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A UNIFIED TWO-DIMENSIONAL APPROACH TO THE CALCULATION OF THREE-DIMENSIONAL
HYPERSONIC FLOWS, WITH APPLICATION TO BODIES OF REVOLUTION :

By A. J. EqgErs, Jr., and Ravaronp C. Savin

SUMMARY

A simplified two-dimensional method for calculating three-
dimensional steady and nonsteady hypersonic flows of an
inviscid (non-heat-conducting) gas is deduced from character-
18tics theory. This method is appropriately termed a generalized
shock-expansion method. It 18 demonstrated that the method is
applicable when disturbances associated unth the divergence of
streamlines in planes tangent o o surface are of secondary
importance compared o those associated with the curvature of
streamlines in planes normal to the surface. When this con-
dition is met, surface streamlines may be lreated as geodesics,
which, in turn, may be related to the geomeiry of the surface.

It is inquired further if the two-dimensionality of inviscid
lypersonic flows has a counterpart in hypersonic boundary-
layer flows. This question is answered in the affirmative,
thereby permilting a unified two-dimensional approach fo
three-dimensional hypersonic flows.

This concept 18 applied lo bodies of revolution in steady flight
and, with the assumption that flow at the vertex 8 conical,
approximate solutions for the flow field are oblained for values
of the hypersonic similarity parameter (2. e., the ratio of the
free-stream Mach number to the fineness ratio of the body)
greater than about 1 and for small angles of aitack. Surface
streamlines are approximated by meridian lines and the flow
field i8 calculated in meridian planes. Simple explicit expres-
sions are oblained for the surface Mach numbers and pressures
in the special case of slender bodies.

The validity of theory 18 checked by comparison with surface
pressures and shock-wave shapes oblained experimentally at
Mach numbers from 3.00 to-6.30 and angles of attack wp to
18° for two ogives having fineness ratios of 3and 5. At the lower
angles of allack, theory and experiment approach agreement
when the hypersonic similarity parameter 18 in the neighborhood
of 1 or greater. At the larger angles of attack, theory tends to
break down noticeably on the leeward sides of the bodies.

INTRODUCTION

The calculation of flows about objects, primarily missiles,
traveling at high supersonic speeds is now generally accepted
as o matter of more than academic interest. The difficulty
of these calculations stems in large part from the fact that
at such high speeds disturbance velocities are not necessarily
small compared to the velocity of sound, nor are entropy
gradients necessarily negligible in the disturbed flow field
about & body, even though it may be of normal slenderness.
Thus, for example, the relatively simple linear theory, which
has proven so valuable in studying flows at low supersonic

speeds, loses much of its utility in the study of high-super-
sonic-speed flows. In the quest for methods especially suited
to calculating high-supersonic-speed flows, notable progress
has been made in the development of similarity laws relating
the flows about slender three-dimensional shapes in both
steady (see refs. 1, 2, and 3) and nonsteady motion (see
refs. 4 and 5). Steady two-dimensional flows have received
perhaps the greatest attention from the standpoint of calcu-
lating specific flow fields, and it would seem that with tools
ranging from the characteristics method (see, e. g., refs. 6
and 7) to the generalized shock-expansion method (ref. 7)
the problem is reasonably well in hand, at least insofar as
inviscid, continuum flow is concerned. A more or less
analogous situation exists with regard to the nonlifting body
of revolution (see, e. g., refs. 6, 8, 9, and 10) although it
seems that only in the case of the cone has a method (ref. 10)
of simplicity comparable to that of the linear theory been
developed for calculating the whole flow field.

When one departs from these relatively simple flows, the
number of tools for carrying out practical calculations de-
creases sharply. Thus, for example, in the category of
inclined bodies of revolution, it appears that only bodies at
small angles of attack have been handled adequately, usually
by either the method of characteristics or some other step-
by-step calculative procedure (see, e. g., refs. 6, and 11
through 14). In the case of steady flow about general three-
dimensional shapes, aside from Newtonian flow concepts,
which are strictly applicable at Mach numbers exceeding all
limits, only the characteristics method has apparently thus
far received serious attention (refs. 15, 16, 17, and 18). It
is true, of course, that the method is tedious and time con-
suming to apply, but the relatively exact solutions obtained
provide a valuable check against the predictions of more
approximate but simpler theories. In addition, however, as
demonstrated in reference 10, a study of the compatibility
equations of the characteristics method can prove useful in
determining simplified methods for calculating more complex
flow fields.

With these points in mind, it is first undertaken in the
present report to redevelop characteristics theory in a form
which enables us to obtain a simplified two-dimensional
method for calculating both steady and nonsteady hypersonic
flows about three-dimensional shapes. Viscous flows are
then considered and it is demonstrated that the two-dimen-
sional character of inviscid hypersonic flows has a counterpart
in hypersonic boundary-layer flows. The validity of the
analytical methods of this paper is checked by comparing

1 Supersedes NACA TN 2811 entitled ““On the Caleulatfon of Flow About Objects Traveling at High Supersonic Bpeeds,” by A. J. Eggers, Jr., 1852,
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the predictions of theory with experimental results for the
surface pressures and bow shock waves of lifting and non-
lifting bodies of revolution at Mach numbers from 3.00 to 6.30.

NOTATION
a local speed of sound )
Ca axial-force coefficient, a_x@lfo_dgce
[/ (Z)

normal force

Cx normal-force coefficient,
Qo™ (Z ’

Cn pitching-moment coefficient,
moment about body vertex

e @)

Cp gpecific heat at constant pressure
Co . specific heat at constant volume
C1,,Cy;  characteristic coordinates in X-Z plane (Ci, is

positively inclined with respect to X)

C, pressure coefficient, p__;pm

d maximum diameter of body of revolution

K hypersonic similarity parameter, M., %

l characteristic body length (measured from vertex
to most forward point of maximum diameter)

M Mach number (ratio of local velocity to local speed
of sound)

» static pressure

D total pressure

qo free-stream dynamic pressure

S entropy

t time

u, v, w  components of fluid velocity along the X, ¥, and Z
axes, respectively

x,%, 2 rectangular coordinates along the X, ¥, and Z axes,
respectively

%, r, ¢  cylindrical coordinates

z center-of-pressure position (measured from body
vertex)

a angle of attack

0% ratio of specific heats, %

5 angle between X axis and tangent to projection of
streamline (or pathline) in X-Z plane

3w semivertex angle of body

A angle between X axis and tangent to projection of
streamline (or pathline) in X-Y plane

»® Mach angle, sin™! ﬂl(f

v ray angle for Prandtl-Meyer flow

p mass density

SUBSCRIPTS
© free-stream conditions
21,’ IB;’ }conditions at different points in the flow field
D, ...
N conditions on the surface at the vertex of & body
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s conditions immediately behind the shock wave at
the vertex of a body

INVISCID FLOW

This study proceeds from the Euler momentum equations,

du du ou ou 10p
R T TR x
o dv . v o 10p
et eyt 5 Ty @
dw dw ., Ow ow__ 10p
at ey T T e 9
the continuity equation,
9p, 9 (o) O (pr) D (o) @
ot " oz ' dy ' oz
the equation of state,
=5 ®,5) )
and the energy equation,
28, 28, 28, 0?8 _
Sttt o5y T 5, =0 ®

where u, v, and w are the components of velocity at timo ¢
along the X, ¥, and Z axes, respectively, of an element of the
fluid of density p, static pressure p, and entropy S.2 To put
these expressions in a more tractable form, it is convenient
to aline the X axis at time ¢ with the direction of the resultant
velocity at the origin of the coordinate system. Thus
equations (1) through (4) and equation (6) simplify, respec-
tively, in the region of the origin, to

L1y gﬁﬁ 2 ®
%’+u gs+p g:: l g;+ Zf =0 (10)
and

which relations are basic to the subsequent analysis.

- STEADY FLOW

Characteristies theory.—Compatibility relations describing
the behavior of fluid properties along characteristic lines

1 For certaln calenlations it may be desirable to proceed from moro general equatfons which
include effects of heat and masg addition to (or subtraction from) the flow as woll as offcots of
impressed forces (e. g., gravitational or magnetio). Such a procodure may easlly bo developed
from that presented here by following the method of Guderloy (roferonco 6) for two-
dimensional flow,



TWO-DIMEN" [ONAL APPROACH TO CALCULATION OF THREE-DIMENSIONAL HEYPERSONIC FLOWS

in supersonic flow may, f course, be obtained by proceeding
formally with the theory of characteristics for the quasi-
linear partial differential equations which depict the flow.
In the interests of simplifying both the derivation of these
relations and their resultant forms, however, it seems desir-
able to proceed in a mors intuitive manner, assuming &
priori that the pertinent characteristic lines are Mach lines,
and utilizing the implication from two-dimensional flow
studies that perbaps the most convenient dependent vari-
ables are pressure and flow inclination angles.

Now it is clear that in the case of steady flow all derivatives
with respect to time disappear from the above relations.
Thus, assuming there are no shock waves present in the
region of the origin,® we may write, with the aid of equations
(5) and (11),

Op_2p| Op_10p
3z 0p|g 9z @& oz (12)
where @ is the local speed of sound in the fluid. Combining
equations (7), (10), and (12), there is then obtained the

relation
_ —pu? [1 (0
=1 [E (a +bz>:|

or, defining A as the angle between the X axis and the
tangent to the projection of a streamline in the X-Y plane,
ond, in an analogous manner, the angle § in the X-Z plane
(see fig. 1), we have

(13)

V4

i—Pro]eciion of streamiine in X—-Z plone
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L-Projection of streamline in X-Y plane
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Y
F1aurp 1,—Streamline projections in X-Y and X-Z planes.

Op —pu® (OA 08
o M—1 aﬁ“a—z) (14)
Transforming the derivatives with respect to z and z to
derivatives in the characteristic or (), and (%, directions
in the X-Z plane (C,, is positively inclined with respect
to X, thus 8()/dx=[M/2yM*—1)][0()/dCi+Dd()/0Cs] end
0()/0z=(M/[2)[0()/0C1,—O()/0Cs]) there results from this
equation

Oop , Op
sc, tag

1/—[602, 50, i by)] (15)

In an analogous manner, there is obtained from equation (9)
the relation

op _ dp —pu, aa‘aa>

3 1f shock waves are presont, the appropriate oblique shock equations are employed.

(16)
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Adding these two expressions then yields

op _  —pu?

30 =1 bOI,IM a;;)] an
while subtracting yields

op o’

0C: JMP—1 302, M by):l (18)

Equations (17) and (18) are compatibility equations for
characteristic or Mach lines in the X-Z plane* Indeed, if
it is further required that the X-Z plane be the osculating
plane of the streamline passing through the origin, that is,
the plane containing the principal radius of curvature and
tangent to this streamline (at the origin), then these equa-
tions are the essential relations for determining pressure
and flow inclination throughout a flow field. This point
becomes evident when it is observed that, with the imposed
requirement (viz, 0A/0z=0), the additional information
derived from studying flow in the X-Y plane is simply
that deduced from equation (8), or, as would be expected,

op
Sy =0 (19)

In order to construct a flow field, however, it is necessary
to know the manner in which the osculating plane rotates
and, correspondingly, how the prineipal curvature varies as

we proceed along a streamline. This information is obtained
from equations (2) and (3). Differentiation with respect
to z yields
dA__ 1> dp) 2425 20
dzF  pu?dx\dy/ Oz oz )
and
Z)’B 1 op b&
IR et S A
respectively.

These and the previously derived expressions form the
basis of a characteristics theory for steady three-dimensional
flows (see ref. 20). Consistent with the objectives of this
paper, however, we are interested in these results as they lead
us to & more approximate but, by the same token, a more
simplified method of calculatmg the three-dlmensmnal flow
of a gas at high supersonic speeds.

Simplified two-dimensional theory.—It is well at the out-
set of this analysis to establish, insofar as is practicable, the
type of flows to be treated. In this connection, it is con-
venient to employ the hypersonic similarity parameter
(i. e., the product of the flight Mach number and the thickness
ratio of & body) as a measuring stick. In flows charac-
terized by values of the hypersonic similarity parameter
small compared to 1, that is, flows in which the body is
extremely slender and lies close to the axis of the Mach cone,
there is no apparent reason to believe that the linear theory
will not be as useful an approximate method of calculation.

4 It is noted that these expressions contatn not only derivatives In the characteristic direc-
tions but also derlvatives with respect to the Independent varlable y. This typeofrwﬂtis
to be expected as pointed out by Coburn (ref. 19).
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as at low supersonic speeds. In flows characterized by values
of the parameter up to about 1, the second-order theory first
enunciasted by Busemann (ref. 21) for airfoils and more
recently generalized to three-dimensional flows by Van Dyke
(ref. 9) and Moore (ref. 22) should prove a useful approxima-
tion. On the other hand, for flows about more or less
arbitrary shapes, there is apparently no approximate method
of calculation generally applicable with engineering accuracy
at values of the hypersonic similarity parameter appreciably
greater than 1.

. In the limiting case of indefinitely high free-stream Mach
number (and hence similarity parameter) and a ratio of
specific heats equal to 1, we have the Newtonian impacs
theory (vef. 23) and its refined counterpart, accounting for
centrifugal forces in the disturbed flow, developed first by
Busemann (ref. 24) and more recently treated by Ivey,
Klunker, and Bowen (ref. 25). The impact theory has been
employed with some success by Grimminger, Williams, and
Young (rvef. 26) and others to predict surface pressures on
bodies of revolution at values of the similarity parameter
appreciably greater than 1, although it should be remarked
in passing that this success is in part, at least, fortuitous, as
perbaps is best evidenced by the fact that the more exact
theory (within the framework of the underlying assumption

-of M—> =,y —1) of Busemann is considerably less accurate
under corresponding circumstances. Asshown in reference 7,
neither the Newtonian impact nor the Busemann theory
apply with good accuracy to airfoils except at values of the
similarity parameter quite large compared to 1, correspond-
ing, for example, in the case of thin airfoils to flight speeds
considerably in excess of the escape speed at sea level.
Perhaps the foremost shortcoming of these theories is, how-
aver, that, irrespective of the shape to'which they are applied,
they provide no information on the structure ® of the dis-
turbed flow field which is, of course, of finite extent adjacent
to the surface at.flight Mach numbers presently of interest

(say Mach numbers less than the escape Mach number at
sea level). Such information is, for example, important to
the determination of the flow about control surfaces and the
like which may be located in this field.

In view of the preceding discussion, it seems clear that in
the high-supersonic-speed flight regime, a need for an

approximate method of analysis lies in the realm of flows

characterized by values of the hypersonic similarity param-
eter greater than 1. An attempt will therefore be made to
obtain a method meeting part of this need, attention being
focused primarily on flows characterized by large values of
the similarity parameter. To this end, it is convenient first
to employ equation (14) rewritten in the form

g e ()= o) | @

280,

Now consider for the moment & surface streamline alined
in the z direction, and impose the requirement that the X—2Z

where

l'l‘hiamnsequeﬂcehh-aceableprlmarﬂytothammpﬂono{1-lwhlchleadstotha
wenknownreaﬂtthatthadhhnbedﬂowﬁddhwnﬂmdwmmﬂmmdmnlmgionadjacant
to the surface of a body.
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plane be tangent to this streamline and normal to the sur-
face at the point of tangency (the origin). The X—Y plane
is then, of course, tangent to the surface at this point. Ob-
serving the last term in the brackets on the right-hand side
of equation (22), it is noted (see fig. 2) that

Y
|
_——
==
X
'l'\,’

\*-‘\\
_— ———

’ —~

Figure 2.—Divergence of streamlines in tangent piane.

aa_1
oy

where 7’ is the radius of curvature of the line normal to the
projections of streamlines in the X-Y plane, and passing
through the origin. At the high Mach numbers under
consideration, the disturbed flow field is confined to & region
of small extent normel to the surface of & body; hence it
may be expected that + will be primarily a function of body
shape and attitude.? This being the case, it follows then
that the term (1//A*—1)(1/r’) will decrease in absolute
magnitude with increasing Mach number of the flow about
the body. Consider now the term (958/2z)(1—D,/(14D,).
We note that 05/0x=1/R where R i8 the radius of curvature
of the projection of a streamline in the X—Z plane and,
by reasoning analogous to that used in considering 7/, is not
expected to vary significantly with Mach number in the
disturbed flow field. Let us assume for the moment that
the quantity (1—D,)/(1+D;) is also relatively independent
of Mach number. With this assumption, it is clear that

" equation (22) approaches the equation for two-dimensional

flow as the free-stream Mach number, and hence the hyper-
sonic similarity parameter of the flow becomes large compared
to 1. The compatibility equations (egs. (17) and (18)) arc
affected in a similar manner; thus it is apparent that thc
flow when viewed in the X—Z plane approaches the two-
dimensional type. In this case, however, as shown in refer
ence 7, so long as the Mach number and ratio of specific
heats of the disturbed fluid are not too close to 1, D, is smal
compared to 1, and hence the flow approaches the generalizec
Prandtl-Meyer type (i. e.,, flow in which pressure anc
inclination angle are approximately constant along curvec
first-family Mach lines). Our flow equation may then b¢
written

- op ou? 08 (24

3z~ A1 \o%

where it is required explicitly that

(26

¢ It is Interesting to note that in ideal gas flows, 7’ becomes just-a-function of theso varlable
as the value of the hypersonlo similarity parameter becomes large compared to 1 (sco wor
of Oswatitsch, rel. 27, noting that his results can readily be extended to three-dlmumlom
{deal gu flows using the characteristics method of this paper).
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or, in effect, that disturbances associated with the divergence
of streamlines in tangent planes must be of secondary im-
portance compared to those associated with the curvature of
streamlines in planes normal to the surface. Upon closer
examination it can easily be deduced that this requirement
stems directly from the continuity equation and the condition
that it be of the two-dimensional type in the X-Z plane (. e.,
g:’ > g; in eq. (10)).

From these considerations it appears that the conclusion
of reference 10 that inviscid flow along streamlines down-
stream of the nose of noninclined bodies of revolution travel-
ing at high supersonic speeds may be of the Prandtl-Meyer
type (in regions free of shodk waves) applies also to other
steady three-dimensional flows. It is true, too, that in the
latter case, just as in the former case, this conclusion is
consistent with the predictions of the hypersonic similarity
law for steady flow about slender shapes.

One question remains to be considered, namely, where do
the streamlines go in the disturbed flow? To clarify this
matter, it is convenient to study further the implications of
equation (25). For this purpose we combine equation (25)
with the transformation equation

O0A M /dA 0A

to obtain the relation
08

(26)

M |0dA bAl

24M3—1/0Cy 30y
TFrom this relation we deduce either that to the order of a

number (curvature) small compared to

0A 0A

30,30, @n
or that
Y) dA
I 1/M‘ i-1/0Cl
end ) M |2 9
CEREW 7 i 18

Equation (27) implies vortical flow, however, which type of
flow cannot be treated by the present analysis since equation
(25) is violated.” Equation (28) is then the requirement con-
sistent with the basic assumptions of this analysis. Com-
paring the relations of equation (28) with the transformation
equation

0A M DA , DA )

dz o Mi—1 301g|602y

leads one to the conclusion, however, that

048] [0A
2 oz

(29)

1 This conclusion I3 partfcularly evident in the case of pure vortical flow, or say vortieal

flow xgith n.auperlmposed uniform stream dlmctcdalong theaxis ofthavortax, inwhleh
casces 'a_z' =0, and hence equation (24) certainly does not Iollow from equation (22).
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or, in effect, that consistent with equation (25) geodesic lines
can be treated as surface streamlines. With this informa-
tion we are enabled to construct the flow field about a body,
having once determined, for example, the flow in thé region
of the leading edge (or edges) thereoi. This result follows
since a geodesic line, and hence & streamline, on the surface
is fixed, provided its direction at any point is given (see, e.g.,
ref. 28).2) With this knowledge of the location of surface
streamlines, flow in the planes tangent thereto and normal
to the surface may be calculated approximately in the rela-
tively thin region between the surface and bounding shock
waves, using the generallzed shock-expansion method in the
manner described in reference 7.

A partial check on these observations is afforded by study-
ing the flow about a swept airfoil. In this case flow at the
surface may be calculated with good accuracy, using the
shock-expansion method in combination with simple-sweep
theory. For thin airfoils (on the surfaces of which the
appropriate geodesics have essentially the direction of the
free stream) the generalized shock-expansion method of this
paper reduces to the slender-airfoil method of reference 7.
Thus, in this case, it is evident from the results of reference 7
that the generalized method will predict surface pressure
coefficients in error by less than 10 percent, providing the
component of free-stream Mach number normal to the
leading edge is greater than about 3. It is of interest also
to consider a thick airfoil to ascertain the accuracy with
which this method applies to flow with appreciable curvature.
To this end, surface pressure coefficients and streamlines
have been calculated for a 20-percent-thick biconvex
airfoil (at zero incidence) swept 60° and operating at Mach
numbers of 10 and infinity (y=1.4). Conditions at the
leading edge were determined from exact shock-wave rela-
tions for both methods. The results of these calculations
are presented in figure 3, and it is observed that the pressure
distributions determined with the shock-expansion method
for swept airfoils and the generalized shock-expansion method
are in reasonably good agreement at both Mach numbers.
The streamlines are also in reasonably good agreement over
the forward portion of the airfoil, although, as would be
expected, somewhat poorer results are obtained over the
afterportion. It is not surprising, in view of the underlying
assumptions of the generalized shock-expansion method,
that it is generally more accurate at the highest Mach
number.

In the preceding discussion circumstances were deduced

under which steady flow at high supersonic speeds about

three-dimensional shapes could be constructed approxi-
mately, using the basic tools of two-dimensional supersonic
flow analysis, namely, the oblique shock equations of
Rankine and Hugoniot and the corner expansion equations
of Prandtl and Meyer. Several possible exceptions to these
circumstances immediately come to mind. These include
conical-type flows and flow in the region of the tip of a wing,
or at the discontinuous juncture of a wing and body, to
mention a few. In such flows equation (25) may not be
satisfied, in which case two-dimensional flow in planes

* 813 sudden change of surface slope causes an obligue shock wave or a contentrated Prandtl-

‘| - Meyer type expansioh fan, the streAnilines in the downstream direction are defined on the

basis of their flow direction immediately following the discontinuity in slope.
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normal to a surface cannot be expected.® It might be
reasoned, therefore, that these flows cannot, in general, be
treated by the proposed method. This observation may be
correct; however, in one case investigated thus far in this
connection, namely, flow in the region of the nose of non-
lifting bodies of revolution (see ref. 10), it was found that
although equation (25) is not satisfied, flow along streamlines
is nevertheless of approximately the Prandtl-Meyer type.
Thus we are led to expect that perhaps a less restrictive
requirement than the satisfying of equation (25) may be
imposed to insure that flow along streamlines is of this type.
Such a requirement is in fact easily obtained by reconsidering
equation (22) in the form

v One may note that in some cases of this nature, the flow in osculating planes of the stream-
Iines may be of the two-dimensional or even the simpler Prandtl-Meyer type, although these
planes may not be normal to the surface.
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op pu? 0d M 1 bA)] (30)
ox W ox 1/—_' DOI, M oy
thus yielding
M o5 , 1 0A 31
VA1 bOuTM dy )

It is evident that equation (31) embraces equation (25) as a
special case and that Prandtl-Meyer flow obteins along
streamlines if

2 1A

2C,~ Moy
to the order of a number small compared to —%—

This result implies that although flow inclination angles are
not necessarily constant along Cj, lines, pressure is approxi-
mately constant (see eq. (17)).

(32)
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Fiaurn 3.—Comparison of surface streamlines and pressure distributions caleulated with the generalized shock-expansion method and
the shock-expansion method for swept airfoils (biconvex airfoil section, thickness ratio=0.2, sweep angle=60°).
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It is clear that the increased generality of the above result
has been obtained at some expense in our knowledge of the
streamline flow pattern. For example, it is not now indi-
cated that (within the framework of this analysis) surface
streamlines may generally be taken as geodesics—additional
knowledge of the flow must be had in order to determine
these streamlines. If they are known, however, the calcula-
tion of the whole flow field is materially facilitated by the
above considerations.

Thus far only steady flows have been considered. The
next problem is to extend these considerations to nonsteady
flows and some aspects of this matter will now be discussed.

NONSBTEADY FLOW

The methods of analysis in this case are entirely analogous
to those employed in the study of steady flow, the singular
contrasting feature being that derivatives with respect to
time in equations (1) through (11) cannot now be neglected.
With this point in mind, only pertinent results are discussed
below.

Characteristics theory.—The compatibility equations relat-
ing fluid properties along Mach lines may be written as

op __ —pv’

follows:
30, =1 e [‘/__< 5+

5o (3015 5t )]} ©3)

dp _ +pu

80n JAP—1 G [‘/_ (50)-

e 50+ (50) 1} e

The definition of the X-Z plane as the osculating plane of a
pathline (streamline in steady flow) remains as before, hence
equation (19) still applies in the X-Y plane in the region of
the origin. The rotation of the osculating plane and varia-
tion of the principal curvature of a pathline with motion
along it are now, however, obtained with the aid of the

relations
DA /ds
e ’d:c( b—z<d—a-;> 85)

~a__1_ ()(ba Bd/u 1 dp\ds (36)
det piPdz 0z ' udz pa’d:c dx

601,+M

602,

and

where
d °.,1/d
& oz T a(a) (87)

These equations are basic to characteristics theory in ifs
application to three-dimensional nonsteady flows (see ref.
20). However, as in the case of steady flows, they can best
be employed for our purposes to obtain & simplified method
of calculation.
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Simplified two-dimensional theory.—It is recalled that the
essential simplification in our treatment of three-dimensional
steady flows derived from the fact that they often appear
locally two-dimensional and hence they can be treated with
the generalized shock-expansion method of reference 7. In
the following study of nonsteady flows we will profit from this
experience by anticipating that the desired simplified theory
is again this shock-expansion method. Accordingly, our
problem is reduced to that of determining the conditions
under which the method can be applied to the calculation of
nonsteady hypersonic flows.

One condition is, for all practical purposes, self-evident;
namely, the local Mach number of the disturbed flow must
be everywhere large compared to 1. This requirement musé
manifest itself since, otherwise, nonsteady disturbances
created an appreciable distance upstream and/or downstream
of a particle could significantly influence its behavior in the
disturbed flow field (see fig. 4, noting that in case of thick
body, particle b is influenced by disturbances originating in
particles & and ¢) and this situation would preclude the pos-
sibility of Prandtl-Meyer type flow along pathlines. It fol-
lows then that the shock-expansion method can be applied
only to thin or slender shapes (i. e., shapes producing flow
deflections small compared to 1) at hypersonic speeds.

~~==Wave fronts of -—=-~ BN

Fluid par ticles—w.. e disturbances s
\ = generated in particles  \
) aand ¢ \ N
Y
Mp>>1 Mop>>1 =TT
L = T/ [ body /}

\
A Y
\

M >>]-->

7
Shock wave-——/

kY
peyy

Ficure 4.-—Propa.ga.tlon of nonsteady disturbances in flow about thick
and thin bodies.

With this requirement in mind it is convenient to rewrite
the compatibility equations (33) and (34) in the form they
assume when A4>>1. Thus with slight rearranging we have

1 bp 1 OA 1 ou
601, w ot ( ‘k[by MuZ dt
and
Op ,10p_ put/ 05 ;105 10DA, 1 du
50, Tu ot M \oCy Tu ot Moy Mz ot

Now, consistent with the requirement A{>1, the term
(1/Mu®)(Qufot) on the right in these equations can be
neglected by comparison to the other terms. If, in addition,
we define (after eq. (37)) the derivatives

d_O— Tl, u (bt)

and

d—o— aO,, u(bt)

and note that now
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then these equations can be combined to yield the pressure
gradient along a pathline in the following form

Z:%J 124

Qz_)_pu ds
1 ‘“da_/de_,,

dxz M| dx

(38)

But % is analagous to D, in steady flow; that is, in the

event the term (1/M4) (A/oy) is negligible in this expression,

C, . . . .
a—::/%a" may be identified with disturbances reflected from
shock waves in the flow. Just as in the case of steady flow
(see ref. 7), however, these reflected disturbances are of very
small strength by comparison to the incident disturbances

when AM>1 and so %‘5 must be small compared to 1.
2r
Provided, then, that

M>1
oA (39)

a3l

equation (38) may be written 1

dp__pu* ds

P “0)
which result implies, of course, Prandtl-Meyer flow along
pathlines. It follows that equations (39) are sufficient con-
ditions under which the generalized shock-expansion method
can be used to calculate nonsteady hypersonic flows.

When these conditions are satisfied, we note, by analogy
to the steady flow case, that pathlines in the surfaces swept
out by elements of fluid adjacent to shapes in nonsteady
motion are approximated by geodesics or, even simpler, lines
of curvature of these surfaces. It is not to be implied, of
course, that pathlines must always be such curves in order
for fluid properties to behave as in Prandtl-Meyer flow. In
fact agam, just as in the case of steady ﬂow if the condition

—‘——dOI, IESAI is sa.’msﬁed rather tha.n the second of

> |

equations (39), pathlines are not necessarily geodesics (or
lines of curvature) even though the first of equations (39)
and hence equation (40) holds along these lines.

One notes that within the framework of this approximate
analysis, the calculation of nonsteady flows at the surface
of slender bodies traveling at high supersonic speeds should
notproveunduly difficult. To illustrate,consider an oscillating
airfoil as shown in figure 5. The pressure at any point
along the pathline shown is readily deduced by simply

Airfoil at time 7, N =-—Shock wave

My>>1 . .
Pathine of particle striking > . “"‘Ef airfoll of rotation
leading edge at time I“'—" \t\t&,:
Airfoil at time 7| — — ™~ -
~ .

F1eure 5.—Oscillating airfoil in hypersonic ﬂow

0 The derivation of equation (40) prmenteahere has the virfue of being both more complete
and more general than the corresponding derivation of reference 20.
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integrating equation (40) along this line from the leading
edge of the airfoil to the point in question. The whole
flow field as a function of time may be calculated by
employing the generalized shock-expansion method for
steady flows (see ref. 7) in & series of planes located small
distances apart in time. This example serves to emphasize

" that, in general, the time history of fluid elements must be

known, at least to the extent of fixing their initial flow direc-
tion and entropy."' It is also evident that again, as in the
case of steady flow, the general results of the analysis are
consistent with the predictions of the hypersonic similarity
law for nonsteady flows about slender related shapes (rel. 5).

These considerations complete our general treatment of
inviscid hypersonic flows. It is appropriate to turn next to
effects of viscosity as they relate to the hypersonic boundary
layer.

VISCOUS FLOW—THE HYPERSONIC BOUNDARY LAYER

The arguments presented here are concerned with the
steady hypersonic boundary layer, and they will be, for the
most part, physical.’® Furthermore, they will appear as
natural extensions of conclusions reached in our study of
inviscid hypersonic flow. Let us reconsider, then, the motion
of the inviscid fluid. We have established that this motion
is, under certain well-defined circumstances, confined locally
to planes normal to the surface of a body and tangent to
surface streamlines. Correspondingly,. there is no sensible
momentum transfer across these planes. Now if viscous
forces are set up in the flow bounding the surface, we recog-
nize that they will act to resist the motion of the fluid—that
is, the motion in the normal planes. Evidently, then, these
forces act in the same planes of local two-dimensional flow
as the pressure forces, and it must follow, of course, that
resultant changes in momentum of the fluid also occur in
these planes.

Consider now the changes in energy of the disturbed fluid.
These changes can be brought about by viscous or dissipa-~
tive work, pressure work, heat convection, and heat conduc-
tion.® It was just found, however, that the forces doing
work act in the normal planes; hence we conclude that the
corresponding changes in energy occur in these planes.
Similarly, heat is convected in the normal planes, since mass
is convected in these planes. Finally, we conclude also that
heat is conducted locally in the normal planes inasmuch as
the temperature gradients set up by the action of viscous
forces are confined primarily to these planes.* Evidently,
then, changes in energy of the fluid can be treated locally as a
two-dimensional phenomenon in planes normal to the surface
of a body.

11 Tn the special caso of slender afrfolls for which the hypersonie similarity paramoter of the
flow is less than 1, entropy gradients in the disturbed flow can frequently bo negleoted, with
the advantage of relaxing these two conditions and thus substantially stmplifying the problom
(see, e. g., rel. 29).

1 Although not presented, corresponding mathematical argumeonts have beon pursued
using the Navier-Stokes and energy equations, and the final results conflrm thoso obtained
here. It is indicated, too, that theso results may apply also to nonsteady boundary-layer
flows,

13 Radiation and absorption may, of course, also contribute to the energy changes; howover,
it 18 beyond the scope of this paper to consider these phenomena,

¥ One might concelve of severe temperature gradients being imposed at the wall boundary

by, for example, extremely nonuniform surface cooling. Such gradients, if transverso to

streamlines, would naturally fnvalidate this argument.
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Thus far we have been concerned mainly with forces and
their relation to the momentum and energy of the fluid.
The question of conserving mass remains to be investigated.
It will be recalled that the requirement of conservation of

mass was the essential factor which determined when the -

generalized shock-expansion method could be employed to
calculate three-dimensional flows. This requirement is
physically (and mathematically) the same, independent of
. whether or not viscous forces come into play. We conclude
then that for the purposes of this study, equation (25) can be
used to determine when the three-dimensional boundary layer
can be caleulated with two-dimensional equations. From
equation (25) it is indicated that the boundary layer must be
largely hypersonic if this calculation is to be permissible.
It is not to be implied, however, that the boundary layer
always becomes two-dimensional, as on an airfoil, if the
stream Mach number i8 made extremely large. For example,
in the case of axial flow about the right circular cone, equa-~
tion (25) is violated independent of Mach number (just as
with inviscid flow) and we must use something like the
Mangler transformation (ref. 30) in the boundary-layer
calculations. On the other hand, if the body, instead of
being conical, is curved in the stream direction, then it is
indicated that the boundary-layer flow should approach the
two-dimensional type with increasing Mach number.

This discussion completes our arguments regarding the
two-dimensionality of three-dimensional hypersonic flows.
Attention i8 turned next to a practical application of this
concept.

APPLICATION OF THEORY TO BODIES OF REVOLUTION IN
STEADY FLIGHT

The critical feature of this application is the analysis of
the inviscid flow, since known two-dimensional boundary-
layer solutions can be readily employed once this flow is
known. Accordingly, the following discussion is restricted
to the inviscid flow problem.

Now it was shown previously in this paper that a large
class of hypersonic flows which are basically three-dimen-
sional can be calculated with a generalized shock-expansion
method which is analogous to that employed in reference 7
for studying flow about airfoils. Specifically, this treatment
is permissible when disturbances associated with the diver-
gence of streamlines in planes tangent to a surface can be
considered negligible compared to those associated with the
curvature of streamlines in planes normal to the surface (see
eq. (256)). For the case of noninclined bodies of revolution
which are curved in the stream direction, this requirement is
satisfied when the hypersonic similarity parameter K is
greater than about 1 (see ref. 10). For inclined bodies, an
additional restriction is imposed. This point is perhaps best
clarified by considering the problem of calculating flow at
the surface.

FLOW AT THE SURFACE

It follows from the inviscid flow analysis that when the
goneralized shock-expansion method applies in the region
downstream of the vertex, surface streamlines can be
approximated by geodesic lines. The only geodesics on
the surface of a body of revolution which, like streamlines,

413672—57—76
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do not intersect each other are the meridian lines. In
addition, the meridian lines are the only geodesics which,
like the streamlines, pass through the vertex. When the
shock-expansion method is applied, then, surface streamlines
are approximated by meridian lines. Strictly speaking,
however, this approximation is valid only in the case of
a<l<1l. (It is, of course, always true, independent of «
on the exireme windward and leeward sides of a body.)
Evidently, then, the generalized shock-expansion method
should be applicable to curved bodies of revolution only at
small angles of attack in flows characterized by a value of
the hypersonic similarity parameter greater than about 1.

The procedure for determining flow conditions at the
surface of a lifting body is entirely analogous to that em-
ployed in the application of the shock-expansion method
to the nonlifting body (vef. 10). Thus, it is assumed that
the flow at the vertex is the same as that for a cone tangent
to the body at this point and, hence, may be determined
from existing conical-low theory (see, e. g., ref. 31 for
moderate supersonic Mach numbers and ref. 32 for high
supersonic Mach numbers). More specifically, the Mach
number at the vertex under the vortical layer ' may be
calculated by means of the pertinent conical-flow expressions
in reference 31 or reference 32. The variation of Mach
number downstream of the vertex is then obtained by means
of the Prandtl-Meyer angle » (gee, e. g., ref. 33) which in
turn is determined from the isentropic expansion relation

64tra=éptvn (41)

where A and B are different points on the same meridian
line. Since the flow is isentropic in the windward plane of
symmetry downstream of the shock at the vertex and around
the surface of the body, the pressure distribution (in co-
efficient form) is readily obtainable with the aid of the expres-
sion

-2 (DD

C, A2 \o. 7 1 (42)
where 2,/p. is the pressure rise across the shock at the
vertex on the windward side of the body and is determined
from conical-flow theory. The ratio p/p, is given by

—1., )
» r 1+12—M.2 =i

= 43)

where M is known from equation (41) and MM, is the Mach
number immediately downstream of the shock on the wind-
ward side of the body at the vertex and, hence, is also
determined from conical-flow theory.

FLOW OFF THE SURFACE

Flow in meridian planes around bodies of revolution may
be calculated by the generalized shock-expansion method in
much the same manner as the procedure employed in refer-
ence 7 for flow about airfoils. However, the application of
the method is somewhat more complicated for the case of a

1 Since 8 vortical layer axists around the body surface at the vertex (see, e, g., refl. 13) a
vortical layer must also exist downstream of the vertex.,
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body of revolution since now the influence of the conical-
flow region at the vertex must be considered. An analysis
for flow in the region of the vertex of a nonlifting body of
revolution (K >1) was presented in reference 34 and expres-
sions were developed which yield the shock-wave curvature
as well as flow conditions along a line (normal to the body
axis) & short distance downstream of the vertex. This
analysis was extended to lifting bodies and more general
expressions were presented in reference 32. Thus, initial
conditions in the region of the vertex can be established.
There remains the determination of flow conditions along
meridian lines downstream of the vertex externally adjacent
to the vortical layer. These conditions may be determined
in the same manner as for flow directly on the surface (i. e.,
under the vortical layer), except that now initial flow condi-
tions externally adjacent to the vortical layer at the vertex
are employed in the isentropic expansion relations. Con-
struction of the flow field between the shock and the vortical
layer in each meridian plane can then proceed in & manner
analogous to that for the two-dimensional airfoil discussed
in reference 7. To illustrate, consider the flow in a meridian
plane of a lifting body of revolution (see fig. 6).

Ficurr 8.—Schematic diagram of flow field about a body of revolution.

All fluid properties at points N, A’, A, B and so forth, on
the body surface external to the vortical layer are calculated
with the aid of the oblique shock-wave, conical-flow, and
expansion equations. Flow conditions along the line AC
may then be determined (see ref. 32). It will be recalled
(see ref. 7) that a basic condition employed in constructing
flow fields about airfoils by the generalized shock-expansion
method is that the pressure is constant along Mach lines
emanating from the surface. In the case of flow about
pointed bodies of revolution, this condition can be relaxed
to account for the small variations in pressure due to the
influence of the conical type flow in the region of the vertex.
The procedure is as follows. The Mach line A’C is con-
structed using the known conditions in the region NAC
shown in the sketch. The net pressure change along this
Mach line (i. e., po—pa-) is thus determined. This pressure
difference is then assumed to represent the net pressure
change between the body surface and the shock along each
Mach line emanating from the surface downstream of the
vertex. The flow field is constructed using this criteria in
conjunction with the isentropic expansion relations for flow
along stream lines.

on a body of revolution.
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FORCES AND MOMENTS ACTING ON BODIES OF REVYOLUTION

It is of interest now to consider briefly the forces acting
In the previous discussion,
attention was called to the fact that the flow is isentropic
in the windward plane of symmetry at the vertex as well as
on the surface-of the body. This result materially reduces
the net labor associated with carrying out the calculations
to determine the pressure distributions around the body
downstream of the vertex since the pressure rise, as woll as
the change in entropy through the shock, need be considered
only in this plane at the vertex. The normal-force, axial-
force, and pitching-moment coefficients may be obtained
from the expressions

ON_'YM ’*a-d‘ff —rcos:,odgod:v (44)
P
g,= Fvs ‘wd’ff rtan&(})——-l)dgoda: 45)

O YM, ‘:rd’lff

respectively, where d is the diameter of the base, r is the
radius of the body, ¢ is the meridian angle measured from
the plane of symmetry on the windward side of the body,
and z is measured along the body axis. If equations (44)
and (46) are differentiated with respect to « and the condi-
tion of constant entropy on the surface is employed, there
is obtained

__ 16 gin 2uy O [Py
(0”“)a=0—7ﬂm d‘f f Dy 8D 24 Oa <pm> v cos ¢ dp da

< rz cos ¢ de dx (46)

47)
and
__ 18 '(* p sin2uy O p,,,-)
(G"“)ano M _3wd?l J;f Py 80 24 O T% €08 ¢ d";(:;
. 4

These expressions define the initial slopes of the normal-
force- and pitching-moment-coefficient curves, respectively,
and may be rewritten in terms of the initial normal-force-
curve slope for a cone tangent to the body at the vertex;

thus,
s Qom0 [ G,
and
oo e G [ EEE G4

(50)

where the subscript T'CIV refers to a cone tangent at the
vertex. The calculations necessary to determine the initial
normal-force- and p1tch1ng—momenb—curve slopes for a body
of revolution are then relatively simple, since (C,) roy 108Y

be easily obtained from reference 12 or from chart 8 in
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reference 33. The Mach number and pressure distribu-
tions along the body are obtained by the shock-expansion
method for the case a=0. When these distributions have
been determined, the integral terms in equations (49) and
(60) are easily evaluated by numericel integration or by
graphical methods.

SIMPLIFIED EXPRESSIONS FOR SLENDER BODIES

In the case of slender bodies traveling at very high super-
sonic Mach numbers and very small angles of attack the
calculations of fluid properties at the surface become rela-
tively simple. In fact, fluid properties downstream of the
vertex may be related to those at the vertex by means of
explicit algebraic expressions. In particular, the local Mach
number and pressure distributions on the surface of a slender
body may be written (see ref. 32)

My

. 1122 (M) (1--)

(51)

and

O {( >[< Domo_
S

respectively, where § is measured relative to the body axis
in these and subsequent expressions. Equations (51) and
(52) combine with the corresponding conical-flow equations
(vef, 32) to predict the ratios of local to free-stream Mach
numbers and local to free-streamn static pressures to be the
same at corresponding points on related bodies, provided the
flow fields about these bodies are defined by the same re-
spective values of the hypersonic similarity parameters
M8y and M_a (or afsy). These predictions are in agreement

3 [t 75 ][0 -(forsr)
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with those of reference 3 for inviscid flow about slender
three-dimensional shapes, and they enable the solution of
equations (1) and (52) in terms of tabulated functions of
the similarity parameters. Calculations over a range of
M6y from 0.60 to « and «/8y from 0 to 1 were carried out
for flow at the vertex of a body of revolution' and the results

of these calculations for the flow parameters (1{'1)’“"’
-N

(—i’%%;—“, and (Mi3y)pmo ore tabulated in table T for 30°

increments of ¢ from 0 to =. For a given M.dy and
M e, the Mach number on the surface of a body downstream
of the vertex is readily obtained with the aid of these tabu-
lated parameters when used in conjunction with equation
(51). The pressure coefficient is easily calculated by means
of equation (52).

The results from table I may also be used to good advan-
tage in determining the initial slopes of the normal-force- and
pitching-moment-coefficient curves for slender bodies.”” For
example, when M >>1 and §<<1, equations (49) and (50)
combine with equations (51) and (52) to yield

(Cr)amo=8 ( d> v (Cx,) mzvf [1"“_ (Myby) (1“
NG o
(Cnp)eas=8 (E) b (C,) m,f [1—— (it (1~

SIGIOECRE

respectively, where

(Gr) e

These expressions are easily evaluated with the aid of the
tabulated flow parameters in table I for the case «/6x=0.

EXPERIMENT

In order to obtain & check on the predictions of the pre-
ceding theoretical analysis, the pressures acting on the
surfaces of bodies of revolution corresponding to values of
the hypersonic similarity parameter K from 0.60 to 2.1 at
Mach numbers from 3.00 to 6.30 were determined experi-
mentally, The bodies were tested at angles of attack up
to 15° A brief description of these tests follows,

TEST APPARATUS
Tests were conducted in the Ames 10- by 14-inch super-

sonic wind tunnel, A detailed description of the wind tunnel
and auxiliary equipment may be found in reference 35.

(M50 [’H'E’ 5”) 1] [1+—2— (MwaN)’]

(55)

The pressures acting on the model surfaces were measured
with a mercury U-tube manometer or by means of MecLeod
gages when the pressures were low enough to be recorded
on the latter.

Pressure-distribution models were mounted on a 0° model
support and on 5°, 10°, and 15° bent supports. The test
models were two tangent ogives having fineness ratios 3 and
5 and two cones having the same vertex angles as the ogives.
The dimensions of these models and location of the pressure
orifices are shown in figure 7.

16 The conical flow expressions presented in reference 32 were employed In these calculations.
Itwﬂlbenotedintablelthatthevnlueofgf'-v)':-olsnot given for all values of . This

results from the fact that as a~x and M «3xy— =, the assumption of an Infinitesimally thin
vortical layer iIs violated and, hence, the slender-cone theory yields unrealistic results for thess
conditions.

o The initial axial-force-curve slope 18, of course, zero due to symmetry.
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Fieurp 7.—Dimensions of pressure distribution test models showing location of pressure orifices.

TESTS AND PROCEDURE

Pressures on the model surfaces were measured at 0°,
5°, 10°, and 15° angles of attack and at test Mach numbers
of 3.00, 4.25, and 5.05. Pressures on the fineness-ratio-3
ogive (as well as on the corresponding cone) were also obtained
at & test Mach number of 6.30 and at 0° and 5° angles of
attack. The Reynolds numbers (based on maximum diam-
eter of the ogives) were 1.09 million at Mach numbers 3.00
and 4.25, 0.52 million at Mach number 5.05, and 0.22
million at Mach number 6.30. ‘ '

The pressures around the cone surface (0° to 360°) at
meridian stations 45° apart were recorded simultaneously
at each Mach number and angle of attack. In the case of
the two ogival models, the pressures were recorded at
meridian stations 90° apart. Each model was then rotated
45° about its longitudinal axis (except at 0° angle of attack)
and the process repeated.

ACCURACY OF TEST RESULTS

- In the region of the test section where the models were
located, the variation in Mach number did not exceed +0.02
at Mach numbers from 3.00 to 5.05 and +0.04 at Mach
number 6.30.

~ The precision of the computed pressure coefficients was
affected by inaccuracies in the pressure measurements, as
well as uncertainties in the stream angle and the free-stream

dynamic pressure. The resulting errors in the pressure
coefficients were generally less than =:0.005 throughout
the Mach number range for all angles of attack.

COMPARISON OF THEORY WITH EXPERIMENT AND DIS.
CUSSION OF RESULTS

According to inviscid theory, the hypersonic similarity
parameter, K, is a significant index to when the generalized
shock-expansion method can be used to calculate three-
dimensional flows. It was indicated in this connection thab
the generalized method should be applicable to bodies of
revolution when K is greater than about 1. In order to
check this prediction, the pressure distributions on the
surfaces of two ogives (having fineness ratios 3 and 5)
traveling at Mach numbers 3.00, and 4.25, and 5.06 and
at angles of attack of 0°, 5° 10° and 15° were calculated
by the methods of this paper. Pressure distributions on
the fineness-ratio-3 ogive at angles of attack of 0° and 5°
were also calculated for a Mach number of 6.30. The
conical-flow theory presented in reference 32 was employed
in these calculations for determining initial flow conditions
at the vertices of both the lifting and nonlifting bodiés.

Comparing first the predictions of theory with experiment *#

1 The experimental data shown in fignre 8 and all subsequent figures rapresont an averago

of the pressures recorded at each station ona body. The scatter of data was inconsoquentially
amall (see rof. 32).
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Fieure 8.—Variation of pressure coefficient along ogives at «=0°.

for the case of zero lift, we observe in figure 8 that the shock-
expansion method predicts surface pressure coefficients close
to those obtained experimentally at values of K greater than
1. As would be expected, too, the agreement between the
predicted coefficients and experiment tends to improve up to &
Mach number of 5.05. The results of a characteristics solu-
tion for a fineness-ratio-3 ogive at M.=3.00 (from ref. 36)
are also shown for comparative purposes. Characteristics
solutions are not available for the other cases; however, the
results of Rossow (obtained by correlating the pressures
yielded by characteristics solutions according to the hyper-
sonic similarity law; see ref. 37) are shown. It is evident in
this figure that the agreement between these results and
those yielded by the shock-expansion method improves with
increasing K over the Mach number range presented. At the
highest Mach number of 6.30 we observe, however; that both
methods yield pressure coefficients which, although in agree-
ment, are appreciably lower than experiment. There is no
particular reason, on the basis of past experience or otherwise,
to doubt the accuracy of the characteristics theory for this
body. In this connection, it should be noted that the theory
is generally in good agreement with experiment at all the
lower Mach numbers. Itseems logical, therefore, to suspect
that the departure of theory from experiment at A,=6.30 is
caused by viscous effects in the flow. More specifically, it is
suggested that this departure may be traced to a substantial
increase in thickness of the laminar boundary layer on the
ogive. The low Reynolds number of the tests and, to .a
somewhat lesser extent, the high Mach number could produce

such an increase. This matter will be considered further in
the discussion of hypersonic boundary-layer calculations pre-
sented later in the paper.

It is appropriate now to consider the reliability of the
shock-expansion method for lifting bodies. As shown in
figures 9, 10, and 11, the theory yields good agreement with
experiment on the windward side of the fineness-ratio-5 ogive
except at M,=3.00 (K=0.60)."* Disagreement is evident,
however, on the leeward side of the body at all Mach num-
bers. In the case of the fineness-ratio-3 ogive (figs. 12, 13,
and 14), agreement is generally better over the entire body
at each angle of attack, particularly at the higher values of K.
It will be recalled from figure 8 that at «=0° the longitudinal
pressure distributions on both ogives indicated that the accu-~
racy of the shock-expansion method increased as K increased.
Figures 9 through 14 indicate that, as would be expected, this
trend carries over to the case of lifting bodies. It is inter-
esting to note, also, that reasonably good agreement with ex-
periment is obtained when K>>1 even though a—8y. Ac-
cordingly, it is suggested that so long as K>1 and «f8y<1,
the generalized shock-expansion method can be employed to
predict surface pressures along meridian lines as though they
were streamlines, with little sacrifice in accuracy. In this
connection, it should be noted that the meridian lines on the
extreme windward and leeward sides of the body (i. e., p=0°
and ¢=180°, respectively) are exactly streamlines.

It should be noted in figure 9 that Stone’s second-order solution I3 employed at the vertex
gince the conieal-flow theory of reference 32 iz not applicable for thess conditlons (. €.,
M o =3.00 and Sx=11.42°).
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Fieure 9.—Circumferential variation of pressure coefficient on a fineness ratio 5 ogive at M,=38.00; K=0.60.

It appears in figures 9 through 14, that the most important
factor influencing the accuracy of the shock-expansion
method is the reliability of the conical-flow theory, since the
‘inaccuracies at the vertex appear to be reflected strongly in
the pressures downstream of the vertex. The question
naturally arises, then, how good are the predictions of the
method- when experimentally determined initial conditions
at the vertex are employed? To answer this question, the
pressure coefficients on the surfaces of the two ogives under
discussion were determined in the following manner. Initial
conditions at the vertex were determined from the measured
static pressures around & cone (corresponding to the vertex
angle of the body) in conjunction with the measured shock-
wave angle (in the plane ¢=0°) obtained from schlieren
photographs of the conical flow field. The pressure co-
efficients downstream of the vertex were then calculated as
before. The results of these calculations for Mach numbers
3.00, 4.25, and 5.05 are compared with experiment in figures
15 and 16 for a=15°. Results for a=15° are presented
because at this angle of attack the applicability of the
conical-flow solutions is most marginel. It is observed in

_ figure 15 (2) that the theory yields results which indicate an

underexpansion of the flow on the sides of the body (¢=46°
and ¢=90°). This result is not surpriging since a/sy>1
and K<1. Itwould be expected, then, that the true stream-
lines would deviate considerably from & meridian line. In
other words, flow disturbances in planes tangent to the body
at the surface are no longer small compared to those in axial
planes. It can be seen from figures 15 (b) and (c) that as
the Mach number, and hence, K, is increased, better agree-
ment is obtained. This result is attributed in part to the
fact that the streamlines of the flow deviate less from meridian
lines as K is increased. The same general trend may be
noted in figure 16 for the fineness-ratio-3 ogive. However,
in this case, «/6y< 1 and over-all agreement between theory
and experiment is improved. In fact, good results are con~
sistently obtained by theory except on the extreme leeward
side of the body where it is probable that viscous effects are
influencing the pressures. There may be some separation
of flow over this portion of the body although no evidence of
this could be determined from the schlieren photographs.
In the case of the fineness-ratio-5 ogive, schlieren evidence
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indicated flow separation on the leeward side of the body for
all Mach numbers at a=15° It is evident from these
figures that in any event the shock-expansion method will
yield better results when initial conditions at the vertex are
determined from cone tests rather than from presently
available cone theory.

There now remains the determination of the accuracy of
the predictions of the generalized shock-expansion method
for the flow field (other than the surface) about a lifting
body of revolution. To this end, flow in the plane of sym-
metry (¢=0° and ¢=180°) was calculated for each ogive
traveling at & Mach number 5.05 and at an angle of attack
of 10°, Flow in a side meridian plane (¢=90°) was also
celculated for the fineness-ratio-3 ogive. The resulting
shock-wave shapes are compared with the actual shapes (ob-
tained from schlieren photographs) in figure 17. The theo-
retically determined conical shocks are also shown for con-
trast. In the case of the fineness-ratio-3 ogive (K=1.68 and
/6y=0.53), theory and experiment are observed to be in
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excellent agreement in the plane of symmetry. The same
observations may be made for the side meridian plane. In
this latter connection, it is of interest to point out that es-
sentially the same result is obtained when the shock is as-
sumed circular in cross-sectional planes and its location de-
termined from the calculations in the plane of symmetry.
In the case of the fineness-ratio-5 ogive, the poor agreement
on the leeward side of the body is due to the limitations of
the conical flow theory employed at the vertex. If experi-
mentally determined initial conditions are employed good
agreement with experiment downstream of the vertex is
obtained.

Although the predictions of the generalized shock-expan-
sion method have been checked only at the inner and outer
boundaries of the flow field, it is expected that equally good
results would be obtained at intermediate points in the flow
field. This conclusion is based on the fact that the bow
shock waves were obtained as a result of the calculations of
these intermediate points.
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Fieure 10,—Circumferential variation of pressure coefficient on a fineness ratio 5 ogive at M, =4.25; K=0.85.
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It is appropriate now to consider briefly the forces exper-
ienced by the ogives. To this end, normal-force coefficients
were obtained by integrating the theoretical pressure distri-
butions for the two ogives at & Mach number of 5.05. The
results of these calculations are compared in figure 18 with
those obtained from integrated experimental pressure dis-
tributions for values of K of 1.01 and 1.68. It is observed
that although theory yields results which are, in general,
higher than those obtained by experiment, agreement im-
proves with increasing K. The same trend with K is evi-
dent for the initial normal-force-curve slopes obtained with
the aid of equation (49). Axial forces were also obtained
for these ogives and, as indicated in figure 18, the shock-
expansion method yields generally good agreement with
experiment even at a value of K as low as 1.
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Figurs 18~—Normal- and axial-force coefficlents for ogives at
M =5.05.

Let us consider now the predictions of the hypersonic
slender-body theory, To this end, calculated pressure co-

REPORT 1249—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

efficients for the two ogives at «=0° and «=5° are com-
pared with experiment in figures 19 and 20. It appears from
a comparison of figures 8 and 19 that the slender-body theory
will yield more accurate drag coefficients than the general
theory at «=0°, particularly at the lower values of K.
This result is, of course, fortuitous. In the case of lifting
bodies (fig. 20) the slender-body theory yields results which
are somewhat less satisfactory at all values of K. However,
the theory displays sufficient accuracy for many engineering
purposes even at K=1. ~This point is particularly evident
for the more slender of the two bodies as indicated in figure
20. It is also interesting to note the comparison of theory
and experiment shown in figure 21 for the initial normal-
force-curve slopes and centers of pressure of a family of
ogives at Mach numbers from 3.00 to 6.30. The experi-
mental data were obtained in the Ames 10- by 14-inch
supersonic wind tunnel. There is good correlation of these
data with M ,5y, the hypersonic similarity parameter for
slender bodies, and there is good agreement with theory for
values of M,8y greater than 1. In view of its simplicity,
then, the hypersonic slender-body theory should prove useful
and its application is further facilitated by the presentation
in this paper of tabulated values of the pertinent flow para-
meters for selected values of M..8y and a/8y (see table I).

Up to this point we have been concerned almost entirely
with the inviscid theory and its comparison with experi-
mental data relatively free of effects of viscosity. As a final
point, it is appropriate to test the two-dimensional boundary-
layer concept of this paper by considering flows which are
significantly influenced by viscous effects.

In this connection it was noted early in the previous dis-
cussion that inviscid theory yielded pressure coefficients
which were substantially lower than experiment at M=
6.30. This discrepancy was traced to the thick laminar
boundary layer on the test body. According to theory it
should be possible to calculate this boundary layer approxi-
mately by means of simple two-dimensional techniques.
This possibility was checked by calculating the laminar
boundary layer on the fineness-ratio-3 ogive at a Mach
number of 6.30 and angles of attack of 0° and 5°. The
two-dimensional theory of reference 38 was employed.”
The body ordinates were increased by an amount equal to
the displacement thickness of the boundary layer. The
pressure distribution about the distorted body was then
obtained with the generalized shock-expansion method.
These corrected pressure distributions and the original
uncorrected distributions are presented in figure 22 along
with experiment. It is observed that while uncorrected
pressures are definitely low, the corrected pressure distribu-
tions are in good agreement with experiment. In this case,
then, relatively simple two-dimensional methods of cor-
recting pressure distributions for the presence of the
boundary layer are, as indicated by theory, applicable to
the body of revolution.

2 The theory breaks down at the vertex of the body, much as at the leading cdgo of an alr-

foll. It is therefore not applied in this reglon, and, consistent with a practico successfully
employed with airfols, viscous effects are ignored in calenlating flow at the vertex.
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Frourp 19.—Pressure distributions predicted by hypersonic slender-body ﬁheory for ogives at a=0°,
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CONCLUDING REMARKS

A method of characteristics employing pressure and flow
inclination angles as dependent variables was used to
obtain a simplified approximate method for calculating
three-dimensional flows at high supersonic speeds. It was
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found thet when the flight Mach number is sufficiently
large compa;red to 1, flow in the osculating planes of stream-

OF THREE-DIMENSIONAL HYPERSONIC FLOWS

-lines in regions free of shock waves may be of the generalized

Prandtl-Meyer type—surface streamlines in this event may

- be treated as geodesics. In the case of slender bodies, these
- results apply to nonsteady as well as steady flows.

The
two-dimensional approach to three-dimensional hypersonic
flows was also extended to steady boundary-layer flows.

Bodies of revolution in steady hypersonic flight were
considered as an example of shapes producing three-dimen-
sional flow fields which appear locally two-dimensional.
With the assumption of conical flow at the vertex and small
angles of attack, simple approximate solutions were obtained
which yield the Mach number and pressure distributions on
the surfaces of such bodies. Surface streamlines were
approximated by meridian lines and the flow field in meridian
planes was calculated by means of a generalized shock-
expangion method. In the special case of slender bodies,
simple explicit expressions were obtained for the Mach
number and pressure distribution on the surface.

Surface pressures and shock-wave shapes were obtained
experimentally at Mach numbers from 3.00 to 5.05 for two
ogives having fineness ratios 3 and -5 and for two cones
having the same vertex angles as the ogives. The predic-
tions of the methods of this paper for the surface pressures
and shock-wave shapes were found to be in good agreement
with experiment at values of K of about 1, or greater, when
/8y (the ratio of angle of attack to semivertex angle) was
about 1/2 or less. For increasing values of this parameter,
agreement deteriorated but was still reasonably good for
values of «f/dy up to about 1. Experimental surface pres-
sures at & Mach number of 6.30 and angles of attack of 0°
and 5° were also obtained for the fineness-ratio-3 ogive.
The predictions of the shock-expansion method when
employed in conjunction with a two-dimensional boundary-
layer calculation were found to be in good agreement with
experiment.

In view of these results, it is concluded that the generalized
shock-expansion method should prove useful in treating
three-dimensional hypersonic flow fields about practical
serodynamic configurations. Furthermore, it is indicated
that methods of treating two-dimensional hypersonic
boundary layers may, in like manner, prove useful in pre-
dicting three-dimensional hypersonic boundary layers.

AuEs ABRONATUTICAL LLABORATORY
NaTioNAL Apvisory COMMITTEE FOR AERONAUTICS
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TABLE L—TABLE OF FUNCTIONS FOR HYPERSONIC SLENDER-BODY METHOD
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