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IN pRODUCTION.

In airplane performmlce estimates the fuel load is given usually in terms of ti quantity
suffkient for a certain number of hours of motor consumption at full throttle. In a weight-
carrying machine more useful Ioad mm, of course, be carried as tho fuel load rcquirecl LOatttiill
tho objective is diminished.

It becomes, therefore, of practical interest to cxamiue the rcltitio~ botwcog these loads ._ . .
in greater detail than usual.

A machine can fly high or low, at maximum speed or at most economical speed, or at
most economical power consumption. It is not at all evident a priori which of these or what
combination of them is best under given conditions. The following study was primarily made
to determine the conditions necessary to attain a given objective with the maximum bombing
load and return.

It is, of comae, evident that the calculations and theory as applied to bombing purposes
will apply equally well for commercial load carrying purposes. TIM results aro dso directly
applicable to “the iutemmtingquestions of long distance flights, across the oceans or for pur-
poses of exploration,

The investigation was made by two independent methods, one involving tho usutd pcr-
formmce estimate methods, the other based upon theoretical considerations.

As a spec.iflcexample the data on an 800-horsepower, 15,000-pound bombing macbinc w&
used, but the method ia applicable with slight variations to any mac.hine.

6
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PART L

NUMERICAL ANALYSIS.

By J. G. COFFIN.

The essential data for the specific machine used in the calculations. are ,given in Table 1.
The total wing and parasite resistances were computed for assumed total weights of 15,000,
13,000, 11,000, 9,000, and 7,000 pounds respectively The total resistance and required horse-
power curv- were then plotted against speed in the usuai manner. See Table I and Fig. 1.

~A131tE L-8ummary of totai resistance.!for a maehiiu m“tha van-ableload. Area of rFi7w=l,&Y5 square feet.
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CONDITIONS FOR MAXIMUM RANGE.
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1t is smident that the work re@red to fly a given distance, being the product of the total
resistance, or required propeller thrust, by the distance, is least when the thrust is kept ah its
minimum Vahles.. The points of minimum drag were, therefore, located on the resistance curves.
‘rhwe points determined the most economical speeds and the corresponding requmed powers.
The powers thus determined are seen not to. be migirnum powers. The minimum powers are
but slightly less than those corresponding to minimum resistance and occur at speeds slightly
Iess than minimum resistance speeds. The minimum power is that for which the fuel con-
sumption is least for a given time and as it turm out, is not the most economical power for
flying the greatest distance. The speed corresponding to minimum power is the speed at which
a machine should fly in order to remain aloft the greatest possibie time.
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I?lg. 1.

ln figure 2 the weight of the machine is plotted against minimum resiatanco. The curves

in figures 1 and 2 show that- ~ -–. ~
1, The maximum range speeds decrease as the load decrerw=. The phme must fly slower

and slower as the Ioad diminishm.

9-.

3. .
speeds

4.

I?ig. 2.

The m&mum range powem decrease as the load decreasw.
These powers are not minimum powem but areSIightlygreater d correspoml to gretitcr
than least power speeds.
The total air resistances decrease ah-nestin exact proportion to the weight of the plane.

-—.———



A STUDY OF AIRPLANE RANGES AND USEI?UL LOADS. 9

FUEL CONSUMPTION.

The fuel consumption at maximum brake horsepower output is taken as 0.6 pound per
horsepower hour, and for any reasonable throttled condition this number is imxeased to 0.7.

The available horsepower curve was obtained in the usual maroxm by assuming proper
propeller efficiencies at slow and high speeds and multiplying these into the available brake
horsepower. The fuel consumption per horsepower deli-rered by the propeller can therefore
be computed by dividing the fueI consumption per brake horsepower of the motor by tlm
propeller efficiency at that speed, or what is the same thing, multiplying 0.6 by 800 and
dividing by the available horsepower at that speed. & mentioned above, these resndts am

0.7
multiplied by o= in order to compensate for a slight loss of efficiency under throttIed con-

ditions. This procedure. corresponds to experimental tests and if qnything probably over-
estimates the fuel consumption.

With these data Table 2 and figure 3 were ‘made. The fuel consumption is seen to be
proportional to the might.

Fig. 3.

TABLE 2.-Gus conaumpbicmin pmmda pm how at the (wninmkl iqxed.
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TABLE .2A.-#a8 canwmption in pounds per hour at the mazimum qwed.

.
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?&f !%%
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Figure -i shows a curve giving tho relation between the weight ~t.MI)*Vtime nml the cgrro-
Spon(hlg (Iistwlce flown, Starting with a full fuel h-d of 7,870 pounds, giving n total weigh~

-.

of ] 5,000 pounds, the machine WRSa.ssumoclto travel for a giv(w time int.erwd (Wu hours)
tit.the weight, speed, gas consumption, am-lthrust. correspon(lii~gto that weight. During the
mxt. two hours it was assumed to fly at new values corresponding to the new weight whictl
is W@ to the old weight loss t,hofuel consumed in the preceding timo inhmwl, tm(~so on,

Lm

.-
ab%re- Ates

%
Fig. 4.

TABLE 2B.—Ratbs oj LID and angka oj hcidence for ~~-mum range.

.

HIGH SPEED.
,..-,-.

_ -. .,...- ...- , ~.

.... . -. .
:1i

,-”-
.a== .. =,. --.==.: ...:.-——

_.. --- . ~_

.-
.-.,

....... .
--- .-—. .—.--— .,.



A STUDY OF AIRPLANE RANGES 4ND USEFUL LOADS. 11

‘J7ABLR 3.—Tim4-weight mriation computatinnfw 8peed3.
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MAXIkfUli RANGE.
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The maximum possible range is seen to be 2,480 miles under these conditions.

DE’l?ERMINATI ON OF THE MAXIMULM LOAD FOB A GIVEN OBJECTIVE.

Evidently in case a return trip is to be made without refueling the greatest distance for
an objective is equal to or less than half this greatest range. It is easy to determine the greatest
possible useful load by means of the weighhdistance curve, figure 5, in the following way:

.

w.- -

*’- —————~L~i.----—.——&&@ 6e7# ~
} 600 “

.-.—
R~ne in miles. /2230 Z’4?80

...—

-.

Fig. 5.

Suppose the objective is 600 miles distant. It requires AB-C?D pounds of fuel to get
there and GF pounds to get back after the load is deposited. Since the maximum load is AB
pounds there will be left DE or D’E’ pounds for useful load. Calling the maximum range S,

—

project the points on the curve for s= 600, point D, and .s=S –600, point l?, on the weight
—.

&s, the weight included between these two points is the maiz.irnumload for that objective.
This procedure is quite general. The load decreases to zero as the objective distance increases
to half the maximum range and increases to the maximum load as the objective distance
decreas= to zero.
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A curw (fig. 6) vm.sdetermined by this method for this machine which givw directly the
maximum usefUlload for any objective. This curve turns out to be practically a straight line.
A proof that it should be very approximately straight is given in Part H.

.AdEiiiH
t-kH--H

CONSEQUENCES OF FLYING ‘AT MAXIMUM SPE’ED.’
-..

In Table 2a the re,sulk for f@t at maximum speed are tabulate(l, The gw coneumptio[l
is constant and the speed of adva.nm was found to be constant to within about 1 per cent. The
average vaIue, 106.2 miles per hour was, therefore, us~d in the computations.

The weightdiatance curve (@g. 4) is a straight line, as the fuel consumption and speed are
very approximately constant.

The maximum range is wmsiderabIy Iess than under greatest range conditions, _..The dif-
ference is 740 miles. A considerable gain in range is thus attained by flying ah the proper
angle and hence at proper speed.

The tiefuI loads for mtium speed are considerably less than under bestrrarige condi-
tions. For an objective 600 miles away the best conditions give a possible load of 4,050 pounds
while at maximum speed this is reduced to 2,430 pounds, a reduction of 1,620 pounds.

For convenience, a comparison of the loads and ranges corresponding to them is made
in the following tables:

TABLE 4,

I ““’
:. .--. -------....-z.. ------ —-.——

Rm80gpu
I Hours of BICJ&.&

Rnnge at Lwstqwed.

, fuel ‘w
open.

t

.10”
7+
4

—~ “.p~~ “Yi :i .Ta””:.:...::i::i:

TABLE 6. ,

I

Id+”~~:... “..~~‘.
;Range.

I Rgif I:%: ‘g? ““m

.> -. ,. . r., .,&

TotaL
tnpamds.

. . .

1’ Objeotfve. spocd.
-.. .:_- . . .. ... .

10 1,610 765
p 1,6~

3,m 2,040
. 535 2%

m
$s7: 1,632

6,m , S30 ,. ... ..
*-... ,-. .... . . . . —----- .=-- J——

●



A STUDY OF AIRPLANE RANGE-S AND USEFUL LOADS. 13 —

For the shorter flights the differences decrease but they are considerable in all cases. The
bombing load is increased by almost 190 per cent for maximum range speeds over maximum
speed conditions for 10 hours fuel.

FLYING AT MINK(WIM POWER.

The gas consumption at minimum power is practically identical with that at best range
power. While the minimum power is slightly less than the power for bwt range speed, the
speed is also less and the propeller e5ciency is also slightly lms. The net result is that the time
of &ht is about the same and the mtxximum range is diminished:

A calculation of the range at minimum power gives 2,400 miles instead of 2,4S0 miles:
For flight at minimum power the angle of attack is practically constant and slightly greater

—.

than that for bwt range speed.

TIME REQUIRED FOR ANY RANGE.

For convenience, the curves of elapsed time for any distance flown are given in figure 4
for both best range speeds and maximum speed conditions. B-y means of them the time of
going and returning from any given objective may be read off. In particular it is seen that

---*---,

the maximum time of flight under high speed is 16.4 hours as against 38.0 hours for best range
speed.

For a bombing raid on an objective at 600 miles, the total elapsed time to go and return
is for maximum speed 11.25 hours and for best range speed 1S.65 hours. It fl be seen in the —
following how this time difference may be decreased by flying at high altitudes without chang- -_.. - _,,..

ing the e.fliciency for best range conditions.



THEORETICAL ANALYSIS.

REPORT NO. 69.
PART It.

By J. G. CIOFFIN.

THEORY OF. MAXIMUM RANGE

&rotation: .

W =weight of machine at any time.
W~ = weight of machine folly loaded with fud;
We= weight of machjne empty of fuel.
T = thrust of propeller.

= etllciency of propeller.
1 = supporting wing area,
V =.speed of flight.

CONDITIONS.

.

L =~t per unit wing area per unit speed at ground level.
D = tilft per unit wing area under same conditions.
R = parasite resistance per unit wing area under same conditions and “k assunmd

constant,
L and D depend o~y on the flying angle of at@ck.
8 = distance traversed in time t.
s =range.

/

P
‘i’ . = ratio of the density of the air at height h to its density at ground level,

Po

c = pounds of fuel (gas and oil) per brake horsepower hour consumed by motms.

. a=: = pounds of fuel per useful horsepower hour delivered by propeller.

The lift coefficient K,, as ueually given, is proportional to the density, and we may, thorefor,
write

/
K,= k,p = (k,P.)PPO=h

where L ie the value.of K, at ground Ievel.
The fundamental equations for horizcmtnl flight of the airplane are

—

W= LTAVZ (1)

CONDITION FOR MINIMUM WORK.

The work clone in flying a distance dl againstna total drag T is TdZ. The hhd work dont~
in flying a given distances is, therefore, .- ,-

Work =
s

● Tall/
o

This work intigral is evidently a minimum if T is always at its least possibIe value
14



A STUDY OF AIRPLANE RmTGES AKD

From equations (1) and (2) we get by division

T.W~D~R)

USEFULJmADs. 15

This equation shows, since Y has disappeared, that for a constant angle of attack and giveu
weight the thrust is independent of the height at which the flight takes place, and also that for
a constant angle.of attack the thrust is proportional to the tcM weight.

It is for the first reason that no mention of altitude was made in Part I. The second
statament is vded in figure 2, which plah_dyshows very approximate proportionality at all
actual flying speeds.

It is convenient to employ the polar diagram in the following: This kind of diagram
deserves greater popularity than it has yet retived in aeronautic~ calculations in the United
States. It consists in plotting L as ordinates Hgatit D as abscissae. Any point M on the
curve corresponds to a given L and D and hence h a given angle of attack. This angle of
attack is marked on the curve.

1
[1 ..—.

d

Q* O”OOJ
—

D
Fig. 7.

Lay off from O the distance OQ equal ta R.
Then for any point M, OB=D, MB=L, and OQ=R.

The dope of the he ~“&R ==% a

Consider equation (3). For a given weight and variable values of L and D, that is, for
variable angles of attack, let us find-the condition for minimum thrust.

L (dD) - (D+R) dL .
‘T- 0“=~

As L can not,be infinite, the condition is
.-

%&R
(4)

.
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That is to say, for minimum thrust the tangent to the polar curve must have a value ~l~.

Looking at the polar. diagram it is seen that &o line._QMltmgent at ~Mlfulfllls this condition
and corresponds to a given angle of attack il, Since the pohw is a given curve for the machine, it
follows that

(a) for minimum thrust the machine must fly at a constant angle of incidence through-
out the whole flight whatever the loading may be, and

(b) that these minimum thrusts are independent of altitude of fight.
In Part I, Table. 2b, the angles .of incidence corr~ponding to the least drag havo boon

tabulated. They are remarkably constant, their average deviation from the mean 5,33° being
oily 0.12° and the gre~test diHerence 0,3°,

For best rmge speeds, then, it follows .;hat ..:. “, .; .“ ~~ “. ~~“” _

W= C17V2where Cl= LA (5)
and

T=sC,YV’ where ~=@ +R) A . (61

where Cl and Cz are constants for flight at any cowtant angle of incidence. In particultir for

maximum range conditions they hava the values corresponding to the maximum due of ~~fi -.

for the machine.
Let us suppose that the machine loses weight gradually due to fuel consumption alone.

If the weighhdistance curve can be deduced, the problem of bombing loads and ranges is
solved, as explained in Part I.

DEDUCTION OF THE WEIGHT-TIME EQUATION.

Assume that the range of speeds is such that the engine runs at constaut efficiency, burning
4(a” pounds of fuel per horsepower hour delivered by the propeller. If c= pounds of fuel
consumed per brake horsepower hour and the propeller efiiiciemy is denoted by ~, then the

fuel consumed per horsepower hour delivered by the propeller is given by a= ~ . ... .. . . - -.. —... -—

The power at any speed is

(7)

Tho rata of fuel consumption is aTV and in time. & a weight aT Vdt of fuel will bo con-
sumed, henw

. ..—.
.— -_

aTVdt= 1 a% W3r2dtL – d~
~ C:h (q r

where– dW is the low of weight of the plane in time 6%
The weight of the plane at any time t is therefore, if Wf is the weight full,

(f))

Equation.(8) is a differential equation for W at s@ time, and maybe writtm

—.. a c dt=-=-Kdt%2 7“* (10)

where K=$ & .- . ~ . . . .. (11)
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Solving and determining the constant of integration by the condition that when i= O,
W= Wf, v7e get—

_&=;t+L
m, (12)

This equation is the desired relation betvreenW and t and shows ho-ivthe load diminishes as t
inc.reams. Sinu K contains ~, the rate of diminution of load depends upon the altitude.

The time of maximum flight can be obtained by letting Wf decresse to W,, the weight of
the empty machine.

‘“==K”7+Z-7+J (13)

Thk masimum time.of &ht computed with equat.ic?n(13), us~~ 1.03 pouncls per horse-
power hour as the average fuel consumption, gives a value of tmx= 38.3 hours, as compmqd
with twx = 3S.0 hours as taken from the time-weight curve in @_ure 4. The two methods again
check very well. The formula arranged to give the time in hours is, for low levels,

, (hous,=lo550(*--*)

This time of flight diminishes proportionally to &.

DEDUCTION OF THE DISTANCE-TIME EQUATION.

The distance traversed in time dt is, using (5).

so that in time t

which becomes, using (lz),

S
t

21 :&
— — .

“K G %+-
,2 &f

Integrating tmd determining the Constant by the condition that when t= O,s= O,we get

,. ,.
31

-– —log
Kl,t+&

(14) ‘8–KG _

+%

..

This equation is the dtwired relation between the distance flown and the time. The distance
increases with the time and depends upon the altitude of tight. For a given time interval the

—
—. .-

dishme flown incrmses proportion~lly b 1 .
G

DETERMINATION OF THE WEIGHT-DISTANCE EQUATION.

Eliminate t between equations (12) and (14): --

(15)

.— ,.
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Or, more specifically in terms of c and n,

37$4 L
. kg -w

87; DqT? ‘f (17)

!lMs equation is true for any condition of. flight at constwt angle of incidomm, where the ratio

~~ remains constmt. For maximum range the maximum vahw of AR is of courseused.

This equation shows that as W diminishes s iucreases, and that the distanceflown isindcqmndrnt ,.

of the flying altitude, since Y has disappeared.
The maximum rrmge S oan be obtained by Iinding the VQIUOof s for W = W,.

Assume W~= 15,000 pounds.
We= 7,130 pounds.

()Max. LD= =9.2 ,

S +2,480 miles.

We obtain for “a” a value of 1.O.3.poundsper horsepower hour.
This value checks very well with a= 1.o33 pounds per horsepower hour, the rmeragc value
used in the preoeding greated range calculations, in P mt_I.This check is very satisfackmy and
shows that the two methods are in good agreement.

EQUATION CONNECTING USEFUL LOAD AND OBJECTIVE DISTANCE.

Imd hence
w=wfr@ (18)

Considering Fig. 5 it is easy to see that the lgad B for any giyon objective ak distance a is
evidently, if S = max. range ..

B = W, – W,-, = Wf(e-’lb –e-@-*J/b) (19)

and since We= Wti-~b this becom~

B = W&/b – We@ (20)

We can thus compute the uscfd load for tiny objective. if the weight @.tancc curie is —
plottwl, however, it SEWUSeasier to plot the curm represented by (2o) by tho method explained
above. ..-
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PROOF THAT LOAD-OBJECTIVE CURVE IS STRAIGHT.

In Part I the curve between useful load and distance to objective @’ig 6) wus very approxim-
ately a straight line. The equation for this curve is —

B =W&’/a – o-@l@) (19)

where S is the maximum range, and s/b is a quantitj which is smaller thau unity and gen@ly
1sssthan ~.

This is not the equation of a straight line but turns out to be very closely straight as seen ‘
by the following:

Let z=;,Z1=? for the moment. — .
.Expanding the exponentitds and neglecting cubes and higher powers of x, we have

The second powers have completely canceled.
Therefore

Wher
B=~(2-:)(-~+:) ~

s
8=3’ B=o

When

—

a linear relation.

(21)

But

so that the straight line (2o) passes through A and B as it ~ould.
The curve then is a straight line to a I@h approximation and can always be taken as such.

EFFECT OF CLIMB AT START AND GLIDE AT END OF FLIGHT.

If the Hi@ is so nmde that the pltine is allowed to climb steadily as the loud decreases,
it must, of course, come down at tho end of the flight when W the fuel is exhausted. The
potential energy put into the plane by the conamnption of a certain amount of fuel is then
partiaII~ reemployed. in the descent. A s@ht calculation shows that it is puerile to consider
this effect, as shown below.

Assume that the plane rises under power to a height h mitl full fuel load and at the end .

of the flight descends with power shut off and without fuel.
..-

The potential energy which can not.
be regained is hence approximately the work done in raising the total weight of fuel to the

—

maximum height reached. & ahowm previously, the expenditure of fuel is about 1 pound per
.-

horsepower-hour deliv~-ed by the propeller, -which is equivalent to

550 X60x 60= 1,9S0,000 foot-pounds of energy per pound of fuel.

Assume 50 percent useful Iortd (all fuel), the work required to raise the phme to a height
his

-=

w,~ hfi foot-pounds,

which is a considerably overestimated valuel l~sthe climb is gradual, and the tota7fuel lend is
not raised to the maximum height.

,.
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Considering the specific machine used in Part I, the work done in raising 7,5oo pounds of
fuel to a height of 10,000 fee$, say, is 75,000,000 foot-pounds. This amount of work WOUM

76000,000
~ ~~o ~oo =38 poun& = 6.3 gallons of fuel
> ?

(gns and oil), rwauming6 pounds to the gallon. As tho tohd load is 1,250.gdlmm, this timmmt
is about oue-hdf of 1 per cemtof the total fuel load, which is quite negligihIc in cdcuhtions of
this nature.

As the percentage amount for any other type of machine would be about the same, we
huve made no eflort to. take this theoretically interesting pmt of the subject into co.usidcration.

.
PRACTICAL SIMPLIFIED METHOD OF APPLYING THIS THEORY TO A SPECIFIC CASE.

The application of.$hii theory to any specific. caae now reduces .to tlmgrenteet simplicity
as follows:

Data required. Wf = weight fully loaded with fuel ‘“”
We= weight empty of fuel.
ii= angle of incidence for minimum total resistance. . . . ..-—

1. Calculate the maximum range for an dl fuel load by

and plot the value of S/2 as abscissa for an c?rdi?mtoB = o.
2, Plot W~‘we ~“”~ Orbate for S= o.
3. Camect those two points by a straight line and we

10\tig figure:

equation 17

-.. .
-.

ham a diagram ;imilar to tho ~ol-

Yp+i
E----- .—-, ——- --—- —-—— --—- .

1~
i! ‘.-

A

w, #
o~ectia DKto.9ct

5
T

Fig. 8.

Any ordinate such as.CD will give the maximum pounds of load that ctin he carried for
an objective at distance CM1. The. distance DE will give the corresponding weight of gasoline
to be carried. (See Fig. 6.)

For usual machines --

1.03(D%)m~gs&) ‘S (miles)= 375 w
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EFFECT OF ALTITUDE ON SPEED, POWER, AND TIME.

From equation (5) it follows thd for a given weight the speed must increase as -ydiminishes.
and the exact relation is

I
.

vk=~
4;

(23)

where 7&is the height characterized by Y. From equation (7) it follows that the power required
for flight increases in the same proportion as the speed so that

“=3 (24)

This is otherwise evident as the thrust does not change.
From the latest experimental tests of motor horsepower and motor ei%ciency at altitudes,

- it is found that the power fdls off almost in proportion to the density so that

P~’ = PO’7 (25)

~ence, to fly at an altitude characterized by ~, a power l?.’ at the ground, which becomes PO’Yat
the height, corresponding to 7, must be provfded, such that

‘“”=3 (26)

If the maximum available horsepower Po max. at the ground is provided, the phme will rise
until

POmax.7=~ I (27)

or to such an altitude as is characterized by

“(R2J’S (28) “-

In order to provide a constsnt thrust the propeller must increase in angular speed according
, to the same law as the plane since propeller blades are aerodpmmicaHy similar to wings, so that

n= (RPM) h=@p)” ~~ ---
3Y

...-

(29)

It folIows immediately from this that since V .nnd n incrense in the same ratio then ~~ ..—

remains constant with altitude, snd hence the propeller efficiency.
There are thus several reasons why flight at a high level will be bet ter than at low.
(a) The motor running full open will probably use less fuel per horsepower than has been

assumed for throttle, say, in the ratio of 0.6 to 0.7.
(b) The motor ruriuing at a higher speed can develop slightly more power with proper

adjustment, which will increase the height, and therefore the speed.
(c) A very good third reason is that the duration of the flight will be considerably lessened

and this, together with
(d) the increased safety due to high altitude and greater flying speed lead to the conclusion

that: For bombing purposes the aviator should fly at a certain predetermined constant angle
of attack; he should allow the plane to rise as the load diminishes.

Since the work consumed in rising to the higher level is at least partially &rned when
the machine glides down at the end of the trip without power, these works have not been ccm-
sidered.

—

TIM aviator will thus attain the greatest range, cnrry the greatest load, wcure the greatest
safety and speed consistent with these conditions and ecomomize in time as well.

.—
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NOTE ON CEILINGS.

By employing the equation (28): —.

‘=(P.2.Y’

baaed upon the assumption P~ = POY,the ceiling for any corresponding weight of machine may
be found if the available and required homepower is known.

The following table of cornputationa refers to the machine considered in Part I.

Table of ceiling cmnpututions.

1+ ‘“ “-” “: ~~ - ~~~~

. ..- .< ., .,-- .- .-, —... —.. . .“—.. -

‘“W&& ti;:~e +;2 +% c-.

(a) (b)
.;-

16,cm WI
,.

0.068
““ .3:

12,533 -10,330
18,OW 683 .6s%? 16,Cnm
lj@&l

13,m
.%ii’ 19,Cal .. .. .

% 2JiS& ‘ +%J
7;CW ;

I , 4n .% ‘g ‘1’
,- .,+,”.-

.
~.

.- ... . . ..s

The column (a) under the heading of ceiling in the above table has been obt.ahd from n
T-altitude curve based.upon datu obtained from report No. 14 of the National Advisory Com-

-.

mittee for Aeronautics.
The column (b) under “Ceiling” hitsbeen obtained from clata on the average performgnre

values of a number of machines.
—
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CALCULATIONS.

By J. G. COFFIN. Septcmbw 1, 1919,

BEST FLIGHTSPEED.

If there is a retmding or a helping wind it will be shown below that the conditions fcu
maximum range must be changed.

Tfle following is a proof of an important method for find~g the proper attitude of fiig~t
with or without winds.

-.

.——

Fig. 9.

Let curve I be th~ required thrust-speed curve and II the required pow~speed curve for the
machine.

Consider a machine of constmt weight W which is flying with air speed V against a wind
speed w. The ground speed is then J’– w.

... —

dsIn order to fly a growd distance da it will trike a time dt=Tyw.
.-

If the thrust is T and “a.” is the rate of gm consumption per dt+hwed.power the gas con-
sumed in flying this distance is

d~
apdt = ap v – w (30)

As ,,aff -E assumed constant and ifs is fixed, for this expression to be a minimum we must
have —-

dP w–w) P’–P——
n v–w=O -

.-
(V-w)’

—

and since JT—w can not be infinite the condition is:
,

“ ‘&w
.

!?s
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This means that the eubkmgsnt to the power-speed curve is (V –w) and the equation is ful-
fiued by the following construction: Lay M w, figure 9, on the V-axis, to the right of the or@n,
if a contrary wind, or to the left if a following wind, and draw a tangent from this point to

D

the P-V curve; it is s&mthat the slope or tangent P’ is equal to &w. For calm ~ir the’hgen t

is drown from the origin. As the shpe of a line drawn from the origin to any point on tlie P--l’
P VT

curve is always ~= ~ T it follows that the thrust varies as the slope of .suc.h a line, and as

the tangent from the origin to the P-V curve has evide~tly the. minhn.um slope, this shows

thak in calm air the machine must fly at minimum thrust, as is otherwise evident.

Thus the minimum points of the T-V curves lie directly over the points of tangency of

lines from the origin to the P–V curvee.
If there is a head wind this condition of .minimum”thrustno louger holds find nmrc po~i:w

is required for most economic flight which COr.mSpOMlSJ”of c.oufie, to a “greater thrust.
As the power curve is limited to the right by the maximum output of the power plant it

is seen that. for economical.flight there. is a biting head wind corresponding to the distance
OH, where II is the intersection.of. tho ,tang-at to the P-V ctie at-its @it “with the V-nxis.
It is, of course, possible to make headway against str~ger wiI~d~ but the condition for eco-
nomical flight in such a case ie no longer fu1511ed. ~.en w..is a help~g @d the tangent is
drawn from a point on the left of O and it is evident that as the following wind increases in speed
it pays to use less and 1- power, the limit for an infinite wind being mininmp power. In other
words, it pays to let the wind carry the machine along with the least use of “thepower plant..
Curiously enough, this corresponds to a thrust greater tlmn the minimum which is proper in
calm air.

While for economic flight in calm air the machine. must fly at minimum thrust and hence
at maximum L/D 1 for the mwhine for all loads, this simplicity does not obtain for oc.o-
nomic flight in the wind. Not only does the L/D change for a given load with varying winds,
but also for a constant wind it varies with the load. ~ortunateIy these variations are small
for any reasonable head winds and f?r a change. of log-d equal to the yeight of the machine
empty. Refeming to. figure 9, the proper L/D’s for the machine and”hence the proper angles
of incidence may be ddermiued. by the method demon@ratied abo~e:

Assuming a head wind of w miles per hour draw tangents to the required”horsepower
curves from abscissa+ w. Rend off on the thrust curves the thrusts corresponding to the points
of tmgency on the power curves, divide them tlumts by the corresponding weight of the machine
and the values thus .obt~ined are the .D/L’s corresponding “to economical flight under the
assumed conditions. —.

SINGLECURVEMETHOD.

A much simpler method will now be described to ~ccomphsh the same result requiring the
drawing of but a single curve for. the whole procedure.

The method is based upon the following considerations:
The equations for horizontal flight may be written ~

w= Uv’
T =DAV’
p=Tv

From these wo obtain

‘“h “ “12
(31)

p= I:_. E-ww
JZTL. ..” ‘

(33)

.. ... ... .. ....... .U...L,. . .. . . ..=7,=
ih the followlng D rcprcials the total drag on tho mwh[ne @l oorrwponde to (D+ R) in Ihc prweding pages.

.-

—

--. .—

-.

. . .
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These equations show that as the load changes the corresponding speeds for any given
angle of incidence vary as W~, thg thrusts as W and the powers as TPP. .

Consider no-ivany required power-speed curve. Figure (9).
—

The required power curv~ for an
d

other weight WI can be calculated from this i-ren .

()

~, 3f=h,p

curve by multiplying the speeds by ~
()

lB = ~112and the corresponding po~era by -W

and plotting these values on the same sh~et. If required the thrust curves can be obtaked by
p~812 p
—– k against Jm.plotting ~A1,~ –~

Consider what effect a change in loading hus upon the equation of condition for economical
flight.

dPP
m=cw

becomes for a new loading W,
d-p.~3p p~3i-2 —.
— .
dv .~l/2 m

#

where ~=$ --

This reduces to .
dP .X--

()n ‘v–$
(34j .-

which indicates that instead of plotting P – V curves for various loads and drawing tangents
from the abscissa wit is suficient to plot but one curve, and ss the load increases draw tangents

from abscissas ~~ as the load changes. The point of tangency determines values of P and V . .
which correspond ta a required power P k~ md a fly~g speed V Alpfor” the new condition.

As the main inter-t here is to find the variations ti L/D, or, what is tie same thing, in D/L,
we continue as follows:

p~a~ p~
— =— is the new corresponding thrust, and since the new thrust divided bysince VXIP v

the new load WI giv= the new D/L, it is seen that

(35)

and hence in order to determine the D/L for any new loading it h merely necwmry to draw a

tangent from %2, and the ratio ~ read off on the. original scale is the corresponding wdue of

the ~ required.

This single curve is preferably plotted for some simple load such as 1,000 pounds or 10,000
pounds. The D/L’s will then come out directly by dividing the power by the speed, and by
changing the position of the decimal point.

EXAMPLE OF USE OF THE ONE-CURVE METHOD.

In order to check the proposed method against the usual multicurve method, three P-V
curves were plot ted for the same machine with loads of 7,000 pounds, 10,000 pounds, and 13,000
pounds, respectively. The machine weighs 7,OOOpounds empty.

These curves.are shown in Fig. (10). The I@% for various wind speeds were deri~ed from
them and compared with the L/D’s taken from the 10,000-pound curve using modified wind
speeds as described above.

.
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lb agreement is very satisfactory, as shown in the table (6) below,
* When using the curve for a 7,000-pound load the modified wind speeds corresponding ta Y,

are

4

—-, . .. . . ... . . . ......”.+.,..,.. ,..
w y= L195wj

and for a load of 13,000 pounds they are

d
—--.

iti=:877w “’-” “’
w 13

Vebdy . mph

Fig.10.

TABLE (6).

-40 I
-al I

1!

%1

#i

(7@xl

&23
pws.ic.)

8.31
&xl 8.37
8.41. a48
a 41 8.43
S.za ;~
&04
7.47 7.45
6.G5 6.90

.! I

W&d

ISs%fiu
w.

-

-4i.”m
–~ ~

IL 95
23.m
35.5
47.&7
59.75

--

-.. . . .-—

Several interesting results appear from the values obtained,

1. The influence of wind on the L/D is greater for light loads than for heavy. 41 clm~c
in L/D from 8.43 to 5.90 is found for the 7,00~-pound rnac~hineas agaiust a chang~ from 8.43 ‘h
7,60 for the 13,000-pound machine, these values corresponding to a clmngo in hewl-wind s[wml
of 50 miles per hour.

2. This influence still holds although much less noticeably for helping winds, the. I@
changing from 8.43 to S.30 for the light machine as wgainst8.43 to 8.34 for the heavy machine,

3. For any reasonable head wind that could be flown against in long-distarm flight, the
change in the L/D ksmall, gmriing from 8.43 to 8.00 Ior the 7jOO0-poundcase to 8.43 b“”8.25
for the 13,000-pound case, these values corresponding to a head wind of Oand 30 mil~ per hour,
remectivelv.

.. -—-,... .—

*

. ----- —

.

.

——. .. -——

. .

L ..t
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As practically it is diflicult to fly at a given angle with mathematical accuracy the main

result of these iigures is to show that as the head winds increase in speed it is necessary to slightly

diminish the flying angle; ‘exactly how much depending on a preliminary calcul~tion as out-

lined above.

The instructions to the pilot can be given in either of two ways:

(a) Proper flying angks for any given wind.

(b) Proper air speed for any given wind.

9

8

L WIYh/md/hgondw/hdsped
E vor~ous?b?%//ouds.

7

6

I I I I I 1 I I ! I I I I I
-50 -w

I I I I I I
-W -B -10 /0

I
m 30

W/hdSp%ed- m.p.h.
40.50

Fig. 11.

A plot of the -dues of L/D against wind speeds for the three loadings is shown in figure
(11). Th&e L/D values correspond to deiinite air speeds at a given altitude and definite angles
of incidence which can also be placed upon the plot. Such a charb will give with sticient
exactness the proper flying a~oles for practical navigation under economical conditions.

RANGE FORMULAl INCLUDING EFFECT OF WINDS.

The time-weight equation (13)

(
t=~ ] –“ 1

Krw~ )
Where .

~=~~,,,.
.

●

—

a

—

-.

—

. .—-- ------

is naturalIy unchanged, since for a given angle of incidence the timein whim the fuel is consumed
can not depend on whether there is a wind or not.

,

.
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d The time-distance equation must be modified. Since the ground distance is &o imporhmt
fnctor the wind modifies the range. If fit any instiii--the air-speed is ITand the wind speed w,
the ground syeed is .V– w, and .in time dt a ground dk$auce

m= (V–w)dt (36)

will be covered. With an obvious. substitution,’ this becomes
.

r -.,.
ds. &w)tit

nnd

‘=M’W’‘-J!’‘“
Using equation (13) .ttis becomes ,:

.
The constant of integration log C is detwmined by the conditiou that w-hent= 0 S= O
and

log c=–~ 1Kz 10ge&f

so that fiially
“1

_ log, 2.+ flf _ ~ts=~ 1

K ~ .-!—

. >Iwj

Eliminating tand giving K its value we have — —.

(37) - “-

The L/D which appears in this equation is an arerago value given by the prelitinfiry culculntiml
as in Table (6) corresponding to lo~uk and wind speeds for which the range k desired.

It would, of course, be possible to introduce an empiriml expressionfor L@ in terms of W
which could be integrated, but no pra.ctic.nladvantage would accrue cm,hcoun t of the impossi-
bility of obeying the mut.hemfiticallyexact conditions in actual flight.

The expression (3] ) for S crm be put into either of the following forms by simple trom-
formations:

In all of these.expressions the altitude of flight is assumed to be ~ubsttiutiallyconstant.
.

— .—
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SUMMARY.

The relation between useful load and range has been worked out by two distinct methods.
Part I employs no new theory and is made by the USUR1performance estimate methods. It

.-

vrould involve considerable plotting of curves and is cumbersome.
Part II gives a theoretimd solution. This solution checks remarkably well with the pre- “” ~-–

vious one in every particular. It leads to an elegant and simple solution for any specific case.
Directions are given for the application of the resulte of this paper to any machine. The

total time requirecl for this complete calculation should not take over 15 minutes.
The resuhs of interest for calm air are:

—

1. The machine should fly at a constant mgle of attack, the angle corresponding to the ---
Wei ht

minimum value of Total rw&tanee.

Z. It is practically immnterird whether the mmhine fles high or low m fm as mnge is
concerned.

3. There is an advantnge in flying h~h in that th$ time is much recluced.
4. The resistance is propoctiomd to the weight qt a given altitude.
5. The result of flying at maximum speed is a very much diminishwl range, or for a given

mnge a very much diminished useful load.
— ..

6. The result of flying at minimum power is to slightly reduce the range.
7. The times of flight at the same level for flying nt best rnnge speed and at minimum

power speed me practically the same.
S. The condition for best range is shown.
9. The weight-time curve is deduced.
10. The range-time curve is deduced.
11. The vreighkrange curve is deduced.

— .

lz. The effect of altitude has been t.~keninto account. ,*

13. The time is greatly diminished for flying at corresponding levels.
14. The theory checks closely with the ordinary methods of Part I.
Part III gives a theoretical solution of the effect of wind on range. I?hat, a proof of fi

method for determining the L/D and nir speed for the machine under any wind conditions is
given. A new,method is shown wherein but one P–V curve iS required for any load an~~any ‘
wind speed.

Variations in L/D for chmges in load and wind speed are derived rmcl checked against
the usual methods.

The w&mht-distanceformula is derived, as modfied by winds.
The results of intermt for flight in winds are:
]. The angle of attack cha~~es but slightly when flying against winds of reasonable

strength, and but very slightly when H.ying with winds of any stren@h.
—.=

2. The altitude of flight affects the range. The reason being that higher speeds we attained
at. ~yher aItitudes and the ratio of air speed to wind speed changs- However, as wind
speeds change with altitude it does not seem worth while to go into the matter more fully.

3. Other tilngg being equtd, it is slightly adv.antigeous to fly high, ~pecially as to time
nf flight.

4. The weight-~ime curve is unchanged.
5. The rnnge-t.ime curve is deduced.
& The weight-range curve is deduced.

o


