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REPORT No. 172.

DYNAMIC STABILITY AS AFFECTED BY THE LONGITUDINAL MOMENT
OF INERTIA.

By Epwin B. WiLsox.

INTRODUCTION.

This report was submitted to the Subcommittee on Aerodynamics and by that committee
recommended for publication as a technical report of the National Advisory Committee for
Aeronauties.

In a recent technical note (No. 115, October, 1922} of the National Advisory Committee for
Aeronautics, Norton and Carroll have reported experiments showing that a relatively large (15
per cent} increase in longitudinal moment of inertia made no noticeable difference in the stabil-
ity of a standard S. E. 5A airplane. They point out that G. P. Thomson, Applied Aeronautics,
page 208, stated that an increase in longitudinal moment of inertia would decrease the stability.
Neither he nor they make any theoretical forecast of the amount of deerease. Although it is
difficult, on account of the complications of the theory of stability of the airplane, to make any
accurate forecast, it may be worth while to attempt a discussion of the matter theoretically
with reference to finding a rough quantitative estimate.

GENERAL METHOD USED.

The notation used will be that of my Aeronautics (Wiley & Sons) particularly pages 135 fi.
The effective quadratic factor of the stability biquadratic for the longitudinal motion which we
are considering (the so-called phugoid) is
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the periodic time is
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and the time to damp one-half is
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The problem is to determine the effect on 7 and ¢ due to a change in the longitudinal moment
of inertia which is represented by the square ks of the radius of gyration. It is assumed that
this change of k»* is effected by a transfer of mass fore and aft in the airplane without altering

the center of gravity, the total mass, the aerodynamic surfaces, or anything except k5.
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RESULTS OF THE TESTS.

For the experimental airplane TW=2,000 pounds or slightly over 60 slugs and the moment
of inertia is 1,860 slugs-feet, so that kz® is about 30 in the standard form. The increase of
Is* is nearly 15 per cent, or about 4. The observed periodie times are 19.3 and 18.6 (mean
value, 19) for the standard form; 18.8 and 20.3 (mean value, 19.5) for the modified distribu-
tion of mass. The increase of period is therefore about 2.5 per cent except for errors of observa-
tion. As a matter of fact in the two respective cases the observed periods differed among
themselves by 0.7 and 1.5 seconds. With so few observations it is impossible safely to apply
the theory of precision of measurements, but it is by no means certain that the error in the
two means might not be as high as 0.5 second, which is the mean error. The conelusion from
the experimental data is therefore that the increase of moment of inertia had no appreciable
effect on stability. Further it may be inferred that unless many more observations were
made or unless more precision in the individual measurements were attainable an increase of
about 2.5 per cent in 7 would not be definitely noticeable. It is probable that the determina-
tion of ¢ would be liable to quite as great an experimental error as T, if not greater.

INVESTIGATION OF THE PERIOD.

The experimental airplane was of a type of reasonably high longitudinal stability, and the
damping time exceeded the period. Under these conditions it is known that the damping
affects the period but slightly. Indeed, if t=nT, we have
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Hence “0-— T) [1+8TW:|, nearly.

Variation in the damping alone may be represented by variation in n, with n= e for no
damping. In the case of a fairly stable airplane, say n=1, the total effect of the damping on
the period is only about 0.7 per cent and the change of » from 1 to 1.2, a change of 20 per cent,
would change T by less than 0.2 per cent. If, then, it appears that the change in ¢ is small,
the effect of that change upon 7 will be very small, and it will be possible to treat the changes
of T and ¢ separately by the equations

9} (D BE
T=27r\/F, f=1.4-+ T

(Compare the discussion in art. 33, Aeronautics, pp. 68-70.)

Of the four coeflicients B, €, D, E which here enter, the formulas (Aeronautics, p. 135) show
that B and € alone depend on ks, whereas D and E are independent of k%  The percentage
changes of T are therefore (neglecting the effect of changes in damping) one-half the percentage
changes in C.

Now

0=k82 (Xu Zw_"Xw Zu) - Mq (_Zw_Xu) _(Zq+ U} -‘Uw"" oy ‘Yq‘

The large terms here are Z, M,— UM, so that for approximate caleulation kz? is entirely
neglected. Ordinarily Z, M,— UM, is in the hundreds, whereas X, Z,—~X, Z, is of the
magnitude 1. A change of 4 units in %z* would therefore ordinarily represent a change of
under 1 per cent in ¢ or under 4 per cent in 7. It would seem a well-founded conclusion to
infer that changes in ks* of the order of 15 per cent would, except as they affected T through
the damping, be for a stable airplane only of the order of magnitude of one-tenth the pre-
cision of the experiment. So far as I have the data at hand, the coefficient of kz® seems to
fall off at decreasing speeds as fast as €, and the conclusion would seem to be very widely valid
that no practicable changes in ky? are likely in ordinary types of airplanes to make observable
changes in the period T.
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INVESTIGATION OF THE DAMPING.

If the attention next be turned to the damping time ¢, it may be assumed safely, in view
of the above considerations upon the changes in €' due to changes in &z that in the expression
for

14 Ig BE l(D 4T~B)

changes in (' (or T) will be inappreciable: for although this expression is a difference, the magni-
tude of the terms is decidedly different and the variation in € would in any event tend to coun-
terbalance in the two terms, as may be clearer from the second form than from the first. The
chief variation in ¢ would therefore be

1.4 472 8B
E e i)

Now B=— M+ k*(~Z,—X,) and §B=(—Z,—X,) 6ks*. The value of —Z,— X, Is,
let us say, around 5 and the change in B is around 20. Hence the change in ¢ is of the order
of magnitude of 1 second, or 5 per cent. This is a much larger change in ¢ than in 7, but its
influence upon 7T is negligible. We do notice, however, that the damping time might easily be
noticeably increased, though the increase of the period be imperceptible, provided the same
degree of precision attached to the measurement of £ as to 7. At any rate unless it is decidedly
harder to determine £ accurately, to look for the effect of diminished stability in the value of ¢
would be more promising.

If the aerodynamic constants of the airplane are approximately known and the value of
n=t/Tis also approximately known the forecast of & is given by the equation

DIy
or Bf=£—0“- 8B, nearly.
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[n this simple equation the ratio 1/,/Z, is likely to be of the order of magnitude of from
1 to 1/3, so that the denominator is, say, about 200. Airplanes differ so much that only the
roughest estimates can be expected to hold in general, but the order of magnitude of & can be
readily estimated for a particular case to determme whether the experimental determination
of 6t is worth attempting. And with reference to the particular data of Norton and Carroll
(loc. cit.), the fact that there is no perceptible variation in ¢ (except that due to the change in
T, since it is n which is tabulated and does not change) would indicate to me that the change
of 0.5 second in T on the average is illusory (as the authors seem to infer) in that it must be
within the experimental error; there should theoretically be a decidedly larger percentage
increase in n thanin 7.

ACTUAL COMPUTATION OF THE CHANGES.

An actual calculation of the changes in 7 and £ for the airplane in question can not be made
unless all the necessary aerodynamical coefficients are available, and I have not succeeded in
finding these coefficients nor material from which they may be calculated. However, if we
take the case of the JN-2 flying at 51.8 M. P. H., from my Aeronautics, page 141, we have a
speed not far different from that at which Norton and Carroll operated their S. E. SA the ratio
of ¢/ T is n=1.05, which is very close to their ratio and the actual values of { and 7, are not
far removed from theirs. The equivalences are sufficiently good for illustrative purposes.
We have the following data:

" =51.8 M. P. H. X,=-—121. X,y=-+.113. Z,= 8—.&9
Z, = —2.26. Mo=+2.45.  M=—-113. k7
B,=104. C, =467. D, =643. E = 6(
T =16.7. t=17.7. My, Xg Zgall neglected
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It is not at all likely that many of these data are as precise as the figures indicated; but it is
not_the absolute values that are under discussion—it is rather the order of magnitude of the
changes which are introduced by a variation of k;? other things being kept constant. We have
for these changes

§0=8kx* (X, Z2,— X, Z,) =0.37 8k,

dB=okp* (—Z,— X,) =2.13 6k

Note that in this case the change in B is nearly 6 times as great as that in ¢ whereas the
relative change is nearly 15 times as great, because €' is so much larger than B. The calcu-
lations give the following table:

Skp¥= —4.0 0 + 40 -+ 80
v7, change= —11. 8 0 +11.8  +23.5
§B= —8.5 0 + 85 17.0
B= 185.5 104 202. 5 211.0
§0= —-1.5 0 + 1.5 + 3.0
f= 465.5 467 468. 5 470.0
t= 17.2 17.7 18. 4 19.2
= —0.5 0 + 0.7 4+ 1.5
¢, change= —2.8 0 _ + 40 -+ 85
cale. §f*= —0.6 0 + 0.6 + 1.1
T= 16.66 16.08 16. 70 16. 72
§T= —0.02 0 -+ 0.02 0. 04
%, change= —0.12 0 + 0.12 + 0.24
* Caleulation by formula 6¢=28n23BfC. '
CONCLUSION.

This table shows, as was indicated on theoretical grounds, that the change in T is insig-
nificant relative to that in ¢. The difference in this particular case is more pronounced than
could be inferred from the general argument. That argument led to the prediction of a change
of less than 0.5 per cent in 7 for an increase of 15 per cent in kp* and of the consequent
impossibility of detecting the change experimentally; the calculated change in T is only 0.12
per cent. On the other hand the table shows clearly, as was demonstrated in the text, that
the change of ¢ might be of the order of magnitude of 5 per cent and that the change in n would
be practically wholly due to this cause. These results differ from the experimental figures of
Norton and Carroll in such a way as to indicate that all their results were identical within the
experimental error.

NOTE ON THE SHORT OSCILLATIONS.

In simple harmonic motion, slightly damped (WA*"'/g) +R¢'+ F8=0, the period T is
proportional te (k?/F)}/* and the damping time ¢ to k?/R. Hence a small percentage increase
in k? produces an equal percentage increase in ¢ but only half that percentage increase in T
and a like amount in the ratio n=¢/7. The airplane shows the same qualitative phenomenon
of a greater sensitivity to A% in ¢ than in 7|, but the quantitative relation is very different; the
percentage change in ¢ is only 1/4 to 1/2 that in 22 whereas the percentage change in T is reduced
to a negligible amount. This sort of difference is noet surprising in view of the complicated
coupled system found in the airplane. It might be interesting to observe that in the short
period heavily damped oscillation, which we have ignored, the relative changes are much
nearer those found in the simple uncoupled harmonic case.

INVESTIGATION OF THE LATERAL STABILITY.

It might be interesting to see what effect the change in the position of matter should have
on lateral stability; for the increase of about 4 units in %,* should produce the same numerical
change in & ? which enters into all the coefficients, except the last, of the biquadratic regu-
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lating the lateral stability. There are three types of motion: “Roll,”" which is so strengly
damped that its discussion is uninteresting; ‘“Spiral,”” which is represented by a single small
positive or negative root of the biquadratic; “Dutch roll,” which is an oscillatory damped
motion. (See Aeronautics, pp. 147-148.) For the spiral motion A= — E/D, where E is inde-
pendent of k.2 and D is a large number, measured in the thousands in the notation of my book.
The expression for D) contains k. in the product of ghAL,, and a change of 4 units in k&
would make a change of 120 Z,. The numerical value of L, is of the order of magnitude of 1,
but decidedly variable, so that 120 L, might be anything from 1 to 5 per cent of D. The
damping time would therefore increase with k.2 by & small amount, say of about the same
order of magnitude relatively as in the longitudinal case. Howerver, it would probably be more
difficult to measure experimentally on account of the very slow and one-sided (nonoscillatory)
subsidence of the motion.
With respect to the *“Dutch roll” the approximate quadratic is

SICE e

and the coefficients B, C, IJ are tolerably complicated.
B= _}?t’ Z‘_{g -r{'cz—Lp ZL'C?‘~ Nf k‘ig.

Here the first two terms are by far the largest and vary directly as k¢* so that the percentage
increase in B is about the same asin £¢*. The change in ('is much less, and in the same direction
which would indicate for C/B a percentage decrease somewhat less than for k¢ itself. The
increase in I} would tend numerically to decrease E/D, which for a fairly stable airplane is
considerably less than C/B. Whether the change in E/D conspires with that in ('/B depends
therefore on whether the airplane is stable or unstable spirally. The net tendency of the in-
crease in ke? would surely be to a decreased stability in Dutch roll if the stability be measured
by the time required to damp to half amplitude. It would also seem tolerably clear that
some airplanes of fairly common type the change in the time of damping might be in the neigh-
borhood of 5 to 10 per cent, i. e., in the neighborhood of the percentage change in k2 I,
then, the experimental determination of this damping time were of about the same difficulty
as the determination of the damping time for the phugoid (estimated relatively to the time and
not absolutely), there is a possibility that the effect of the changed distribution of mass fore
and aft could be seen fully as easily in the Dutch roll as in the phugoid.

In many cases A(C is so small relative to B* and E/D relative to C/B that the quadratic
may be written .

D
TB Uor>\=——§ \B (B)

In many cases, too, the damping is so great that its effect upon the penodlc time can not be
neglected as in the case of longitudinal motion. It has been seen that in a general way the
percentage change of B is about the same as that in k¢* whereas the percentage changes in
D and ( are in general much less, and all in the same direction. The periodic time may be
written

bdlt‘

A

D

T=

_iee
A B\ 4 DB
If the change in (/D be ignored and the percentage changes in D/B and (/B be taken as of
about the same magnitude and somewhat less than that of B, it is seen that the changes in the
factors in the denominator tend to offset each other. It is therefore unlikely that, in an air-

plane fairly stable in the Duteh roll, the change in k¢ should make a percentage change in T
as great as one-half that in k¢ and under certain circumstances, it might be much less.
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With respect to the numerical illustration of the effect of a change in ko2 upon stahility the conditions are less
satisfactory than for the longitudinal motion. I called attention in my article on *The Variation of Yawing Moment
Due to Rolling,” Report No. 26, from the Fourth Annual Report of the National Advisory Committee for Aeronautice,
to the possibility that previous calculations of the coefficient Np might be incorrect in sign and in numerical magni-
tude and further that on account of lag in the adjustment of stream lines to a moving airplane or model the values
should be checked experimentally. Now it so happens that the coeflicient D, contains in addition to the term gke? Ly,
which affects the damping in spiral motion, the terms (¥y Lp+ ULy) Vp which in magnitude far exceed any changes
in gke? Ly so that a reversal of sign N, would be of far greater significance than any practicable change in gke® Ly, A
similar remark holds for the coefficient C,. It is therefore not alone on account of the greater complexity of the changes
of damping and period in the case of lateral motion as compared with longitudinal motion that 1 have found it
difficult in the general discussion to be as definite in statement for the lateral case as for the longitudinal, but also
because of a lesser confidence in the accuracy of the numerical values for the fundamental coelficients. For this
reason it would also appear that until betier data are available, the general considerations offered above are as satis-
factory as an apparently more accurate display of tabulated calculations, and with less liability to misinterprefation.
From a careful consideration of the experimental difficulties I should judge that even though the percentage changes
in the periods of damping of the lateral motion be considerably greater than for the longitudinal there would be not so
good an opportunity to detect them, let alone interpret them if detected.



