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AERONAUTICAL SYMBOLS.
1. FUNDAMENTAL AND DERIVED UNITS.

Metric. English.
Symbol.

Unit. Symbol Unit. Symbol.
Length l 11053 1 0) o P e B Al S g m. foot (ormile)........... ft. (or mi.).
Time..... t gogond it it K8l sec. second (or hour). . ..... sec. (or hr.).
Force F weight of one kilogram...... kg. weight of one pound....| 1b.
Power P Ii3rgn 1/ e, SICEE SRR e B A O ! horsepower.............. P
Speed R A B - oA B e Tz Pl i e T P e M. P. H.

|

2. GENERAL SYMBOLS, ETC.

Weight, W=myg.

Standard acceleration of gravity,
g=9.806m/sec.?=32.172ft/sec.’?

Mass, m=lgV

Density (mass per unit volume), p

Standard density of dry air, 0.1247 (kg.-m.-
sec.) at 15.6°C. and 760 mm.=0.00237 (Ib.-
ft.-sec.)

Specific weight of ‘‘standard” air, 1.223 kg/m.*
=0.07635 1b/ft.?

Moment of inertia, mk® (indicate axis of the
radius of gyration, k, by proper subscript).

Area, S; wing area, Sw, etc.

Gap, G

Span, b; chord length, c.

Aspect ratio=b/c

Distance from e¢. g. to elevator hinge, f.

Coefficient of viscosity, w.

3. AERODYNAMICAL SYMBOLS.

True airspeed, V'
Dynamic (or impact) pressure, q=§7, pV?

Lift, L; absolute coefficient Ong—LS

Drag, D; absolute coefficient OD=§£T
Cross-wind force, C'; absolute coefficient
el
{ I q S

Resultant force, 2
(Note that these coeflicients are twice as
large as the old coefficients L, D..)
Angle of setting of wings (relative to thrust
line), 1w
Angle of stabilizer setting with reference to
thrust line 2,

Dihedral angle, v

Reynolds Number=p~?, where [ is a linear di-

mension.

e.g., for a model airfoil 3in. chord, 100 mi/hr.,
normal pressure, 0°C: 255,000 and at 15.6°C,
230,000

or for a model of 10 em. chord, 40 m/sec.,
corresponding numbers are 299,000 and
270,000.

Center of pressure coefficient (ratio of distance
of C.P.from leading edge to chord length),
(8L

Angle of stabilizer setting with reference to
lower wing. (iy—iw) =8

Angle of attack, «

Angle of downwash, e
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REPORT No. 160.

AN AIRSHIP SLIDE RULE.

By E. R. WEAVER and S. F. PICKERING.

INTRODUCTION.

This report, prepared for the National Advisory Committee for Aeronautics, describes an
airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the
request of the Bureau of Engineering of the Navy Department. The development of this
slide rule was requested by the Navy because of the successful results which had been reported
of the Scott-Teed rule ! which had been developed and used by the British naval air service.
It is intended primarily to give rapid solutions of a few problems of frequent occurrence in
airship navigation, but it can be used to advantage in solving a great variety of problems,
involving volumes, lifting powers, temperatures, pressures, altitudes, and the purity of the
balloon gas.

The rule is graduated to read directly in the units actually used in making observations,
constants and conversion factors being taken care of by the length and location of the scales.
In order to simplify as much as possible the manipulation of the rule, absolute accuracy has
in some cases been sacrificed to convenience. Generally this has been necessary only in those
cases in which the data upon which the computations will be based are not subject to accurate
observation.

It is thought that with this rule practically any problem likely to arise in this class of work
can be readily solved after the user has become familiar with the operation of the rule; and
that the solution will, in most cases, be as accurate as the data warrant. S

DESCRIPTION OF RULE.

) The rule, which is similar in construction to the ordinary 20-inch slide rule (fig. 1), consists
of two fixed guide rails, a movable slide, and two runners with cross lines, one of which can be
clamped in a fixed position. All scales are logarithmic excepting the altitude scale, which is
linear.

The scale on the lower fixed guide and the lower scale on the slide (marked scales “D”’
and “C,” respectively) read from 10 to 100. On each scale may be engraved a line V, rep-
resenting the volume of the ship. Scale E is for the purity of the hydrogen and is graduated
from 75 per cent to 100 per cent. Scale F is the temperature scale, reading from —50° F to
+150° F. It represents the change of volume of a gas with change of temperature. Scale B
is the altitude scale and is used to indicate the variation in lifting power at different altitudes.
It reads from 0 to 25,000 feet. Scale A is the barometric scale, reading from 20 inches to 32
inches of mercury pressure. Scale K is a temperature scale, reading from —50° F. to +150° F.,
and is used to calculate the change in lifting power due to a difference between the air and gas
temperatures.

1 The Scott-Teed rule is smaller and simpler than the one described in this paper. It has a single slide and only four scales. The “A” scale
gives the lift in pounds per 1,000 cubic feet of gas; the “B” scale is graduated in per cent of purity; the “C” scale in degrees Fahrenheit of tem-
perature; and the “D” scale in inches of mercury or barometric pressure. Setting the temperature opposite the barometer one reads the lift per
1,000 cubic feet opposite the purity.

3




4 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.
THEORY OF THE RULE.

The mathematical relations involved in the design of the rule will now be described. The
lifting power of an airship is given by the equation

L= VP(D—d)

where

L represents the lifting power of the ship of volume V.

P represents the purity of the hydrogen determined from its density, assuming the

impurity to be air.

D and d represent, respectively, the weight per unit volume of air and pure hydrogen.

Let T represent the temperature of the air and B the barometric pressure under which L
is determined. The density of a gas varies directly as the pressure and inversely as the absolute
temperature. Hence we may write for I and d

IR

D=- TB, and 0 — d, 1,8

- tB,

where D, and d, represent the densities of air and hydrogen at the temperature T, and baro-
metric pressure B,. We can, therefore, write for the lifting power of the airship

L 1D
| TeBT(-) -
o B, Ry

If the temperatures of gas and air are equal, this becomes

L=lv@.7:) (Dof_do) ) (2)
B, T
Setting ELB:_Q‘Q= K, equation 2 becomes
0
ey 3)
WSET
This equation may be written
log L=logK+log V+log P+log B—log T 4)

In order to determine the effect of altitude upon lifting power, the values tor the lifting power
of 1,000 cubic feet of pure hydrogen were computed for each 1,000-foot level from the average
weather data given by W. R. Gregg in the Monthly Weather Review, 46, 11-20 (1918). The
logarithms of the lifting powers so determined are plotted as abscissee with the altitudes as
ordinates. From this graph, shown in Figure 2, it is seen that the points lie approximately
on a straight line, the equation of which is

log L—.8537—.01346 H

where H represents the altitude above sea level. If by L we represent the lifting power at a
given altitude H, and by L’ the lifting power at another altitude H’, then

log L' =.8537 —.01346 H’
log L' =log L—.01346 (H'— H).

Designating H'— H by & this equation becomes
log L' =log L—.01346h. (5)
Putting this value in equation (4)

log L' =log K+log V+log P+log B—log T—.01346h (6)




AN AIRSHIP SLIDE RULE. d

We now have all our relations in a form which permits the solution of problems involving them
by means of a slide rule, which is merely a simple device for mechanically performing additions
and subtractions. All of the scales representing the quantities of interest are logarithmic
except that representing altitude, which is linear.

The scales are laid out as follows:

The scales C and D, upon which the lifting powers and volumes are read, are the same
as those upon an ordinary 20-inch slide rule and are 50 centimeters long. Since the difference
between the logarithms of 10 and 100 (the numbers at the ends of the scales) is 1, the distance
in centimeters between the lines representing any two numbers on this and the other logarithmic
scales is fifty times the difference between the logarithms of the numbers.

From equation 5 it is seen that the change in log L’ when going to an elevation of 25,000
feet would be

01346 X 25 = .3365.

Multiplying this by 50 gives 16.825 centimeters as the length of scale B which is to be divided
into equal intervals. The construction of six scales which will correctly represent six of the
quantities involved in the solution of equation 6 has thus been determined. The scales are
lettered on the slide rule and the quantities they represent in the solution of the above problem
are as follows:

Scale A represents log B.

Scale B represents .013464A.

Scale C represents log V.

Scale D represents log L’.

Scale E represents log P.

Scale F represents log 7.
The remaining factor, log K, is a constant quantity which involves the relative position of the
scales to one another. Actually, in laying off the scales A, B, C, D, and E were arbitrarily
placed in convenient positions and scale I' was located by the accurate solution of a definite
problem.

Thus far we have been concerned only with the lifting power of a definite volume of hydrogen.
The airship pilot has also to deal at times with the unknown volume of a definite quantity or
mass of hydrogen; that is, when the ship is not full. Scale K has been added to solve problems
of this character.

In the following discussion we will let L represent the lifting power and 1 the volume of a
given mass of hydrogen at temperature ¢, let d represent the density of the hydrogen, and let
D represent the density of the air when the barometric pressure is B and the temperature of the
air is 7. We will represent by L,, Vi, d,, and D), the corresponding quantities when the tem-
perature of hydrogen and air are both 7, and the barometric pressure is B,.

L=V (D—-d) (1)
From the gas laws
_VoBit
V= BT,
e BT,
ety
d= B, 9
e BT
=T
—v, B BT (D)
L=Vig7 X B, \T "%
_y (Do _d
L=7 (7% @)

20370—23——2
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from which it is at once apparent that the lifting power of a given mass of hydrogen at barometric
pressure is independent of the barometric pressure.

If t= T, equation 2 becomes
L= 104D — ) (3)

That is, the lifting power is also independent of the temperature if the temperature of hydrogen

and air are equal.
If the temperature of gas and air are not equal, equation 2 may be written

-1 (Do r;—(zo)-

In order to determine the effect of an increment of temperature of the gas above that of the air
upon the logarithm of the lifting power (which is the function with which we are concerned in
designing the slide rule) we may assume 7' constant and write

log Ltlop V(,(D(,,th do>- (3)
Differentiating with respect to ¢
dlog L _ D,
IR T e 4
7(Dog—d, )

Since we are never practically concerned with very great differences between gas and air tem-
perature, ¢ is substantially equal to 7"and we may write

dlegL' ' Dy (5)
dt  t(Dy—dy)
) S Dot e
d l()g L—(l)u_dgj t
Integrating
Ao - ) YR PO (6)
log L= D= 0; log t+ C.

Hence the relation of lifts L and L’ corresponding to different gas temperatures when the ship
is not full is given by the following equation
: )

log L—log L'= = —(log t—log t'). (7)
[)n 3 ([n =

Scale K is laid out by setting off from an arbitrary starting point the number of centi-

=4

meters corresponding to the logarithm of each absolute temperature multiplied by 5O—Da‘7"
(i)
Scale K is used only in problems involving a comparison between the lifting power at two dif-
ferent gas temperatures. Only the distance between the lines representing the two tempera-
tures actually enters into the solution of the problem; the location of scale K with respect to
the other scales on the rule is therefore immaterial.

ERRORS INVOLVED IN THE USE OF THE RULE.

The principal theoretical errors involved- in the use of the rule are as follows:

(1) The altitude scale is constructed for average weather conditions. The variation of
lifting power with variation of altitude is dependent upon several factors, chief of which is the
temperature. A more accurate solution of problems involving altitude could be obtained by
laying out a scale or diagram in the manner indicated in Figure 3 and working with the portion
of the diagram corresponding to the observed temperature. Such a scale would somewhat
complicate the construction and use of the rule and would probably add but little to its utility.
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The effect of altitude on volume or lifting power is probably not often desired with greater
accuracy than is given by the simple scale, and complications caused by clouds, ascending or
descending air currents, and other local weather conditions would render high accuracy im-
possible in any case.

If it should later seem desirable to include the modified scale, it may be conveniently
placed on the back of the slide with a reference mark on the guide near the left-hand end where
it will still serve for the solution of most practical problems.

(2) The altitude scale was laid off from the average density of the air as determined by the
Weather Bureau, which differs slightly from the density computed from average temperatures
and pressures, principally because humidity is taken account of in the Weather Bureau data.
The altitude scalg should therefore more nearly represent the true average effect of altitude on
lifting power, and less nearly represent the effect of altitude on volume, than a computed scale.
For this reason an altitude-volume scale was included on the rule first designed, but the difference
between the two scales was so slight that it was decided to omit the altitude-volume scale.
A scale was also included on the first rule to show the effect on volume of adiabatic expansion
when changing altitude. Expansion is never entirely adiabatic, however, even when change of
level is very rapid, so that the use of the correction for adiabatic expansion is likely to involve
an assumption as far or farther from the facts than does the assumption that the gas temper-
ature changes as rapidly as the air temperature. The adiabatic expansion-altitude scale was
therefore also omitted. !

(3) The effect of the average humidity of the air on lifting power is included in the con-
struction of the altitude scale and the location of scale F. The effect of water vapor in the
hydrogen can be corrected for only by regarding it as an impurity. If an electrical purity
meter is employed, water vapor appears as an impurity and is very nearly correctly accounted
for. If an effusion apparatus is employed for determining purity and the usual temperature
corrections are made, the water vapor is not corrected for. If there is good reason to regard
the hydrogen as saturated, the effusion method, uncorrected for temperature, should give more
nearly the correct lifting power than it will if the temperature correction is made. One of the
foreign airship slide-rules which we have had the privilege of examining provides for a correc-
tion for humidity with change of temperature. Such a correction could be easily embodied in
the construction of the scales provided we knew what assumption to make regarding the change
of humidity of gas and air with change of temperature. Generally, however, there is no water
present tosaturate the gas when the temperature rises, and water is but slowly lost to the atmos-
phere through the envelope when the temperature falls. It is therefore probably much more
nearly correct to regard the water vapor in the hydrogen as an impurity of constant amount
during any one voyage than to regard it as a variable which depends upon temperature.

(4) The correction for superheat by means of scale K is not strictly accurate because of two
approximate assumptions involved in its derivation. To be exact, a different scale would have
to be constructed for every air temperature. The errors introduced by this approximation are
entirely negligible, however, amounting to only about 0.01 millimeter in the slide rule setting
for an extreme case.

(5) A larger error is involved in the use of scale K for a gas containing more than a very
small amount of impurity, since the presence of an impurity increases the value of d,. This
error is also too small to be of consequence.

(6) It is recommended that no correction be made for superheat when the ship is full of
hydrogen, since the error involved when superheat is neglected is too small to be of consequence
in most cases.

CHANGE IN RULE IF HELIUM IS USED.

The rule can readily be adapted for use in the case where helium instead of hydrogen is
employed by multiplying by the ratio of the lifting powers of helium and hydrogen as with the
ordinary slide rule. A better way, however, would be to engrave a set of scales on the reverse
side of the movable slide. These scales would be identical with those used for hydrogen except-
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ing that scale F would be shifted somewhat to the right. Such a rule could then be used inter-
changeably for hydrogen or helium without materially increasing the cost.

USE OF THE RULE.

The utility of the rule for solving problems other than the two or three special ones for
which it was designed should be apparent to anyone familiar with the principles and use of
slide rules. In particular the temperature scales facilitate the solution of almost any problem
involving changes of gas volumes or densities. In the earlier of the following representative
problems particular attention is given to illustrating the use of the temperature scales, which
are the only ones likely to cause confusion. In nearly every case the volume of the airship has
been assumed to be 243,000 cubic feet, corresponding to the line V marked on the slide rule illus-
trated. Such aline should be engraved on arule to accompany cach ship representing the volume
of the ship.

Problem 1.

What will be the total lifting power L’ of a ship of 243,000 cubic feet capacity at an altitude
of 5,000 feet, if the barometer reading at the ground is 30 inches and the air temperature ({040
and the hydrogen is 95 per cent pure?

(1) Opposite 30 (scale A) set 5 (scale B).

(2) Set the runner over 95 (scale E).

(3) Move the slide to bring 60 (scale F) under the runner.

(4) On scale D opposite 243 (scale C) read L’=14,040 pounds which is the required
answer.

If the lifting power of the balloon at the point of observation of temperature and barometer
is desired, the barometric reading is, of course, set opposite the 0 on the altitude scale. If the
lifting power of the hydrogen per thousand cubic feet is desired, it is read on scale D opposite
the index of scale C; without changing the setting. (Either end of a slide rule scale reading
from 1 to 10 or 10 to 100 is called the index.)

Problem 2.

How full should an airship be at the start in order to reach an altitude of 8,000 feet without

losing gas ?

(1) Opposite 28 (scale A) set 8 (scale B).

(2) Opposite 100 (scale C) read 78 per cent (scale D).
Problem 3. :

An airship is in equilibrium at a height of 2,000 feet. The pilot estimates that the ship is
90 per cent full and that the total weight of the ship and its load is 11,000 pounds. How much
ballast must be dropped to rise to a height of 6,000 feet ?

(1) Opposite 11 (scale D) set 90 (scale C)

(2) Bring runner over 100 (scale C). .

(3) Move slide until 10 (scale C) is under runner.

(4) Set runner over 2,000 (scale B).

(5) Move slide until 6,000 (scale B) is under runner.

(6) Opposite 10 (scale C) read 10,790 pounds (scale D), the total lifting power of the
ship at 6,000 feet.

(7) 11,000—10,790 =210 pounds, the amount of ballast which must be dropped to
make the ascent.

In case the ballast to be dropped should come out a negative number it would mean that
we were wrong in assuming that the balloon would be full after the ascent. If this point-is in
doubt, it should be solved in advance as follows:

(1) Set the index of C opposite the number in D representing in per cent the fullness
of the ship.

(2) If the number (on scale B) opposite 28 (on scale A) is less than the required
increase, in altitude, the ship will be full after the ascension.
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Problem 4.

The total load of an airship in equilibrium is known to be 13,500 pounds when the tempera-
ture of the air is 30° . and the temperature of the gas 45° F. If no gas is lost until after sun-
down, when the temperature of gas and air will become equal, how much will the total lifting
power of the balloon then be? .

(1) Opposite 135 (on scale D) set the index of scale C.

(2) Bring the runner over 30 (scale K).

(3) Move the slide until 45 (scale K) comes under the runner.

(4) Opposite the index of C read 12,770 pounds (on scale D), the lifting power of the
balloon after sunset.

The second runner, which can be clamped in a fixed position on the rule, is provided for use
in connection with such problems as this and the one following. If the lifting power of the
ship is determined under any known conditions, a setting of the slide may be made corresponding
to the operations in problem 1. This position of the index of scale C then represents the lift if
the air and gas temperatures become equal.  If the auxiliary runner is clamped over this index,
the lifting power of the ship under any subsequent conditions of superheat of the gas may be
determined by bringing the index of the slide under the auxiliary runner again and performing
the operations corresponding to 2, 3, and 4 in problem 4.

Problem 5.

When an airship of 243,000 cubic feet capacity reaches the summit of its flight, the barometer
1s observed to read 22 inches, the temperature of the gas is 30° F. and its purity 98 per cent.
What will be the lifting power of the ship when the air temperature is 50° and the gas tempera-
ture 65°?

(1) Opposite 22 (scale A) set 0 (scale B).

(2) Set the runner over 98 (scale E).

(3) Move the slide to bring 30 (scale F) under the runner.

(4) Set the runner over 65 (scale K).

(5) Move the slide to bring 50 (scale K) under the runner.

(6) Opposite 243 (scale C) read 13,630 (scale D), which is the required lifting power.
Problem 6.

How high will the airship of 243,000 cubic feet capacity rise with a load of 9,000 pounds
if it is filled with 98 per cent hydrogen, the barometer reads 25 inches, and the air temperature is
80° F.°?

Solution:

(1) Opposite 9,000 (scale D) set V (243 on scale O).
(2) Set the runner over 80 (scale F).
(3) Shift the slide to bring 98 under the runner.
(4) Set the runner over the index of scale C.
(5) Shift the slide to bring the other index of scale C under the runner.
(6) Opposite 25 (scale A) read 13,200 (scale B), which is the altitude to which the ship
will rise.
Problem 7.

The total weight of the ship of 243,000 cubic feet capacity and its load is 15,000 pounds.
It is just in equilibrium at a barometric pressure of 31 inches and an air temperature of 50° F.
The purity of the hydrogen is 94 per cent. How much will the lifting power of the ship be in-
creased if pure hydrogen is added until the bag is full ?

Solution:

(1) Opposite 31 (scale A) set 0 (scale B).
(2) Set runner R over 94 (scale E).
(3) Shift slide to bring 50 (scale F) under R.
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Solution—Continued.

(4) Set runner R over index of scale C. This gives (on scale D) the lifting power
per thousand cubie feet of the 94 per cent hydrogen.

(5) Shift slide until 150 is under the runner.

(6) On scale C opposite the index of scale D réad 213,000, the number of cubic feet
of gas in the bag.

(7) 243,000 — 213,000 = 30,000, which is the number of cubic feet of pure hydrogen
added.

(8) Shift the slide to bring the index of C under the runner.

(9) Set the runner over 100 (scale E).

(10) Shift the slide to bring 94 (scale E) under the runner.
~(11) Opposite 30,000 (on scale C) read 2,245 (on scale B), which is the amount by

which the lifting power of the ship has been increased.

Problem 8.

A balloon in the hangar is to be filled to rise to a total altitude of 5,000 feet in bright sun-
shine. The observed temperature of the air is 70°; assume that it is known from experience
that bright sunlight heats the gas to a temperature of 20° F. above that of the surrounding air.
How much hydrogen should the balloon contain in order that it will be full at the desired
altitude ?

Solution:

(1) Opposite 28 (scale A) set 5,000 (scale B).

(2) Set the runner over 70 (scale I).

(3) Shift the slide to bring 90 (scale F) under the runner.

(4) Opposite V (243 on scale C) read 201,000 cubic feet (on scale D), which is the
volume of hydrogen required.

Problem 9.

An airship of 243,000 cubic feet capacity is to be filled from cylinders into which the hydro-
gen was compressed at a pressure of 1,600 pounds per square inch and a temperature of 90° F.
If the cylinders are known to deliver, when filled to a pressure of 1,800 pounds, exactly 100 cubic
feet of gas measured at 30 inches barometric pressure and 63°F., and the observed barometric
pressure is 27 inches and the observed temperature 30° F'. at the time of use, how many cylinders
must be used to fill the ship

Solution:

(1) Opposite 18 (scale D) set 16 (scale C).

(2) Set the runner over 90 (scale F).

(3) Shift the slide to bring 30 (scale F) under the runner.

(4) Set the runner over 27 (scale C).

(5) Shift the slide to bring 30 (scale C) under the runner.

(6) Opposite 243 (scale C) read 2,457, the number of cylinders required.

The above problem illustrates the utility of the rule in solving all problems involving the
change of the volume of gas with change of temperature. The temperature scale F' can be used
for any such computations without the necessity of reducing observed temperatures to the
absolute scale. )

Problem 10.

An observation balloon of 30,000 cubic foot capacity is to be sent to a height of 9,000 feet.
It is to be filled from a generator producing a maximum of 10,000 cubic feet of gas per hour.
How much time is wasted if the balloon is completely filled before ascent?

Solution:

(1) Opposite 28, set 9,000.

(2) Opposite 180 on scale C (the time in minutes required to fill the balloon, com-
puted mentally) read 136 minutes (scale D), which is the time in minutes
required to generate enough gas to fill the balloon at 9,000 feet.

(3) 180 — 136 =44 minutes, the time lost in filling the balloon to capacity before the
ascent.
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Problem 11.

An airship carrying a total weight of 12,000 pounds in sunlight is to make a landing at
night. The temperature of the air is 40° and that of the gas 60°.  The gas bag is 95 per cent
full. The ship has only 800 pounds of ballast. How much higher can the ship rise and still
retain enough ballast to enable it to remain afloat after dark?

Solution:

(1) 12,000 — 800 = 11,200.

(2) Opposite 11,200 (scale D) set 12,000 (scale C).

(3) Set the runner over 95 (scale C).

(4) Shift the slide to bring the index of scale C under the runner.

(5) Set the runner over 60 (scale K).

(6) Shift the slide to bring 40 (scale K) under the runner.

(7) Opposite 28 (scale A) read 2,500 feet, the permissible ascent (scale B).

CONCLUSION.

Other problems in great variety, not included in the foregoing set, have been shown to be
capable of solution with this rule, and the authors feel that it is not only applicable to a greater
range of problems but is much simpler in its operation than any of the foreign makes which have
been examined.

@)




Positive directions of axes and angles (forces and moments) are shown by arrows.

Axis. Moment about axis. ' Angle. Velocities.
(poabel
PRIACR i Linear
to axis) : Positive .
R Sym- Designa- |Sym- A Designa- { Sym-| (compo-
Designation. b}:)l. symbol. tio%. b};l. %Z;C' tio%l.1 b}:)I. n(enta. ong Angular;
i axis).
Longitudinal....| X X rolling. .... L |Y—>Z |roll..... P U P
Lateral. < ... ¥ 344 pitching...| M | Z——X | pitch...., © v q
Normal:.. 0. Z Z yawing..... N | X—Y | yaw..... \4 w r
Absolute coefficients of moment Angle of set of control surface (relative to
T M N neutral position), 6. (Indicate surface by
01=q b S 0‘":9 ¢S Cu= qf8 proper subscript.)
4. PROPELLER SYMBOLS.
Diameter, D Thrust, T
Pitch (a) Aerodynamic pitch, p, Torque, @
(b) Effective pitch, pe Power, P
(c) Mean geometric pitch, pg (If ““coeflicients” are introduced all units
(d) Virtual pitch, p, used must be consistent.)
(e) Standard pitch, ps Efficiency n=T V/P
Pitch ratio, p/D Revolutions per sec., 7; per min., N

Inflow velocity, V’

g i, Gl
Slipstream velocity, V, Effective helix angle ®= tan (m)

5. NUMERICAL RELATIONS.

1 B?=76.04 kg. m/sec. =550 lb. ft/sec. 11b. =0.45359 kg.
1 kg. m/sec.=0.01315 IP 1 kg. =2.20462 1b.
1 mi/hr.=0.44704 m/sec. 1 'mi.=1609.35 m.=5280 ft.

1 m/sec.=2.23693 mi/hr. 1 m. =3.28083 ft.



