretable in terms of the probability
distribution as in the case of the normal distribution.

RELATION OF STEP RESPONSE CHARACTERISTICS TO LOADS IN
CONTINUOUS ROUGH AIR

Examination of calculated responses to entry of a sharp-
edge gust for airplanes representative of conventional trans-
port types has indicated that the shape of the response
curve up to the peak acceleration depends primarily on the
gust penetration function (Kissner function). After the
peak value which occurs close to 6 chords of gust penetra-
tion, the character of the response appears to be primarily
a function of airplane stability and to approximate the short-
period oscillation of the airplane. On the basis of these
properties, a limited series of response curves to a sharp-edge
gust were selected to represent variations in airplane dy-
namic longitudinal ‘stability. The incremental acceleration
responses in ¢’s to a 1-foot-per-second sharp-edge gust were
assumed to be given by the following expressions:

An(s)=—31—0 sin == 8 (0 <s<6)
@1

An (s)=% e 2 ¢=%cog ky(8—6) (6585 )
Equations (31) represent & quarter sine wsgve up to a fixed
peak value of 0.033¢g at 6 chords and a damped oscillatory
function for the remaining portion of the response. The
parameters b and k, can be considered to represent the
damping and frequency parameters, respectively, of the
response following the peak load. In figure 5, plots of equa-
tions (31) are shown for nine selected cases covering tbree
values for each of the two parameters. The values were
selected to sample a wide range of airplane response charac-
teristics and represent variations in wave length from 40 to
150 chords and variations in damping from light to almost
critical damping.
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In view of the linearity of the systems being considered,
the multiplication of the response An(s) of equations (31) by
a constant results in the multiplication of the frequency-
response function aud the standard deviation of the output
in turn by the same constant. Thus, the effect on the
standard deviation of load of variations in the peak values
of An for given values of k; and b is apparent and the con-
sideration of an amplitude factor in equations (31) does not
warrant more detailed discussion.

The frequency response function T(v) was determined
analytically from the sharp-edge-gust response given by
equations (31) by using equations (21). The amplitude
squared of the transfer function |T('w)|2 is given by

1 y sin 6 (12—1!) gin 6 (———I—v) N

\T i)l G743
)? )2 T T
. 1—2'—1’ 1—2'+V
2
(5242 -+v% by sin 6w -+ (03— ko* 4 vH) v? cos 6y +
B2+ k— D+ 4r20?
1 )(d24ke*+v?) by cos 6v— (b2 —ko*+»°)y* sin by

(30)* (O* -k —vH*+4»°D°

(32)

v cos 6 ) 1 cos 6 (12+
2 .
—y A

12 +”

Plots of equation (32) are shown in figure 6 for the nine
cases considered in figure 5.

The reduced power-spectral-density function of atmos-
pheric turbulence, shown in figure 2, was used as the input.
For any particular weather condition, the power-spectral-
density function would have to be adjusted by taking into
account the actual average power of the input. This change
would, however, only involve an appropriate linear change in
the ordinate scale and would not affect the relative indications
of the present comparisons. )

Examination of figure 6 indicates that, as the damping of
the oscillation is decreased (b decreased), the amplitude
increases rapidly in the neighborhood of the oscillation
frequency k,. The frequency response function remains
relatively unchanged over the rest of the frequency range.
On the other hand, variations in the oscillation frequency %,
for fixed values of b, have a minor effect on the shape of the
function but the peak values change (note changes in the
ordinate scale) and occur at values of » close to k.

The power-spectral-density function of the acceleration-

increment output was obtained from equations (18) and (22)
by the relation

A A ~ o
Do(Q) =2.(2)| T @) * (33)
For convenience, an airplane chord of 9.67 feet, the same

value as the chord of the airplane used to obtain the input
spectrum, was assumed for this series of calculations.. The
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power-spectral densities of the acceleration-increment output

%o(Q) for the conditions being considered are shown in figure 7.
Since the power-spectral-density function of atmospheric
turbulence was not known for frequencies € less than 0.0016
radian per foot, the output spectrum could not be determined
in this region. The output spectrums were, however,
extrapolated to zero at ©==0 in order to complete the output
spectrum at the low frequencies. The extrapolations are
indicated in figure 7.

Examination of figure 7 indicates that as damping is
decreased the output spectrums for each value of %, increase
rapidly in the neighborbood of the oscillatory frequency

For given values of damping, however, the

power spectrums do not vary appreciably in shape but; the
peak values shift in frequency with k.. Thus, the total power
of the spectrum as measured by the integral of the spectral
function appears to be largely independent of k, and primarily
a.function of b for the conditions investigated. This result
can be seen from figures 6 and 7 to be a consequence of both
the variations in response functions and the rapid decrease
of power of the gust spectrum with increasing frequency.
The rapid increase of the loads with decreased damping is
more clearly illustrated in figure 8, which shows the standard
deviation' of loads o (the square root of the integral of the
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power spectrum) as a function of frequency for the several
values of b considered. The standard deviations of the
acceleration increment o were obtained from the output
spectrums by using equation (29). In the evaluation of
equation (29), the output spectrums as extrapolated from a
frequency of 0.0016 radian per foot to 0 (fig. 7) was used and
the area of the output spectrums for values of @ greater than
0.028 was assumed negligible. The figure indicates clearly
that the load level, as measured by the standard deviation,
is largely independent of the frequency parameter k, but
varies appreciably when the damping parameter b is changed,
the variation of the standard deviation being of the order of
two to one for the conditions considered.

The results imply that the short-period response character-
istics and particularly the damping characteristics have an
appreciable effect on the airplane loads in continuous rough
air. In contrast, the airplane peak-load response to discrete
gusts can be shown for the present example to be affected only
to a minor extent by the short-period damping characteristics.
In view of these differences between the indications of power-~
spectral and discrete-gust calculations, discrete-gust calcula-
tions may not adequately reflect differences in the gust loads
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in continuous rough air between airplanes differing in
dynamic stability characteristics. In particular these results
indicate that discrete-gust calculations may not be adequate
for the determination of loads in continuous rough air for
modern high-speed airplanes which in contrast to the air-
planes of the past have relatively poor short-period damping.
More complete accounting of airplane short-period charac-
teristics in gust-load analysis would appear to be required in

these cases.
The variations of the response to a step gust assumed in

the present illustration represent idealized conditions in
which the characteristics of the airplane response to a step
gust were changed in a simple manner. In practice, the
change of almost any airplane parameter will modify the
response to a step gust in a complex manner. Thus, a
change of an airplane parameter will affect the peak-load
value, the location of peak, and both the frequency and
damping of the subsequent oscillation. Consequently, the
problem of optimum design for gust-load reduction is
extremely complicated and beyond the scope of the present
study. The effects of variations in airplane geometry on
gust loads are, to some extent, indicated in the second
illustration in which the complete changes in the response
to a step gust for limited variations in each of selected
parameters of an idealized airplane are considered.

EFFECT ON LOADS OF SOME VARIATIONS IN AIRPLANE GEOMETRIC AND
AERODYNAMIC PARAMETERS

In order to obtain an indication of the relation between
some airplane geometric and aerodynamic parameters and
loads in continuous rough air, the power-spectral-density
functions of load based on the turbulence spectrum of
figure 2 were calculated for selected variations in airplane
characteristics. An idealized transport airplane was used
a8 a basic configuration. Characteristics of this basic con-
figuration are listed in table II. In addition, values of each
of 11 airplane parameters listed were varied separately in
order to obtain an “increased” condition and a ‘“‘decreased”
condition, as indicated in the table. (In the case of the
center-of-gravity position, the increased condition represents
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parameter ko for various values of the damping parameter b.
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TABLE II.—VALUES OF ATRPLANE PARAMETERS
[U=1 {t/sec; V=308 ft/sec; co=7.58 {t]

Alrplane parameter Basle ® ®
@, per radian 5.56 6.40 4.73
& e dion %5 %ot %0
KA 275 20 220
p, Slugsjen ft 0.002049 0.002378 0.001768
de/da 0.5 0.6 0.4
Tu, 1t 0 —128 b1.28
1, 1t 25.38 39,26 3154
i. slug it 209, 600 273,000 148,100
AT 8, 47,500 28, 500

= Values Indicate parameter changed for given condition, whereas (.Jther parameters remain
samo as basle condition.

b Center of gravity rcarward.
the forward center-of-gravity position.) The 23 conditions
covered in these calculations represented stable airplanes
with static margins varying from —0.25¢ to —0.50¢ where ¢
is mean aerodynamic chord.

The responses to a unit step gust with a velocity of 1 foot
per second A(z) for the two-degree-of-freedom case, vertical
motion and pitch, were available for the 23 cases of table IT
from an unpublished study based on the methods of
reference 6. The frequency-response functions were defer-
mined by means of equations (17). The power-spectral-
density function for acceleration output corresponding to
the turbulence input of figure 2 was obtained for each
condition by use of equation (18). The standard deviation
of acceleration increment was determined for each case
from equation (29) by the relation

o] [awa]”

In performing this integration, it was assumed that the
output for frequencies of @ greater than 0.028 was negligible.
The output spectrums were also faired to a value of zero
at Q equal to zero as in the previous application.

As a basis for comparing the results of the indications of
the spectral analysis with the indications of conventional
types of analysis based on responses to single represeatative
gusts, a triangular gust with a gradient. distance (distance
from zero to peak value) of 10 chords was selected as a
representative gust condition. This gust condition repre-
sents an average gradient distance for the more severe gust
loads and is frequently used for analysis purposes as a
measure of the airplane loads in rough air. The peak load-
factor value Amn,, for a 1-foot-per-second triangular gust
having a gradient distance of 10 chords was calculated for
the two-degree-of-freedom case for each of the 23 conditions
considered.

The results of the power-spectral and single-gust calcula-
tions are compared in figure 9 for each of the 23 conditions.
The abscissa in the figure represents the single-gust peak
response and the ordinate, the power-spectral-density
measure of load intensity. For ease in comparing the rela-
tive changes, both single-gust and spectral-calculation results
are shown in terms of the basic airplane response. Thus, the
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abscissa is given 88 ANMmar/(ANMmar)sasse 80d the ordinate, as
Aper @
Nomaz) tmio— Trasto
a reference. If both methods of analysis gave the same per-
centage change in load for a given change from the basic fir-
plane, the plotted point would fall on the line of equality.

Examination of the results shown in figure 9 indicates
that to a first approximation both the standard deviation of
loads and the maximum load for a 10-chord-gradient triangu-
lar gust show the same trends for variations of the airplane
parameters considered. The largest changes in load lovel
are associated with changes in airplane weight, wing area, air
density, and slope of the wing lift curve as might be expected
from the sharp-edge-gust relation. Inspection of the figure
indicates that complex second-order differences that may be
important exist in the indications given by the two measures
of loads. As an example, for the variations of loads for
changes of wing area the figure indicates that, for the 20-
percent increase in wing area (represented by the square),
the value of Afpg:/(ATimes)saste iDCTeases about 18 percent.
The relative standard deviation o/ey..i., however, increases
only about 7 percent. This difference appears to be a con-
sequence of the greater sensitivity of the power-spectral
analysis to the ‘changes in airplane stability introduced by
the increased wing area; the increase in wing area results in a
small decrease in the frequency of the response to a step
gust but a more pronounced increase in the damping. The
present results also suggest similar differences between the
two analyses for changes in airplane weight and slope of the
wing lift curve.

The variations considered for the remaining parameters
such as tail length, tail area, and tail slope of the lift curve,
in general, yield minor variations in loads. The variations in
ANpoz] (ATimas) pasec fOT these cases are however less than -2 per-
cent, whereas the variations for the standard deviations are
generally somewhat larger, 4-4 percent. In figure 9 the 12-
percent-chord rearward movement of the center-of-gravity po-
sition [, yields about & 3-percent increase in Anyqz/(AMmas)tasts
but a 9-percent increase in the relative standard deviation.
In this case, the larger increase in the standard deviation
appears largely associated with the movement of the peak
of the frequency-response function to lower frequency and
thus larger gust spectral power.

For the stable airplane configurations considered, the
power-spectral analysis and the single-gust peak-load re-
sponse yield trends for changes in parameter values that aro
generally consistent. Differences that may be important
are, however, discernible and appear associated with the
greater dependence of the standard deviation of loads on the
dynamic stability characteristics of the airplane. It would
be expected from the first application that, for larger varia-
tions in the damping characteristics of the short-period oscil-
lation, the differences between the two types of analysis
would be appreciably larger than obtained in the presenf:
fllustration.

is shown as

0/0basie.  The line of equality @
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Fraure 9.—Comparison of standard deviation of load with peak load response to & 10-chord-gradient triangular gust.

Flagged symbols denote below-basic. parameters.
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SUMMARY OF RESULTS

The analysis of the application of power-spectral methods
of analysis to gust-load problems has indicated the following
results:

1. The application of power-spectral methods of analysis
to load calculations provides a measure of load intensity for
continuous rough air in terms of the standard deviation
(root mean square) of the load output.

2. The probability distribution of load intensity in homo-
geneous rough air appears to approximate a normal
distribution.

3. For the case of the normally distributed output, the
standard deviation of load completely describes the prob-
ability distribution of loads specifying the proportion of total
time that various load values are exceeded.

4. The application of power-spectral relations to a selected
series of systematic variations in the frequency and damping
characteristics of the airplane load response to a step-gust
input indicates that the damping characteristics of the indi-
cial response are the primary characteristics in determining
the loads in continuous rough air. This result appears of
significance in regard to high-speed airplanes and missiles
where the short-period longitudinal damping may be poor.

5. Calculations for a limited series of conventional and
stable airplane configurations indicete that the loads in
continuous rough air for variations in individual airplane
geometric and aerodynamic parameters are to a first
approximation adequately reflected by the peak-load response
to the arbitrary 10-chord triangular gust commonly used.
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However, differences are discernible between the indications
of the continuous-gust and discrete-gust calculations and
appear largely associated with differences in the effects of
stability changes on the loads for the two gust conditions.

SUGGESTIONS FOR FUTURE RESEARCH

The foregoing results appear to indicate that power-
spectral methods are well suited to the calculation of loads
in continuous rough air. A number of problems exist and
require further investigation. These include

(1) The determination of the power-spectral-density func-
tions of atmospheric turbulence for a wide range of atmos-
pheric conditions

(2) The determination of the conditions under which
normal distributions of the load time history apply

(8) The investigation of the effects of the nonuniformity
of gusts across the airplane span on the application of these
techniques

(4) The experimental verification of theoretical determi-
nations of airplane indicial responses over the range required
to determine usable frequency-response functions

(5) The investigation of the relations between the power
spectrums and the frequency distribution of load-increment
peaks and other quantities of interest in structural design.

LANGLEY AERONAUTICAL LABORATORY,
Narronan Apvisory COMMITTEE FOR AERONAUTICS,
Laneuey Fisup, Va., September 29, 1952.

APPENDIX
DISTRIBUTION OF GUST LOADS IN NONHOMOGENEOUS ROUGH AIR

If the two normal frequency distributions of load incre-
ment with zero mean are defined by

1/ An\2
N1 fl (A'n)=o-l§;_ﬂ- 8_2(;>
N 1 /An\2 (Al)
Ng fg (An)= 2 6_3(5

o227
where

fi(an),f:(An) respective probability density functions

Ny,N, respective number of observations for each
distribution - -
© ay,03 standard deviations of respective distributions

the combined distribution is defined by
Nf(An)=Nifi(An)+ N, f.(An)

where N = N, + N..
normality.

Since the two frequency distributions &V, f,(An) and N; f.(An)
are each normal with mean zero, the combined distribution
Nf(An) is also symmetrical about zero. Consequently, for
the moments of the frequency distribution g,, defined by

(A2)
This distribution is examined for

pa= | @™ sem) dlamy (A3)

where m is a positive number and designates the moment
order, the following relations apply

(m odd) }

(m even)

k=0
(49
Bn#0

For a normal distribution, the coefficient of kurtosis o4
defined by

== (Ab)
has a fixed value
=3 (A6)

In order to examine the normality of the distribution
defined by equation (A2), consider only the value of o, the
coeflicient of kurtosis, for that frequency distribution.

By definition, the coefficient of kurtosis «, for the distribu-
tion of equation (A2) is given by

1 = °
=m)[f_:(ﬁm) N, fi(An)d(Aan)+- f _m(An) N,J,(L:n)d (An)]
{f_m (An)* [N1f1 (An)+Nsf2 (An)) d(An)}

oy

Nl +N2
(A7)
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which when simplified yields

o= Nl 612+N20’22>2
N+N,

(A8)

From equation (A6), a necessary condition for the distri-
bution Nf(An) to be normal is that o be equal to 3. From
equation (A8) this condition is obviously true only when

N1014+N2024=Nﬁ (N10’12+N20'22)2 (AQ)
Expanding the term on the right and simplifying yields
ot ot =200 (A10)

Equation (A10) is thus a necessary condition for the distribu-
tion defined by (A2) to be normal. However, from the
inequality

a*4-b6*>2ab (ab) (A11)

the only condition for which equation (A10) holds is when
o1=05. 'Thus the distribution f(An) has a normal distribu-
tion only for the trivial case oy=02. If o, 70y, it also follows
from equation (A10) that the coefficient of kurtosis a4 for
Nj(An) given by equation (A8) is greater than 3. The com-
bined distribution consequently has an excess 0f kurtosis.
Before considering the significance of the excess kurtosis, it
is well to note that the present derivation was restricted to
the combination of two distributions for simplicity. It is
simple although tedious to verify that similar results are
obtained for the combination of three or more distributions.

The significance of the excess kurtosis for the combined
distribution may perhaps be best indicated with a sketch.
The sketch shows two symmetrical relative frequency dis-
tributions having the same standard deviations, one a
normal distribution (es=3) and the other & nonnormal dis-
tribution with a,>3. The nonnormal distribution is derived
from the normal by a shift of mass outward from the central
portion of the distribution and also a shift of mass inward
to maintain the same standard deviation for the two cases.
Thus, it is apparent that the predominant feature of the distri-
bution having excess kurtosis is a greater concentration of
mass at the center and at the outboard regions of the dis-
tribution than for the normal-distribution case.

/-\\__--- ag>3
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