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A UNIFIEDTWO-DIMENSIONAL
HYPERSONICFLOWS,

APPROACH TO THE CALCULATION OF THREE-DIMENSIONAL
WITH APPLICATION TO BODIES OF REVOLUTION 1

By A. J. EQQEES,JR, and RAYAIONDC. SAVIN

SUMMARY

A simpli~ twodime n.sionalmethodfor calculating lhree-
dimensiorud steady and m.teady hypersonic j?ow8 of an
his-id (non-heat-conducting) gm is deducedjrom character-
i.etimtheory. T?h3methodh appropriatdy termeda generakxl
shock-expansion method. It b demonstratedthut the method h
applicable wlwn disturbance a880ciat&iwith the divergence of
slreamlirua in planes tangent to a wqlzc.e are of secondury
importune compared to those m80ded with the curwztureof
streamline in plana norm.d to the wface. When this con-
dition is met, swfae 8treandin4z8muy be treated ~ geodaim,
which, in turn, may be rela+?.edto the geometry of the MLrface.

It is inquired further if tlw twodimewionulity of invi.mid
hyper80nti &w8 h a counterpart in hypersonic bowndury-
lqer @08. This guestion h anwoered in the a#hnative,
thereby permitting a unijisd two-dimensiond approach to
threedimawia nd hypemonh$ows.

This concept is applid to bodi.a oj revoltiion in 8teady flight
and, with the uwmption that jlow at the ver.!a ia conical,
approximate solutionsfor theJ%Wjield are obtuiwd for wzlues
oj tb hypersvnti similady parameter (i. e., the ratw of the
free-8tream Mach number to the jin.tme88ratw of the body]
greater than about 1 and for sma.Uangl.a of attack. S’urface
streamliw are approximated by meridiun k%w8and thejlow
jidd i8 culw?utedin &tin plane3. Simpb explicit expra-
sion8 are obtuiwd for the surface Mach numbers and pre-mwrea
in the 8pecia+?case of 8fenderbodia.

W vu.h’dityof theory is checked by comparison wdh .sqAace
premures and shock-uwve shapm obtaind ezperimtmtully at
Mhch number8from 3.00 to 6.30 and ang.?txof attack up to
16° for twoogivt%huviwJ&n4a8 ra.tw8of 3 and6. At theL%wer
angles of attack, theory and eqmriment approach agreement
when the hypersonti 8imdarity paranMer is in theneighborhood
of i or gre&. At the /urgerangles of @tack, tluwrytencikto
break down noticeably on the leeuwrdsidzx of the bodia.

INTRODUCTION

The calculation of flows about objects, primarily missiles,
traveling ot high supemonic speeds is now generally accepted
as a matter of more than academic inter-t. The d.iflicul~
of them calculations stems in large part from the fact that
at such high speeds disturbance velocities are not neccxwwily
small compared to the velocity of sound, nor are entropy
gradients necessarily negligible in the disturbed flow field
about a body, even though it may be of normal slenderness.
Thus, for example, the relatively simple linear theo~, which
has proven so valuable in studying flows at low supersonic
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speeds, loses much of its utility in the study of high-super-
sonic-speed flows. k the quest for methods especially suited
to calculating high-supersonic-speed flows, notable progress
has been made in the development of similarity laws relating
the flows about slender tbreedimensional shapes in both
steady (see refs. 1, 2, and 3) and nonsteady motion (see
refs. 4 and 5). Steady two-dimensional flows have received
perhaps the greatest attention from the standpoint of crdcu-
lating specific flow fields, and it would seem that with tools
ranging from the characteristic method (see, e. g., refs. 6
and 7) to the generalized shock-expansion method (ref. 7)
the problem is reasonably well in hand, at least insofar as
~~cid, contimmm flow is concerned. A more or less
analogous situation exists with regard to the nonliftiug body
of revolution (see, e. g., refs. 6, 8, 9, and 10) although it
seems that only in the case of the cone has a method (ref. 10)
of simplicity comparable to that of the linear theory been
developed for calculating the whole flow field.

When one departs from these relatively simple flowB, the
number of tools for carrying out practical calculations de-
creases sharply. Thus, for example, in the category of
inclined bodies of revolution, it appears that only bodies at
small angles of attack have been handled adequately, usudy
by either the method of characteristics or some other step-
by-step calculative procedure (see, e. g., refs. 6, and 11
through 14)-. In the case of steady flow about general three-
dimensiomd shapes, aside from INewtonian flow concepts,
which are strictly applicable at Mach numbers exceeding all
limits, only the characteristics method has apparently thus
far received serious attention (refs. 15, 16, 17, and 18). It
is tiue, of coume, that the method is tedious and time con-
suming to apply, but the relatively aact solutions obtained
protide a valuable check against the predictions of more
approximate but simpler theories. In addition, howevm, as
demonstrated in reference 10, a study of the compatibility
equations of the characteristics method can prove useful in
determiningg simplified methods for calculating more complex
flow fields.

With these points in mind, it is fit undertaken in the
present report to redevelop characteristics theory in a form
which enables us to obtain a simplified two-dimensional
method for calculating both steady and nonsteady hypersonic
flows about three-dimensional shapes. Viscous flows are
then considered and it is demonstrated that the two-dimen-
siomd character of inviscid hypersonic flows has a counterpart
in hypersonic boundary-Iayer flows. The validity of the
analytical methods of this paper is checked by c-omparing
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the predictions of theory with experimental results for the
surface pressures and bow shock waves of lifting and non-
lifting bodies of revolution at lMachnumbers horn 3.00 to 6.30.
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specific heat at constant pressure
specific heat at constant volume
characteristic coordinates in X-Z plane (GL is

positively inclined with respect to X)

pressure CmfEcient, ~

msximum diameter of body of revolution

hypersonic similarity parameter, M. ~

characteristic body length (measured from vertm
to most forward point of mtium diameter)

Mach number (ratio of locsl velocity to local speed
of sound)

static preswre
total pressure
free-stxeam dynamic piesmre
entropy
time
components of fluid velocity along the X, ~, and Z

axes, respectively
rectangular coordinates sJongthe X, Y, and Z sxes,

respectively
cylindrical coordinate
center-f-pressure position (measured from body

vertex)
angle of attack

ratio of specific heats, ~
s

angle between X axis and tangent to projection of
streamline (or pathline) in X-Z plane

semivertex angle of body
angle between X axis and tangent to projection of

streamline (or pathline) in X-Y plane

Mach angle, sin-’ &

ray angle for Prandtl-lhfeyer flow
mass density

Sussclzrem

free-stream conditions

1conditions at different points in the flow field
C, D,...,
N conditions on the surface at the vertex of a body

s conditions immediately behind the shock wave at
the vartex of a body

INYISCIDFLOW

This study proceeds from the Euler momentum oquritions,

au 1 apu *+V *+W g=-- —%+ ax bY (1)
p ax

(2)

.
aW aW aw-#u ~+ #w g=–: ~ (3]

the continuity equation,
.

(4)

the equation of state,

P=P w) (0

and the energy equation,

(6)

where u, v, and w are the components of velocity at timo t

along the X, Y, and Z UW, respectively, of an element of the
fluid of density p, static pressure p, and entropy &’.g To put
these expressions in a more tractabIe form, it is convenient
to aline the X E& at time twith the &ecLion of the resultant
velocity at the origin of the coordinate system, Thus
equations (1) through (4) and equation (6) simplify, respec-
tively, in the region of the origin, to

and

m

(8)

(9)

(lo)

(11)

which reIations are basic to the subsequent anaIysis.

. STEADYFLOW

characteristics theory,-Compatibility relations describing
the behavior of fluid properties along characteristic lima

2Forcertshmldtina itmay ?.md-blo ta_ fmmmomgonorofwuatlo~whlob
fndnd13Of@OtSOfh@9tand m8SBaddith to (III sabhaotlon from) the50W!39WOUosOffCOiSOf
fmpres&3dfrmce3(e.u ~vft8ti0md OrIIM@OtiO). Snch8plT-3XhM -y E39UYk=ldovofofwd
from that VMSOIItedham by Mow@ the metbed of Gadorloy (mfomam O) for two-
dhmnknd flow.
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in supersonic flow mnv, f course, be obtained by proceeding
formally with the theory of chara~taistics for the quasi-
limmr partial differential equations -which depict the flow.
In the interests of simplifying both the derivation of these
relations and their resultant form~, however, it seems desir-
able to proceed in a mor~ intuitive manner, assuming a
priori that the pertinent characteristic lines are Mach lines,
and utilizing the implication from two-dimensional flow-
studies that perhaps the most convenient dependent vari-
ables are pressure and flow inclination angles.

Now it is clear that in the case of steady flow dl derivatives
with respect to time disappeax from the above relations.
Thus, assuming there are no shock waves present in the
region of the Origin,awe may write, with the aid of equations
(5) and (11),

(12)

whore a is the local speed of sound in the fluid. Combining
equations (7), (10), and (12), there is then obtained the
relation

(13)

or~ defining A as the angle between the X axis and the
trmgent to the projection of a streamline in the X-Y plane,
and, in an analogous manner, the angle 8 in the X-Z plane
(see fig. 1), we have

z

r Projecticm ofs!reanltimX-Z pkme
!

‘tr”’ne-’-+=-x
/

i
‘L.~~m &-’e h x-y plan’

Y
FIINJEEl.-StremnM e projectionsin X-Y andX-Z planea.

(14)

Tmnsfonning the derivatives with rq?ect to z and z to
dmivatives in the characteristic or G1. and CZ. directions
in the X-Z plane (cl. is positively inclined with respect
to X, thus b~/bz=[M/(~=)l[bO/bC,. +bOPCtil and
bo/&= (M/2)[bO/M1.-bO/bCti])” there results from tti
equation

In an analogous manner, there is obtained horn equation (9)
the relation

I uebockwoves are prrsnk tlm appromioto obMne sbo+keqrmtlonsam OII@OYWL I

Adding these two expressions then yields

%’jia%+ii%)l

while subtracting yields

(17)

(18)

Equations (17) and (1S) axe compatibility equations for
characteristic or Mach lines in the X-Z plane.4 Indeed, if
it is further required that the X-Z plane be the osculating
plane of the streamline passing through the origin, that is,
the plane containing the principal radius of curvature and
tangent to this streamline (at the origin), then these equa-
tions are the essential relations for det* press~e
and flow inclination throughout a flow field. This point
becomes evident when it is observed that, with the imposed
requirement (viz, bA/tlx= O), the additional information
derived from studying flow in the X-Y plane is simply
that deduced from equation (8), or, as would be expected,

(19)

In order to construct a flow field, however, it is necessary
to how the manner in which the osculating plane rotates
and, correspondingly, how the principal curvature varies as
we proceed along a streamline. This information is obtained
from equations (2) and (3). Differentiation with respect
to z yields

&A
()

laap aA a8
57

=—— —— ———
W’ ax ay az ax (20)

and

respectively.

These and the previously derived expressions form the
basis of a characteristics tlieory for steady three-dimensional
flows (see ref. 20). Consistent with the objectives of this
paper, however, we are interested in theseresults as they lead
us to a more approximate but, by the same token, a more
simplified method of calculating the three-dimensional flow
of a .W at high supersonic speeds.

Simpl.iiiedtwo-dimensional theory.-It is well at the out-
set of this anal~ to establish, insofar as is practicable, the
type of flows to be treated. In this connection, it is con-
venient to employ the hypersonic similari@ parameter
(i. e., the product of the flight Mach number and the thickness
ratio of a body) as a measuring stick. In flows charac-
terized by values of the hypemonic similari~ parameter
small compared to 1, that is, flows in which the body is
extremely slender and lies close to the axis of the Mach cone,
there is no apparent reason to believe that the linear theory
will not be as useful an approximate method of calculation.

~ItlsnoWtit~eqx&sdOnmt8fnnotonlgdsiivatfv=intb8~&W-
ttonnbut* da%otimwith-t b ti indermdentti~ % TM~ ofrmltb
tohexPWedss@tioutbYOebnmWI%
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as at low supersonic speeds. Inflows characterized by values
of the parameter up to about 1, the second-order theory first
enunciated by Busemann (ref. 21) for airfoils and more
recently generalized to three-dimensional flows by Van D yke
(ref. 9) and Moore (ref. 22) should prove a useful approxima-
tion. On the other hand, for flows a%out”more or less
arbitrary shapes, there is apparently no approximate method
of calculation generally applicable with engineering accuracy
at values of the hypersonic similarity parameter appreciably
greater than 1.
. In the limiting case of indehitely h~h free-stream Mach

number (and hence similarity parameter) and a ratio of
spetic heats equal to 1, we have the Newtonian impact
theory (ref. 23) and its refined counterpart, accounting for
centrifuged forces in the disturbed flow, developed tit by
Busemann (ref. 24) and more rewidy treated by Ivey,
Khmker, and Bowen (ref. 25). The impact theory has been
employed with some success by &imminger, Wtiams, and
Young (ref. 26) and others to predict surface pressures on
bodies of revolution at values of the similarity parameter
appreciably .gp-eaterthan 1, although it should be remarked
in passing that this success is in part, at least, fortuitous, m
perhaps is best evidenced by the fact that the more exact
theory (within the framework of the underlying assumption
of .M~ co, y -1) of Busemmn is considerably less accurate
under corresponding circumstances. As shown in reference 7,
neither the Newtonian impact nor the Busemann theory
apply with good accuracy to airfoils except at values of the
similarity parameter quite large compared to 1, cmrespond-
ing, for example, in the case of thin airfoils to flight speeds
considerably in excess of the escape speed at sea level.
Perhaps the foremost shortcoming of these theories is, how-
ever, that, irrespective of the shape to-fibich they are applied,
they provide no information on the structures of the dis-
turbed flow field which is, of course, of fib extent adjacent
to the surface at flight Mach numbem presently of interest
(say Mrtch numbers less than the escape Mach number at
sea level). Such information is, for example, important to
the determination of the flow about conhol surfaces and the
like which may be located in this field.

In view of the preceding dwcu$sion, it seems clear that in
the ligh-supersonic-speed flight regime, a need for an
approximate method of analysii lies in the realm of flows-
characterized by values of the hypersonic similari~ param-
eter greater than 1. An attempt will therefore be made to
obtain a method meeting part of this need, attention being
focused primarily on flows characterized by large values of
the similarity parameter. To this end, it is convenient fit
to employ equation (14) rewritten in the form

where

(23)

Now consider for the moment a surface streamline dined
in the z direction, and impose the requirement that the X—Z

plane be tangent to this streamline and normal to the sur-
face at the point of tangency (the origin). The X—~plane
is then, of comae, tangent to the surface at this point. Ob-
serving the last term in the brackets on the right-hand sido
of equation (22), it is noted (see fig. 2) that

Y

FIGURE2.—Divergenceof streamlm“ esin tangentplmo.

where # isthe radius of curvature of the line normal to tho
projections of streamlines in the X-Y plane, and p@ig
through the origin. At the high Mach numbers under
consideration, the disturbed flow field is confined to a region
of small extent normal to the surface of a body; henco it
may be expected that T’ will be primarily a function of body
shape and attitude.” This being the case, it folIows then
that the term (1/~M~) (1/T’)willdecrease in absoluta
magnitude with increasing lMach number of the flow about
the body. Consider now the term @@x)( l-11~(1+~,).
We note that b@x= l/B where B is the radius of curvature
of the projection of a streamline in the X—Z plane and,
by reasoning analogous to that used in considering r’, is not
expected to vary significantly with Mach number in the
disturbed flow field. Let us assume for the moment that
the quantity (l —llZ)/(l+~x) is also relatively indopmdwd
of Mach number. With this assumption, it is clmr that
equation (22)apprcachw the equation for two-dinmnsional
flow as the free-stream Mach number, and henco the hyper-
sonic similarity parameter of the flow becomes large ccmporec’
to 1. The compatibility equations (eqs. (17) and (18)) arc
affected in a similar manner; thus it is apparent that the
flow when viewed in the X—Z plane approaches the two.
dimensional type. In this case, however, m shown in refer
ence 7, so long as the, Mach number and ratio of specific
heats of the disturbed fluid are not too close to 1, D, is smrd
compared to 1, and hence the flow approachw the generalize
Prandtl-Meyer type (i. e., flow in which pressure rmc
inclination angle are approximately constant along curvec
tl.rs~farnilylMach lines). Our flow equation may then bf
written

where it is required explicitly that

(24

(26

eIt fsfntaetingtonote tlmt b Ideal w flowq # bemm= Justdnnotlon of thcmvorloblc
uthovafne of thehypsonlo dmflarfty @-ametor b.mmrslarge mm@ tol (wowor
MCmmtltA, ref. 27,noting that M mnlb can rmdlly lm estonded to threo-dbnona[oru
d&4gasf10ws Mingtllo0k40@mM csmethod of thb Pm).
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or, in effect, that disturbances amociated with the divergence
of streamlines in tangent planes must be of secondary im-
portance compared to those associated with the curmture of
streamline in planes normal to the surface. Upon closer
examination it can easily be deduced that this requirement
stems directly from the continuity equation and the condition
that it be of the two-dimensional typ”ein the X-Z plane @ e.,
aw
~>>g ineq. (10)).
. . . -.

I?rom these considerations it appears that the conclusion
of reference 10 that inviscid flow along streamlines down-
stream of the nose of noninclined bodies of revolution travel-
‘mg at high supemonic speeds may be of the Ihndtl-Meyer
type (in regions free of shodk waves) applies ilso to oiher
steady threedimensional floms. It is true, too, that in the
lattm case, just as in the former case, this conclusion is
consistent with the predictions of the hypersonic similarity
law for steady flow about slender shapes.

One question remains to be considered, namely, where do
the streamlines go in the disturbed flow-? To clarify this
matter, it is convenient to study further the implications of
equation (25). For this purpose we combine equation (25)
with the transformation equation

to obtain the relation

(26)

I?rom this relation we deduce either that to the order of a
2@Zi@ at

number (curvature) small compared to ~ z

(27)

or that

and (28)

Equation (27) implies vertical flow, however, whiah type of
flow cannot be lmmtedby the present analysis sinco equation
(26) is violated? Equation (28) is then the requirement con-
sistent with the basic assumptions of this analysis. Com-
paring the relations of equation (2s) with the transformation
equation

aA

~=2&4%+.)

leads one to the conclusion, however, that

(29)

r IThJEWUCICISIOnfg p@.IIQ+y evident in tho,caseof pure vortk+l flow, c+ say vertfml .
Ilow ~flth iaqdm~ unfform etream dkcckd elong theaxh of the verteq fn wldeh

~ G ‘IJI ~d h- ~~tfon (29 omtahdy dws mt fOIIOWtim qm~n ~. “.
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or, in effect, that consistent with equation (25) geodesic lines
can be treated as surface streamlines. With this informa-
tion w-eare enabled t6 construct the flow field about Gbody,
hawing once determined, for example, the flow in the region
of the leading edge (or edges) thereof. This result follows
since a geodesic line, and hence a streamline, on the surface
is iixed, provided its direction at any point is given (see, e.g.,
ref. 28) .S Wth this knowledge of the location of surface
streamlines, flow in the planes tangent thereto and normal
to the surface may be calculated approximately, in the rela-
tively &i.n region between the surface and bounding shock
NV&S; using the generalized shock-expansion method in the
manner described in reference 7.

A partial check on these observations is tdforded by study-
ing the flow about a swept airfoil. In this case flow at the
surface may be calculated with good accuracy, using the
shock-expansion method in combination with simple-sweep
theory. I’or thin airfoils (on the surfaces of which the
appropriate geodesics have essentially the direction of the
free stream) the generalized shock-expansion method of this
paper reduces to the slender-airfoil method of reference 7.
Thus, in this case, it is evident horn the results of reference 7
that the generalized method w-ill predict surface pressure
coefficients in error by less than 10 percent, provid@ the
component of free-stmam Mach number normal to the
leading edge is greater than about 3. It is of interest also
to consider a thick airfoil to ascertain the accuracy with
which this method applies to flow with appreciable curvature.
To this end, surface pressure coefficients and streamlines
have been calculated for a 20-percenh%.ick bicomwx
airfoil (at zero incidence) swept 60° and operating at Mach
numbers of 10 and inii.nity (Y= 1.4). Conditions at the
leading edge were determined from exact shock-wave rela-
tions for both methods. The results of these calculations
are presented in figure 3, and it is observed that the pressure
distributions determined with the shock-expansion method
for swept airfoils and the generalized shock-mpansion “method
are in reasonably good agreement at both lMach numbers.
The streamlines are also in reasonably good agreement over
the forward portion of the airfoil, although, as would be
expected, somewhat poorer results are obtained over the
afterportion. It is not surprising, in view of the underlying
assumptions of the generalized shock-espansion method,
that it is generally more accurate at the highest Mach
number.

in the preceding disction circumstances were deduced
under which steady flow at high supemonic speeds about
threedimensiomd shapm could be constructed approxi-
mately, using the basic tools of two-dimensional supersonic
flow analysis, namely, the oblique shock equations of
Rankine and Hugoniot and the corner expansion equations
of I?randti and Meybr. Several possible exceptions to these
circumstances immediately come to mind. These include
conical-type flows and flow in the region of the tip of a wing,
or at the discontinuous juncture of a wing and body, to
meption a few. In such flows equation (25) may not be
satisfied, in which case two-dimensional flow in pkum

. Sfis uoddonohengeof surfeceslow muss an oblfune.!luxk.wevo ma cenceketi P&dU-
Meyer ty@_ohfe&thosl %fnthedewmtream dfret%ne mdefluodentho
kleoftheirs owdh=ltkm fmmedlotaly foIlowfog the dk=mntkdty in dop3.
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normal to rLsurface cannot be expected.g It might be
reasoned, therefore, that these flows cannot, in general, be
~reatedby the proposed method. This observation maybe
correct; however, in one case investigated thus far in this
connection, namely, flow in the region of the nose of non-
lifting bodies of revolution (see ref. 10), it was found that
although equation (25) is not satisfied, flow along strmmlines
is nevertheless of approximately the Prandtl-Meyer type.
Thus we are led to expect that perhaps a less restrictive
requirement than the satisfying of equation (25) may be
imposed to insure that flow along streamlinesis of this type.
Such a requirement is in fact easily obtained by reconsidering
equation (22) in the form

Y COhmHTTEE FOE AERONAUTICS

(31)

It is evident that equation (31) embracea equation (25) as a
speoial case and that Prandtl-Meyer flow obtains along
streamlinesif

(32)

.JZKiaa
to the order of a number small compared to r ~”

This result inmliee that although flow inclination angl~ m~
Iommymbtithwme -dti~~tifl~ ~~~p~of~~-

uaesmaYb30ftho
not necessarily constant along Clc lima, pressure is approxi-~ ore- thesimtiProndtl-hfewG althoughthssa

@orlesmaYnot Lmrlonn81to tho5Jlfsca mately constant (see eq. 07)).
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S.-C%3mpariaon of surfaw atmandm‘esandpnmure distributions calculated with the generalized shook+xpansion method and
the shook+xpaneion method for mvopt m-rfoils (Mcanvem airfoil section, thidmem ratio= 0.2, sweep angle= 60°).
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It is clear that the increased generality of the above rc.wdt
has been obtained at some =pense in our lmowledge of the
streamline flow pattern. For example, it is not now indi-
cated that (within the framework of this analysis) surface
streamlinesmay generally be taken as geodesics-additional
knowledge of the flow must be had in order to determine
these stremnlinea. If they are known, however, the calcula-
tion of the whole flow field is materially facilitated by the
above considerations.

Thus far only steady flows have been considered. The
next problem is to extend these considerations to nonsteady
flows and some aspects of this matter will now be discussed.

NONSTEADYFLOW

The methods of analysis in this case are entirely analogous
to those employed in the study of steady flow, the singular
contrasting feature being that derivatives with respect to
time in equations (1) through (11) cannot now be neglected.
With this point in mind, only pertinent results are discussed
below.

Charaoteristiostheory,-The compatibility equations relab
ing fluid properties along Mach lines may be written as
follows:

&=&2{%+lM-3+T!m-D+
%hik(%)]}

and

(33)

(34)

The definition of the X-Z plane as the osculating plane of a
pathline (streamline in steady flow) remains as before, hence
equation (19) still appliea in the X-Y plane in the region of
the origin. The rotation of the osculating plane and varia-
tion of the principaS curvature of a pathline with motion
along it are now, however, obtained with the aid of the
relations

(35)

and

where

(37)

These equations are basic to clmxacteristics theory in its
application to three-dimensional nonsteady flows (see ref.
20), However, as in the case of steady flows, they can best
be employed for our purposes to obtain a simplified method
of Calculation$

Simplhled two-dimensional theory.-It is recalled that the
msential simphflcation in our treatment of three-dimensional
steady flows darived horn the fact that they often appear
locally two-dimensional and hence they can be treated with
the generalized shock-expansion method of reference 7. In
the following study of nonsteady flows we will profit fkom this
experience by anticipating that the desired simplified theory
is again this shock-expansion method. Accordingly, our
problem is reduced to that of determiningg the conditions
under which the method can be applied to the calculation of
nonsteady hypersonic flows.

One condition is, for all practical purposes, self-evident;
namely, the local Mach number of the disturbed flow must
be everywhere large compared to 1. This requirement must
manifest itself since, otherwise, nonsteady disturbances
created an appreciable distance upstream and/or downstream
of a particle could significantly influenm its behavior in the
disturbed flow field (see @ 4, noting that in case of thick
body, particle b is influenced by disturbances originating in
particles a and c) and this situation would preclude the pos-
sibili~ of Prandtl-Meyer type flow-along pathlines. It fol-
lows then that the shock-expansion method can be applied
only to thin or slender shapes (i. e., shapes producing flow
deflections small compared to 1) at hypersonic speeds.

Fluid partides-~~. /--- ::ym:of ‘“--- -,~.
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m

generated in fMrticl&s “,’”.
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i,..:,.
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\\
\

Shack wave---;’
M >> l-~

FIGURE4.-Propagationof nonstesdydisturbancesin flowaboutthiok
andthinbodies.

With this requirement in mind it is convenient to rewrite
the compatibility equations (33) and (34) in the form they
assume when 34>1. Thus with shiht rearranging we have

and

Now, consistent with the requirement -1, the term
(l/Mu’) @@t) on the right in these equations can be
neglected by comparison to the other terms. If, in addition,
we define (after eq. (37)) the derivatives

()&“&+$&
and

and note that now

2=%$%%)
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then these equations can be combimyi to yield the pressure
gradient along a pathline in the following form

‘=44*1-4’38)
But d6/dCl,

=
is analagous to D, in steady flow; that is, in the

event the term (1/ilQ @A/@) is negligible in this expression,

$&$: may be identified with disturbances reflected from

shock waves in the flow. Just as in the case of steady flow
(see ref. 7), however, these reflected disturbances are of very
small strength by comparison to the incident disturbances

d6/dCu
when M>> 1 and so

m
must be small compared to 1.

Provided, then, that

lM>l
1

equation (38) may be written 1°

(39)

(40)

which result implies, of cmnwe, Prandtl-Meyer flow along
pathlines. It follows that equations (39) are sufficient con-
ditions under which the generalized shock-expansion method
can be used to calculate nonsteady hypersonic flows.

When these conditions are satisfied, we note, by analogy
to the steady flow case, that pathlines in the surfaces swept
out by elements of fluid adjacent to shapes in ‘nonsteady
motion are approximated by geodesics or, even simpler, lines
of curvature of these surfaces. It is not to be implied, of
course, that pathlines must ahmys be such curves in order
for fluid properties to behave as in Prandtl-Meyer flow. In
fact, again, just as in the case of steady flow, if the condition

d8 raA “ -
.-

g>Z@7Zay
— is satisfied rather than the second of

equations (39), pathlines are not necessarily geodties (or
limesof cucvatute) evefi-though the first of equations (39)
and hence equation (40) holds along these lines.

One notes that within the framework of this approximate
analysis, the caIctiation of nonste.ady flows at the surface
of slender bodies traveling at high supersonic speeds should
not prove unduly diilicult. To illustrate,consider anoscillating
airfoil as shown in figure 5. The pressure at any point
along the pathline shown is re@ly deduced by simply

Airfcil at time & -=. ---- Shock wave -

- ‘“ *----’=Oa:a’a:PaMme af POI+U stnkuq
1.s=3rJkgedge at time t~—””” .

Airfoil ot time t, -J”
w’

~QUEE &-oS~tiIlfJ 8irfoi.1 irl hJ’PeI’fJOIliO flOTV.

n The ddvation of sqtmtkm (40Jpre@E&lhmo hay&o vhfae ofMug hth mom complete
aodmmogen&nl thantbe comespjndfngddvatianofrefemnm~

integrating equation (4o) along this line from the leading
edge of the airfoil to the point in question. The whole
flow field as a function of time may be calculated by
employing the generalhed shock-expansion method for
steady flows (see ref. 7) in a series of planes located small
distances apart in time. This example serves to emphasize
that, in general, the time history “of fluid elements must be
known, at least to the extent of fixing their initial flow direc-
tion and entropy .11 It is also evident that again, as in tho
case of steady flow, the general results of the analysis are
consistent with the predictions of the hypersonic similarity
law for nonsteady flows about slender related shapea (ref. 6).

These considerations complete our general treatment of
inviscid hypersonic flows. It is appropriate to turn next to
effects of viscosity as they relate to the hypemonic boundary
layer. .

YE3COUSFLOW—THEHYPERSONICBOUNDARYLAYER

The arguments presented here are concerned with the
@eady hypersonic boundary layer, and they will be, for the
most part, physical.* Furthermore, they will appear as
natural extensions of conclusions reached in our study of
inviscid hypersonic flow. Let us reconsider, then, the motion
of the inviscid fluid. We have established that this motion
is, ~der certain well-defined circumstances, cordined locally
to planes normal to the surface of a body and tangent to
surface streamlin~. Correspondingly,. there is no sensiblo
momentum transfer across these planes. Now if ViSCOUS
forces are set up in the flow bounding the surface, we recog-
nize that they will act to resist the motion of the fluid-that
is, tip motion in the normal plan%. Evidently, then, them
forces act in the same planes of local two-dimensional flow
w the pressure forces, and it must folIow, of course, tlmt
resultant changes in momentum of the fluid also occur in
th=e planes.

Considar now the changes in ener~ of the disturbed fluid.
These changes can be brought about by viscous or dissipa-
tive work, pressure work, heat convection, and heat conduc-
tion.~s It was just found, however, that the forces doing
work act in the normal planes; hence we conclude that tlm
corresponding changes in energy occur in these plftnes,
Similarly, heat is convected in the normal planes, sinco mass
is convected in these planes. Finally, we conclude also tlmt
heat is conducted locally-in tie normql planes inasmuch as
the temperature gradients set up by the action of viscous
forces are confined primarily to these planes.1~ IWidontly,
then, changes in energy of the fluid cm be treated locally as a
two-dimensional phenomenon in planes normal to the surface
of a body.

II ~ ~ @ - ofSIMG &-MLS ~ WIIM the 11-do Similarity fmramoterof tho
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(62s,e- &J-u 29).
nAMfmagb notpranted, mr=mndfm matbonmthl mgamonts hnvo ixon pamnod
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Thus far we have been ccmeaned mainly with forces and
their relation to the momentum and energy of the fluid.
The question of conserving mass remains to be investigated.
It will be recalled that the requirement of conservation of
mass was the essential factor which determined when the
generalized shock-expansion method could be employed to
calculate three-dimensional flows. This requirement is
physically (and mathematically) the same, independent of
whether or not viscous forces come into play. We conclude
then that for the purposes of this study, equation (25) can be
used to determine when the three-dimensionalboundary layer
can be calculated with two-dimensional equations. From
equation (25) it is indicated that the boundary layer must be
largely hypersonic if this calculation is to be permissible.
It is not to be implied, however, that the boundary layer
always becomes two-dimensional, as on an airfoil, if the
stream Mach number is made extremely large. Ii’or example,
in the case of axial flow about the right circular cone, equa-
tion (25) is violated independent of Mach number (just as
with inviscid flow) and we must use something like the
Mangler transformation (ref. 30) in the boundary-layer
calculations. On the other hand, if the body, instead of
being conical, is curved in the stmwrn direction, then it is
indicated that the boundary-layer flow should approach the
two-dimensional type with increasing Mach number.

This discussion completes our arguments regarding the
twm-dimensionality of three-dimensional hypersonic flows.
Attention is turned next to a practical application of this
concept.

APPLICATIONOF THEORYTO BODIESOF REVOLUTIONIN
STEADYFLIGHT

The critical feature of this application is the analysis of
the inviscid flow, since known two-dimensional boundary-
Iayer solutions can be readily employed once this flow- is
known. Accordingly, the following discussion is restricted
to the inyiscid flow problem.

Now it was shown previously in this paper that a large
class of hypersonic flows which are basically three-dimen-
sional can be calculated with a generalized shock-expansion
method which is analogous to that employed in reference 7
for studying flow about airfoils. Specifically, this treatmen~
is permissible when disturbances associated with the diver-
gence of streamlines in planes tangent to a surface can be
considered negligible compased to those associated with the
curvature of streamlinesin planes normal to the surface (see
eq. (26)). For the cnse of noninclined bodies of revolution
which are curved in the stream direction, this requirement is
satisfied when the hypersonic similarity parameter K is
greater than about 1 (see ref. 10). For inclined bodies, an
additional restriction is imposed. This point is perhaps best
ckuifled by considering the problem of calculating flow at
the surface.

FZOWAT THESURFACE

It follows horn the inviscid flow analyais that when the
generalized shock-expansion method applies in the region
downstream of the vertex, surface streamlines can be
ttppro.ximated by geodesic lines. The only geodesiw on
tho surface of a body of revolution which, like *eamlinea,

413072-U7-70
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do not intersect each other are the meridian lines. h
addition, the meridian lines are the only geodesics which,
like the streamlines, pass through the vertex. When the
shock-expansion method is applied, then, surface streamlines
are approximated by meridian lines. Strictly speaking,
however, this approximation is valid only in the case of
a<<l. (It is, of course, always tie, independent of a
on the extreme windward and leeward sides of a body.)
Evidently, then, the generalized shock-expansion method
should be applicable to curved bodi~ of revolution only at
small angles of attack in flows characterized by a value of
the hypersonic similarity parameter greater than about 1.

The procedure for determining flow conditions at the
surface of a lifting body is entirely analogous to that em-
ployed in the application of the shock-expausion method
to the nonlifting body (ref. 10). Thus, it is assumed that
the flow at the vertex is the same as that for a cone tangent

to the body at this point and, hence, may be determined
horn misting conictd-flow theory (see, e. g., ref. 31 for
moderate supersonic Mach numbers and ref. 32 for high
supersonic Mach numbers). More specilhdly, the Mach
number at the vertex under the vertical layer u may be
calculated by means of the pertinent conical-flow expressions
in reference 31 or reference 32. The variation of Mach
number downstream of the vertex is then obtained by means
of the Prandtl-Meyer angle v (see, e. g., ref. 33) which in
turn is determined from the isentxopic exption relation

6A+9A=&+~B (41)

where A. and B are different points on the same meridirm
line. Since the flow is isentropic in the windward plane of
symmetry downstream of tie shock at the vertex and around
the surface of the body, the pressure distribution (in co-
efficient form) is readily obtainable with the aid of the expres-
sion

(42)

where p,/pa is the pressure rise across the shock at the
vertex on the windward side of the body and is determined
horn conical-flow theory. The ratio pip, is given by

(43)

where M iElmown from equation (41) and M, is the Mach
number immediately downstream of the shock on the wind-
ward side of the body at the vertex and, hence. is also
determined from conical-flow theory.

FLOWOFFTHE SURFACE

Flow in meridian planes around bodies of revolution may
be calculated by the generalized shock-expansion method in
much the same manner as the procedure employed in refer-
ence 7 for flow about airfoils. However, the application of
the method is somewhat more complicated for the case of n

USincea vmtka118yur askts around the bcdysurfm %atthemtax(.wej O.s., reL13)a
vortkdlaywm udalwoxfstdo wnstmnmafthevert6L
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body of revolution since now the influence of the conical-
flow region at the vertex must be considered. An amlyis
for flow in the region of the vertex of a nonlifting body of
revolution (~1) was presented in reference 34 and expres-
sions were developed which yield the shock-wave curvature
as well as flow conditions along a line (normal ta the body
axis) a short distance downstremn of the vertex This
analysis was extended to lifting bodies and more general
expressions were presented in reference 32. Thus, initial
conditions in the region of the vertex can be wtablished.
There remains the determination of flow conditions along
meridian lines downstream of the vertex externally adjacent
to the vorticd layer. These conditions may be determined
in the smne manner as for flow directly on the surface (i. e.,
under the vertical layer), except that now initial flow condi-
tions externally adjacent to the vertical layer at the vertex
are employed in the isentropic expansion relations. Con-
struction of the flow field between the shock and the vertical
layer in each meridian plane can then proceed in a manner
analogous to tha~ for the two-dimensional airfoil discussed
in reference 7. To illustrate, consider the flow in a meridim
plane of a lifting body of revolution (see @g. 6).

Y

1-x

Streamlines

*

~GURliI6.-Sohematic diagram of flow field about a body of revolution.

All fluid properties at points N, A’, A, B and so forth, on
the body surface external to the vertical layer are calculated
with the aid of the oblique shoe.hvave, conical-flow, and
expansion equations. Flow conditions along the line AC
may then be determined (see ref. 32). It will be recalled
(see ref. 7) that a basic condition employed in constructing
flow fields about airfoils by the generalized shock-eqmnsion
method is that the pressure is constant along Mach lima
emanating from the surface. In the case of flow about
pointed bodies of revolution, this condition can be relaxed
to account for the small variations in pressure due to the
influence of the conical type flow in the region of the vertm.
The procedwe is m follows. The Mach line A’C is con-
structed using the known conditions in the region NAC
shown in the sketch. The net pressure change along this
Mach line (i. e., po–p.1) is thus determined. This pressure
diibrence is then assumed to represent the net pressure
change between the body surface and the shock along each
Mach line emanating from the surface downstream of the
vertex. The flow field is constructed using this criteria in
conjunction with the isentropic expansion relations for flow
along stream lines.

FORCEi AND MOMBNTS ACTING ON BODIEJ OF REVOLUTION

It is of interest now to consider briefly the forces acting
“on a body of revolution. In the previous discussion,
attention was called to the fact that the flow is imntropie
in the windward plane of symmetry at the vertex as w-cdlaa
on the surface-of the body. This result materially reduces
the net labor associated with carrying out the calculations
to determine the pressure distributions around the body
downstream of the vertex since the pressure rise, as well as
the change in entiopy through the shock, need be considered
only in this plane at the vertex. The normal-force, asial-
force, and pitching-moment coefficients may be obtained
from the expressions

(44)
SS

16 ‘“p
—rcospdpdxcF~M.W O 0 P.

c.=.#%r1’1”tan6 &-’)~dz ‘“)

SS
cm= 16 1 *&’Xc08QdQdX

~Mm%?l o 0 pm
(46)

respectively, where d is the diameter of the base, r is the
radius of the body, p is the meridian angle measured from
the plane of symmetry on the windward side of the body,
and z is measured along the body axis. If equations (44)
and (46) are differentiated with respect to a and the condi-
tion of constant entropy on the surface is employed, there
is obtained

and

These exprtions define the initial slopes of the normal-
force- and pitching-moment-coe fficient curves, respectively,
and may be rewritten in terms of the initial normrd-force-
curve slope for a cone tangent to the body at the vertex;
thus,

and

(60)

where the subscript TCiV refers to a cone tangent at tho
vertex. The calculations necessary to determine the initial
normal-force- and pitching-momenkcurve slopes for a body
of revolution are then relatively simple, since (ONa)~N may
be easily obttied from reference 12 or from charh 8 in
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reference 33. The Mach number and pressure distribu-
tions along the body are obtained by the shock-expansion
method for the cnse a=O. When these distributions have
been determined, the integral tams in equations (49) and
(60) are easily evaluated by numerical integration or by
gmphicnl methods.

SfMPLIFfRD EXPRESSIONS FOR SLENDER BODIRS

In the case of slender bodies traveling at very high super-
sonic Mach numbem and very small angles of attack the
calculations of fluid properties at the surface become rela-
tively simple. In fact, fluid properties downstream of the
vertm may be related to those at the vertex by means of
explicit algebraic expressions. In particular, the local Mach
number and pressure distributions on the surface of a slender
body may be written (see ref. 32)

(51)

and

{
G“7+ (:),.O[(*-.

T@f~’”)@=”(+r-1}’52)‘Y-1

respectively, where 6 is measured relative to the body sxis
in these and subsequent expressions. Equations (61) and
(52) combine with the corresponding conical-flow equations
(ref, 32) to predict the ratios of local to free-stream Mach
numbem and local to free-stresm static pressures to be the
same at corresponding points on related bodies, provided the
flow fields about them bodies are defined by the same re-
spective values of the hypersonic similarity parameters
M~6Nand Mma (or a/6M). These predictions are in agreement

with those of reference 3 for inviscid flow about slender
three-dimensional shapes, and they enable the solution of
equations (51) and (52) in terms of tabulated functions of
the similarity parameters. Calculations over a range of
M.6N from 0.60 to OJand a/& from O to 1 were carried out
for flow at the vertex of a body of revolution’” nnd the results

(M&=o)
of these calculations for the flow parametem —fMg
(P&&o ~ and (i14,&)P.o are tabulated in table I for 30°

incrbents of p from O to r. For a given ikf~($Nand
Ma, the Mach number on the surface of a body downstream
of the vertex is readily obtained with the aid of these tabu-
lated parameters w-hen used in conjunction with equation
(51). The pressure coefficient is easily calculated by means
of equation (52).

The results from table I may also be used to good advan-
tage in determining the initial slopes of the normal-force- and
pitding-momenkoef licient curves for slender bodies.1’ For
example, when @->1 and 6<<1, equations (49) and (50)
combine with equations (51) and (52) to yield

IN%)’G)’53)
and

321%(W)“4)
respectively, where

‘1’hese expressions are easily evaluated with the aid of the
tabulated flow parametem in table I for the case ~/8N=0.

EXPERIMENT

In order to obtain a check on the predictions of the pre-
ceding theoretical analysis, the pressures acting on the
surfaces of bodies of revolution corresponding to values of
the hypemonic similarity parameter K tim 0.60 to 2.1 at
Mach numbers from 3.00 to 6.30 were determined experi-
mentally. The bodies were tested at angles of attack up
to 16°. A brief description of these tests follows.

TmTAPPARATUS

Tests were conducted in the Ames 10- by 14-inch super-
sonic wind tunnel. A detailed description of the wind tunnel
and auxiliary equipment may be found in reference 35.

The pressures acting on the model surfaces were measured
with a mercury U-tube manometer or by means of McLeod
gages when the pressures were low- enough to be recorded
on the latter.

I?ressure-distributionmodels were mounted on a 0° model
support and on 5°, 10°, and 15° bent supports. The test
models were two tangent ogivm having fineness ratios 3 and
5 and two cones having the same vertex angles as the ogives.
The dimensions of these models and location of the pressure
orifices are shown in figure 7.

16l’~ cOti flOW q~ -H h ref~ ~ ~ eID@O@ h tb2M Cdd8tfOll%

It WM be noted in table I that the value of ~~ k not @ven for d VOIIIH Of P. TMY
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vurtkal fayw is violated end, henc%the dmder-ame thmry yfefds nnrdbtlo rfnnlh for tb~
mndMon&
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TIHTS AND PROCEDURE

Pressures on the model surfaces were measured at 0°,
6°, 10°, and 15° anglea of attack and at&t Mach numbem
of 3.00, 4.25, and 5.05. Pressures on the fineness-ratio-3
ogive (aswell as on the corresponding cone) were also obtained
at a test Maoh number of 6.30 and at 0° and 5° angIes of
attack. The Reynolds numbers (based on maximum diam-
eter of the ogivw) were 1.09”~on at Maoh numbers 3.00
and 4.25, 0.52 million at Mach number 5.05, and 0.22
million at Mach number 6.30.

The pressures around the cone surface (0° to 360°) at
meridian stations 45° apart were recorded simultaneously
at each Mach number and angle of attack. In the case of
the two ogivaI modek, the presmrca were recorded at
meridian stations 90” apart. Each model was -then rotated
45° about its longitudinal axis (except at 0° angle of attaok)
and the process repeated.

ACCIJRAOTOFT~T JlK3UL~

In the region of the test section where the models were
located, the variation in Mach number did not exceed +0.02
@ Mach numbers from 3.00 to 5.o5 and +0.04 at Mach
number 6.30.

The precision of the computed premre ooticients was
kffected by inaccuracies in the prcsmre measurements, as
well as uncertainties in the stream angle and the free-&tmam

J==a
Stotion I 2

Station I 2-

Orifice Iacotlan shown by +. .
All dimensions in inches

Conlcol rrmdels

td models showing location of preaure orllicw

0
5°

dynamic pressure. The resulting errors in the pressu.m
cmf3ici&ta were generalIy less than +0.006 throughout
the Mach number range for all angles of attack..

COMPARISONOF THEORY~TH EXPERIMENTAND DISO
CUSSIONOF RESULTS

According to inviscid theory, the hypemonic similarity
parameter, K, is a significant index to when the generdzed
shock-~ ansion method can be used to calculate thrce-
dimensional flows. It was indicated in this connection that
the generalized method should be applicable to bodica of
revolution when K is greater than about 1. In order to
&e& this prediction, the pressure distributions on tlm
surfaces of two ogives (having iineness ra~ios 3 and 6)
traveling at Mach numbers 3.00, and 4.25, and 6.06 and
at angles of attack of 0°, 5°, 10°, and 15° were calculated
by the methods of this paper. Pressure distributions on
the fhness-ratio-3 ogive at angles of attack of 0° and 6°
were also calculated for a Mach number of 6.30. The
conical-flow theory presented in reference 32 was employed
in these calculations for determiningg initial flow conditions
at the veitices of both the lifting and nordifting bodibs.

Comparing fit the predictions of theory with experiment 1s

~The~tal &@shownh flw Sand afl Snt&&@It ff- m~nt M nVI?m@

Of~P==@= recordd at sschstationona ixdy. The c.cnttarof’dsta wns lnconE.cQuEnt!nUY
& (6e01eLw.
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FIGUREI8.—Variation of premm coefficient along ogives at a=OO.

for the case of zero lift, we observe in iigure 8 that the shock-
oxpmsion method predicts surface pressure coaflicients close
to those obtained experimentally at values of K greater than
1, As would be expected, too, the agreement between the
predicted coefficients and experiment tends to improve up to a
Mnch number of 5.o5. The results of a characteristics solu-
tion for a finenem-ratio-3 ogive at Mm=3.00 (from ref. 36)
me also shown for comparative purposes. Characteristics
solutions are not available for the other cases; however, the
restits of Rowow (obtained by correlating the pressures
yielded by characteristics solutio& according to the h~”er~
sonic similarity law; see ref. 37) are shown. It is evident in
this figure that the agreement between these results and
those yielded by the shock-expansion method improves with
increasing K over the Mach number range presented. ,At the
highest Mach number of 6.30 we observe, however; that both
methods yield pressure coefficients which, although in agree-
ment, are appreciably lower ti~ qti~t. There ~ no
particular reason, on the basis of past experience or otherwise,
to doubt the accuracy of the characteristics theory for this
body. In this connection, it should be noi%d that the theory
is gonerrdly in good agreement with experiment at all the
lower Mach numbers. It seemslogicrd, therefore, to suspect
that the departure of theory from experiment at JW.= &3o is
caused by viscous effects in the flow. More specifietdly, it@
suggested that this departure may be tia~d to a substmtial
incremmin thickness of the laminar boundmy layer on tie
oghw. The 10TYReynolds ribber of the tests &d, ~ .a
somewhat lesserextent, the high Mach number could produce

-—Method of chorocteristi~
-— Reference (37’)
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such an increase. This matter will be considered further in
the discussion of hypersonic boundmy-layer calctiations pre-
sented later in the paper.

It is appropriate now to consider the reliability of the
shock-expansion method for lifting bodies. As shown in
iigures 9, 10, and 11, the theory yields good agreement with
qeriment on the windward side of the iineness-ratio-5 ogive
except at llm =3.00 (K= 0.60).le Disagreement is evident,
however, on the leeward side of the body at all Mach num-
bers. In the cqse.of the iinenes-:atio-3 ogive (iigs. 12, 13,
and 14), agreement is generally better over the entire body
at each ~gle of attack, p@icularly at the higher values of K.
It will be recalled horn figure 8 that at a=OO.the longitudinal
pressure distributions on both ogives indicated that the accu-
racy of the shock-expansion method increased asKincreased.
Figures 9 through 14 indicate that, as would be expected, this
trend carriea over to the case of lifting bodies. It is inter-
esting to note, also, that reasonably good agreement with ex-
periment is obtained when ~ 1 even though a~&. Ac-
eordiugly, it is suggested that so long as ~ 1 and c&<l,
the generalized shock-expansion method can be employed .to
predict surface pressures along meridian lines as though they
were streamlines, with little saeri.ficein accuracy. In this
connection, it should be noted th@ the meridian lines on the
~eme windward wd leeward sides of the body (i. e., P=OO
and ~= 180°, respectively) are exactly streamlines.

u [t shouldbe notai fn figure 9 that Stone’s secondder solnffon k amployed at the vertes
alnm the mnicnl-~ them-Y of mferenm 32 Lsnot applicable for them mndltkm 0. &
Mm-3.@l and &/-ll.&).

. .
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It appears in figures 9 through 14, that the most important
factor influencing the accuracy of the shock+cqmnsion
method is the reliability of the conical-flow theory, since the
‘inaccuracies at the vertex appear w be reflected strongly in
the pressures downstream of the vertex. The question
naturally arises, then, how good are the predictions of the
method when experimentally determined initial conditions
at the vertex are employed? To answer this question, the
pressure coefliciem%on the surfaces of the two ogives under
discussion were determined in the following manner. Initkil
conditions at the vertex were determined from the measured
static pressures around a cone (corresponding to the vertex
angle of the body) in conjunction with the measured shock-
wave rmgle (in the plane p= 0°) obtained from schlieren
photographs of the conical flow field. The pressure co-
efficients downstream of the vertex were then calculated as
before. The result-sof these calculations for Mach numbers
3.00, 4.25, and 5.05 are compared with experiment in figures
16 and 16 for a=15°. Results for CZ=150 are presented
because at this angle of attack the applicability of the
conical-flow solutionE is most marginal. It is observed in

@e 15 (a) that the theory yields results which indicate m
underexpansion of the flow on the sides of the body (P=460
and q=90°). This resxdt is not surprising since a/~N>l
and .K<l. It would be expected, then, that the true stream-
lines would deviate considerably from a meridian line. In
other words, flow disturbances in planes tangent to the body
at the surface are no longer small compared to those in mird
planes. It can be seen from figures 15 (b) and (c) that as
the lMach number, and hence, K, is increased, better agree-
ment is obtained. This result is attributed in part ta the
fact that the streamlinesof the flow deviate lessfrom meridian
lines as K is increased. The same general trend may be
noted in iigu.re 16 for the il.nenes-s-ratio-3ogive. However,
in this case, a/&<l and over-all agreement between theory
and experiment is improved. In fact, good results me con-
sistently obtained by theory except on the extreme leeward
side of the body w-hereit is probable that viscous effects am
influencing the pressures. There may be some separation
of flow over this portion of the body although no evidence of
this could be determined from the scldieren photograph.
In the case of the iinenem-ratio-5 ogive, sch.lierenevidence
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indicated flow separation on the leeward side of the body for
all Mach numbers at a= 15°. It is evident from these
figures that in any event the shock-expansion method will
yield better results when initial conditions at the vertex are
determined from cone tests rather than from presently
available cone theory.

There now remains the determination of the accuracy of
the predictions of the generalized shock-expansion method
for the flow field (other than the surface) about a lifting
body of revolution. To this end, flow in the plane of sym-
metry (q=OO and p= 180°) was calculated for each ogive
traveling at a lMach number 5.o5 and at an angle of attack
of 10°, Flow in a side meridian plane (9=90°) was also
calculated for the fineness-ratio-3 ogive. The resulting
shock-wave shapes are compared with the actual shapes (ob-
tained from scblieren photographs) in figure 17. The theo-
retically determined conical shocks are also shown for con-
trast. In the case of the iineness-ratio-3 ogive (K= 1.68 and
a/&=0 .53)1 theory and experiment are observed to be in

& ,32 -
.
z.s! 11
Z —
%0 \
o 24 -

@
a.lo”(>

5
— \

al
& ,16 -

[1 \

\ 4

\

.08 ‘- -. \

~ . \ \ \

-.08

-.160
30 60 90 120 150 180

Meridian
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excellent agreement in the plane of symmetry. The same
observations may be made for the side meridian plane. In
this latter connection, it is of interest to point out that es-
sentially the ssme result is obtained when the shock is as-
sumed circular in cross-sectional planes and its location de-
termined from the calculations in the plane of symmetry.
In the case of the fineness-ratio-5 ogive, the poor agreement
on the leewaxd side of the body is due to the limitations of
the conical flow theory employed at the vertex. If experi-
mentally determined initial conditions are employed good
sgreement with experiment downstream of the vertex is
obtained.

Although the predictions of the generalized shock+xpan-
aion method have been checked only at the inner and outer
boundaries of the flow field, it is espected that equally good
results would be obtained at intermediate points in the flow
field. This conclusion is based on the fact that the bow
shock waves were obtained as a rault of the calculations of
these intermediate points.

.64
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FICWJEKI10,—Circumferential variation of pressure aoeffioient on a fineneea ratio 5 ogive at M= =4.26; K= O.85.
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It is appropriate now to consider briefly the forces exper-
ienced by the ogives. To this end, normal-force coefficients
were obtained by integrating the theoretical pressure distri-
butions for the two ogives at a Mach number of 5.o5. The
results of these calculations are compared in figure 18 tith
those obtained fmm integrated experimental pressure dis-
tributions for values of K of 1.01 and 1.68. It is observed
that although theory yields results which are, in general,
higher than those obtained by experiment, agreement im-
proves with increasing K. The same trend with K is evi-
dent for the initial normal-force-curve slopes obtained with
the aid of equation (49). Axial forces were also obtained
for these ogives and, as indicated in figure 18, the shock-
expansion method yields generally good agreement with
experiment even at a vahe of K as low aa 1.

Ill
Integmted experimental
pressure distributions 4

lntegmted theoretical
pressure distributions

=(%)=,(J
[El@. (.49]~]

eflicients for the two ogives at a=O” and a= 6° are com-
pared with experiment in figures 19 and 20. It appmrs horn
a comparison of @urea 8 and 19 that the slender-body theory
will yield more accurate drag coefficients than the genmd
theory at a= O”, particularly at the lower valuea of K
This result is, of course, fortuitous. In the case of lifting
bodies (@g. 20) the slender-body theory yields results which
are somewhat less satisfactory at all values of K. However,
the theory displays sufficient accuracy for many engineering
purposes even at K= 1. “This point is particularly evident
for the more slender of the two bodies as indicated in figure
20. It is also interesting to note the compmison of theory
and experiment shown in figure 21 for the initial norm(d-
force-curve slopes and centsm of pressure of Q family of
ogives at Mach numbers from 3.00 to 6.30. The experi-
mental data were obtained in the Ames 10- by 14-inclI
supersonic wind tunnel. There is good correlation of these
data with M~&, the hypersonic similtitg parameter for
slender bodies, and there is good agreement with theory for
values of M.& great8r than 1. b view of it8 tiplicity,
then, the hypemonic slender-body theory should prove useful
and its application is further facilitated by the presentation
in this paper of tabulated values of the pertinent flow para-
meters for selected vahms of MQ& and a/3N(see table 1),

Up to this point we have been concerned almost entirely
-with the inviscid theory and its comparison with ex-peri-
mental data relatively free of effects of viscosity. As Qiinal
point, it is appropriate to test the two-dimensional boundary-
layer concept of this paper by considering flows which me
significrmtlyinfluenced by viscous effecti.

In this connection it wss noted early in the previous dis-
cussion that inviscid theory yielded pressure cosflicients
which ware substantially 10WWthan experiment at M.=
6.30. This discrepancy waa traced to the thick lamhmr
boundary layer on the test body. According to theory it
should be possible to calculate this boundary layer approxi-
mately by means of simple two-dimensional techniques.
This possibility was checked by calculating the larnhr
bound~ layer on the fineness-ratio-3 ogive at a Mach
number of 6.30 and angles of attack of 0° and 6°. The

~1 I txvo-clirnensional theory of referenee 38 was employed.n

Angle of atta~ a, deg

(a) K=l.01
(b) lK=l.88

J?mwm 18.—I?orInal- and axial-force coefficients for ogives at
Mm=5.05.

Let us considernow the predictions of the hypersonic
slendex-body theory, To this end, calculated pressure co-

The body ordinates were increased by an amount ~qual to
the displacement thiclmess of the boundary layer. The
pressure distribution about the distorted body was then
obtained with the generalized shock-expansion method.
These corrected pressure distributions and the original
uncorrected distributions are presented in figure 22 along
with experiment. It is observed that while uncorrected
pressures are definitely low, the corrected pressure distribu-
tions are in good agreement with experiment, In this cnm,
then, relatively simple tmo-dimensional methods of cor-
recting pressure distributions for the presence of the
boundary layer are, as indicated by theory, applicable to
the body of revolution.

n!l?hethso rgbreabdmm atthevertex ofthe~y, muohasat thek!-ding edgeofonnk-
fen. It KSwore not aPPUed h U reghni and, condatent with a PmotIm SUcox-dUllY
emPIoti WMI ah-feJ4vfwoas effmti me fmoti KUcakdatie flow at tie v~m.
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CONCLUDINGREMARKS

A method of characteristics emplo@ng pressure and flow-
inclinntion angles as dependent variables was used to
obtain a simplified approximate method for calculating
three-dimensional flows at high supemonic speeds. It was

found that w-hen the flight Mach number is su.fliciently
large compared to 1, flow in the osculating planes of streaq-
Iines in regions free of shock ma~es maybe of the generalized
Prandtl-iMeyer type-surface streamlines in this event may
be treated as geodesics. In the case of slender bodies, these
results apply to nonsteady as well as steady flovrs. The

two-dimensional approach to three-dimensional hypersonic
flows was also ~nded to steady boundary-layer flows.

Bodies of revolution in steady hypersonic flight were
considered as an example of shapes producing three-dimen-
sional flow fields ~hich appear locally hvo-dimensional.

With the assumption of conical flow at the vertex and small
angles of attack, simple approximate solutions were obtained
which yield the Mach number and pressure distributions on
the surfaces of such bodies. Surface streandjnes w&e
approximated by meridian lines and the flow field in meridian
planes was calculated by means of a generalized shock-
expansion method. In the special case of slender bodies,
simplo explicit expressions were obtained for the Mach
number and pressure distribution on the surface.

Surface pressures and shock-wave shapes were obtained
experimentally at iMach numbers from 3.OOto 5.o5 for two
ogives having iineness ratios 3 and” 5 and for two cones
having the same vertex angles as the ogives. The predic-
tions of the methods of this paper for the surface pressures
and shock-wave shapes were found to be in good agreement
with e~eriment at values of K of about 1, or greater, when
@N (the ratio of angle of attack to Semivertex angle) was
about 1/2 or less. For increasing values of this parametar;
agreement deteriorated but was still reasonably good for
values of @M up to about 1. Experimental surface pres-
sures at a Mach number of 6.30 and angles of attack of 0°
and 5° were also obtained for the fineness-ratio-3 ogive.
The predictions of the shock-expansion method when
employed in conjunction with a two-dimensional boundary-
layer calculation were found to be in good agreement with
experiment.

In view of these results, it is concluded that the generalized
shock-exp~ion method should prove useful in treating
three-dimensional hypersonic flow fields about practical
aerodpamic configurations. l?urtherrnore, it is indicated
that methods of heating two-dimensional hypemonic
boundary layers may, in like manner, prove useful in pre-
dicting three-dimensional hypersonic boundary layers.

&ma &3RONAUTICAL LABOR.4TORY
NATIONAL ADVISORY CozamTT DE FOR Jl13R0NA~c5 . -

Momnmc FIELD, CALIF., Aug. 16, 1952
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