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A STUDY OF INVISCID FLOW ABOUT AIRFOILS AT HIGH SUPERSONIC SPEEDS!

By A. J. Egeers, Jr., CLARENCE A. SYVERTSON, and Saausn Kraus

SUMMARY

Steady flow about curved airfoils at high supersonic speeds is
wnvestigated analytically. With the assumption that air behaves
as an deal diatomic gas, i 8 found that the shock-expansion
method may be used to predict the flow about curved airfoils up to
arbitrarily high Mach numbers, provided the flow deflection
angles are not too close to those corresponding to shock detach-
ment. This result applies not only to the determination of the
surface pressure distribution, but also to the determination of the
whole flow field about an airfoil. Verification of this observa-
tion 18 obtained with the aid of the method of characteristics by
extensive calculations of the pressure gradient and shock-wave
curvature af the leading edge, and by caleulations of the pressure
distribution on a 10-percent-thick biconvex airfoil at 0° angle of
attack.

An approxzimation to the shock-expansion method for thin
airfoils at high Mach numbers 18 also investigated and is found
to yield pressures in error by less than 10 percent at Mach
numbers above 3 and flow deflection angles up to 26°. This
slender-airfoil method is relatz'vely simple in form and thus may
prove useful for some engineering purposes.

Effects of caloric imperfections of air manifest in, dwturbed
Jlow fields at Ingh Mach numbers are investigated, partwular
aitention being given to the reduction of the ratio of specific
heats. So long as this ratio does not decrease appreciably below
1.8, it 1s indicated that the shock-ezpansion method, generalized
to include the effects of these imperfections, should be substan-
tially as accurate as for ideal-gas flows. This observation is veri-
fied with the aid of a generalized shock-expansion method and a
generalized method of characteristics employed in forms appli-
cable for local air temperatures up to about 5,000° Rankine.

The slender-airfoil method is modified to employ an average
value of the ratio of specific heats for a particular flow field.
This simplified method has essentially the same accuracy for
wmperfect-gas flows as s counterpart has for ideal-gas flows.

An approximate flow analysis is made at extremely high Mach
numbers where it is indicated that the ratio of specific heats may
approach close to 1. In this case, it 18 found that the shock-
cxpansion method may be in considerable error; however,.the
Busemann method for the limit of infinite free-stream Mach
number and specific-heat ratio of 1 appears to apply with
reasonable accuracy. .

INTRODUCTION

Small-disturbance potential-flow theories have been em-
ployed widely, and for the most part successfully, for pre-

dicting the pressures (and velocities) at the surface of an
airfoil in steady motion at low supersonic speeds. Thus the
linear theory of Ackeret (ref. 1) has proven particularly use-
ful in studying the flow about relatively thin, sharp-nosed
airfoils at small angles of attack, while the second-order
theory of Busemann (ref. 2) has found application when
thicker airfoils at larger angles of attack were under consid-
eration. At highfree-stream Mach numbers the range of appli-
cability of any potential theory is seriously limited, however,
due to the production of strong shocks by even the relatively
small flow deflections caused by thin airfoils. The assump-
tion of potential flow is invalidated, of course, by the pro-
nounced entropy rises occurring through these shocks.

This limitation on potential theories was early recognized
and led to the adoption (see ref. 3) of what is now commonly
called the shock-expansion method. The latter method de-
rives its advantage over potential theories, principally, by
accounting for the entropy rise through the oblique shock
emanating from the leading edge of a sharp-nosed airfoil.
Consequently, so long as the disturbed air behaves essen-
tially like an ideal gas, and so long as entropy gradients
normel to the streamlines (due to curvature of the surface)
do not significantly influence flow at the surface, the shock-
expansion theory should predict the pressures at the surface
of an airfoil with good accuracy—it is tacitly assumed, of
course, that the flow velocity is everywhere supersonic, and
that the Reynolds number of the flow is sufficiently large to
minimize viscous effects on surface Pressures.

The departure of the behavior of air from that of an ideal
gas at the temperatures encountered in flight at high super-
sonic speeds has been the subject of some investigation in
the case of flows through oblique shock waves. In reference
4, the effects of thermal and caloric imperfections on the
pressure rise across an oblique shock wave were investigated
at sea-level Mach numbers of 10 and 20, and it was found
that these effects decreased the rise by less than 5 percent
for maximum temperatures up to 3,000° R. (corresponding
to flow deflection angles up to 24°). This decrease was found
to be due almost entirely to caloric imperfections, or changes
in vibrational heat capacities of the air passing through the
shock wave. The changes in temperature and density of the
air passing through the wave were affected to a considerably
greater extent. Subsequently, an investigation was carried
out by Ivey and Cline up to Mach numbers as high as 100
(ref. 5), using the results for normal shock waves obtained
by Bethe and Teller considering effects of dissociation (ref.

1 Bupersedes NACA TN 2648, “Inviscld Flow About Alrfolls at High Supersonic 8Peeds” by A. J. Eggers, Jr., and Olarenco A. Syvertson, 1052, and NACA TN 2728 “An Analysis of
Bupersonio Flow in the Region of the Leading Edge of Curved Atrfoils, Including Charts for Determining Surtaes—Pressure Gradient and Bhock-Wave Curvature” by S8amuel Kraus, 1952,
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6). As would be expected, the pressures were found to be
affected to a somewhat greater extent at the higher Ma,ch
numbers.

The extent to which flow in the region of the leading edge
of an airfoil departs from the simple Prandtl-Meyer type

has also been investigated at high supersonic airspeeds. If

the surface is curved, for example, to give an expanding
flow downstream of the leading edge, expansion waves from
the surface will interact with the nose shock wave, thereby
curving it and yielding a nonisentropic flow field. This
flow field may be characterized not only by disturbances
emanating from the surface but also by disturbances reflect-
ing to some extent from the shock wave back toward the
surface. The manner in which these phenomena dictate
shock-wave curvature and surface pressure gradient in
ideal-gas flows at the leading edge has been treated by
Crocco (ref. 7) and more recently by Schaefer (ref. 8), Munk
and Prim (ref. 9), Thomas (ref. 10), and others. In the
cases considered by Munk and Prim, it was found that sur-
face pressure gradlents were less (in absolute value) than
those obtained assuming Prandtl-Meyer flow at the higher
Mach numbers (. e., Mach numbers greater than about 3)
although, generally, by no more than about 10 percent.
Since curved airfoils are likely to be of fundamental interest
at high flight speeds (see, e. g., ref. 11), the effects of reflected
disturbances would appear to merit further investigation
both at the leading edge and as regards their influence on
the whole flow field. In addition, it would appear desirable
to consider effects of gaseous imperfections through the field.

Such an investigation has therefore been undertaken in
the present report, using the method of characteristics to
obtain accurately flow fields and as a basis for obtaining the
more approximate methods of analysis. The method is
employed in a generalized form which allows caloric imper-
fections, as well as entropy gradients, in the flow to be con-
sidered at temperatures up to the order of 5,000° R.—thermal
imperfections are neglected (see ref. 4). A 10-percent-thick
biconvéx airfoil is treated at Mach numbers from 3.5 to
infinity, and the results are compared with the predictions
of the shock-expansion method, including a simplified form
of the method applicable to slender airfoils at high Mach
numbers and a generalized form of the method including
effects of caloric imperfections. In addition, flow in the
region of the leading edge of curved airfoils is considered in
some detail. Values of the surface pressure gradient and
shock-wave curvature are presented for a wide range of
Mach numbers and flow deflection angles. -

SYMBOLS

a local speed of sound

¢ chord

e, G characteristic coordinates (C, positively inclined
and C; negatively inclined with respect to the
local velocity vector)

Ce section drag coefficient

o section lift coefficient

Crm gection moment coefficient (moment taken about

leading edge)
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C, pressure coefficient, ?L;oﬂ
C» gpecific heat at constant pressure
o specific heat at constant volume
K curvature
M Mach number (ratio of local velocity to local speed
of sound)
P pressure ratio, 2
Do
P - static pressure
q dynamic pressure
R gas constant

8 n rectangular coordinates (in streamline direction
and normal to streamline direction, respec-

tively)

T temperature, °R.

t time

Vv resultant velocity

154 distance measured from leading edge along airfoil
surface

z, Y rectangular coordinates

@ " angle of attack, radians unless otherwise specified

8 Mach angle, arc sin (%) radions

¥ ratio of specific heats, z—’i
(Average value of v is v,.)

5 flow deflection angle, radians unless otherwise
specified '

t angle between shock wave and flow direction just
downstream of shock wave, radians

] molecular vibrational energy constant, °R. (5,600°
R. for air)

K ratio of shock-wave curvature to that given by the
shock-expansion method

p mass density

o +  sghock-wave angle, radians

¥ ratio of surface pressure gmdlent to that given by
the shock-expansion method

) ray angle for Prandtl-Meyer flow, radians

SUBSCRIPTS

0 °-  free-stream conditions

A,B,C,D conditions at different points in flow field

1 ideal-gas quantities

N "conditions at the leading edge immediately down-

stream of the shock wave
conditions on streamline
conditions along airfoil surface
- conditions along shock wave

a8 W

SUPERSCRIPT

- vector quantities
DEVELOPMENT OF METHODS OF ANALYSIS
GENERAL METHODS

Method of characteristios. —Two-dimensional rotational
sup ersonic flows have been treated by numerous authors with
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the aid of the method of characteristics, and various adapta-
tions of the method have been found which are especially
suited for studying particular types of such flows. In the
case of steady flows in which atmospheric 2ir does not behave
as an ideal diatomic gas, a very familiar and simple form of
the compatibility equations may be employed. To ﬂlustrate

consider the Euler equation

£i—Tz=—grﬂLd ey

the continuity equation

div (pV)=0 2)

and the equation for the speed of sound (evaluated at con-
stant entropy)

at=—= 3) ’

R.ewriting equations (1) and (2) in the form of partial dif-
ferential equations and transforming the resulting expressions
to the characteristic, or (', (;, coordinate system, there is
obtained, upon combination with equation (3), the following
relations for steady flow:

cot ﬁ op —
Y6 Z>+(ao +a0 ()
and .
cot B p
oV aal >+(aa ().

A simple addition or subtraction of equations (4) and (5)
then yields the compatibility equations (see, e. g., ref. 12)

op 2
ﬁ=—1¢>V2 tﬁnﬁgch (6)
and 5 5
p_ 9
a—cy—;—PW tan g8 50, (7

Now, in reference 4 both caloric and thermal imperfections
of air were considered, and it was found that the latter
imperfections ? have a negligible effect on shock processes in
atmospheric air, It may easily be shown that this conclusion
also applies to expansion processes and, for this reason,
caloric imperfections only are comnsidered in detail in the
present paper. These imperfections become significant in
air at temperatures greater than about 800° R. and first
manifest themselves as changes in the vibrational heat
capacities with temperature. Thus, the specific heats ¢, and
¢, and their ratio v for the gas also change., The equation of
state remains, however,

p=pRT ®

and the specific heats are still related to the gas constant by

the expression
cp—C, =R 9)

2 Thermal imperfections usually appear In the form of Intermolecular forces and molecular-
size cffects and may be accounted for with additional terms in the equation of state.
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Furthermore, it readily follows from the differential energy
equation and these expressions that the speed of sound is
given by the simple relation

@?*=vRT \ (10)
‘Combi.qing equatidns (8) and (10) and noting that
sin B=a/V there is then obtained
__D
Pw_sm: B8 (11)

Hence, on combining this equaﬁon with equations (6) and
(7), it is apparent that the familiar compatibility equations

Op _—2vyp 08

30, —=n 26 30, (12)
and
. bp 27p DB

also hold for the more general type of flow under considera-
tion. These equations are basic, of course, to two-dimen-
sional characteristics theory, and, as will be shown later,
form a convenient starting point for developing simpler
theories of two-dimensional supersonic flow.

In order to apply equations (12) and (13), it is evident
that the manner in which v and 8.or M are connected to p
or § must be known, Relations implicitly connecting these
variables at temperatures up to the order of 5000° R may be
readily obtained from the results of reference 4 by simply
eliminating the terms therein accounting for thermal imper-
fections. Thus we have as a function of the local static
temperature and free—stream conditions

14( L= 1> (T) (e"ﬁfl) . ”

14+te—1) (7) Gy

_2(T, M2 0 1 1
(P () p(emem—am—) |

(1%)

T=71

and

For isentropic flow along a streamline, the pressure is related
to the temperature by the expression

p ATy

, % A (16)
where
_ efT—1 1 7;—1
S czals) o

If there is a shock wave in the flow,? in particular, a nose or
leading-edge shock, then the following additional relations
obtained with equations (8), (10), and (15) and the conditions

3 If there are no shock waves, then the subscript « in-equation (16) can, of course, be replaced
with the subscript 0.
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for continuity of low and conservation of momentum along
8 streamline through the shock are also required:

—H QnMA—T) A HMD+

\/ [(1 P M~ (M) [+4 78 (8

[(ve TeM D [(yo ToM)] — 1
sin? g =27 Coofp—1 (19)
and . ‘
tan 6= ta.[ll p oM'i’ (20)
Golpo—1

By use of the local static temperature as a parameter, the
term 2yp/sin 28 In equations (12) and (13) may now be
evaluated with equations (14) through (17). Equations (18)
through (20) define the initial conditions downstream of a
leading edge or other shock wave in the flow field. Thus,
equations (12) through (20) provide all the information
necessary to calculate the flow about an airfoil by means of
the method of characteristics. As described in detail in
Appendix A, the calculations are of three general types:
(1) determination of conditions at a point in the flow field
between the shock and the surface; (2) determination of
conditions at a point on the surface; and (3) determination
of conditions at a point just downstream of the shock. Case
(1) entails the use of both compatibility equations, while
case (2) entails the use of the compatibility equation for a
second-family characteristic line in combination with the
equation of the airfoil surface, and case (3) involves the
compatibility equation for a first-family line in combination
with the oblique-shock equations.. With the aid of the three

general types of calculations, the entire flow field about an |

airfoil ¢an be built up numerically using a computing pro-
cedure working from the leading edge downstream. In cases
where changes in the vibrational heat capacities with tem-
perature are neglected, the calculations are, of course,
simplified since v of the gas can be considered constant, and
temperature, pressure, and density ratios are simply the
ideal-gas functions of Mach number.

‘Shock-expansion method.—This method of celculating
supersonic flow of an ideal gas at the surface of an airfoil is
well known, entailing simply the calculation of flow at the
nose with the oblique-shock equations and flow downstream
of the nose with the Prandtl-Meyer equations. Determina-~
tion of airfoil characteristics in this manner requires only a
small amount of time, of course, compared to that involved
when the method of characteristics is used, hence, the
advantage of the former method. The questions arise,
however, as to exactly what the simplifying assumptions
underlying the shock-expansion method are, and what form
the method takes (for ealculative purposes) when the gas
displays varying vibrational heat capacities.

The matter of simplifying assumptions may perhaps best
be considered by employing equations- (12) and (13), the
basic compatibility equations. If these expressions are
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resolved into the streamline direction and combined, noting

that
op 1 op , Op
95— 2 cos f \0C; | aa,) 1)
and ’
0 1
3% 2cosp B 001+2)02) @2)
there is then obtained the relation
1— 8/0C,
op 08/0C; | 2vyp 08 23)
08 5!901 gin 28 os
35/302
defining the gradient of P along 8. If flow along streamlines

downstream of the nose is of the s1mple Pmndtl—Moyer type,
however, we have

dp_ 2vp 28 )
08 sin2B Os 24)

Hence, it is evident that the requirement for this type flow is

28/00
28/0C,

|<<1 " (25)

Equation (25) is; of course, simply an approximate statement
of a well-known property of Prandtl-Meyer flows; namely,
that flow inclination angles are essentially constant along
first-family Mach lines. It follows from equation (12) that
if equation (25) holds, then the pressures will also be essen-
tially constant slong these lines. It does not follow, how-
ever, that the, Mach number will be constant or, for that
matter, that the first-family characteristic lines will be
straight (as is the case for isentropic expansion flows about
o corner). In fact, it may easily be shown that the Mach
number gradient along (, is proportional to the local entropy
gradient normal to the streamlines and that the C} lines are
curved according to the change in /. Thus we seoc that
there is really only one basic assumption underlying the
shock-expansion method; namely, disturbances incident on
the nose shock (or, for that- matter, any other shock) are
consumed almost entirely in changing the direction of the
shock. In this regard, it is interesting to note that the
assumption of Thomas (ref. 13), that pressure is a function
only of flow deflection angle and entropy, is equivalent to
this assumption. It follows, of course, that the most
general solution obtainable with Thomas’ series ropresenta-
tion of the preﬂsure is that given by the shock-expansion
method.

With the assumption that all disturbances incident on the
shock wave are consumed, it is evident that the shock-
expansion method provides a relatively simple means for
calculating the whole flow field about an airfoil, including
the effects of shock-wave curvature. The details of such
calculations are presented in Appendix B. In general, of
course, the validity of this assumption and the accuracy of
the shock-expansion method can only be checked by com-
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parison of calculations using this method with those using
the method of characteristics.

The shock-expansion method for a calorically imparfect
diatomic gas is readily deduced from the equations previ-
ously obtained. For example, flow conditions at the leading
edge of an airfoil can be evaluated with the.oblique-shock-
wave expressions (egs. (18) through (20)) and the expression
for conservation of energy (eq. (15)). The variation of flow
inclination angle with pressure along the surface is then
obtained by graphically integrating equation (24); namely,

985111213
Sg— b= dp 26
o=y LN g (@6)

where the variables v, p, and 8 are evaluated using equa-
tions (14) through (17), employing the static temperature
a8 o parameter. When extreme accuracy is not essential,
this rather tedious calculation can be avoided, and a rela-
tively simple algebraic solution of the flow downstream of
the nose can be employed.* The details of this solution
are presented in Appendix C. In the special case of flow
at high supersonic speeds about slender airfoils, the whole
calculation becomes particularly simple and warrants special
attention.

If it is assumed that the local surface slopes are small
compared to 1 and, in addition, that the free-stream Mach
number is large compared to 1, it follows that o and 8 are
everywhere small compared to 1. In this case, equation (24)
takes on the approximate form

| =vpra ' @7)

Furthermore, if it is assumed that v is constant at an average
value v, for & particular flow field (this assumption appears
reasonable since, in the temperature range up to 5,000° R,
the change in v ig less than about 15 percent), then the Mach
number and pressure may be related by the simple expression

Ya—1
M=y (B5) 7 (28)
Equations (27). and (28) combine to yield the differential

equation
- (7¢+1)

@ -
'YaMN (PN d P~ dé

which readily integrates (between NV and S) to the form

(i) (-9

now denoting

(29)

1 MN6N=f(M06N) (31) )
and

PY_ o(Mysy) (32)

Po ~

4The tabulated results of Noyes (ref. 14) may also prove useful in this case for Mach
numbers up to 3.

there is obtained from the oblique-shock equations, simplified
to conform with this analysis,_

. O
FModx)= ﬂ;" ¥ - (33)
—J(MOZO'Nz { 7 —1>('Y .Za]_ Zuogo’zvg_l)
and
. 27aM020'N2_ ('Ya_ 1) '
g(Modn)= P | \ (34)
where

3
M06N=7a1_1 M03N+\/1+ %—1—1 M05N> (35)

With equations (30) through (35), the pressures on the sur-
face of an airfoil may easily be obtained. In terms of pres-
sure coefficient we have .

o eedle-] e

Crmrtra} 0 Moin) | 1—sasp (1—;‘—;)]’?:1—1} @37)

‘The advantage of these slender-airfoil expressions lies, of

course, in their relative simplicity and, thus, the ease of
calculation which is inherent to them. It may be noted in
this regard that the functions f(M,éx) and g(desy) can ‘be
calculated once and for all with equations (33) (34), and (35),
provided the variation of v, with Myby i3 known. This
calculation has been carried out for a constant value of ¥
equal to 1.4 and for average values of v, assuming T7=500°
R.5 The results are presented in table I.

It should also be noted that the slender-airfoil expressions
of the shock-expansion method satisfy the hypersonic simi-
larity law for airfoils first deduced by Tsien (ref. 15).8 A
necessary condition for the validity of these expressions is
thus satisfied; however, the accuracy of the shock-expansion
method, whether for slender airfoils or otherwise, remains to
be investigated. .

METHODS FOR CALCULATING THE FLOW IN THE REGION OF THE
.LEADING EDGE

As was pointed out previously, pressure disturbances
emanating from the surface of & curved airfoil interact with,
and thereby curve, the leading-edge shock wave. The
geometry of this phenomenon near the leading edge of a
convex airfoil ig illustrated in figure 1. The pressure dis-
turbances from the airfoil (expansion waves for a convex
airfoil) travel along first-family Mach lines ¢,. In addition
to changing the inclination of the shock wave, the interaction
between these disturbances and the shock produces another

" gystem of disturbances which travel along second-family

Mach lines C; from the shock wave to the surface.
Method of characteristics.—An exact solution for the sur-
face pressuregradient and shock-wave curvature at theleading

5 For a given value of T%, T, to the accuracy of this analysis, i3 the ldeal-gas function
of M3y. Thus, knowing Tx, vx can be determined. The average value of y used Is
ve=y o (MBRY=(ratvd /2.

¢ This fact was employed by Linnell (ref. 16) to obtain an expression for presstre coefficlent
equivalent to equation (37) for the caso of constant  and to obtain explicit solutions for the
lift, drag, and pitching-moment coefficlents of several alrfoils at hypersonic speeds.
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Shock wave

Fieure 1.—Schematic diagram of supersonic flow past a curved
sharp-nose airfoil.

edge may be determined in the following manner. Itis clear,
referring to figure 1, that the change in flow angle between
points A and C given by the compatibility equations (see egs.
(12) and (13)) along the path ABC must equal the change
determined by the airfoil surface from A to C.. Similarly,
the difference in pressure between points B and D given by
the compatibility equations along the path BCD must equal

that determined by the change in shock-wave inclination .

between B and D. In reference 9, these conditions were
employed at the leading edge to obtain equations, in simple
parametric form, for determining the surface pressure
gradients and shock-wave curvatures. These equations can
be written in the form

1_65/601
1 dP 08/0Cs | 2P (38)
K.,dwW 1.1 9300 |sin 26
25/0C
for the surface pressure gradient, and
. 05/0C\ .
K, 9D B—o+8)+ /20 sin (8--o—3). 39
K, (1 _I_balﬁ’l (Q <
25/2C 00 /s
{or the shock-wave curvature, where
29P (dP)]
95/0C; __ sin 28 [ —o}8) (40)
08/303 sin (ﬁ+0’ 5)

25t (%), ]

It should be pointed out that equation (38) is, of course,
equivalent to equation (23).
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A procedure for evaluating equations (38) and (39) for a
celorically imperfect, diatomic gas, as well as for an ideal
gas, 1s presented in Appendix D. Since they are exact for
two-dimensional, steady, inviscid flow, values of the surfaco
pressure gradient and shock-wave curvature at the leading
edge, determined using these equations, may be put to two
uses. First, the accuracy of approximate methods of cal-
culating the flow field about a curved airfoil can be evaluated
at the leading edge by comparing the values of the surface
pressure gradient and shock-wave curvature predicted by
these approximate methods to the values obtained using
equations (38) and (39). Second, the pressure gradient and
shock-wave curvature can be used to calculate the initial
points of a characteristic solution for the flow about an airfoil.

Shocok-expansion method.—QOne approximate solution for
the surface pressure gradient and shock-wave curvature has
already been indicated in the previous discussion of the shock-
expansion method. The requirement for the application of
the shock-expansion method is .given by equation (25).
Hence, it is apparent that under this condition the expres-
sion for the surface pressure gradient (eq. (38)) reduces to

1 dP_ 2P

K,dW sin28
Similarly, the expression for the shock-wave curvature (eq.
(39)) reduces to

(41)

K, sin (8—o-8)
K, [ds
| ().

It should be realized that the flow field is determined by
the basic flow equations in conjunction with the shock wave
and airfoil surface as boundary conditions. Thus, the addi-
tional requirement for this shock-expansion method of zoro
pressure gradient along first-family Mach lines means that
one of the flow relations cannot be satisfied exactly (i. o., the
flow field is overdetermined). Equations (41) and (42) -
satisfy the shock relations and the airfoil surface as boun-
dary conditions; however, the compatibility equations are
only approximately satisfied. ' (See Appendix B.)

The error in surface pressure gradient associated with
neglecting the reflected disturbances might be expected to
be largest in the region of the leading edge of a curved airfoil
due to the close proximity of the shock wave and the surface.
The magnitude of the error in this region may be deduced,
of course, from the ratios of values of surface prossure
gradient and shock-wave curvature given by the character-
istics method to those given by the shock-expansion method.
The surface-pressure-gradient ratio and shock-wave-curva-
ture ratio can be written (using eqs. (38) and (41))
1_65/001
. g 000C; 05/0C:

1 _I_ba/bca
i 05/00,
and (using eqs. (39) and (42))

sin (3—o-+)+{(Slagr) sin 5+ 0—3)

(1+§§/fgg‘ sin (8—o+5)

(42)

43)

44
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respectively. A procedure for evaluating equations (43) and
(44) for the flow of a calorically imperfect gas, as well as for
an ideal gas, is presented in Appendix D. (The application
of eq. (43) for an-ideal gas has already been given in ref. 9.)

As was stated previously, the pressure gradient and shock-
wave curvature can be used to calculate the initial points of
o characteristic solution for the flow about an airfoil. It is
apparent that the initial points for a shock-expansion solu-
tion can be found in a similar manner. With either type of
solution, flow conditions at an initial point on the surface
downstream of the leading edge can be calculated with the
aid of the appropriate value of the surface pressure gradient.
Similarly, the flow conditions at an initial point on the shock
wave can be obtained with the aid of the corresponding
value of the shock-wave curvature. Additional points can
be obtained between these two by linear interpolation. If
the two initial points are chosen as the ends of a first-family

Mach line, there is sufficient information available to deter- .

mine the curvature of this Mach line. Therefore, if detailed
knowledge of the flow in the region of the leading edge is re-
quired, the surface, shock wave, and first-family Mach line
can be approximated by circular arcs. (See ref. 17.)

INVESTIGATION OF THE FLOW ABOUT AIRFOILS AND
DISCUSSION OF RESULTS

This study is divided into two sections: first, an investiga-
tion of the flow in the region of the leading edge of curved
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airfoils; and second, an investigation of the complete flow
field about an example airfoil. Each of these sections is
further subdivided into & consideration of the effects of
Mach number, agsuming air behaves as an ideal gas, and
into & consideration of the combined effects of Mach number
and gaseous imperfections. In the latter regard, the prin-
cipal emphasis is placed on the caloric imperfections pre-
viously discussed.

FLOW IN THE REGION OF THE LEADING EDGE OF CURVED AIRFOILS

Ideal-gas flow.—The results of the calculations (using
eq. (D4)) of the surface pressure gradient are presented in
table IT and figure 2.7 The values presented in the table are
for a range of Mach numbers from 1.5 to « and for leading-
edge deflection angles from 0° to 45°. Where no value
appears in the table, the flow behind the shock wave is sub-
sonic. ~ Corresponding results of the calculations of surface-
pressure-gradient ratio are presented in table ITI and figure 3.
From these results it is seen that except near shock detach-
ment, the surface-pressure-gradient ratio varies only from
0.98 to 1.02 for Mach numbers less than 4. Therefore, very
little error will result from the use of the shock-expansion
method for the surface pressure gradient at these lower
Mach numbers. For Mach numbers greater than 4 (even

T Oharts were also presented for surface pressure gradient, surface-pressure-gradient ratlo,
and shock-wave carvature for 1deal-gas flows in reference 9; however, the resnlts given in the

present report are somewhat more extensive. Thess results were also presented In cross-
plotted forms in referencs 17,
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TFraore 2.—Variation of surface pressure gradient with leading-edge deflection angles for various free-stream Mach numbel:s.
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including «),® the ratio only varies between about 0.9 and
1.1 (again except near detachment) and, therefore, only small
error might be expected from the use of the shock-expansion
method. Near detachment, at the higher Mach numbers,
the surface-pressure-gradient ratio attains a very large range
of values and the maximum value increases with Mach num-
ber. For these conditions, then, the use of the shock-ex-
pansion method for calculating the surface pressure gradient
at the leading edge would result in appreciable error.

The flow along the surface is isentropic. Hence, it can be
shown that ¢, the ratio of surface pressure gradient to that
given by the generalized shock-expansion method, is also the
velocity-gradient ratio, the Mach number gradient ratio, the
Mach angle gradient ratio, the density-gradient ratio, and
the temperature-gradient ratio. Any of these gradients may
be found, then, by calculating the gradient, using the shock-
expsusion method and applying the appropriate value of .
This property of the ratio  makes it useful in the application
of the method of characteristics with any of the coordinate
systems commonly employed in the compatibility equations.

The results of the calculations of shock-wave curvature

3 For the particular case of infinite free-stream Mach number and zero deflection angle, the
pressure-gradient ratio is double valued. From equation (D8), it isapparent that ¢ fs unity

or zero deflection. Yet, at infinite Mach number. ¢ approaches 2—73:1- —‘/L"z__ll F1 3 tﬁe
deflection angle approaches zero. .
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(eq. (D5)) are presented in table IV and figure 4.° Similarly,
the results of the calculations of shock-wave-curvature ratio
(eq. (44)) are presented in table V and figure 5. Except near
detachment, the curvature ratio varies from 0.92 to 1.08 for
all Mach numbers including «.!* Thus, only small errors
would result from using the value of the shock-wave curva-
ture given by the shock-expansion method for all flow con-
ditions except near shock detachment.
Calorically-imperfect-gas flows.—With increasing Mach
number and leading-edge slope, the temperature ratio across
an oblique shock wave increases as shown in figure 6. As

- the temperature behind the shock wave increases, the be-

havior of air diverges from that of an.ideal gas as discussed
previously. Below 800° R., the divergence is not significant,
and the equations for ideal-gas flow can be applied with only
minute errors resulting. Above 800° R., the energy of the
vibrational degrees of freedom of the gas molecules is appre-

.ciable and becomes greater with increasing temperature.

For these conditions, the specific heats and their ratio vary,
significantly with temperature. The equations developed
previously consider these effects and permit the extension of
the solution for surface pressure gradient and shock-wave
curvature to the case of calorically imperfect gases. These
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Freure 4—Variation of shock-wave curvature with leading-edge
deflection angle for various free-stream Mach numbers.
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equations are valid for temperatures up to the order of 5,000°
R. TFor a freestream temperature of 500° R., therefore, the
shaded area between lines of constant temperature ratio of

‘1.5 and 10, in figure 6, represents the range of conditions for

which the method developed in this report for the flow of a
diatomic, calorically imperfect gas would apply.

The excitation of the vibrational degrees of freedom of the
gas molecules requires a finite number of collisions, causing
the well-known heat-capacity lag discussed in references
5 and 6. The flow distance (i. e., along the streamline)
required to establish equilibrium is usually small in dense air
and will be considered infinitesimal in this report. Also, the
dissociation of air (see ref. 6) will not be considered here.

Since the free-stream static temperature is an additional
parameter in calculations of flow of imperfect gases, only a
Iimited number of calculations of (1/K.) (dP/EW), ¢, K.[Ky,
and « were made. The purpose of these calculations is to
compare the variations of these quantities with the values
as given by the ideal-gas-flow computations. The calcula-
tions followed the procedure described in Appendix D. A
free-stream static temperature of 500° R. was used. The
results of these calculations are presented in table VI for
various Mach numbers and leading-edge deflection angles.

The surface pressure gradients for an ideal gas and for a

“calorically imperfect, diatomic gas are compared in figure 7.

In all cases calculated, the gradient is smaller for the im-
perfect gas and diverges gradually, with increasing free-
stream Mach number and deflection angle, from the value
of the gradient for anideal gas. This divergence is consistent
with the increasing effects of the caloric imperfections due
to the increasing temperature behind the shock wave.

The surface-pressure-gradient ratio for the imperfect gas
is compared in figure 8 with the ratio for an ideal gas. The
surface-pressure-gradient ratio is smaller for imperfect-gas
flows than for ideal-gas flows indicating that the effects of
shock-wave and expansion-wave interaction are greater.
This result is attributed, in part, to the fact that the angle
between the shock wave and the airfoil surface is smaller for
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imperfect-gas flows than for ideal-gas flows. The difference
between the imperfect- and ideal-gas calculations increases
with increasing Mach number and deflection angle, as might
be expected. In the range of Mach numbers and flow deflec-
_tion angles investigated, however, the extreme values of
differ only by about 5 percent (see fig. 8). Thus, it is appar-
ent that while the shock-expansion method will not be quite
as accurate for calorically-imperfect-gas flows as for ideal-gas
flows, the method will not be expected to be invalidated.

A divergence with Mach number and deflection angle is
also apparent in figure 9 in which the shock-wave curvatures
for an ideal gas and a calorically imperfect, diatomic gas are
compared. This divergence is compatible with the change
in surface pressure gradient due to the caloric imperfections
of the gas. The shock-wave-curvature ratio for a calorically
imperfect, diatomic gas and this ratio for an ideal gas are
shown in figure 10. Again, it is seen that the effect of caloric
imperfection is to increase the effects of shock-wave and
expansion-wave interaction.

COMPLETE FLOW FIELDS

Ideal-gas flows.—The effects of Mach number of primary
interest here are, of course, those which result from the inter-
action between the leading-edge (or other) shock wave and
small disturbances originating on the surface of an airfoil.
Although the reflected disturbances that are the product of
this interaction will have the largest effect on the flow near
the leading edge, their influence on the complete flow field
about an airfoil also warrants investigation. Further in-
sight into these effects can be obtained in the region just
downstream of the shock wave without regard for the shape
of the airfoil producing the shock. To this end, it is con-
venient to consider the ratio gzgg; ——gg ;gg (see eq. (26))
which may be termed ‘‘the disturbance strength ratio’ since,
in the region under consideration, it is a measure of the ratio
of strengths of disturbances reflected from the shock wave

_to disturbances incident on. the wave. This ratio may be
evaluated with equation (40). This calculation has been
carried out for Mach numbers from 3.5 to « (y=1.4) and
flow deflection angles approaching those corresponding to
shock detachment (i. e., M, = 1), and the results are pre-
sented in figure 11. It is evident that except near Af,=1,
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Freure 11.—Variation with deflection angle of the disturbance strength
ratio behind an oblique shock wave for various free-stream Mach
numbers (y=1.4).
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the ratio is small (in absolute value) compared to 1 through-
out the entire range considered—this observation also ap-
" plies, of course, at lower supersonic Mach numbers. Thus
it is indicated that almost all of an incident disturbance is
generally absorbed in the shock wave, provided the air be-
haves like an ideal diatomic gas. This result is substan-
tially the same, of course, as that which is assumed in deriv-
ing the shock-expansion method of calculating flows about
airfoils, and therefore yields additional eredencein the method
for high Mach number as well as low Mach number applica-
tions. It should also be noted that this result is confrary
to that obtained by Lighthill (ref. 18), who reports that for
hypersonic flows(M, 5>>1) a disturbance is reflected from
a shock wave with opposite sign but essentially undiminighed
strength. Lighthill’s conclusion is based on an incorrect
evaluation of his results for the case of very high Mach
numbers. ’ .

As an over-all check on the shock-expansion method,
surface pressure distributions celculated thereby are com-
pared in figure 12 with those obtained with the method of
characteristics for a 10-percent-thick parabolic-arc biconvex
nirfoil (@=0°) operating at free-stream Mach numbers of
3.5, 10, and «. (Additional calculations presented in ref.
19 were also performed for M,=5, 7.5, and 15.) Predictions
of the slender-airfoil approximation to the former method
for high supersonic speeds are also shown. There is no
apparent difference between the pressure distributions given
by the method of characteristics and the shock-expansion
method at a Mach number of 3.5; at & Mach number of 10,
and more so at infinite Mach number, however, the latter
method predicts pressures which are slightly low downstream
of the nose. This result would be deduced from figure 11
where it is observed that, at the Mach numbers under con-
sideration, expansion waves incident on the nose shock wave
are reflected back toward the surface as compression waves
of relatively small but increasing strength with increasing
Mach number. The effect of these waves does not become
pronounced even at infinite Mach number (see fig. 12 (c))
and it can be seen, upon comparison of these results with
those presented previously for the pressure-gradient ratio
(sce fig. 3) that the effect of the reflected waves dissipates
somewhat downstream of the nose. The shock-expansion
method is thus further substantiated as being a reliable
simplified method for predicting the flow about airfoils at
high supersonic speeds, again, so long as the air behayes as
an ideal diatomic gas. The further simplified slender-airfoil
method also appears to be a good approximation over the
entire range of Mach numbers, although, as would be ex-
pected from the assumptions made in its development, it is
in somewhat greater error than the shock-expansion method
at lower Mach numbers.

The shape of the shock wave given by the shock-expansion
method, as presented in Appendix B, is compared in figure
13 with the shape given by the method of characteristics
for the biconvex airfoil at My= . (These shock waves
correspond to the pressure distributions given in fig. 12 (c).)
The shock-expansion method gives a reasonably good

1t The hybrid expression for .pmﬁure coefficlent obtained by Ivey and Oline (ref, 5) gives

reasanably good results also, although not as accurate as the slender-airfoil method at the
higher Mach numbers under consideration.,
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approximation to the shock-wave shape though, as would
be expected from the results given in figure 5, the curvature
is somewhat too small. (A procedure for getting a closer
approximation to the shock-wave shape is also given in
Appendix B.) It can be seen, however, that this method of
determining the shock-wave shape is far better than the
assumption of & straight shock wave that is often associated
with the shock-expansion method. Evidently, then, the
shock-expansion method can also be used to calculate the
flow in regions away from the airfoil surface. (See Appendix
B)) .
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The relative accuracy at high Mach numbers of the
slender-airfoil method and linear and second-order potential
theories may be seen in figure 14. As might be expected, the
slender-airfoil method is more accurate than linear theory
at both M,=5 and 15 and more accurate than second-order
theory at M,=15. Itis perhaps surprising to note, however,
that at the lower Mach number of 5, the slender-airfoil
method is also somewhat superior to the second-order theory.

The pressure distributions of figures 12 and 14 have been
employed to calculate the zero-lift drag of the biconvex
airfoil, and the results of these calculations, along with
additional predictions of the different methods, are shown
in figure 15. Predictions of the shock-expansion method are,

_of course, in best agreement with those of the method of
characteristics; while the slender-airfoil method, although
slightly less accurate than the shock-expansion method, is
apparently superior to both linear and second-order theories
at Mach numbers above 3.5.

The preceding findings verify that, so long as the dis-
turbance strength ratio is small compared to 1, the flow
along streamlines is essentially of the Prandtl-Meyer type.
If we choose, on the basis of these findings, a maximum
absolute value for ga/a Gy of 0.06 (note the maximum value of

8/0C,

gg//g g; for the cases presented in fig. 12 was approximately
0.06 at My= =), the region in which the shock-expansion
method is applicable can readily be obtained from figure 11.
The upper boundary line of this region is shown in figure 16,
and it is evident that it lies only slightly below (about 1°,
in general) the line corresponding to shock detachment given
approximately by the Af,=1.0 line. Almost the entire
region of completely supersonic (ideal gas) flow is then
covered by the method. (See shaded ares of fig. 16.) The
range of applicability shown in figure 16 is appreciably
larger than that indicated by Rand (ref. 20) who required
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that the entire flow field be of the true Prandtl-Meyer type
@i. e., that all flow properties be constant along first-family
Mach lines and not just  and p). The results presented in
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figures 12 and 13 show, however, that this restriction is not
necessary. .

. The question naturally arises concerning the corresponding
range of applicability of the slender-airfoil method. This
question may be answered, in part, by comparing separately
the predictions of the method for oblique-shock flows and
expansion flows with those of the exact oblique-shock
equations and Prandtl-Meyer equations. Such a com-
parison is shown in figure 17 in terms of the percentage
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error in the pressure coefficients predicted by the slender-
airfoil method. As would-be expected, this method does
not exhibit good accuracy over the wide range of appli-
cability of the shock-expansion method; however, it is
indicated that it should predict pressure coefficients with
less than 10-percent error down to Mach numbers as low
as 8 for airfoils producing flow deflections up to as high as 25°,

As a further check on the utility of the slender-airfoil
method, the pressure coefficients on the 10-percent-thick
biconvex airfoil have been calculated with this method and
the shock-expansion method at a Mach number of 10 and
angles of attack up to about 30°2 The results of this
calculation are shown in figure 18 (see fig. 12 (b) for a=0°)

12 These conditions are within the range of applicability of the shock-expansion method
as defined in figure 16; hence, the uss of the method as a base of comparison secms justified.
Bince the shock-expansion method is far leas tedious to apply than the method of character-

istics, 1t will be employed as such a base in snbsequent calculations whenever the conditions
belng investigated have been determined to be within its range of applicability.

L
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where it is seen that the agreement is reasonably good, even
at the highest angle of attack. This fact is reflected in
figure 19 showing the force and moment coefficients for the
airfoil as & function of angle of attack. Little difference
is observed in the force coefficients as celculated by the
two methods, while the moment coefficients display more
pronounced but, nevertheless, small differences at the
higher angles of attack.

From these and previous considerations, the ranges of
applicability of the shock-expansion and slender-airfoil
methods for supersonic ideal-gas flows are reasonably well
established. It remains now to determine the manner and
extent to which gaseous imperfections in the flow at higher
supersonic speeds may alter these ranges, and the reasons
therefor. "

Imperfect-gas flows.—As a first step toward investigating
the effects of gaseous imperfections on the high Mach
number flows under consideration, it is conyenient to extend

our consideration of the disturbance strength ratio 252G,
05/0C;

It is recalled that when air exhibits a constant value of « .

equal to 1.4 (the value for an ideal diatomic gas), the disturb-
ance strength ratio is small at arbitrarily large Mach num-
bers, provided the flow deflection angles are not too close
to those for shock detachment. One of the most important
effects of gaseous imperfections is, however, to decrease v
of the disturbed air below this value due to the excitation of
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additional degrees of freedom (e. g., vibrational) in the
molecules at the high temperatures encountered at high
Mach numbers. Indeed, at arbitrarily high Mach numbers
it might be expected that v of the disturbed air would
approach 1, since the number of degrees of freedom muy
effectively become very large (see, e. g., refs. 3 and 6).-

this case, however, the extent of the disturbance flow ﬁeld
is decreased to a layer at the surface of the body which is
negligibly thin compared to that for the case of ideal-gas
flow. Thus, it is apparent that significant changes in the
flow about airfoils at high Mach numbers may result from
decreases in v of the disturbed air; hence, the effects of such
decreases on the disturbance strength ratio would appear to
warrant attention.

A detailed analysis of these effects is impractical at the
present time, due to the limited range over which the vari-
ation of v with temperature is accurately known. Even in
the range where this variation is so known, the additional
complication required to consider the effects of variable ¥
and the addition of another independent parameter (free-
stream temperature) make extensive calculations of the
disturbance strength ratio impractical. However, some
knowledge of these effects can be gained by performing the
calculations for one free-stream Mach number and tem-
perature. Such calculations have been carried out at o
Mach number of 10 for a free-stream temperature of 500°
R. and the results are presented in figure 20. The curve for a
calorically imperfect gas cannot be extended to shock
detachment because the temperature behind the shock wave
exceeds that for which the calorically-imperfect-gas equutlons
are valid. It can be seen that the effect of the caloric im-
perfection of air is to increase the value of the disturbance
strength ratio and that the effect increases with increasing
temperature or decreasing v. However, it appears that if v
does not decrease appreclably below 1.3, as in this case, the
disturbance strength ratio is still small compared.to unity.
It might be expected, therefore (as previously found for flow
in the region of the leading edge), that the shock-expansion
mathod would continue to predict the flow about complete
airfoils with reasonable accuracy. This point has been
checked with the methods developed previously for analyzing
the flow of a calorically imperfect, diatomic gas at local air
temperatures up to g.bout 5,000° R. (note v has a value only
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Fraure 20.—Effect of the caloric imperfections of air on the disturbance
strength ratio at My=10 and T,=500° R.*
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slightly less than 1.3 at this temperature). In particular, the
pressure distribution on the lower surface of the biconvex
pirfoil at My=10, «=19.9°, and Ty=500° R. (T ~4000° R.)
has been calculated with both the method of characteristics
and the shock-expansion method.’* The results of these
calculations are presented in figure 21, and it would appear that
the conclusions drawn from figure 20 aresubstantiated. (Due
to the lower temperatures, pressures in the expansion flow
about the upper surface are not influenced by caloric imper-
fections and, hence, are the same as shown in figure 18 (b).)
For these same conditions, the shapes of the shock waves
given by the shock-expansion method and by the method of
characteristics (both for a calorically imperfect gas) are com-
pared in figure 22. Just asin the case of ideal-gas flows, the
shock-expansion method gives a good approximation to the
shock-wave shape, far better than the assumption of a
straight shock wave. Thus, it is seen that the conclusion
drawn from figure 20 should also apply for the use of the shock-
expansion method to calculate the flow field away from the
airfoil surface.

Shown also in figure 21 is the pressure distribution ob-
tained by the shock-expansion method for an ideal gas
(v+=1.4). It is apparent, on comparing this pressure distri-
bution with the other distributions, that although the effect
of caloric imperfections on the disturbance strength ratio
is small, the pressures are appreciably reduced by the increase
in specific heats. The extent of this reduction is more com-
pletely illustrated in figure 23 where the lower-surface pres-
sure distributions on the biconvex airfoil are presented for
My=10 and T,=500° R., at a=0°, 10°, 19.9°, and 30°. As
one might expect, the reduction in pressures increases with
angle of attack (due to the corresponding increase in static
temperature of the disturbed air). The pressure coefficients
calculated with consideration of the imperfections in the gas
are less on the lower surface (up to 6 percent at the leading
edge and 15 percent at the trailing edge) than those calculated
assuming the gas behaves ideally. The upper-surface pres-

1 For added enso of calenlatlon the expansion method of Appendix O was employed. This
method Is also employed in all subsequent calculations of this type since it has been found to

yicld results differing by less than 1 percent from those obtained by the more tedious graphical
{ntegration method,

321600—b0——24

(up to about 10 percent for «=30°).
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sures are again unaffected by the caloric imperfections of air
in all the cases presented (except at «=0°) since this surface
experiences lower pressures and, hence, lower temperatures.
They are therefore the same as shown in figure 18. Shown
also in figure 23 are the pressure distributions celculated
with the slender-airfoil method for y=v,. The accuracy of
this simplified method is substantially the same as was pre-
viously observed for the corresponding method in the case
of ideal-gas flows, although the local error may be greater
then the reduction in pressure coefficients due to the caloric
imperfections of air.

The force and moment coefficients, corresponding to the’
lower-surface pressure distributions shéwn in figure 23 and
the upper-surface distributions of figure 18, are presented in
figure 24. The reduction in the lower-surface pressures
leads, of course, to a general reduction in all three coefficients
The slender-airfoil
method again predicts these coefficients with surprising -
accuracy. .

In order to further assess the accuracy of the slender-airfoil
method, some additional calculations were carried out for the
biconvex airfoil at «=0° and M;=20 and 30. The pressure
distributions for these cases were calculated by the shock-
expansion method, slender-airfoil method (y=v.), and
slender-airfoil method (y=1v;). These results are presented
in figure 25, and it is observed that the use of v, rather than
v, improves the accuracy of the slender-airfoil method.
The extent of this improvement in the case of drag coefficient
is shown in figure 26; it would appear that predictions of the
slender-airfoil method (y=1v,) and shock-expansion method
are in as good agreement as for ideal-gas flows (see fig. 15).
On the basis of these and previous results, it may be con-
cluded, then, that not only does the shock-expansion method
retain its range of applicability when air exhibits caloric
imperfections, provided v of the disturbed air is not appre-
ciably less than 1.3, but also the slender-airfoil method
(v==.) Tetains its range of applicability.

It would be surprising indeed, however, if this conclusion .
continued to apply as v of the disturbed fluid approached 1
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Fiaure 22.—Shape of the shock wave for 10-percent-thick biconvex
airfoil section at «=19.9°, M,=10, T,=500° R.
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5[0, .

since, as indicated previously, )0 increases with decreas-

ingy. Although the manner in which v varies with tempera-
ture is not known in this range, some knowledge of these
effects can be gained by repeating the ideal-gas calculations
for constant values of v between 1.4 and 1.0.* Such calcila-
tions have been carried out for infinite Mach number since,
28/0C,
05/0C;
and the results are presented in figure 27. It is seen that
except near detachment, the disturbance strength ratio in-
creases with decreasing y. This increase is slow at first;

g—g//}g} is still less than 0.1 at
2 N

in this case, has its maximum value for a given v,

for example, the value of
¢=1.3. This result is in agreemeut with the previous con-

1 Since the enthalpy s negligibly small compared to the mass kinetic energy of the undis-
turbed flutd at the high Mach numbers of interest and, hence, -y of this finid doesnot Influence
the flow, this approach corresponds to employing an average value of « for the disturbed
fluid,

clusion regarding cases where v is greater than 1.3. How-
08/00,
05/30;
fact, approaches 1 as y approaches 1. The effect on pressure
distributions of this increase in the strength of the reflected
disturbances may also be investigated by using the ideal-gas
relationships in combination with appropriate values of 7.
The limiting case of infinite free-stream Mach number and
v=1.0 (for the disturbed fluid, see footnote 14) has already
been investigated by Busemann (ref. 21) and more recently
by Ivey, Klunker, and Bowen (ref. 22). In ‘this case, as
pointed out previously, the shock wave emanating from the
leading edge remains attached to the surface downstream of
the leading edge. (this is easily verified with the oblique-
shock-wave equations), and the disturbance flow field is
confined to an infinitesimally thin layer adjacent to the
surface. In addition, the velocity along a streamline down-
stream of the shock is constant, as may easily be shown with

continues to increase as v decreases, and, in

ever,
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the compatibility equations. Surface pressures therefore
become a simple function of airfoil geometry
. 2 dss (% .
Cp=2 sin® §5+2 cos bs Tz ) i bs dz (45)
0

varying, to a first approximation, directly with the square
of the component of free-stream velocity normal to the sur-
face (i. e., the flow is approximately of the Newtonian
corpuscular type). With this theory, then, and the method

of characteristics, we can get an idea of both the extent to
which changes of v from 1.4 toward 1 will alter surface

pressures, and the accuracy with which the shock-expansion -

theory predicts the alterations. To this end, figure 28 is
presented showing the pressure distributions about the
biconvex airfoil at My= o as calculated by the several
methods for different values of 4. It is observed that,
whereas the shock-expansion method agrees very closely
with the method of characteristics for y=1.4, there is a
large difference at y=1.05. This, of course, is precisely
what one would expect from the previous discussion of the
disturbance strength ratio. On the other hand, if the two
characteristics solutions and the Busemann method are
considered in order of decreasing v, it is indicated that the
characteristics solutions approach the Busemann theory as

~

- 355

v approaches 1. TFory=1.0 and My= » the shock-expansion
method, in turn, predicts a discontinuous pressure distribu-
tion with a pressure coefficient equal to that of the Busemann
theory at the leading edge but a pressure coefficient of zero
at all points downstream of the leading edge. Hence, it
may be concluded that when the free-stream Mach number
approaches infinity and v approaches 1, the Busemann
method rather than the shock-expansion method for calcu-
lating the flow about airfoils should be employed.
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CONCLUSIONS

Inviscid flow about curved airfoils at high supersonic
speeds was investigated analytically, first assuming air be-
haves as an ideal gas, and then assuming it behaves as a
thermally perfect, calorically imperfect gas. This study has
led to the following conclusions:

1. So long as air behaves as an ideal gas, the shock-
expansion method may be used with good accuracy to pre-
dict the flow about a curved airfoil up to arbitrarily high
Mach numbers, provided the flow deflection angles are
about 1° or more below those corresponding to shock detach-
ment. This conclusion applies not only to the determina-
tion of surface pressure distributions, but also to the deter-
mination of the whole flow field about the airfoil.

2. An approximation to the shock-expansion method,
applicable to ideal-gas flows about slender airfoils at high
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FicurEe 28.—Pressure distribution on 10-percent-thick biconvex airfoll
section at My= o and a=0°.

Mach numbers, predicts pressure coefficients in error by less
than 10 percent for Mach numbers above 3 and flow doflec-

tion angles up to 25°. ‘

3. So long as caloric imperfections of air do not decrease
the ratio of specific heats appreciably below 1.3 (correspond-
ing to air temperatures up to the order of 5,000° R.), the
shock-expansion method, generalized to include the effects
of these imperfections, is substantially as accurate as for
ideal-gas flows. The principal effect of caloric imperfections
is to reduce pressure coefficients by as much as 15 percent.
The slender-airfoil method can also be made as accurate as
for ideal-gas flows by employing an average value of the
ratio of specific heats.

4. If the ratio of specific heats approaches 1, as it may at
extremely high Mach numbers, the shock-expansion method
cah be in considerable error. In this case, the Busemann
method for flow in the limit of infinite Mach number and
specific-heat ratio of 1 applies with reasonable accuracy.

AMES AERONAUTICAL LLABORATORY,
Narronan Apvisory CoMATTERE FOR ABRONAUTICS,
Morrerr FieLp, Cavurr., January 9, 1962.



APPENDIX A

METHOD OF CHARACTERISTICS FOR TWO-DIMENSIONAL
FLOW OF A CALORICALLY IMPERFECT GAS

In the application of the method of characteristics for a
calorically imperfect, diatomic gas to the particular problem
of analyzing the flow about curved two-dimensional airfoils,
many of the calculations are identicel to those encountered
in the solution of sany problem where characteristics theory
is employed. Since the details of these calculations are well
known and well reported (see, e. g., ref. 12), they will not be
repeated here.

A lattice-point system with an initial-value, numerical
computing procedure will be used. The form of the com-
patibility equations to be employed was developed pre-
viously; ¥ however, it is convenient for purposes of calcula-~
tion to substitute the pressure ratio, p/q,, into these equations
and to rewrite them as difference equations. KEquations
(12) and (13) are thus reduced to the following forms:

d (Pa)o— (@0 a=—Ma(60—84) Al
an
(9/90)c— (P/20) 5=25(8c—85) (A2)
where Sy oled
__=v(P/q

It is also convenient to employ several reference curves.
Thesge curves can be divided into two groups. The general
reference curves consist of v and A(T) as a function of
temperature, 7. Equations (14) and (17) are used to deter-
mine these curves. A second set of shock-wave reference
curves consisting of p/qy, o, and & as a function of tempera-
ture, T, are determined by use of equations (18) through
(20)—the values of T}, and M, are presumed known.

In the computations three types of points are encountered.
These are (1) 2 point in the flow field betwveen the shock
wave and the airfoil surface, (2) a point on the airfoil sur-
face, and (3) a point just downstream of the shock wave.
Each one of these types of points requires a slightly different
computing procedure and they will be considered in order.
POINT JN THE FLOW FIELD BETWEEN THE SHOCK WAVE AND THE

AIRFOIL SURFACE

Figure 29 (a) shows a schematic diagram of the system of
points to be considered in these calculations. Point C is
the unknown point at the intersection of the first-family
characteristic line passing through point A and the second-
family characteristic line passing through 'point B. Six
quantities are known at both points A and B, and the prob-
lem is to calculate these same quantities at point C. These

18 This form of the compatibility equations (In p and 3 coordinates) was also used in ob-
taining some of the characteristics solutions for Ideal-gas flows. The majority of these solu-
tlons were carried out, however, with the compatibility equations in 8,3, and entropy coordl-
nates, gince it was found that greater accuracy was usually obtained for a given nst size.
In general, the not size employed ylelded pressures at from 30 to 35 surface points on an airfoll

with 8 maximum error In tho corresponding pressare coeflicients equal to less than 1 percent of
the pressure coefficlent at tho Jeading edge.

quantities arez, ¥, 3, p/qo, T, and ‘T;,. The first five quantities
are of obvious significance. The sixth, T, is defined as the
static temperature, just downstream of the shock wave, on
the streamline passing through the point C.

The physical coordinates of the point C(zg, ;) may be
determined by standard procedures such as those given in
reference 12. In order to determine the quantity &, it is
necessary to solve equations (Al) and (A2) simultaneously,
thus, . :

b= Auda+Apda+(0/g0)a—(D/qd)s
Aa+Np

Equation (Al) or (A2) is then used to obtain (p/qo)e-
There remains only the problem of determining T, and
T,, at point C. The temperature T, is obviously constant

(A4)

(a) Point in field.
(b) Point on surface.
(¢) Point on shock wave.
Fieure 29.—Diagram of point system in the method of characteristics
. = for the two-dimensional flow of a calorically imperfect gas.
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along the streamline through C. This quantity may there-
fore be calculated in the same manner as the entropy is
calculated in similar flow fields for ideal-gas processes (see,
e. g., ref. 12). Furthermore, since the flow along stream-
lines downstream of the shock wave is isentropic, equatlon
(16) may be applied in the form

o/ goc __ AT o)
®/90:, AT

The pressure, (p/qo)s,, 18 defined in & manner anelogous to
T, and may thus be determined using the shock-wave
reference curves and the known value of 7.,. Similarly,
A(T.,) may be determined from the general reference curves.
The only unknown in equation (A5) then is A(7;) which
may now be calculated. Once A(Ty) is determined, T; may
be determined by again using the general reference curves.
All six quantities, z¢, Ye, &, (P/@)c, e, and T, have now
been determined.

POINT ON.THE AIRFON. SURFACE

(A5)

Figure 29(b) shows a schematic diagram of the points to
be considered in these calculations. The physical coordi-
nates of point C(zg, y¢) are first calculated by solving simul-
taneously the equation of the second-family Mach line
passing through point B and the equation of the airfoil
surface. When z¢ and y have been determined, & is readily
obtained from the equation of the airfoil surface. Equation
(A2) is then applied to determine (p/go)c.

Since the airfoil surface is a streamline, 7., is constant
along the surface and may be evaluated at the leading edge.
The temperature, T¢, may then be determined using equation
(A5) and the previously described procedure. All six quanti-
ties, ¢, Ye, (P/%0)c; 8¢, Tc, and T, are thus determined.

In the special case of the first point on the airfoil surface
downstream of the leading edge, the pressure ratio is calcu-
lated using the pressure gradient evaluated at the leading
edge. (See section Methods for Calculating the Flow in

.
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the Region of the Leading Edge, and Appendi;( D)) Addi-
tional initial points in this region may be calculated by the
procedure previously described.

POINT ON THE SHOCK WAVE

Figure 29 (c) shows a schematic diagram of the points to
be considered in these calculations. The physical coordi-
nates of point C(xe, y¢) are first caleculated by solving simul-
taneously the equation of the first-family Mach line passing
through point A and the equation of the shock wave linear-
ized at point D, the last known point on the wave. The
variation of p/g, with 5 along the shock wave may be approxi-
mated by the relation

Plade—@leo—] L] Go—s5) (A6)

In thls equation I: /g0 is the rate of change of /g

with & along the downstream side of the shock wave evalu-
ated at point D.. Because of the complicated nature of the
shock-wave equations, it is generally ehsier to evaluate

I:d @/ q")l graphically or numerically from the shock-wave

reference curves; however, this derivative may also be eval-
uated from the equations given in Appendix D. Equations
(Al) and (A6) are solved simultaneously for &q, thus,

)\A84+[d (p/q0)1 sp+®@/q0)a— (/90

x4+[i%“’—°)1

when §; has been calculated, T; and, in turn, (p/g)e may be
determined from the shock-wave reference curves. Since
point C in this case is just downstream of the shock wave,
To and T,, are identical. The.six quentities, Zg, ¥, (9/q0)ay
b0, Tc, and T,, have now been determined.

(A7)

So=



APPENDIX B

SHOCK-EXPANSION METHOD FOR CALCULATING THE FLOW ~

FIELD ABOUT AN AIRFOIL

An initial-value procedure which is similar to, although
markedly simpler than, that associated with the method of
characteristics may be employed to carry out this calcula-
tion.”® To illustrate, consider figure 30. With the oblique-
shock-wave and expansion equations, all fluid properties
at points A, B, D, and so forth, on the airfoil surface may be

First-family (¢))

Mach Ilnes—\\ Streamlines

Mo

Fraure 30.—Schematic diagram of shock-expansion method for cal-

culating the flow field about an airfoil.

calculated in the usual manner. If point B is chosen close
to point A, the first-family (Ci) Mach line connecting B to
point C on the shock wave may be considered straight and
inclined at an angle to the free stream equal to Bp-t6s.
Similarly, the segment of the shock wave AC may be con-
sidered straight and inclined to the free-stream’ direction at
an angle of o,. Thus, the physical coordinates of point C
may be easily calculated. Since & is assumed constant along
first-family Mach lines, 8¢ is equal to 65. All fluid properties
at point C may be calculated from this known value of &
with the oblique-shock-wave equations. In & similar
manner, the segment DE of the next first-family Mach line
is considered straight and inclined at Bp-+6p, and the
streamline joining points C and E is considered straight and
inclined at 8;. The physical coordinates of point E are
therefore easily obtained. Since the flow along streamlines
downstream of the shock wave is isentropic and since the
pressure is also assumed constant along the first-family
Mach lines (i. e., Pz=Pp), the fluid properties at point E
are readily obtained from the known properties at point C,
using the isentropic flow relationships. The construction
of the remainder of the flow field follows in a similar manner.

As was discussed previously, the assumption that & is
constant along first-family Mach lines is an additional con-

18 It I8 clear, of course, that an a verage-value procedure could also be employed. Im fact,
for tho shock-expansion method, an average-value procedure requires very little additional
computation sinee the fluld properties for a system of points can be obtalned independently
of their physical coordinates, (The difference In the average- or Initlal-value procedyres
appears only in computing the physical coordinates.) Thus, the slopes at both ends of a

line segment are knmown before the line is added to the construction. No iteration, as re-
quired {n charncteristic solutions, is necessary in this case.

dition which, in general, overdetermines the flow field. It is
possible, therefore, to calculate two values of the shock-wave
angle at each point on the shock, one assuming 5 is constant
and one assuming the pressure is constant. These two values
will differ slightly and it can be shown that they will bracket
the correct value that would be given by the method of
characteristics. It is also relatively easy to show that if
the change in & (or p) along C; given by the corresponding
characteristic solution is small,”” the true value of the shock-
wave angle lies just midway between the two values given by
the different assumptions. It is apparent then that a
closer approximation to the shock-wave shape can be easily
obtained by simply averaging the values of shock-wave
angle determined by assuming & is constant and by assuming p
is constant. Theincrease in accuracy is illustrated in figure 31
for the biconvex airfoil at My= . The averaging procedure
gives a shock-wave shape that is closer to that given by the
method of characteristics by 60 to 80 percent. The increase
in computation time (at least for ideal-gas flows) is negligi-
ble. In this regard, it is interesting to note that the shock-
expansion solutions require less-than 20 percent the computa-
tion time of the characteristic solutions.

The shock-expansion method is applicable to the determi-
nation of the flow not only in the region adjacent to the
airfoil (whether concave or convex), but also in the region
downstream of the airfoil; hence, it may, for example, prove
useful in downwash studies and the like.

.20 -
Shock wave by method
of characteristics
————>5traight shock wave
16k  Shock-expansion method
——-—=5Shock angle determined /
by deflection angle /
——-—_5hock angle determined /]
by averaging values /
N given by deflection
QO angle and pressure
N 9 p /
0‘ -}
3 .
©
S o8 / /
S
/ .
Y
V
y Y/
.04 ;.‘/ M/ A/
) / Airfoil
0] 2 4 .6 .8 [Xe]

Chordwise station, x/c

Freure 31.—Shape of the shock wave for 10-percent-thick biconvex
airfoil section at a=0° and My= .

17 The necessary assumption here is that (%)c and (c%)a are nearly equal. This is
\ ]

equivalent to the condition that ;%g: is much less than one. (Bee eq. (40).)
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APPENDIX C - ,

_APPROXIMATE SOLUTION FOR PRANDTL-MEYER FLOW OF
A CALORICALLY IMPERFECT GAS

The following solution. is obtained with an analysis similar
to that used in Meyer’s original paper (ref. 23). A schematic
diggram of the subject flow field is shown in figure 32. Itis

o 2/
<
3 <~
S/
¥
7 \°\/ e
N §/ Y2
Py Ty dn ALY \\k&c’/

My

e
TIIIIIII200007002222722

Fiaurs 32.—Schematic diagram of Prandtl-Meyer flow around a corner.

evident that the change in flow-inclination angle for Prandtl-
Meyer flow can be written as follows:

5N—3=(13N“‘13)+(WN"“°)

Since the flow is isentropic, & given value of the local pressure
will determine the Mach angle, 8. The problem, then, is to
evaluate the angle, w. To this end, the velocity components
tangential and normal to the first-family Mach lines may be
expressed in the usual manner in terms of a potential ¢, thus,

(C1)

b . .

u=—b% (C2)
1 %¢
=7 dw Ow (©3)

It is clear, however, that these components are functions of
o only; hence, it is convenient to define a new velocity poten-
tial which is a function of w alone. Such a potential is

B(w)== (6
The velocity components may then be written in terms of
this new potential.

u=>% (C5)
a=3, " (C6)

The resultant velocity is given by the expression
Vewter (@)
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Equation (15), for conservation of energy, may be written
in terms of the local temperature as follows:

8/T

vita (1) RT+2RT (kg ~a (o8)

The constant, 4, is evaluated at the conditions existing up-
stream of the expansion region; namely,

A=V 2+< 274 )RT 42RTy (—"/&—) (C9)

Equations (C7) and (C8) are then combined to yield

Oy =——2RT< e B/T 442 (C10)
It was shown previously, however, that
a*=~vRT (C11)

Equations (C6), (C10), and (C11) may therefore be combined
to obtain the following relationship:

43,2 |:1+2 (G2+ 4 ]=A2 (C12)
or
vit1 2 Yt ‘)’1 1 /v o/T }
e { —Tty=tly ( )6"’"—1] =4’
(C13)
From the imperfect-gas relationship for vy e huve
&I
e () gy 10

Y + ’Yt—l <T> (e"g"”' 7

By substitution of this relation into equation (C13) there is
then obtained :

'Yi+1

vra[ZE 2 (7] ow
where
6 4T o/T
o/T 51+(7‘ )(g)el lem/-—1:|
r (T) LS =1 @y ©19
l - Ty
Now
¥T a?
v  vR8 €17

For every value of 7'/ there is thus a particular value of
a3/v;R6. The function F(9/T) is therefore uniquely deter-
mined for any value of a? since v,R0 is, of course, a constant.
With this point in mind, let

F(6/T)=G(a*[v.R0) (C18)
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1.0
/r/
sl
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//
2 !
3 7
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o /V Equation G-18
5 // ——— Equation G-19
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o
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Fraure 33.—Accuracy of approximation used in Appendix C to obtain
solution for Prandtl-Meyer flow of a calorically imperfect gas.

Figure 33 shows G(a?/v;R0) plotted as a function of a?/v,R6.
This curve is approximated with the following simple
relation:

A0y R8)=0.38 -2 +-0.71——21% (01g)
L ) ’Y{Ra ' a /'thO
alﬂ
for 0.18 <m<10
and
G(a?[v1R0)=0 (C20)

2
for 0<ﬁm<o.18

Equation (C19) is also plottéd in figure 33 to show the accu-
racy of this approximation. Consider first the case when &
is given by equation (C19) which is written in the form

a*r BO)=tai+utn o (C21)
where, obviously,
£=0.38/v.R0
p=0.71 (C22)
n=—0.14 (v,R0)

Equation (C21) is substituted into equation (C15) and, with
equations (C18) and (C86), the following expression results:

28 gt ‘“+1+2“> qaa’+<r>=+ A=0  (C23)
vt 7i—1
In order to simplify this equation the fo]lowmg substitutions ,
are made:
'Yt+1 2#) ( s 2 >
D= vi—1 v ’Yi A (024)
v <A2——'Y 7
L) i 1
sin? y= 5 (025)
8E g2
sin? 7=T5r (C26)
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and
2
52— D cos’ 7(1.) ©27)
- E
Equation (C23) then redl;c&s to
T2
cost 7(ru)+ 222 cost r(r. 142 3117“, T A0 (C29)
This equation is solved for r,, thus,
2 1 2
Te Doon s —— (cos_7—co83 ») (C29)
or
do=— \/—‘ cos 7dr (C30)
2 (cos T —cos »)'/?

This expression is readily integrated to obtain the following
equation relating « to the local velocity:
w—wy=yD {2[E(k,2)—E(k,2x)|—[F(k,2)—F(k,2)] }

where .
E elliptic integral of the second kind
F  elliptic integral of the first kind

k sin—;— (modulus)

(Gay)

:$ Tg) (&mphtude)

The procedure for calculating correepondmg values of the
pressure, p, and the deflection angle, §, is straightforward
with the aid of the preceding equations and may be sum-
marized as follows:

1. Cealculate 42 (eq..(C9))

2. Calculate D? (eq. (C24))

3. Calculate » (eq. (C25))

4. Assume 2 value of T, less than Ty
5. Calculate p (eqs. (16) and (17))
6
7
8
9

2 sin ™!

. Calculate V? (eq. (C8))

. Calculate v (eq. (C14))

. Calculate a* (or ®.%) (eq. (C11))

. Calculate M and, in turn, 8 from V and @

10. Calculate 4? (or & (eq. (C7))

11. Calculate 7 (eq. (C26))

12. Celculate w (eq. (C31))

13. Calculate & (eq. (C1))

This procedure is followed so long as the qua.ntlty @[y
is greater than 0.18. (This is equivalent to the temperature
being greater than approximately 1,000° R.) For values
of a*/y;R6 less than or equal to 0.18 (or temperatures less
than about 1,000° R.), Gis set equal to zero (see eq. (C20))
In this case, equation (C15) reduces to the same form as for
an ideal gas and, therefore, the well-known ideal-gas rela-
tionships can be used.

’



APPENDIX D

EVALUATION OF (1/Ky)(dP/dW), K./Kw, ¥, AND «

For an ideal gas, the Mach number, Mach angle, shoclk-
wave angle, and pressure ratio can be calculated at the leading
edge, using the standard Rankine-Hugoniot shock relations
and utilizing the free-stream Mach number and leading-
edge deflection angle. With these flow parameters known,
the only terms to be determined in equations (38), (39),

(40), (43), and (44) are (‘2—1;) and ( a ) These derivatives

are easily obtained from the shock relafions. (See ref. 9.)
dP\ _(dP/do).
(%)~ O
where
2'y M sin 2¢
( S D2)
( 2(7 1) cos? (¢ —8)+sin 2(c—3) cot 2¢ (D3)

By again using the standard forms of the.Rankine-
Hugoniot shock relations, it is possible to transform equations
(38), (39), and (43) (given in the analysis) into :

1_’_:12 cos.ﬁL 1 >

cos? ¢ ' MPsin?a

1 dP <~tany¢

K, dW sn?p |tan*y, 1 /cos?f, 1 ) X
tan? B ' 2 \cos? ¢ ' My*sin’c
2v M,® sin? a—(y—l):l
[ v+1 @4)
for the surface pressure gradient,
tan® ¢
Ko v+1 " tan’B
K,,‘ 4cos ¢ | tan? §'+ cos’ﬁ ; 1 > D5)
tan®g ' 2 \cos*{ ' I, sin?
for the shock-wave curvature, and
1 + cos’g L 1 )
y= cos’ ¢ Mygsin’e tan ¢ ®6)
~ | tan? g- , 1 fcos’B | 1

tan g
tan®g ' 2 \cos?¢ ' Mlsin? o')

for the surface-pressure-gradient ratio. These equations are
similar to those given by Schaefer in reference 8 and require
less work to compute than equations (38), (39), and (43).
For calorically-imperfect-gas flows, the standard shock
relations are obviously not applicable. In this case, the flow
parameters at the leading edge can be evaluated using the
oblique-shock-wave equations previously presented. (See
eqs. (14), (15), (18), (19), and (20).) Since the primary
variable in these equations is temperature, the required
362

derivatives are most easily determiined by employing the

temperature as a parameter.’®* Thus,
(@ _ (dP/dT), o)
ds (da/dT)‘r
and d (d8/dT)
] ] .
(30).~(aaz: %)

Differentiation of equation (18) yields
(@)L s TP~ 1=~ ML (32 St 2. 530
d .

T,+T,P*
' (D9)
where from equation (15)
aM ;_1 M,”T,(_i_'}: L'YcM12 |
dT  \v.T.M,){ "2 drtv 2
0/T,
/T
e’ (eg/T,__ 1) +'Yt- (DlO)
and from equation (14)
dr_e=Da—1) (,_ 0 ALY g
dT~ T.(vv—1) \ T,GTIJT;T (

The derivative (g—%) can be evaluated from equation (20)

ds oMo t&na'< )
(ZT =gin®3 —_

P—1)

7°M° 1) seci o ( dT) ] D12)

where from equation (19)

A
aT),

’ 'Yvach 2 dM 1 d’)’ po
080 20 <70M02To) AT g ) Ttene (
( ) (D13)

and from equation (8)

(&)~ (o).~ ]

The procedure for calculating Kl 511;7 ?: ¥, and xis straight-

(D14)

forward with the aid of the preceding equations and may be
summarized as follows:
1. For any M,, Ty, éx», and K, choose a value of T,/Ty.

18 The forms of some of the derlvatives presented have been somewhat simplified from the
forms originally presented in reference 17.

-



A’ BTUDY OF INVISCID FLOW ABOUT AIRFOILS AT HIGH .SUPERSONIC SPEEDS

(TFig. 6 or the ideal-gas relations will provide an initial
estimate.)

2, Calculate v, (eq. (14))
3. Calculate M, (eq. (15))
4, Calculate P, (eq. (18))
5. Calculate po/p. (eq. (8))
6. Calculate ¢ (eq. (19))
7. Calculate 5, (eq. (20))

If this value of 3, is not close enough to the desired value of
by, iterate, choosing a new T/ T%.

8. Caleulate 97, (oq. (D11))

9. Culculate%},—l— (eq. (D10))
10. Caleulate (g—l;)’ (eq. (D9))
11. Calculate (%% c(eq. (D14))
12. Caleulate (g—;—,)a(eq. (D13))
13. Caleulate (% (eq. (D12))
14. Calculate (%%7)’ (eq. (D7)

28/2C
15. Calculate aa//g & (eq. (40))

1 dP
16. Calculate & aw (eq. (38))

17. Calculate ¢ (eq. (43))
18. Calculate Gdi% {eq. (D8))

19. Calculate % (eq. (39)
20. Calculate ¢ (eq. (44))
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FUNCTIONS FOR SLENDER-AIRFOIL METHOD
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TABLE II.—SURFACE PRESSURE GRADIENT
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TABLE IV.—SHOCK-WAVE CURVATURE, K,/K.

Ao
\ 1.6 2.0 3.0 4.0 50 8.0 8.0 10.0 180 20.0 @
N \ :
-
0° 0 0 0 0 0 1] 0 0 0 Q. 8000
2.0° 04547 . 04805 . 05787 . 06801 (8080 L1054 1305 L1931 . 2537 . .
5.0° 1951 L1176 1212 . 1450 1728 L2017 . 2588 . 3155 . 4357 5284 .8018 !
7.58° 36498 . 1827 L1827 . 2170 . 2568 L3733 . 4408 . 56563 L8417 . 8042
10.0° 7938 2553 <2447 . 2869 L3354 .3820 . 4678 . 5358 . 8460 . 8077
15.0° L3704 . 4183 4737 5244 . 6044 . 8597 T L7345 7677 . 8181
20.0° 9.101 . 5051 . 5309 . 5804 . 6332 6970 L7371 . 7863 . 8064 .
25.0° . 6758 . 6634 . 6956 L7271 T3 7007 . 8318 . 8445 .86321
30.0° 1.014 . .8188 8204 . 8538 8608 . 8885 . 8961 . 9084
35.0° L168 Lo21 . 9890 9774 9779 . 9818 . 6840 . 9875
40,0° 2040 1402 L2683 1240 1202 L1191 L1179
48, 0° 7. 688 3.829 2811
TABLE V—SHOCK-WAVE-CURVATURE RATIO, x
T
Afy
1.5 20 3.0 4.0 5.0 6.0 8.0 10.0 15.0 20.0 ©
13
0° 1000 1. 000 1 000 1. 000 1000 . L1000, 1. 000 1000 1. 000 L 000 1072
2.0° . 9097 . 9998 1. 000 L1000 1.001 1001 1.002 L1003 1007 1.012 LO072
5.0° . 9884 . 9093 1001 L002 1.004 1 008 1.011 1017 1.030 1040 L1072
7.5° . 9970 . 9083 1.002 T L00S 1009 1.013 o2 1020 1044 1.053 1071
10.0° L0002 . 1.003 1.009 1014 1020 1030 1.038 1.05623 1.059 1071
16.0° L9012 1. 005 1015 1024 1031 1042 L049 1059 1063 1,069
20, 0° . 9705 1005 1019 1028 1.037 Lo47 L053 1060 1.063 1067
25.0° 1.000 1019 1.031 1038 L(48 1.053 1058 1060 1063
30.0° . 9830 1013 1027 1038 104 L048 1.053 1.055 1.057
35.0° . 9909 L012 L0233 1034 1039 1.044 1.045 1048
40.0° . 0587 . 9879 1,008 Lo018 1.023 1025 1028
45.0° . 8854 . 9342 475

TABLE VI—SURFACE PRESSURE GRADIENT, SURFACE-
PRESSURE-GRADIENT RATIO, SHOCK-WAVE CURVA-
TURE, AND SHOCK-WAVE-CURVATURE RATIO FOR A
CALORICALLY IMPERFECT, DIATOMIC GAS

[Tom500° Rankine]
1 dP

My o TslTo v ¥ K,/ K, K

3 30.48 2.01200 18.36 1026 o021 0.0828

5 8. 043 1. 32750 15. 04 . 9054 L2732 1.010

] 15.36 1. 78357 24.38 L9708 .4773

1] 20, 2. 13800 30.94 | . 9675 . 5866 L.031

5 28,01 2. 62500 37.39 L9577 . 6808 L

b 3L.09 3. 12700 42.63 . 0549 . 7988 1.031

b 37.30 3.81250 49, 50 .9725 1041 1.015

& 41.01 4. 30000 60.76 1042 L5571 . 8827
10 10,01 2. 10800 63.86 9621 . 5286 1.040
10 10.38 2. 17000 86.07 5373 1.041
10 20. 562 4. 40000 123.6 L0112 L7182 1062
10 27.61 6. 45000 156.2 . 8932 J922 L085
10 3L27 7. 64000 160.8 8886 . 8363 1. 084
10 40.18 & 10. 87500 195.0 . 8069 1.018 1.050
10 42,98 # 12. 00000 2041 .9128 1.151 1.039
15 5. 230 1. 77800 76.83 9750 4454 1032
15 10, 49 3. 25000 150. 5 L0283 . 6383 1.057
15 16,31 b. 60000 220. 5 . 8938 . 7250 1070
15 22.26 8. 70000 3014 .8733 ¢ 7834 1.074
15 28.85. # 12. 765000 364.5 L8630 - . 8391 1.074
20 5,122 2. 15000 132. 4 . 9594 5242 1042
20 10.67 4. 70000 2742 . 9027 . 6023 1.068
20 16.53 8. 70000 417.0 . 87068 . T648 Lom7
20 20.98 « 12, 60000 514.4 . 8579 . 8011 L 078
20 32 51 & 25. 80000 705.0 . 8400 L8914 1076
20 39.15 # 35. 60000 771 L8571 . 9861 1088

» Values of the tomperature greater than 5,000° R. downstream of the shock wave. .






