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AERONAUTICAL SYMBOLS.
1. FUNDAMENTAL AND DERIVED UNITS.

Metric. English. J
Symbol. — :

Unit. Symbol. | Unit. Symbol.
Length.. l Ieter.. ool Jhe R e 2 m. fqots(or mile)eiiis wudi, ft. (or mi.).
Time..... t gacondntt Jo et Al e e ety gsec. | second (or hour). ...... sec. (or hr.).
Force. . F weight of one kilogram...... kg. | weight of one pound....| 1b.
Power. . .| P Ko I/B00.. = 0% syt it b e g et hOTSEPOWEr: -4 o es anae TP
Bpect B oy oot ralRbet W e S 1 Sei el il SBEE el NP, SH)

[ i} L

2. GENERAL SYMBOLS, ETC.
Specific weight of ‘‘standard” air, 1.223 kg/m.’*

=0.07635 1b/ft.?
Moment of inertia, mk? (indicate axis of the

Weight, W=mg.
Standard acceleration of gravity,
g=9.806m/sec.” =32.172ft/sec.”

Mass m=lV
g q Area, S; wing area, Sy, etc.
Density (mass per unit volume), p Gap, ¢

Standard density of dry awr, 0.1247 (kg.-m.- Span, b; chord length, c.

sec.) 'at 15.6°C. and 760 mm.=0.00237 (Ib.- Aspect ratio=¥b/c
Distance from e. g. to elevator hinge, f.

ft.-sec.)
Coefficient of viscosity, p.
3. AERODYNAMICAL SYMBOLS.
True airspeed, V Dihedral angle, v
f

Dynamic (or impact) pressure, g=;1, pV?

i ; mension.
Lift, L; absolute coefficient C,= Q%: e
; mal sure, 0°C: 255,000 and at 15.6°C
Drag, D; absolute coefficient anq—g— ; 121;)8,000;[)1‘85 3 * ;

Cross-wind force, C; absolute coefficient
% corresponding numbers are 299,000 and

Cc=25" 270,000.
Resultant force, R
(Note that these coefficients are twice as

large as the old coefficients L., D..) G
Angle of setting of wings (relative to thrust Angle of stabilizer setting with reference to

line), % lower wing. (i—1v) =8

Angle of stabilizer setting with reference to Angle of attack a
thrust line 7, Angle of downwash, e

radius of gyration, k, by proper subscript).

Reynolds Number=p}#—1, where [ is a linear di- |

e.g., for a model airfoil 3 in. chord, 100 mi/hr.,
or for a model of 10 em. chord, 40 m/sec.,

Center of pressure coefficient (ratio of distance
of C. P. from leading edge to chord length), ,
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REPORT No. 180.

DEFLECTION OF BEAMS WITH SPECIAL REFERENCE TO SHEAR
DEFORMATIONS.

By J. A. NEwriN anp G. W. TRAYER.

INTRODUCTION.

This publication is one of a series of three reports prepared by the Forest Products Labora-
tory of the Department of Agriculture for publication by the National Advisory Committee for
Aeronautics. The purpose of these papers is to make known the results of tests to determine
the properties of wing beams of standard and proposed sections, as conducted by the Forest
Products Laboratory and financed by the Army and the Navy.

Many of the mathematical operations employed in airplane design are nothing more than
the solution of equations which are either empirical or are based on assumptions which are
known to be inaccurate, but which have been adopted because of their simplicity. These
inaccuracies of the formulas were not of primary consideration as long as the stresses used for
design were obtained by the test of specimens of the same form as those to be used, and great
refinement was not necessary.

The advent of the airplane and the impetus given to its development by the recent war has
created a demand for more definite knowledge of the limitations and proper application of the
common theory of flexure. There is probably no other field in which greater refinement in the
design of wooden members is required than in that of aircraft construction. The ever-present
problem of weight reduction has led to the use of comparatively small load factors and the
introduction of such shapes as are not commonly used for other construction purposes. Formulas
which give comparable results when applied to wooden beams of rectangular section have been
found to be considerably in error when applied to wooden beams of other shapes.

The tests were made at Madison, Wis., in cooperation with the University of Wisconsin.
An analysis of the results of these tests has furnished information which, when correlated with
that from other studies conducted by the Forest Service for the past 18 years, provided a more
exact method of computing the stiffness of wood beams and led to the development of formulas
for estimating the strength of beams of any cross section, using the properties of small rec-
tangular beams as a guide.

For convenience, the report of this investigation has been divided into three parts. The
first part deals with the deflection of beams with special reference to shear deformation, which
usually has been neglected in computing deflections of wood beams. The second part has to do
with stresses in beams subjected to transverse loading only, with a subdivision on nonsymmetrical
sections; and the third part, with stresses in beams subjected to both longitudinal thrust and

bending stresses.
SUMMARY.

In addition to the deflection due to the elongation and compression of fibers from bending
stresses, there is a further deflection due to the shear stresses and consequent strains in a beam.
This is not usually considered in computing deflections of wood beams, though the modulus
of elasticity in shear for wood is relatively low, being but approximately one-sixteenth the
modulus of elasticity in tension and compression, whereas for steel, for example, it is about

two-fifths the ordinary modulus. :
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By neglecting the deformation due to shear, errors of considerable magnitude may be
introduced in determining the distortion of a beam, especially if it is relatively short, or has
comparatively thin webs as the box or I beams commonly used in airplane construction. A
great many tests were made to determine the amount of shear deformation for beams of various
sections tested over many different spans. As the span over which the beam is tested is in-
creased the error introduced by neglecting shear deformations becomes less, and the values
obtained by substituting measured deflections in the ordinary formulas approach more nearly
the modulus of elasticity in tension and compression. For short spans, however, the error
is considerable, and increases rapidly as the span is reduced. This variation is illustrated in
Figures 3 and 4.

Two formulas were developed for estimating the magnitude of shear deformations, both
of which have been verified by tests. It is known that the distribution of stress assumed in
both formulas does not exactly represent the actual distribution of stress in a beam. Both
formulas check experimental results very closely when the calculations are made with great
refinement. 1t is not known which is the more accurate formula under these conditions, since
the difference in results obtained by the two is only a small part of the normal variation of
the material. The first formula, with its high powers and numerous factors, will obviously
lead one into inaccuracies due to the ordinary approximations used in calculations more readily
than will the second, or similar formula. In both formulas the deformation due to shear is

equal to —K%P—l, where P is the load on a beam of length [, /' is the modulus of elasticity in shear,

and K is some coeficient depending upon the shape of the beam and upon the loading. The
formulas differ only in the determination of the coefficient K. Under the heading “Analysis
of Results” K by the first formula is shown and also by the second, or more simple formula.

The modulus of elasticity in shear was found to vary greatly according to the direction
of the grain of the ply wood in webs of box beams. It was found to be over three and one-half
times as great for beams having ply-wood webs with the grain at 45° to the length as for beams
having webs the face grain of which was perpendicular to the length of the beam.

Although the tests showed conclusively that shear stresses are present in the overhang,
the change in deformation on this account did not prove to be of sufficient importance to take
overhang into account even with the most heavily routed I sections.

These tests show that the values of modulus of elasticity for small beams given in Bulle-
tin 556 ! are approximately 10 per cent lower than the true modulus of elasticity in tension and
compression. However, when substituted in the usual deflection formula they will give correct
values for the deflection of solid beams with a span-depth ratio of 14, which is about the average
found in most commercial uses. ~The bulletin values are therefore recommended for use in the
ordinary formulas when no corrections are to be made. For solid beams with spans from 12 to
28 times the depth of beam the maximum error introduced by substituting these values in
the ordinary formulas is about 5 per cent. For very short spans it would be well to use the
more exact formulas, which take into account shear distortions, using for the true modulus a
value 10 per cent greater than that given in the bulletin.

But in I and box beams, however, which have a minimum of material at the plane of
maximum horizontal shear stress, very considerable errors will be introduced if shear dis-
tortions are neglected even for relatively large span-depth ratios.

PURPOSE.

The purpose of the tests was to determine to what extent ordinary deflection formulas,
which neglect shear deformations, are in error when applied to beams of various sections and
to develop reasonably accurate yet comparatively simple formulas which take into account
such deformations.

1 Bulletin No. 556, United States Department of Agriculture, “Mechanical Properties of Woods Grown in the United States,” by J. A.
Newlin and T. R. C. Wilson.
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MATERIAL.

The beams were made of either Sitka spruce or Douglas fir wing-beam material conform-
ing to standard specifications and had either box I, double I, or solid rectangular sections as
shown in Figure 1. The box and I beams, which were made of Sitka spruce, were either 14
or 18 feet in length. The double I beams had Sitka spruce flanges and ;—;—3'; inch yellow
poplar ply-wood webs with the grain of
face plies in some cases perpendicular Lh/é;i =i_t'-22__.1

length 14 feet 6 inches. = All the beams
of solid rectangular section were made
of Douglas fir. They were 2% inches
wide, 5 inches deep, and 14 feet 6

inches long. = ;/24 y«/z//ow ,t;oplaf‘

It must not be construed that the A e dae

beams were tested only in the lengths
given above. As tests for modulus of

elasticity were kept well within the J !

8 e Y |
elastic limit, the length of the beams \\
could be reduced after each test and
another test run over a new span.

Torsion specimens were 24 inches
1Y
long and 2% inches of each end were

2 inches square. For 18 inches the sec-

N
tion was reduced to a circular section 1} \\
inches in diameter, the square ends and

circular center portion being connected
by a circular fillet of }-inch radius.

and in other cases at 45° to the length S T YWY T

oL %

of the beam. The flanges were 283 £ g
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F1G. 1.—Sections of beams used for modulus of elasticity tests.

OUTLINE OF TESTS.
A. Beam tests:
1. Test for modulus of elasticity—
(@) Center loading.
(b) Symmetrical 2-point loading. -
2. Moisture determinations.
B. Tests of minor specimens matched with the beams:
1. Static bending tests of 30-inch specimens.
2. Compression-parallel-to-grain specimens 8 inches long.
3. Compression-perpendicular-to-grain specimens 6 inches long.
4. Specific gravity determinations specimens 6 inches long.
5. Moisture determinations. Disks cut from all minor specimens.
C. Torsion tests:
1. Test for modulus of rigidity.
2. Moisture determination.

METHODS OF TESTS.
MODULUS OF ELASTICITY TESTS.
In order to eliminate the variability of material in our comparison of different spans, the
same beam was tested several times, the span being changed for each test. Since the relation

of modulus of elasticity in shear to the ordinary modulus of elasticity is not the same for different
beams and species, several beams were tested that we might learn something of its range. In
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some cases the ends were cut off to maintain a constant overhang and in other cases the total
length was kept constant as the span was changed. The accompanying tables show how spans
up to 18 were reduced by either 1 or 2 foot intervals to either 2 or 3 foot spans. Deflections
were read by referring a scale, attached at the center of the beam, to a fine wire drawn between
nails over the supports, or when greater precision was required, by observing the movement of
a pointer on a dial attached to a light beam resting on nails driven in the test beam over the
supports. A fine silk line attached to a nail at the center of the test beam passed around the
drum of the dial and carried a weight to keep it taut. Movements of the test beam were so
multiplied that the pointer gave deflections to 0.0001 inch, whereas by the first method deflec-

Fi1G. 2.—Torsion apparatus.

tions could only be read to 0.01 inch. The two methods were never interchanged during a series
of tests on any one beam.

Two of the types of beams tested showed a decided tendency to buckle during test. This
was overcome by using pin-connected horizontal ties, which prevented bending in more than one
plane.

Loads were applied by a 30,000-pound capacity testing machine, which was fitted with aux-
iary wings to accommodate spans up to 18 feet.

Center loading was used in all except two series of tests. The first of these series consisted
of tests of the same beam over different spans, center and third point loading being applied
for each span, in order to determine the relation between the moduli of elasticity as computed
by the formulas for each condition. In the second series of tests the span was kept constant and
the distance between symmetrical loads changed in order to determine what effect, if any, the
distance between loads had on the modulus of elasticity as computed by the usual formula for
symmetrical loading.
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There were matched with all I and box beams, static bending specimens approximately
2 by 2 inches in section and 30 inches long, compression parallel test pieces 2 by 2 inches by 8
inches long, and compression perpendicular specimens 2 by 2 inches by 6 inches long. These
minors were tested and specific gravity and moisture determinations made in accordance with
standard laboratory methods.

A simple torsion apparatus was set up in an ordinary wood lathe. Figure 2 is a photograph
of the machine. Load was applied in 25 inch-pound increments and the angle of twist read for
each increment over a 16-inch gauge length. All torsion specimens were matched with stand-
ard 2 by 2 inch specimens which were tested in bending over a 28-inch span. For further
description of the test see Description of figures and tables.

DESCRIPTION OF FIGURES AND TABLES.

Figure 1.—This figure shows sections of all beams used in modulus of elasticity tests
Such dimensions as ““7 inches front” and ‘6% inches rear’” indicate that two beams of that type
were tested, the words front and rear designating their position in the wing.

Figure 2.—This is a photograph of a simple torsion apparatus set up in an ordinary wood
lathe. The right-hand wooden disk is set on ball bearings and has a wire passing around it to
a tray marked “load.” The smaller wooden disk at the left is fixed. The specimen is square at
the ends, which fit into the two wooden disks. The angle of twist was measured by the two

troptometer arms, each of which carries a string which passes around the drum of a dial.
3

: : : i RS
Figure 3.—This shows the typical variation of the quantity j¢, with span for a beam of

solid rectangular section loaded at the center.
Figure J.—This shows a similar variation before and after routing a solid section. The

amount of shear deformation is considerably increased by reducing the thickness at the plane
of maximum horizontal shear.

3 e S Pl :
Figure 5.—This figure shows the same variation. The yo77 values, which are the average

from tests of three beams, are expressed as per cent of the true modulus of elasticity in tension

and compression.

Figure 6.—Curve A shows the distribution of shear stress in a beam of rectangular section,
and curve B the distribution in an I beam with square corners which was used as a basis for the
developments of the shear deformation formulas presented in this report.

Figure 7.—This figure shows the superiority of 45° ply wood as regards rigidity. Shear dis-

3
tortion being less the values of 4—81%_] are closer to the true modulus of elasticity for the beam with

45° ply wood.
3
Figure 8.—In this dual figure is represented the variation of lglA—Iwith span for various

standard wing-beam sections as well as for a solid section. The beams were all made of

3
Sitka spruce and tested under center loading. The values of %ﬁl&—lare expressed as per cent

The dimensions of these beams

of the true modulus of elasticity in tension and compression. ¢
ng, and T'F,

are shown in Figure 1. In the upper row, from left to right, is the F-5-L, Loeni

and in the center of the lower row, the NC.
Table I.—In this table is given the measured and computed deflections of Douglas-fir

beams of solid rectangular section loaded at the center. The formula used takes into account
shear deformations usually neglected in such calculations. The differences in the two values

are expressed as errors in per cent of the measured deflection.
Table II.—Here we have measured and computed deflections for standard sections. For

description of these sections see description of Figure 8. The computed deflections are
from two formulas, one taking shear into account and the other neglecting it. Errors are

expressed in per cent of the measured deflections.
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ANALYSIS OF RESULTS.
If a solid beam is tested over different spans, load being applied at the center and measured
3

deflections substituted in the expression 452—1 the resulting values for spans greater than 20 or
25 times the depth of beam will be fairly constant, approaching the true modulus of elasticity
in tension and compression, while for spans below this ratio there will be a rapid decrease.
Figure 3 shows the results of just such a test. The beam was of Douglas fir, 2.75 inches wide,
4.97 inches deep, and was tested over spans starting at 14 feet and reduced by 2-foot intervals
after each test to a span of 10 feet and then by I-foot intervals to a span of 2 feet. Evidently
the constant value which this curve would approach with longer spans is about 1,600,000 pounds
per square inch.

In this test a constant overhang of 3 inches was maintained for all spans. For some of the
comparisons described below this was impossible since it was necessary to maintain a constant

DOUGLAS FIR BEAMS
SOLID RECTANGULAR AND T SECTIONS
2400 Center loading
True Compited E - 2,/54,000
Ib. per sq in.
DOUGLAS FIR BEAM i 2200 ! :
SOL/D RECTANGULAR SECTION, 4.97"x 2.75" ;
Center loading 2000—- *20/’{7_’,' ect_? ] B o i
| PR e e 1515 T Ibl Tl e] Saac A I bean.
True computed E=1595000 /. ersq .
Rt e 1800 S
1600000 e ]
= . 1600 /
1400000 //" A : 3 / |
o
w /400
.. 1200000 4 r§
RS A 9 7
5 : & /200
¢ /000000 Q
< i g |
D] ! : 1000
Q. 800000 nil I/
& e g 800 I I
;SN 600000 [/ Nerae . ) ]
PAES| Curve lineis theoretical
LR 600 | / variation. +———
400000 1 Points are measured
| 20011 Tdef/ecf/'ons. Eold
| +he solid beorm was rout-"|
200000 ‘ [ / ; ed,affer fest foar 1 +——f——
: 200 bearn. Both beams were__|
] | I | | Li 7esfed atsame sparrs.
(Rt a2 e A SR B o) L R 2 B ) |’||’]I[I
. Spar i Feet
5 10° 15 L2025 IO 35 7 = < & 8 10 2 /4 . 6
Span depth ratio Sporrin feet
Fi6. 3.—Relation of span to value obtained by substituting deflections in ¥16. 4.—Relation of span to value obtained by substituting measured
}gfi- deflections in L <

JSAT*

over-all length with a consequent variation in overhang as the span was changed. Observations
proved conclusively that shear strains crept out into the overhang, but the change in deflection
at the center due to this influence was too small to be measured.

Figure 4 shows the results of tests of a solid beam tested over various spans, after which it
was routed out to an I beam and again tested over the same spans. Both apparently are
approaching the same asymptote, but for all spans within practical limits the I beam is consider-
ably below the solid beam, showing that the shear deformations are greater for such a section
than for the solid one. When we measure the deflection of a beam in test we measure not only
the deflection due to the lengthening of the tension fibers and the shortening of the compression
fibers but the deflection due to all other distortions of the fibers. If we substitute this measured
value in a formula which-does not take into account all such distortions we can not expect a

constant result for all spans and forms of beams but something like what is shown in Figures 3
and 4,
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While it is recognized that any distortion due to a force producing bending moment is
reflected in the deflection of a beam, the only distortions that appear to be of a magnitude to
justify consideration are those resulting from the lengthening of the tension fibers and shortening
of the compression fibers and from shear stresses.

The asymptote or constant value which these curves of Figures 3 and 4 approach is the true
modulus of elasticity in tension and compression, which we will call E;. If we assume that the

DOUGLAS FIR BEAMS
SOLID RECTANGULAR SECTION, 5"'x2%4
Center loading

/Tr-ue beﬁpzj./(ed modulus | T 1
100 of elasticity =100 % !
I
90 % =
=] Curve A

w 80F 7 I

v

s /

% 50F l =7 ‘*’*“*”%_T’ ?‘ y=) bole

] | | — arabola

b jEs & 1] LT R o N Z—_

IN / Note:— | { | [ | %

§ 50 Each be‘a/lv tested T ///

5 =i 4% ———T1— over oll spans in- i~ z //

Q 40— —~+—+—dicated by circles—— // ////

c I Eoch point is av—| | //44,
w0 erage of 3 beolms.,fg_ o //
~ q L 1H
il %E’O ﬁ Solid rectangular “1" Bearn

e I tearn with square corners
9 g 71; % g 1 g F1G. 6. Distribution of shear stress in bcams."
| | | | \ | 1l

2, 4 6 8 /10 = /4
Span in feet

a 4 g2l 6 20 24 28 32 36
Span to depth ratio

Q

FiG. 5.—Relation af span-depth ratio to value obtained by substi-
: : T 3.
tuting measured deflections in J8AT

deformation due to shear is proportional to the moment, a point which will be proved later,
we may write
ke bt KR,
148 Erl F
where,
A, = the deflection of a beam of span [, loaded at the center with a load P,, and

F=the modulus of elasticity in shear.
For a span [, with a load P, at the center of the same beam we have

Spgr . KP,
hempy R

These two equations contain the two unknown quantities Ey and £, and hence the solution
of the two equations will furnish values of the true modulus E; and the shearing modulus #.
By making many experiments on the same beam instead of two and writing an equation for
each it is possible to obtain reliable values for these two moduli for that particular beam. From
the results shown in Figure 3 the true modulus of elasticity was found in this way to be 1,595,000
pounds per square inch and from the results shown in Figure 4 it was found to be 2,154,000
pounds per square inch. Figure 5 shows results similar to those of Figures 3 and 4. They are
expressed, however, in per cent of the true computed Er taken as 100 per cent. In this case each
point represents the average of three beams rather than the results of a single beam.

Since for ordinary spans the deformation due to shear is small in comparison with the
deflection due to elongation and compression of the fibers, it was difficult to obtain reliable values

64938—24——2
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for F' by the solution of simultaneous equations as outlined above, since the slightest errors in

measuring deflections for ordinary spans were reflected in # more than in £;. Torsion tests
were made for the purpose of checking on this value, which showed F for spruce to be about
1/15 Ey and for Douglas fir about 1/17 or 1/18 Ej.

Assuming a parabolic distribution of shear stress, as shown in Figure 6, expressions for
shear deformation can be determined by setting up an expression for internal work and equating
it to the external work done in producing shear distortions.

In this way, for a beam of solid rectangular section loaded at the center, we get:

0.3P1
P

and for an I or box beam with square corners similarly loaded:

Pl 8 5 4 2y e 23 5 tzz 4 Y& 5 (8 K5
f'——m tz ’1_5K2_K2 K1+2I(z K1_id5K1' +'t1 (Kz If1_2Kz 1+K1)+t1 T5 1

which may be written

KPl
f: —
where,

] 2
K= QITZ[tZ (1% K'— KK 42K K"~ ?% K15>+tt2_l (K'K,—2K}K®+ K®) +1, % K15>:|

where f=the deformation due to shear.
F=modulus of elasticity in shear.
P =load at the center.
l=span.
A =area of cross section.
I=moment of inertia of the section.
K, =distance neutral axis to extreme fiber.
K, =distance neutral axis to flange.
t,=width of flange.
t, = thickness of web; in box beams combined thickness of webs.
The development of the above expressions is given in the appendix, together with expres-
sions for other conditions of loading.
The above formula assumes the parabolic distribution of shear stress on a cross section of a
beam, and the deflection due to shear is determined by the ordinary method of equating external
work to internal energy. It involves high powers and numerous factors which may lead to

\_Inaccuracies when the ordinary approximations in calculations are employed. Consequently a
S.more simple formula was sought.

The development of the second, a more simple formula, follows. In the two formulas
the same shear distribution is assumed, but in the second formula the fundamental assumption
1s that deflections due to shear in any two beams of the same length, height, and moment of
inertia, which are similarly loaded, are proportional to the summations of the shear stresses
on their respective vertical sections.

Let us assume that we have an I beam of a given length, depth, and moment of inertia, and
a rectangular beam of the same length, depth, and of a width to make its moment of inertia
equal to that of the I beam. The shear stress distribution would be as indicated in Figure 6.
Let us further assume that the shear deformations will be proportional to the areas under the

stress curve. Knowing the shear deflection of the rectangular beam to be 91%1;} when supported

at the ends and loaded at the center, we can determine f for an I beam similarly loaded by
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multiplying this value by the ratio of the area under the shear stress curve of the I beam to the
area under the stress curve of the rectangle, which ratio is:

VE: V ‘
e I()Kl(l—l)

31
Referring to curve B, Figure 6

K 2 T > 7
HF= }‘)!Ig’» and since ABF is a parabola the area ABFH =2/3 K, X TZI;;*Z = Ygzj

the total area ABCDH = area ABFH + area BOEG

Area BOEG=-2KI (K2— K2 K, (%— 1) and the total area
1

LA PSR
ABCDH="3% +5; (K~ K E, (t—f—l)-

The area under the stress curve of the rectangular beam from the extreme fiber down to

i’ . VK}

‘ the neutral axis, must necessarily be S

‘f By our assumption the 7’s and I’s will cancel and the deflection of the I beam will be:

| (K~ KK, 0371
| =145 <‘1>]

‘V where,
‘ A, =area of rectangle. This value is readily expressed in dimensions of the I beam for, since

I of T beam =1 of rectangle =2/3 b K,?,

I
| 3] ; 31 S e 31
1 b=2K23 and A, =3K; X2 K,= i

R e AR ) AP PLE;
. o *Q*Kiéﬁ*( 1) IOFI

3 =
KPl (K2— K» K,
= = 2 .
f= 7 where K= |:1+‘ s ( —1):' 1()[

‘ 8D
“ The formula A= Iq’lF1+ = - can be applied to I and box sections of irregular shape by first

f ~and

which may be written

reducing the given section to one of equivalent section, which is one whose height equals the
mean height of the beam and whose flange areas equal those of the beam. By using K for the
equivalent beam only a slight error will be introduced in the results.
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TaBLe I.—Showing deflections determined by test compared with values computed by the formula
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Span.
Com- Error ; Com: 1 Error ‘ Com- ; Error (‘om: l ‘ Error | Com ! ‘ Error
| puted Test (per | puted TZ‘“ (per | puted Tf‘;t | (per | puted ’ Test ‘ (per puted | Test (per
A cent). | A | cent). [ A | cent). A | cent). | cent).
. et B | ) 4 5S40 ‘ Il Sries |alet s
| |
7 G0 G e +8.9 | 0.0410 | 0.0405 | 0.0421 | 0.0420 +0.2 | 0.0413 | ’ 0.0410 +0.7 0.0305 | —9.8
3 feet.... a . 0925 +6.9 | .1072 L1058 .0835 | .0838 | —0.3 .1026 | .1037 —1.1 L0616 | —9.0
4 feet.... —~1.2 | .2284 . 2272 L1789 | .1805 | —0.9 | .1772 L1766 | +0.2 L1023 | —4.0
5 feet.... b —-1.9 .226 | .2287 —1.1 | L1820 | —1.2
6 feet...... =1 3245 | —0.8 L3062 | —1.9
7 feet...... .8 { .4620 —1.0 474 —1.4
8 feet.. .6 | 5485 +0.1 .553 | —=0.7
9 feet.. 2 504 | +1.1 . 682 —0.8
10 feet. .8 =812 0.7 . 927 —0.3
12 feet. . . 5 . 343 ' A = .4 | 1.196 +0.8 b | 1.353 —0.1
14 feet. . 018 e 5 . 486 . 486 . 56¢ .566 | —0.3 [ 1. 575 +0.1 | 1.425 ‘ 1. 429 —0.2
| | |

" NoreE.—Each beam was tested over all the mdlcated spans. The error is expressed in per cent of the measured doﬂottmn. In lhe above
ormula—

A=deflection in inches.
P=load in pounds applied at the center.
I=moment of inertia of the section.
I=span in inches.
A=area of the cross section in square inches.
E=true computed modulus of elasticity
F=the shearing modulus of elasticity taken in the computation as one-fifteenth the average true modulus of elasticity.

Let us now see how measured deflections compared with those computed by the formulas.
Table I shows the results of tests on five rectangular Douglas-fir beams approximately 2% by 5
inches in section. True moduli of elasticity in bending were computed as outlined in this
analysis and the average found to be 1,918,000 pounds per square inch. The modulus of elas-
ticity in shear /' was taken as one-fifteenth of this value, or 127,900 pounds per square inch.

The beams were supported near the ends and loaded at the center. Computed deflections were
obtained by substituting in the formula )

PE. . 03Pl
A=gEI" AF
where A =area of the cross section.

The errors are expressed in percentage of the measured deflections. The average /' was
used for all beams, but in using E its value for each particular beam was substituted. An
examination of the table shows that test and computed values agree remarkably well.

In Table II are given measured deflections for the I and box beams, sections of which are
shown in Figure 1.

Deflections were computed by the usual formula

) il
A=13E1
and by the more exact formula
ol PR R
"48EI" F

where,

3 2. TC K 2
K is the quantity | , +‘;’(A{ﬁ ff‘ ) I{‘(%— l) 115))1
KQ:‘ 1

The true modulus of elasticity in tension and compression was used in both formulas. The
shearing modulus F was taken as 99,000 pounds per square inch, or about one-eighteenth the
average true modulus of elasticity. Errors by the two formulas are expressed in per cent of
the measured deflections. An examination of the table will show at a glance how much more
closely the deflections can be estimated by the exact formula. For example, estimated values
for a 3-foot span by the exact formula check test results within 0 to 12.1 per cent, whereas
values by the ordinary formula are in error from 34.6 to 65.7 per cent.
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TABLE 1I.—Showing deflections determined by test compared with values computed by the two formulas.

PP KPPl
) 2=mErtF
PB
@ A=3Er
STANDARD I_AND BOX BEAMS—CENTER LOADING—SITKA SPRUCE.
[Front F5L beams.] [Rear F5L beams.] | %Front TF beams.] [Rear TF beams ]
F5AB 1997=mote. F5AC 2093=mote. “ FY 1620=M of E. FZ 1640=M of E.
[
Deflection. Error (per cent). Deflection. Error (per cent) | Deflection. Error (per cent). Deflection. Error (per cent).
Span Span. || Span = Span =
1“’]‘:&% By (1).| By (2).| By (1). | By (2) it By(l).}By (2).| By (1). e (Byu). By (2).| By (1). | By (2). e | By (1).| By (2. | By (1). | By (2).
Al o e e R e \ e
0.798 | 0.745| +0.8| —6.0 0.800 | 0.802 | 0.771 +0.2 1.000 | 1.004 | 0.942 | +0.4| —5.8 [ 14....... 0.919 | 0.914 | 0.875 | —0.5 —4.8
.643 .586 | +2.0 —17.0 . 792 .768 | .728 | -—3.0 .823 . 807 . 741 —-1.9 L747 .731 .688 | —2.1 —7.8
.464 .407 +1.1| —11.3 L798 .758 | .703 1 —5.0 .584 . 581 . 515 —0.5 .354 . 347 319 —2.0 —99
. 464 . 396 +2.9 | —12.2 . 580 -o0L Mol —3.2 .912 .507 . 438 —0.9 . 389 . 386 . 348 —0.7 —10.5
.424 . 348 —0.2 | —18.1 . 498 484 | .431 —2.8 .424 .422 .352 —0.5 .372 .372 .328 0 —12.4
. 358 .279 —1.0| —21.2 . 347 . 335 .289 —3.5 . 368 .371 .204 +0.8 . 257 .258 .219 +0.4 —14.8
. 244 .176 +0.8 | —27.3 .298 . 296 .243 —0.6 . 196 .201 .148 | +2.5 75 ~alrfil .138 —2.2 —21.1
.238 .153 +2.5 | —34.1 . 235 .231 .176 | —1.6 .153 .162 107 | +5.8 . 096 . 094 .070 | —2.1 —27.1
.162 .087 +3.8 | —44.2 . 162 . 161 <108 | 050N —=33eanll o Sk st o] R ot . 096 . 095 . 061 —1.0| —36.4
.102 .040 | 4+12.1 | —56.1 . 098 | . 099 ‘ S0 e B B U Recs 2 O M B (e e i A | s e s 071 077 .039 | +8.4 | —45.0
F5CE 1742=M of E F5CF 158=M of E. TFDG 1954=M of E.
IRE e 1.518 1. 521 1.47 | 0.2 ECE T (YRR 2. 131 2.124 | 2.08 —0.4| —2.4 0.783 | 0.788 i 0.763 +0.6 —2.5
$i A e 1.079 1.076 1.031 —0.2 2 S SR 1.517 1.499 1. 464 —1.2 —3.4 | 1.115 Tigahbrg 1.072 +0.1 —3.8
T e i e v T 5 (S | v e 67|+ sl tase [ =10 | =40 ‘659 | 863 620 +0.5| —45
3 1 IR R .659 . 665 .617 1 +0.9| —6.3|12....... .976 . 966 .926 | —1.0| —5.1 . 416 . 425 .396 | +2.2 —4.8
L (1A . 445 . 444 3991 —0.2| —10.3 | 10....... . 666 . 665 . 626 —0.2 —6.0 . 425 . 435 .393 +2.3 —7.5
e 0T T S T (I e S o B E S sagi | iiass | ang (s RS Rid ‘oes | .2t0| .238| +2.2| —o.8
B o A . 308 | .303 258 | =106 ' —16.21:8. ... -C L3564 .351 . 320 —0.8 —9.6 . 188 . 196 .167 +4.2 —11.1
e .287 | .283 .230 | —1.4 | —19.8 | 7........ . 246 .242 .215 —1.6 | —12.6 .208 .219 . 180 +5.3 —13.4
O 2141 .214 .163 | 0 £ 3 il ] SR L185 .181° L1564 —2.1| —16.8 . 169 .184 141 +8.8 —16.6
DR e . 086 . 084 . 058 —2.3 | —32.6 | 5........ . 249 . 2718 .223 | +11.5 | —10.4 .095 . 105 .074 | +10.5 —22.
7 e S . 081 . 082 . 048 } +1.2 | —40.7 | 4..-c---. 077 .079 .057 | +2.5| —26.0 078 | .091 .054 | +16.6 | —30.8
M S e .049 " . 051 .023 | +4.0 | —68.1 || 8. ee .055 .057 . 034 B L+ | e e | o o P o S A o Bn ot R e S [t
[Front Loening beams.] [Rear Loening beams.] I\EFront: NC beams.] [Rear NC beamsg
L A A1627=M of E. A C1640=M of E. CY 1728=M of E. N CZ1368=M of E.
1 o i 1. 265 1. 266 1. 225 +0.1 0.676 | 0.614 5 5 1. 006 1.026 | 0.962 +2.0 —4.4
17 e . 730 L704 674 —3. . 549 483 7 3 .791 .825 . 756 +4.3 —4.4
3 [ p T e .630 . 594 558 | —5. . 402 .336 % = 478 . 495 438 | +3.5 —8.3
L I e B e e s, o BB D oy .355 .285 +2.6 | —=17.6 | 9--...... . 430 445 .383 +3.5 —11.0
R . 390 . 378 L343 =3. 375 .286 | +2.7| —21.6 | 8........ .412 .433 .359 | +5.0| —12.8
s o . 570 . 564 498 | —1. . 269 192 | +3.4 | —26:2 | T........ .370 .381 .301 +2.91 —18.6
ol SR e 450 . 456 . 386 +1. L187 121 +0.5 | —35.5 | 6.ccnne-- .249 . 258 .189 +3.6 —24.2
75 T R .305 .316 .251 +3. L187 . 105 +2.7 | —42.3 [ 5........ .173 .184 .120 +6.4 —30.6
o B . 200 .201 . 143 +0. . 120 L0564 +2.5| —53.9 [ 4........ L 143 .153 . 084 +7.0 —41.3
Bl s s . 069 .073 042 | +5. .072 Al T Ll e S ey 1 6 | B e S S e i A (S i e
L A B 17lI=M of E. L A B H 2815=M of E. hNoTE.—-E:}cl:ibgam was tisted overall the ingicated spens. The errfor}ils egpressed Iin per cetx)xt of
7 4 5 = | the measured deflection. n accom in re shows sections of the beams. In the above
0.910 | 0.909 | 0.878 1ag | woal =25 s penyiuE ey
. 870 . 867 . 828 7451 —0.9 | —4.8 A —=deflection in inches.
.630 [ .626 | .586 .862 | +0.6 | —5.0 P =load in pounds applied at the center.
......................... 6281 +0.9 | —6.2 ‘ I =moment of inertia of the section.
465 | .453 | .409 441 | +1.9| —6.8 1 1 =span in inches.
.470 | 458 | .402 -395 | +2.5| —8.8 A —area of the cross section in square inches.
.370 | .356 | .299 372 | +1.6| —13.0 | E=true computed modulus of elasticity. i
.249 | .28 .187 180 | +4.1 ) —15.9 F=the shearing modulus of elasticity taken in the above computations as 99,000 pounds per
180 175 128 10| 47.0 | —22.6 square inch.
112 121 . 069 . 062 +9.4 | —34.8

‘SNOILVINHOAHA YVIHS OL EONTYAATY IVIDAIS HIIM SWVEL L0 NOILOWTIHd
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The great difference in the shearing modulus of elasticity of ply-wood webs with the grain
at 45° to the length of a beam and with the grain of face plies perpendicular to the length of
the beam is well illustrated in Figure 7. The section of the beam is that of the double I shown
in Figure 1. A pair of beams were matched throughout, the only difference in the two being
in the direction of the grain of the ply-wood webs. Both were tested over spans from 2 to 14

SPRUCE BEAMS
DOUBLE T SECTION WITH POPLAR WEBS
Center loading

ERes I ERES RS

Q=373 d=1"%s ez0%g
A VZJI o
c=2 "lg=0/Y23 3

1922, N 2E L pywood |
| A-Beam with grain of_
plywood af 45° fo

7 | lerigth of bearrn.

= -B-Bean with grain of —

face plywood perper- |

AT dicular and core par-
= —’—— allel to lerigth of bearn
44

=—=—1_1A

/600000 —t

/400000 —

mnt.

1200000 =

B

1000000 / =

800000

in lb per sq

P

/ Note:- Curve
& 600000 A line is comput-|
ed deflections.
Points are meas-
/ ured deflections.
4 Beamn cut after each |
fest tfo maintain constant |
overhang of 3"for all spans.

y B 7% 0 5 G N

o 2 4 & OB/ =/ /
Span ”5; feet sl

Z

J 4
48

00000

T g

200000

48 T B
s s

. S ik APR
Fi1G. 7.—Relation of span to value obtained by substituting deflections in J8AT°

feet, and the points indicate the results of these tests. The full lines were obtained by sub-
stituting in the formula
RGP
o g

For the beam having ply-wood webs with the grain at 45° to the length of the beam,
353,000 pounds per square inch was used for F, and for the beam in which the face grain of the
ply wood was perpendicular to the length of the beam, 99,000 pounds per square inch was
used, the shearing modulus in the former case being over three and one-half times that required
in the latter case.

With the aid of the complete deflection formula we can determine the error for any span
introduced by neglecting shear deformations.

A

Now, in substituting measured deflections in 41; ZAS 7 the ordinary formula for center loading,

we get:
JEl:
SRR T AL ,
g EENERR]
81 ggpr+7)
since, as shown above:
Py KRl
Ser 7% ol
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This value E, has been plotted for various spans in Figure 8 for a rectangular beam and
for a few standard I and box sections Er was taken as 100 per cent and F as 117?%

»

E 1~ true modulus of elasticity.
- o

° T 48Al1
F' =modulus of elasticity in shear.

where A=measured deflection.
yy : . B
K =a constant for the section. Taking /' for spruce= 175
For extremely short spans in which the shear deformation might be as much as one-half the
total deformation we might anticipate that deflections of beams loaded at the third point would
give considerably different values for E, when substituted in the usual formula than would
deflections for beams loaded at the center. The shear deformation in both cases is proportional

SITKA SPRUCE BEAMS
SOLID AND STANDARD WING BEAM SECTIONS
Center loading
(R)= Rectangular,K=0.3%A; A=Areaof section.
(1) = F-5-L rear beorn,A=0909 (Equation of Curves: (5)= Loering rear beam,K=07 14
B le eat a wmp779 |Ee . B HOl= v fEgnt m ot SEOR
(3) = N.C. rear Yl flange,K=0474 12  48KI175 [(TV=T.F. reor « «=1/60
) = » fromt « ~=0454 100 100 @@=~ front ~« «=08906
9=True E=100% 10 = Usual computed E for 2°x27 28"sparn.
& |
100 : 2 = = 100 9 AL
70 1 — T WEsT e s o el B T e
,// A /‘// s Za ] = //’////?// &
4~
ol Lo
: Y o7 s
£ 1 /4 N/, /4
/ [ = /
Q 60 / Q 60
N~ N
3 JiVy/4 | < I/
3 1/ g 11/, |
SAaE 7/ Lol |
Q L ol
< b o N
]S L) 3 [l
N ol ¥ o/
/)
iy
[ | |
o 8 /6 o4 32 40 o & /6 AL LR 40
Span to depth ratio Span to depth ratio

PB3
Fia. 8.—Relation of span-depth ratio to value obtained by substituting measured deflections in I8AT

to the stress, but for equal stresses the deflection of a beam loaded at the third points is greater
by f—g Assuming the deformation due to shear in the case of the beam loaded at the center

0.50 of the total deflection, E, would be 50 per cent in error. Then for the third-point loading
the shear deformation is numerically the same because of equal stress, but the deflection due
to change in the length of the fibers is ?—g as much as in the former case and our error is now
approximately 44 per cent, or a difference of only 6 per cent, and this only in an extreme case.
For all practical purposes we could neglect this difference and assume our error equal in the
two cases.

An examination of Figures 3, 4, and 8 would indicate that the moduli of elasticity given
in our Bulletin 556 for small clear specimens tested over a span 14 times the depth of specimen
are about 10 per cent below the true modulus of elasticity in tension and compression. This is
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true; it is a value obtained by substituting measured deflections in the usual deflection formula
neglecting shear deformation. However, if this value is in turn used to estimate the deflection
of a solid rectangular beam by substituting in the usual formula we arrive at the correct deflec-
tion provided our span is 14 times the depth. For ordinary spans, say from 12 to 28 times
the depth, the error would be within 5 per cent. For rectangular beams used in ordinary lengths
then we would not vitiate our results to any great extent by using these values of modulus of
elasticity in the usual formula.

In the design of box and I sections with relatively little material at the plane of maximum
horizontal shear, however, very considerable errors will occur even for large span-depth ratios
unless the more accurate method of determining the elastic properties of a beam is employed.
For some sections tested the error introduced at a span of 14 times the depth was over 35 per
cent as against 10 per cent for a solid rectangular beam.

CONCLUSIONS.

Because of the magnitude of shear distortions it is often necessary to calculate the elastic
properties of wood beams by formulas which take into account such distortions. This is
especially true for box and I beams which have the material distributed in a way to take care
of maximum tensile and compressive stresses, which means a minimum of material at the plane
of maximum longitudinal shear. The shear deformation is proportional to the moment to

which the beam is subjected and may be expressed by K;,)l’ where P is the load on a beam of

span [, I is the modulus of elasticity in shear, and A a coefficient depending upon the shape of
the cross section and upon the loading. Two formulas for the determination of A have been
developed. The first is a rather long formula developed by ordinary methods, the second a
simpler formula and more empirical in its nature. Both check experimental results very closely,
but the second formula is recommended because its use involves less labor and offers less oppor-
tunity for error.

Usually shear deflections are neglected, and deflection determined by test when substituted
in the usual deflection formulas will give a modulus of elasticity less than the tension and com-
pression modulus, the error increasing as the span is reduced. The elastic properties given in
such tables as are included in Bulletin 556 were determined in this way. These standard
bending specimens have a span depth ratio of 14, for which ratio the modulus of elasticity in
shear is about 10 per cent below the true modulus in tension and compression.

However, if these values’are used in design they will give correct deflections for solid rec-
tangular beams of the same span-depth ratio if substituted in the usual formulas with which
they were determined. Furthermore, for ordinary spans, say from 12 to 28 times the depth of
beam, they will give values correct within 5 per cent. For shorter spans it would be preferable to
use the more exact formulas which take into account shear deformations. There is very little
difference 1n the errors for center and third-point loading. For beams of I and box section shear
distortions are far more pronounced and errors of considerable magnitude will be introduced
even for large span-depth ratios unless the exact formulas are employed.

Box beams with ply-wood webs have a greater modulus of rigidity with the grain of the
plywood at 45° to the length of the beam than with the grain of the face plies perpendicular to
the length. Tests showed the former type to have a modulus of rigidity over three and one-half
times the latter type.




DEFLECTION OF BEAMS WITH SPECIAL REFERENCE TO SHEAR DEFORMATIONS. 17
APPENDIX.

The development of the formulas for shear deformations.

BEAMS OF SOLID RECTANGULAR SECTION.

Let us assume first a rectangular beam supported near the ends and with a concentrated
load at the center.

Let
¢=unit shearing stress.
V =total vertical shear.
I=moment of inertia of section.
b = thickness of section.
d=depth of section.
y = distance from neutral axis.
F=modulus of elasticity in shear.
f=deflection due to shear.

We have,

|4
o bebydy,
a well-known formula, which gives a distribution as shown in Figure 6, curve A. This gives
V lfd/2 V (72 2
== x 7 | bydy = 5 (&> —49°).
G=T 05 ) TR
Now, the unit shearing stress ¢ produces a deformation %in planes at unit distance apart.

The work in shear per unit of volume, therefore, is

igh V2 (d*— 8d*y* +16y*)
2 128 FI?

Multiplying by the element of volume b dy dx and first integrating with respect to y with
limits — d/2 and +d/2

5 4 oo Wb 8 - ME Vde

Internal work= IW X de = f—s F?)E

In the case assumed V is a constant and the expression becomes
V2

g 7 "—3 =4
Internal work= z 3aF

Now, for a beam supported near the ends and loaded at the center V'=P/2 and the external

work is %f
We may write therefore:
B oo 3P
2 5X4XxbdF
0.3P1
J=%aF
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If A=the total deflection we then have for a solid rectangular beam loaded at the center

Pl 0:8R)
A= ml =k 7(1'7 where A =bd.

In the case of a cantilever beam we would have V=P and

12 Pl P& 1.2P1
f="aF trd A=gprt—p

for a solid rectangular beam. For beam supported at the ends and loaded equally at the
third points

0.4P’'l
f="%ar
where,
P’ =load at each third point,
or
0.2P1
f= baF
where,

P =total load.
Similarly, we may show that for a uniformly distributed load P

0.15P1
f=

So far these expressions for shear deformations apply only to beams of rectangular section.

I OR BOX BEAMS.

Let us now examine an I beam or, what is practically the same, a box beam. The follow-
ing notations will be used in addition to those already given:

K,=distance neutral axis to extreme fiber.
K, =distance neutral axis to inner edge of flange.
t,=width of flange.

t, =thickness of web; in box beams combined thickness of webs.

In the flange:

A R Vv
a=1; | | twdy =7 (K2 -,

V K, K,
q=171[ fxltzydwfy t‘ydy]'

The distribution of shearing stress will be as shown in Figure 6, curve B.
The internal work per unit volume is

In the web:

qz
where, raty 8
a=tdy.
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Assuming a beam of length [, loaded at the center with a load P, the external work
= Pf/2 and since the external work equals the internal work:
e
Pf/2=2'ﬁvj; gty

or

Pf L[ &P (& P (K
A EEA fm (K =2 K+ y)dy+ 105 ﬁ 42 (K, — K)dy + 26, K2 K2 — K — Kt
+ K2y dy + 42 (Kb — 2 K+ dy].

Integrating with respect to  and substituting the limits and sz for V we obtain:

Pl 8 5 4 28 23 5 tzz 4 ST 2 5 8 K5

f=8FT’ v EKZ—I{; K, 12K, Kl—1—5 K, +E (KK, —2K, K’2+Kl)+t,1—5 e
R 5 0.3 Pl s

Note that for the limiting condition when K, = K, and t,=t, we get f e which has

already been determined for a rectangular beam loaded at the middle.

@)
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Positive directions of axes and angles (forces and moments) are shown by arrows.
Axis. Moment about axis. Angle. Velocities.
K orcl? i
(paralle - Li
to axis) ; Positive : ; Anear
. . Sym- Designa- |Sym- >~ | Designa- | Sym-| (compo-
Designation. b};l. mypopol. tion. bol. %ﬁ? tion. bol. |nentalong Angular.
; g axis).
Longitudinal....| X X | rolling..... L |Y—2Z |rol.....| &
Lateral ... .0t ¥ ¥ pitching...| M | Z——X | pitch
Normal: . 5.0 VA VA yawing..... N [ X—Y | yaw....
'
Absolute coefficients of moment Angle of set of @
T M N neutral posmo
R S i s S RO T b hy
qb8 qgc8 qf8 proper subsecrip
4. PROPELLER SYMBOLS. ¥
Diameter, D - Thrust, 7' L
Pitch (a) Aerodynamic pitch, p, Torque, @ L4
(b) Effective pitch, p, Power, P

(¢c) Mean geometric pitch, pg
(d) Virtual pitch, p,
(e) Standard pitch, p,

Pitch ratio, p/D

Inflow velocity, V’

Slipstream velocity, Vs

(If “coeflicients” are mtroduced aﬁﬁ&m

used must be consistent.)
Efficiency n=1T V/P

Revolutions per sec., n; per min., N

Effective helix ancrle ®=tan™ (2 )
rn

5. NUMERICAL RELATIONS.

1 BP=76.04 kg. m/sec. =550 lb. ft/sec.
1 kg. m/sec.=0.01315 P
1 mi/hr. =0.44704 m/sec.
1 m/sec. =2.23693 mi/hr.

11b. =0.45359 kg.
1 kg. =2.20462 Ib.
1 mi.=1609.35 m.=5280 ft.
1 m. =3.28083 ft.

e S Lol 0 S R il 1, W iR 5

p




