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STRESSES IN A TWO-BAY NONCIRCULAR CYLINDER UNDER TRANSVERSE LOADS'

By Georae E. GrirFriTH

SUMMARY

A method, taking into account the effects of flexibility and
based on a general eighth-order differential equation, is pre-
sented for finding the stresses in a two-bay, noncircular cylinder
the cross section of which can be composed of circular arcs.
Numerical examples are given for two cases of ring fexibility
Jor a eylinder of doubly symmetrical (essentially elliptic) cross
section, subjected to concentrated radial, moment, and tan-
gential loads. The results parallel those already obtained for
shells with circular rings.

INTRODUCTION

In airplane fuselages with flexible rings subjected to con-
centrated loads, the stresses in the neighborhood of the load
differ markedly from those given by the simple engineering
formulas, and more refined methods, which talke into account
the interaction of rings and shell, are needed to predict the
stresses accurately. The first paper on this subject, pub-
lished in May 1944, was that of Wignot, Combs, and Ensrud
(reference 1), who treated the circular cylinder subjected to
concentrated loads but neglected the effect of the extensional
deformations of the shell. Hoftf (veference 2) gave a more
complete analysis, including the effects of many rings, for
the case of symmetric transverse loads. The results were
corroborated experimentally by Kuhn, Duberg, and Griffith
(reference 3), who also extended the theory to include con-
centrated moment and tangential loads. Later, Duberg and
Kempner (references 4 and 5) reduced the labor of computa-
tion by giving the results in the form of charts and showed
that for practical purposes it was usually sufficient to con-
sider only a region within 2 bay lengths of the load. Further
investigations considered additional effects, heretofore neg-
lected, such as the shearing and axial deformation of the rings
(references 6 to 8), bending rigidity of stringers (references
8 and 9), shear carried by the stringers (reference 7), and
eccentricity of ring and sheet (references 6, 7, 8, and 10).

All investigations referred to dealt exclusively with rein-
forced monocoque cylinders of circular cross section. The
present report gives an analysis for a two-bay noncircular
cylinder, enclosed between ring bulkheads rigid in their
planes, with the middle, flexible ring subjected to concen-
trated and distributed loads. The fundamental assumptions
used in the analysis are the same as those previously used for
circular cylinders.

Many noncircular fuselages can be closely approximated
by using circular sections of different radii and joining the
sections at points of tangency. The rings discussed herein
are of this form. Associated with each ring section is a two-
bay panel (fig. 1), any number of similar panels composing
the complete two-bay cylinder. The solution for the stresses
in such a structure is based on the development of a general
eighth-order differential equation, written in terms of the
moment at the skin center line. A separate differential
equation of the samec general form applies to each curved
panel in the structure. Application of the correct boundary
conditions results in sets of simultanecous equations which
yield the unknown constants in the moment expression.

Although a two-bay cylinder does not conform to the usual
fuselage structure, it is believed, on the basis of comparisons
with some of the work previously mentioned, that the results
obtained are indicative of those found in more complicated
structures. In accordance with the findings of prior investi-
gations, shear and axial deformations of the loaded ring are
neglected, but eccentricity of ring and sheet is included.

The numerical examples deal with a doubly symmetrical,
two-bay cylinder of nearly elliptic cross section (fig. 2), sub-
jected to concentrated loads.

R SYMBOLS
U RS
A=115
EVR?
b=
C, coefficient of shear flow in sheet
Cy coefficient of ring axial force
Cu coefficient of ring bending moment
Cy coefficient of ring shear force
E Young’s modulus in sheet and ring, pounds per

square inch

_-Flexible _~Rigid

FIGURE 1.—Two-bay panel showing positive directions of displacements and sheet stresses.

1 Supersedes NACA TN 2512, “‘Stresses in a Two-Bay Noncircular Cylinder Under Transverse Loads” by George E. Griffith, 1951,
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Froure 2.—Two-bay cylinder, composed of four eircular panels, with doubly symmetrical
noncircular rings, used for numerical examples,

G shear modulus in sheet, pounds per square inch

H axial force acting on sheet, pounds

I moment of inertia of ring section, inches*

L length of bay, inches

M bending moment at sheet center line, inch-pounds

M, applied concentrated moment, inch-pounds

My bending moment about neutral axis of ring, inch-
pounds

P applied concentrated radial load, pounds

R radius to sheet center line of circular panel, inches

R,, R, radil of circular panels composing cylinder, inches

T applied concentrated tangential load, pounds

1% shear force, pounds

axbi  complex roots of auxiliary algebraic equation (used

when real roots also occur)

¢i+diz, complex roots of auxiliary algebraic equation (used

cs+dst when no real roots occur)

e cecentricity of ring and sheet (distance between
sheet center line and neutral axis of ring), inches

¥i distributed radial load acting on sheet, pounds per
inch

h distributed axial load acting on sheet, pounds per
inch

1 :\/;“ 1

ki, ey real roots of auxiliary algebraic equation

m distributed moment acting on sheet, inch-pounds
per inch

P normal force in stringers, pounds per inch

q shear flow in sheet, pounds per inch

s distance in circumferential direction, inches

t thickness of sheet, inches

t’ thickness of all material carrying bending stresses
in panel if uniformly spread around circum-
ference, inches

U displacement of sheet in axial direction, inches

v displacement of sheet in circumferential direction,
inches

Vo displacement of sheet in circumferential direction
at ring, inches

w displacement of sheet or ring in radial direction,
inches

x distance in axial direction measured from loaded
ring, inches

v shear strain in sheet

€5 normal strain in sheet in circumferential direction

€r normal strain in sheet in z-direction

] angular distance, degrees or radians

o stringer normal stress, pounds per square inch

o normal stress in sheet in circumferential direction,
pounds per square inch

T shear stress in sheet, pounds per square inch

GENERAL DIFFERENTIAL EQUATION

The basic element of the present analysis is a two-bay
panel, as shown in figure 1, composed of sheet, longitudinal
stiffeners or stringers, and transverse stiffening ring sections
of constant radius. Distributed or concentrated loads are
applied in the plane of the middle or flexible ring. By
joining several panels at points of tangency, many two-bay
eylinders of various cross-sectional shapes can be achieved.

In actual practice the sheet covering is outside the rings,
and this eccentricity of sheet and ring is henceforth taken
into account. For convenience the moment considered is
the moment which exists at the sheet center line rather than
at the neutral axis of the ring. From this moment the
bending moment in the ring is easily found.

The underlying assumptions used in the analysis are as
follows:

(1) The shear stress, carried by the sheet alone, may vary
in the circumferential direction but remains constant in the
axial direction.

(2) The material in the cross section of the panel (sheet
and stringers) capable of carrying normal stresses due to
bending of the panel is assumed spread around the circum-
ference in a fictitious sheet of thickness #’.

(3) The loaded ring has no torsional stiffness or bending
stiffness out of its plane.

(4) The end ring supports are restrained from deforming
in their planes but are free to warp out of their planes.

Under these assumptions, for any panel with constant
geometrical properties, a general differential equation is
developed for the moment at the sheet center line. All
forces, stresses, and displacements in the panel may be
obtained from that moment. The general differential equa-
tion (see the appendix for development) is

d*M 6e2 A\ d*M

dcM
ag T2—38) g +(1_GB+ 2T

3[3_2—;{é<2—%+%2)]%+614(1—%+%> M=F(5)
(1)
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where

&h o dh
F(o)— RZ[d65+(1 3B)W—3B%:|+

B0 fl-o(- 5 e
'6eA<1 R+R2>f:|+
{d67+(2 3B) d95+<1 6B+050) Ui —

3[3“2“1(1 R+R2) de}

When the ratio ¢/R, a measure of the eccentricity of the
ring and sheet, is very small (7%<<\/ —g) it can be neglected;

equation (1) then contains only the two nondimensional
parameters A and B, which are related to the geometry and
16 747 22
A=YT ana =200
The ratio A/B is an index of the over-all flexibility of the
structure. When this ratio is very small the ring section is
rather rigid. A large value of 4/75 (500, for example) indi-
cates that the ring section is somewhat flexible, so that radical
departures of the stress distributions from the elementary
values result. In actual practice the paramcter 53 varies
over a small range (between about 10 and 80), whereas A
is usually much larger and may be as great as 2X107, or
even more; consequently, flexibility may be thought of in
terms of parameter A alone. Values of A less than about
200 usually indicate relatively inflexible rings, and increasing
values indicate increasing ring flexibility.
The right-hand side of equation (1), F'(8), contains terms
resulting from the application of distributed loads; if only
concentrated loads are present F(6) becomes zero.

physical properties of the panel:

CYLINDER UNDER TRANSVERSE LOADS 3
SOLUTION OF GENERAL DIFFERENTIAL EQUATION

The solution of equation (1) depends upon the nature of
the roots of the auxiliary algebraic equation associated with
the differential equation. Of the required eight roots of the
algebraic equation, four may be real and four complex, or
all eight may be complex. (For the special case of no
eccentricity of ring and sheet, sets of roots for several com-
binations of parameters A and B are given in table I.)

If there are four real roots +k;, +k, and four complex
roots = (azb1), the solution for the bending moment is

M= Cre"1?+ Cre %18+ Crpe’2d - Crve ~20 -
Ove (a+b1) 8 + OVIe @—0bi)e _|_ OVIIe — (a+0bi) 8 +

Oyime~ @04+ Particular solution

2
which can be written in real form as

M=, sinh k,0-+C, cosh k8+C; sinh k6+C, cosh k.0+
™ sinh a8 cos b8+ (% sinh af sin b8+ (; cosh ad sin b8+
(s cosh af cos bo+gJ(0) (3)

If there arc four pairs of complex roots =4 (¢;4d7) and
+ (e, +ds1), the bending moment is
H t=1
M= Cpe@4D0 L (pe@ =000 L (o= a0 L O o= (=410
Clye©ataeD 0 (Ol g Ca=daD 0 (V1 o= (CatdaD0 | (1 o= (ea=daDO Y
4)

Particular solution
which, written in real form, becores

M=C, sinh ¢,6 cos d,0+ C, sinh ¢,8 sin d,0+ (; cosh ¢,0 sin d,6+
Y, cosh ¢,0 cos d,0+ (5 sinh ¢,0 cos ds0-+ (s sinh ¢,8 sin d.0+
(7 cosh ¢80 sin &0+ C5 cosh ¢80 cos d.04-7J(0) (5)

Since the particular solutions gJ(6) and 7J(6) depend upon
the form of /'(6), no formal solutions are given here. Further

TABLE I.—ROOTS OF AUXILIARY ALGEBRAIC EQUATION WHEN e=0 FOR SEVERAL COMBINATIONS OF 4 AND B

[ AR, _Et'R2:|
—1E P
\A\< 20 60 150 350 Root symbols
+1. 250205 +0. 956180 +-0. 743842 +0. 571042 4 ky
102 + 7. 745793 +13. 416404 +21, 213203 +32. 403439 + ko
4 (0. 612234 4+ 1. 4679887) + (0. 475554 + 1. 2973977) 4+ (0. 3713104 1. 189335¢) + (0. 290865 4= 1. 1131444) + (a £ b7)
4-2. 027436 + 1. 613689 +1. 326187 +1. 092601 +5k
108 +7. 744229 4+ 13. 416370 4-21. 213202 +32. 403439 + ko
+ (0. 972538 4 1. 996901+7) + (0. 798821 + 1. 7145257) + (0. 661073 £ 1. 5219627) + (0. 547534 4 1. 3740907) + (a£bi)
4 3. 157270 +2. 523294 +2. 117014 + 1. 795392 +k
104 +7. 728363 +13. 416028 +421. 213188 +32. 403439 + ks
-+ (1. 447531 4+ 2. 818390¢) 4+ (1. 236394 4 2. 388951%) + (1. 0521304 2. 0850727) + (0. 896469 4 1. 8457887) =+ (a + b7)
+ 5. 016203 =+ 3. 835266 -+ 3. 230542 + 2. 769566 +k
108 + 7. 539604 +13. 412609 +-21. 213049 +32. 403431 + ko
+ (2. 058771 4-4. 0301997) - (1. 837706 -1 3. 4177227) + (1. 595017 4= 2. 9595627) + (1. 379274 4-2. 5939997) + (a4 bt)

232355—53—2
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remarks concerning the solution of equation (1) are confined
to the solution in real form, either equation (3) or equation
(5).

Equation (3) or equation (5) expresses the moment in any
particular panel where A4, B, and R are constant; such a
solution exists for each panel constituting the structure to
be analyzed. For the case of a circular cylinder, solution
(3) or (5) is the same as the energy solutions of references
2 and 3 for a similar two-bay structure.

RELATION BETWEEN THE MOMENT M AND OTHER FORCES
AND DISPLACEMENTS

All forces and displacements in the panel may be expressed
in terms of the moment given by equation (3) or (5) and
derivatives of this moment. As previously noted, this
moment is the moment at the sheet center line, and with the
exception of the ring bending moment all other forces and
displacements are those at the center line of the sheet. When
no eccentricity is involved the sheet center line coincides with
the neutral axis of the ring. Of major interest in a structure
such as the one described herein are the forces, stresses
(obtainable from the forces), and displacements listed in
the following paragraphs, together with their mathematical
expressions which are readily obtained in general form in the
appendix. These expressions become considerably simpli-
fied in the absence of distributed loads. (For positive sign
convention of the displacements and forces sce figs. 1 and
3, respectively.)

4

M
} Rf do
H Rm df
Rh d8
2/ B veav
M+0’M
H+dH

FIGURE 3.—Free-body diagram of ring section showing positive directions of forces.

The eight quantities listed in this paragraph are associated
with the boundary conditions (discussed in the next section).
These quantities—the forces and displacements at the
flexible ring, the shear flow at the panel edge, and the axial
displacement between the flexible and rigid rings at the panel
edge—are:

(1) Bending moment, M

(2) Shear force

1dM

V=% a5 ~

(3) Axial force

1 d2M
H=—p +Rf+do

(4) Sheet shear flow

1 {dM+d3M
I=3REV do " de

[ e8]

[da +ZZJ: TR (%J“(fia;? )]}

(6) Tangential displacement

(5) Axial displaccment

L2 {dzM d*M
4RPEY | de? d94_

U=

==z s Tae — e (n ) I+
sl R IS )
(7) Radial displacement
=g as iy gt (T ) )
Gziktf{déé‘? e g+ ai 1(a ) )1+
<M+1‘;dd;‘f elﬂf—e%
(8) Rotational displacements
i Qéat{ddﬁ“r 2 Gy R [t
e R( T2 (fzzgng(g;?)]} %{%ﬁr
N A by e (G
2@ )V ar (T 7 e R

The shear and normal stresses in the two supporting panels

follow. The shear stress + in the sheet is given by
1 (dM  &PM f d*m
g ‘213%{ a6 Tag F [h+d +R< LT >]}

The stringer normal stress ¢ is

g (@) ] o

The ring bending moment—that is, the bending moment
about the neutral axis of the ring—is

—x{d21\1+d4]\1
2R d6*  de*

d*M
Y ST T

Tor no eccentricity the moment at the sheet center line be-
comes the ring bending moment.
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BOUNDARY CONDITIONS

Inasmuch as a general differential equation of the form of
equation (1) applies for each of the panels composing a
given structure, a like number of bending-moment solutions
of the form of equation (3) or (5) results. For the deter-
mination of the unknown coefficients. appearing in these
solutions & sufficient number of boundary conditions must
be found, one for each coefficient. Regardless of the number
of panels, the boundary conditions involve only the eight
expressions listed in the previous section, consisting of the
forces and displacements which occur at the sheet center
line.

Although, for a particular problem, the application of
these expressions depends upon the structure to be analyzed
and the loading, all the boundary conditions may be
summarized in one general statement: No change in

displacement or forces can occur across a boundary unless a
concentrated force is applied at the boundary, in which case

gonceniraie 10ICC 15 appiict &L vl polllidaly, 2L G Cs

the change in forces must equal the apphed force. Any
concentrated load in the plane of the ring can be resolved into
a radial or shearing force, a tangential or normal force, and
a moment. Then when a concentrated load is applied, the
boundary conditions require that the difference in shear forces
of the adjacent panels be equivalent to the applied radial
load, the difference in axial forces be equivalent to the
applied tangential load, and the difference in moments equal
the applied moment. In the absence of any concentrated
loads, all the forces and displacements must be continuous;
that is, all eight expressions in one panel must equal the
corresponding expressions in the adjacent panel. If a con-
centrated load is applied within a panel, it is necessary in
the analysis to consider the point of application of the load
as a boundary and, hence, to consider the panel as two
panels, one on either side of the load.

Although terms associated with distributed loads appear
in the expressions for the boundary conditions, distributed
loads affect the boundary conditions only indirectly inas-
much as they affect the displacements.

Further discussion of boundary conditions, as they apply
to one of the numerical examples, is given in the following
section.

NUMERICAL EXAMPLES

The numerical examples deal with two geometrically
similar cylinders constructed of four panels forming a
doubly symmetrical, essentially elliptic cross section (fig. 2),
with the flexible ring subjected to. concentrated radial,
moment, and tangential loads at an intersection with the
major axis. Cylinder 1 has a very stiff loaded ring and
cylinder 2, a relatively flexible loaded ring. For each cylinder
the sheet thickness is constant, there is no eccentricity of
ring and sheet, and the radius R, of the top and bottom
panels is one-third the radius R, of the middle panels. The
moment of inertia of each ring is constant, but because of
the change in radius, the rings change in relative stiffness
from one section to another as indicated by the change in
A/B given in table II. As seen in figure 4, the top panel,

TABLE II—-NUMERICAL VALUES USED IN COMPUTATIONS

4 UBS. o BUR?
[ =y B GtL2]
Cylin- . A Roots of auxiliary
der Section A B B " equation
+0.236301
2
1and 3 7—529 50 0. 03 +2.581786
9 +(0.109747 +1.0195321) |
. :
+1.061451
2 50 |20 250 +7.745880
+(0.521510 + 1.3544935)
150000 | 20 +(2.509792 -+ 0.6216657)
1 and 21 92,59
and3) o9 1 9 5 | 1 (0.915513+2.101999:)
2
+5.534415
2 150,000 | 20 | 7500.00 +7.395633
+(2.181206 - 4.2918827)
§=0°
! _.-Section |
7 _e0°
8 ! ---Section 2
| _ L _
L Ni2o®
“Section 3

180°

FIGURE 4.—Cross-sectional view of half of loaded ring used for numerical exampies.
section 1, joins the middle panel, section 2, at §=60°, and
the middle panel joins the bottom panel, section 3,-at
6=120°. (These dimensions were also used in constructing
fig. 2.)

Comparisons of the calculated distributions of bending
moment, shear force, and axial force in the ring and of
shear flow in the sheet with the distributions given by the
elementary theory are shown in figures 5 to 10. The neces-
sary numerical values used in the calculations are given in
tables IT and III. For ease in reading figures 5 to 10, the
abscissa, although it actually represents distance along the
perimeter, is given in degrees measured from the vertical
axis of symmetry (as shown in fig. 4). Thus, since the ring
perimeter of section 2 (fig. 4) is three times that of section 1
or section 3, whereas the angular distance for all three
sections is the same (60°), the distance in figures 5 to 10
along the abscissa from 120° to 60° (corresponding to
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TABLE IIL—VALUES OF COEFFICIENTS! FOR NUMERICAL EXAMPLES

Cylinder 1 Cylinder 2
Coefficient Load Load
Radial Moment Tangential Radial Moment Tangential

C | .. 0. 147507 0.249767 | L ____ —0. 860733 —03 0. 119301 —03
Cy 0.679031—01 | ______________ | oo ___ 0.949137—04 | __ . _________._ | ___________._..
Cy | .. 275041 —04 — 157406—03 | ______________ 292731 —03 —. 371518 —04
ls) 125895—05 | oo | .. — 284700—03 | ___ o | ..
Cs | L —. 136156 754809 | _____.__ R —. 148018 —01 221238 —02
Cs — 5256229 | L. | .. — 197121—02 | ______________ | o ____.____.
Cr .l —. 165618 236338—03 | ... - _____ —. 521539 —02 484959 —03
Cs .282018—01 | . _____ . | o _______ — 354900—02 | . ___ . _____ . | L _____.__._.
Cy . 171565—01 . 188166 . 202467 —. 657213 —08 . 140829 —06 —. 161423 —07
Cho . 303490 —01 —. 121785 — 111398 —. 534558 —01 . 270768 —. 697692 —01
Cy —. 264559 —10 . 116591 —10 —. 116591 —10 . 397640 —09 —. 161540 —08 . 710774 —09
Ci2 . 889303 —. 508263 —01 . 851830 —. 479259 —. 3806124-01 . 638771

Cis . 329176 —01 —. 296012 . 472934 —. 122989-—01 —. 361474—01 . 485865 —02
Ciy —. 490646 . 373871 —01 . 290987 . 829422 —03 —. 491296 —01 . 702908 —02
Cis . 192013 —. 184225 —. 160403 — 117551—02 . 471184—01 —. 668234—02
Cis . 720834 —01 . 274929 —. 400188 —01 . 131739 —01 . 392728 —01 —. 527300—02
Ci; —. 119460 —. 164389 —01 . 174960 —. 119054 —05 . 778086 —04 —. 192398 —04
Cis . 315057 . 363960 . 224540 —. 202194401 —. 711069401 . 872951

Ch —. 898224 —08 . 174922 —09 . 30127107 . 342801 —04 . 804877 —04 . 168139 —04
Cao —. 71127502 —. 259599 —. 364881 . 216297401 . 882602401 —. 112279401
Cy —. 640348 —01 . 207820 —02 . 128917401 —. 497509 —01 —. 142194 . 194136 —01
Chy —. 531867 . 131177 —01 . 506058 —01 —. 226239 —01 —. 709217 —01 . 370731 —02
Coz —. 254629 —. 304436 —. 328941 . 375148 —01 . 124468 —. 104012 —01
Cy . 194401 —01 —. 242335 —01 —. 613555 —03 . 53286101 . 167720 —. 241624 —01

1 The following convention is used to indicate_multiplication factors: +01=X10; +02=X10% —01=X10"; —02=X10-2; and so forth.

section 2) represents threc times the distance from 180°
to 120° or from 60° to 0° (corresponding to sections 1 and 3).
For the numerical examples, the labor of computation
necessary to calculate the bending moment and other
desired quantities may be shortened somewhat through cog-
nizance that antisymmetrical loading produces an anti-
symmetrical moment distribution about the vertical axis
and symmetrical loading yields a symmetrical distribution.
Hence, only half the cylinder at the ring need be considered
(fig. 4). The procedure used in obtaining the numerical
results is illustrated by taking as an example cylinder 2
subjected to a concentrated radial load at §=180°. The
discussion to follow is confined to cylinder 2 so Joaded.

DIFFERENTIAL EQUATIONS AND SOLUTIONS

In the top panel, section 1 (fig. 4), the differential equationis

14 dM 37 d*M 20 d*°M | 900000

diM
T3 det T 3 def 39

det T 3 det M=0

The resulting auxiliary algebraic equation yields the eight

complex roots (see table II):
£ (e1Edn) = 4(2.509792 +0.6216651)
£ (es+dt) =4 (0.915513 +2.1019997)

Since symmetrical loading is applied to the structure, the
moment in this section is given by only the symmetric terms:

M, ion1=C sinh ¢80 sin d,6-+ C, cosh ¢,6 cos d,0+
Cs sinh ¢,0 sin d.0-+ C; cosh ¢.0 cos d,60 (9)

In the middle panel, section 2, the differential equation is

&M M &M M

a2 g — det 7Y de

119 +900000M =0

The auxiliary algebraic equation has the eight roots (see
table I1):

+ky=45.534415
+ky=47.395633
+(adbi)=4(2.181206 +4.2918821%)
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FIGURE 6.—Ring shear-force and axiu-force distributions produced by concentrated radia
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The moment in section 2 is then

M“d,-on 23091 Sin}l k10—|—010' COSh k10+ 011’ sinh k20+
Cy.’ cosh ks8--C,; sinh af cos b6+
C,4 sinh a8 sin b8+ C,5 cosh af sin bo--
Cis cosh af cos b6
but since k0 and k.0, when 6=60° and 6=120°, are large
enough so that their respective hyperbolic sines and cosines
are of almost equal magnitude, it is better for computational
purposes to rewrite the moment in section 2 as
M oion = Coe*1? 4 Croe=F10 + Cryek2* + Cre—kaf
C,; sinh ad cos b8+ Oy, sinh af sin b8+
(45 cosh af sin b8+ Cys cosh a8 cos bo (10)
For the bottom panel, section 3, the differential equation
is the same as for the top panel and the auxiliary algebraic
equation has the same roots. Hence, the moment 1s given by
Mccl‘ian 3= 017, Sinh 619 Ccos d10+ 018, Sinh 016 Sin d10+
O, cosh ¢,0 sin d,9+ Cyy cosh ¢,0 cos d,0 -
O sinh ¢.0 cos dy8 + Oy, sinh ¢;6 sin d.60 +
C,; cosh ¢,6 sin d.0 +C,y cosh c;6 cos d,0

(a) Ring shear force.
(b) Ring axial force.

FIGURE 10.—Ring shear-force and axial-force distributions produced by concentrated
tangential load 7 at §=180°.

However, for 6=120° and §=180° the hyperbolic sines and
cosines, respectively, of ¢,0 are almost identical, and it is
advisable for computational purposes to rewrite the moment
in the bottom panel in the form

M, sin 3= C17¢°1® cos d,0 +C5e % cos d,0 +
O 1pe°1? sin d,0 +Cge %20 sin d,0 -+
Oy sinh ¢,0 cos dy8 + C,, sinh ¢,0 sin d.6 +
(.3 cosh ¢,0 sin d.8 4Oy cosh ¢,0 cos d26  (11)

BOUNDARY CONDITIONS

Equations (9) to (11) contain twenty unknown constants;
hence, twenty boundary conditions are needed. No bound-
ary conditions are found at §=0, since continuity of all
forces and displacements is already satisfied as a consequence
of taking advantage of the symmetry of the structure and
loading. The boundary conditions to be used in the calcu-
lations must be found at #=60°, §=120°, and §=180°.

Eight of the boundary conditions are supplied at §=60°,
where, in the absence of any concentrated loads, all eight
expressions in section 1 must equal the corresponding expres-
sions in section 2. That is, the moment, shear force, dis-
placements, and so forth must be continuous. For example,
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the first condition requires continuity of the moments or

Msedz'on. 1~ Msech'an 2= 0

which can be written

0177' d17r
-5t

Com (If)ﬂ'

2T 1 O cosh 22X ¢o 3

C, smh 97 sin ——|~C’4 cosh ——

.y CoT .
0631nh§—51

ko knr ko I\:~_7r
093T+0106 3 +Che 3 +Crpe 3+
bw

Sy

br ., am
?—{— (s sinh = sin

(5 sinh %r cos
ar . bw am br
Ci; cosh = sin ?—}— (s cosh 3 cos ?>—O

The other seven boundary conditions appearing at 8=60°
are written in a similar manner. The same continuity of
the forces and displacements must exist at =120°. Thus
sixteen boundary conditions are provided, with the four
remaining conditions to be found at §=180°.

For an applied radial load, the sum of the shearing forces
on either side of the cut must cqual the applied shearing
load P. Because of the symmetry of the structure and load-
ing, half of this load is carried by section 3 and the other
half of the load is carried by the panel to the left, which
need not be considered. Furthermore, the shear flow in the
sheet is 0 at §=180°, there can be no tangential or sidewise
displacement at 8=180°, and there are no angular displace-
ments caused by a concentrated radial load at this point.
Hence, the four boundary conditions needed may be summed
up as follows:

VISOOZO‘5P (12&)
q1500=0 (12b)
V1500="0 (12¢)
dw
?Z§+ 7). =0 (12d)

Equations (12a) to (12d) can be reduced by proper

substitution to

(dM —0.5PR,
1800
&M
<—d‘(‘)é— 1800——0.5PR1
&M
<d7M —_0.5PR,
1800

For example, equation (12a) can be written
Cire™(c; cos dyr—d,y sin dym)— Crge =" (¢, cos dyr -+ d, sind ) -
Croe®t™(cy sin dyw +d; cos dym) — Cope ™ (¢ sindir —d  cos dym) +
Ch(cs cosh ¢ cos dam—d; sinh com sin dym) 4
O(c, cosh com sin dow+d; sinh ¢or cos dom) +-
Crs(cy sinh ¢ sin dyw-+d, cosh com cos dom) +

Cau(cy sinh com cos dyr—d, cosh cym sin dow) =0.5P12,

The solution of the twenty equations given by the boundary
conditions yields the values of the unknown coefficients O,
Cy, . . . O, Coy shown in table III. The bending moment
in the loaded ring at any angle 6 is then found by using
equation (9), (10), or (11) with the appropriate coefficients.
For example, substituting coefficients Ci; to Oy from table
ITT into equation (11) for §=180° gives

Miggo——0.119054 X 10~*PR,(2.656444 X 10°) (—0.372983) +
(—0.202194 X 10'PR,)(0.376443 X 10~%) (—0.372983) +
(0.342801 X 10~*PR,) (2.656444 % 10%) (0.927839) +
(0.216297 X 10'PR,) (0.376443 % 10~2) (0.927839) +
(—0.497509 X 1071PR,) (8.444906) (0.949098) +
(—0.226239 X 10~ 'PR,) (8.444906) (0.314983) -
(0.375148 X 10~1PR,)(8.901257) (0.314983) +
(0.532861 X 10~'PR,)(8.901257) (0.949098)

=0.161390PR,

CONCLUDING REMARKS

The results obtained from the numerical examples agree
with those previously obtained for circular cylinders (ses,
for cxample, references 2 and 3) in indicating that concen-
trated loads applied to flexible rings produce stresses in the
rings and shell considerably different from those computed
from an engineering analysis (wherein the ring is treated as
a free ring supported by the usual elementary torsion and
bending shears). Ring flexibility is essentially indicated by

7 J26
the parameter 4 <=t—1%> ; where A is everywhere less than

about 200 the engineering analysis is adequate, but if A
exceeds 200 such an analysis is inadequate.

The main effects of fHexibility are to change considerably
the distribution of stress and the magnitudes of the maximum
stresses. The change in maximum stresses is indicated in
the following table, which gives the approximate ratios of
the absolute values of the maximum stress coefficients for
cylinder 2 (A=~206 ncar the load but 150,000 some distance
away) to the maximum stress coefficients obtained from an
engineering analysis:

AN
N\ Type of
N\ stress
AN Cn Cq Cy Cu
Load \
Radial 0.5 4.5 1.2 1.4
Moment 1.0 47.5 3.4 6.3
Tangential .2 5.4 ¢ 1.0

For much larger values of A—that is, for greater flexibility—
the ratios greater than unity would increase considerably,
those less than unity would decrease somewhat, and the
ratios of unity would remain unchanged.

LANGLEY AERONAUTICAL LIABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LancLey Fiewo, Va., August 1, 1951.
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APPENDIX
DEVELOPMENT OF GENERAL DIFFERENTIAL EQUATION

Consider the two-bay panel with uniform gcometrical
properties (fig. 1), loaded in the plane of the middle ring.
In accordance with the assumption that the shear stress in
the sheet may vary circumferentially but remains constant

}m the axial direction, an infinitesimal element of the sheet
is'subject to the stresses shown in ﬁgule 1.

Equilibrium in the z-direction requires that

—tdsdz—}——— tdxds=0 (A1)
Since
Tt=¢q
and
ot'=p

equation (Al) becomes
op, 9q_
a£+—a—§_o (A2)
Integrating equation (A2) with respect to r gives
0
p=—r 5T/

However, since the end ring supports are free to warp out
of their planes, p=0 at 2=1, and therefore

N7 24
fl('s)_L as
Then

0q
y=(L—r)—
p=( ) Se
The strain relation in the z-direction gives

ou_ 1P
dr LV
so that
ou 1
or—mr L5, (43)
Integrating equation (A3) with respect to 2 gives

1 22\ D
u=ggp (L= ) §24749)

but since, from symmetry of the structure and loading,
u=0 at r=0,
f2()=0
so that
1 %\ 0¢q
~mr (F=%) 58 (A4)

The shear strain can be expressed as

q % ov
R~ ox (A5)

from which % can be eliminated and » can be found in terms
of q. Differentiating equation (A4) with respect to s and

substituting the result into equation (A5) gives

q o’q
=Gi EV (L

2 W
Integrating with respect to  yields

bv

_q . 1 (Lz* 2°
=@ TTEIU2 T8 asf‘"f“()

but since the end ring supports are rigid in their planes,
»=0 at z=1, and

L 2%
.fS(S) + 3Et/ as

so that

:c—L

V="~ 1~ GEt,(SLx—z

g

3y 24

2L?) ds?

This displacement in the sheet at the ring, where z=0,
becomes

L L 2%

"= g1 UV SR o

(A6)

The relation between the strain in the sheet in the eircum-
ferential direction and the deflections at the ring is

_L(dv_,,
“TR\ do
where by continuity w is the radial deflection of both ring

and sheet. Since the strain e in the sheet is the strain at the
outermost fibers of the ring,

“TET T EI

Thus the radial deflection can be expressed as

*‘;R_%R d”O (A7)

Differentiating equation (A6) and substituting the result into
equation (A7) yields
_ellM, Ldq, L* d%
~“Br "~ 0o VY aF (A8)
The relation between the ring bending moment and the
vadial deflection is given by (see, for example, reference 11)

Kl dzw
Ma=— s (G +0) (49)

Performing the indicated differentiation of equation (AS8)
and substituting the result into equation (A9) eliminates w
and gives

Z‘JRZ'—

EI TeR /d*M; L /d%q , dg
T—oy E( a6 +MR>“'672 <&F+Ez'§)+

I3 d? al3
3REY ol—eg d0%>:| (A10)

11
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It is now convenient to find the relation between the shear
flow in the sheet and the moment at the sheet center line,
as well as to express the moment at the ring center line in
terms of the moment at the sheet center line. Figure 3
shows an infinitesimal segment of the loaded ring and the
positive directions of the forces. For the first of the three
equations of equilibrium, taking moments about the origin
gives

—dM+RdH+R*h d0+Bm do+2R*q d6=0

or

1 /dM dH

R _poh—Rm ) (A11)

=3 \do " a6

Summation of the tangential forces (neglecting terms of
higher order) gives

Vdo—Rhdo—2Rqd6—dH=0

or
=(—i£—|—Rh+2Rq (A12)
Summation of the forces in the radial direction gives
—Hdo+Rfdo—dV=0
or
H— —%—{—Rf (A13)

Substituting the value of ag;[ from equation (A12) into equa-
tion (A11) yields the shear force at 6

1 dM

Differentiating equation (A14) and substituting the result
into equation (A13) gives the value of the normal force at
the sheet center line at 6

1 d*M dm

H=—p e TR+ 55 (A15)

Differentiating equation (A15) and substituting the result
into equation (A1l) gives the expression for the shear flow

in the sheet at ¢
df | 1 d*m
wlatgm(n+ )|} @

The bending moment about the ring center line can be seen
to be composed of the moment M and the product of the
axial force H and the eccentricity ¢ or

1 d:M
~oR? { de + de

.Z"IR:M'_'GH

e d*M

—M+5 o —eRf— de (A17)

Differentiation of equations (A16) and (A17) and sub-
stitution of the result into equation (A10) leads to the
desired differential equation

+(2 3B) 2 d06 +(1 6B+66A d;%—
3[B-?%4<2 R+R2>]d;02+6A<1 R+R2>M Fo)

(A18)
where

Fo=B | Seta—38) Ti-3B 5L |+

2¢2A

d06+<1_33)d04 3<B '“)defl'

6eA e e
B (1——R+ng>f]+
6e2AN d*m

R{d67+(2 3B) d05+<1—6B+ on_

2¢A e, e m
3[3— v (1"R+R‘z>] 726}
Equation (A18) is the general form of the differential equa-
tion for the bending moment at the sheet center line for any
of the panels composing the structure. The bending
moment in the ring for any such panel is given by equation
(A17).
REFERENCES

Wignot, J. E., Combs, Henry, and Ensrud, A. F.: Analysis of

Circular Shell-Supported Frames. NACA TN 929, 1944,
2. Hoff, N. J.: Stresses in a Reinforced Monocoque Cylinder Under

[y

Concentrated Symmetric Transverse Loads. Jour. Appl.
Mech., vol. 11, no. 4, Dec. 1944, pp. A-235—A-239.
3. Kuhn, Paul Duberg, John E., and Griffith, George E.: The Effect

of Concentrated Loads on Flexible Rings in Circular Shells.
NACA ARR L5H23, 1945.

4. Duberg, John E., and Kempner, Joseph: Stress Analysis by
Recurrence Formula of Reinforced Circular Cylinders Under
Lateral Loads. NACA TN 1219, 1947.

. Kempner, Joseph, and Duberg, John E.: Charts for Stress Analysis
of Reinforced Circular Cylinders Under Lateral Loads. NACA
TN 1310, 1947,

6. Beskin, Leon: Local Stress Distribution in Cylindrical Shells.

Jour. Appl. Mech., vol. 13, no. 2, June 1946, pp. A—137—A-147
7. Hoff, N. J., Salerno, Vito L., and Boley, Bruno A.: Shear Stress
Concentration and Moment Reduction Factors for Reinforced
Monocoque Cylinders Subjected to Concentrated Radial Loads.
Jour. Aero. Sci., vol. 16, no. 5, May 1949, pp. 277-288.

8. Airplane Structures Research Staff, Polytechnic Institute of
Brooklyn: Concentrated Load Effects in Reinforced Monocoque

(%3]

Structures. Reissner Anniversary Volume: Contributions to
Applied Mechanics. J. W. Edwards (Ann Arbor), 1949,
pp. 277-332.

9. Levy, Robert S.: Effect of Bending Rigidity of Stringers Upon
Stress Distribution in Reinforced Monocoque Cylinder Under
Concentrated Transverse Loads. Jour. Appl. Mech., vol. 15,
no. 1, March 1948, pp. 30-36.

10. Goodey, W. J.: The Stresses in a Circular Fuselage. Jour.
R.A.S., vol. 50, no. 431, Nov. 1946, pp. 833-871.

11. T1moshenko, S.: Theory of Elastic Stability.
Book Co., Ine., 1936, p. 206.

MceGraw-Hill

U. 5. GOVERNMENT PRINTING OFFICE: 1953



