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PURPOSE

The purpose of the investigation covered by the present report, which was prepared for
publication by the National Advisory Committee for Aeronautics, was the examination of the
degree of approach which may be anticipated between laboratory tests on model airplane
propellers and results computed by the airfoil theory, based on tests of airfoils representative
of successive blade sections.

The general basis of such a comparison implies the following:

(1) The selection of a series of blade sections from hub to tip as sufficiently representing
the form and character of the blade viewed as a complex airfoil.

(2) The determination, for these sections, of a series of angles of attack based on the
geometry of the propeller and the assumed value of the ratio v/nD.

(3) The correction of the angles of attack as developed in (2) in order to allow for some
inflow velocity, i. e., some acceleration of the air before it reaches the plane of rotation of the
blade.

(4) The construction of model airfoils and their test over a range of angles of attack
sufficiently wide to cover the desired range in values of v/nD for the propeller, and at such air
speeds as may be available. X

(5) The correction of the results of such airfoil tests for (a) aspect ratio, (b} wind speed,
and (¢} possible blade interference.

(6) The values of the lift and drag coefficients with their ratio, thus corrected, are then
to be used in the equations representing the well-known airfoil theory of the action of a propeller
blade. These equations give directly values of thrust and torque and from which coefficients
for thrust and power and values of efficiency are readily found. These values corrected for
hub effect are then ready for comparison with the results of direct propeller model test.

In considering such a program in its more general aspect it is known that the corrections
for angles of attack and for aspect ratio, speed and interference rest either on experimental
data or on somewhat uncertain theoretical assumptions. The general sitvation as regards
these four sets of corrections is far from satisfactory, and while it is recognized that occasion
exists for the consideration of such corrections, their determination in any given case is a
matter of considerable uncertainty. There exists at the present time no theory generally
accepted and sufficiently comprehensive to indicate the amount of such corrections, and the
experimental data available is, at best, uncertain in its application to individual cases.

It is furthermore obvious that, in practice, the application of the airfoil theory as based on
airfoil tests will gain in simplicity and in readiness of use, directly in proportion to the degree
to which such uncertain corrections may be omitted from consideration.

For these reasons, in the first and present phase of this investigation, consideration of all
corrections has been omitted and the application of the theory has thus been reduced to its
simplest possible form. This first phase of & more extended possible program was undertaken
in the hope that by the application of the theory in this simplified form to a considerable num-
ber of propellers distributed regularly over the more normal field of design, some generally con-
sistent tendency of the divergence between test and computation might appear. Naturally
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where no corrections are made, divergencies of considerable amounts might be expected, but
this would not necessarily be an objection provided such departures from experimental results
were found reasonably consistent and subject to empirical expression in terms of the character-
istics of the case.

If such were found to be the case, the application of the theory in its simplest possible form
followed by a readily applied empirical correction might-well be found shorter and simpler than
an attempt to introduce into the data the various individual corrections as outlined above.

Should the assumption, on which this simpler phase of the investigation is based, prove ill-
founded, there still remains open the possibility of further search for some system of corrections
which will not unduly complicate the procedure and which might, at the same time, serve to
bring into a satisfactory agreement direct laboratory tests on the propellers and computations
based on airfoil tests.

The results as given later seem to indicate that the hope on which this phase of the investi-
gation was based was not well founded. The divergencies between the two sets of results, while
showing certain elements of consistency, are on the whole too large and too capricious]y dis-
tributed to justify the use of the theory in this simplest form for other than approximate esti-
mates or for comparative purposes.

The further mvestlgatlon of the matter with a view to the development of suitable systems
of corrections, therefore, remains open as a remaining and uncompleted part of the more general
investigation.

While, therefore, the results of this first phase of the investigation are less positive than had
been hoped might be the case, nevertheless the establishment of the general degree of approach
between the two sets of results which might be anticipated on the basis of this simpler mode of
application, seems in any event to have been desirable and to have abundantly justified the time
and effort required.

SCOPE OF THE INVESTIGATIONS

An examination of geometrical characteristics showed that representative blade sections,
5 per blade and spaced as in Flgure 1, for 80 model propellers as previously tested, could be
provided by 48 section forms. A résumé of the results of tests on these 80 model propellers
together with detailed specifications regarding geometrical form end proportions will be found
in Report No. 141.

1
33 \\4 ‘\5 ‘\5 . \‘7
!

Fig. |

Based on these 48 section forms, airfoils were made up with a uniform chord of 3 inches
and span of 18 inches. These airfoils were then tested at the aerodynamic laboratory of the
California Institute of Technology. The results of the tests are given in Figures 14 to 61.}
With respect to these tests, A. A, Merrill, of the California Institute of Technology, remarks
as follows:

“The airfoils were tested at a uniform velocity of 44 feet per second, standard air. Abso-
lute coefficients L, and D, are obtained from the equations

Lift=L, p AV?
Drag=D,p AV?
! In order to make these airfoils dzrectly comparable w1th other au‘foﬂs pubhshed b} N A. C. A, the new

absolute coefficients Cy, and Cp are used in these figures. They are convertible to the L; and D, uscd in this
report, by dividing by 2.
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““The balance used has three axes—two horizontal and one vertical. It is supported on
knife edges set in the ends of the horizontal axes. This necessitates the measurement of L
and D components at different times and may be the cause of an error, inasmuch as these com-
ponents are only mathematical resolutions of a resultant pressure and variable flow may cause
a change in the line of action of this resultant for tests made at different times but with the
same angle of incidence. A

“It has been found, and is shown in Figures 14 and 61, that with thick sections variable
flow is a very common occurrence when the V1is as low as it is in these tests, namely 11, where
V isin feet per second and 7 is the length of the chord infeet. There is evidence to show that
this variable flow tends to disappear with an increase of V7, so that in interpreting these graphs
at actual propeller speeds it is presumably more accurate to ignore the region which these tests
show as variable and smooth out the graph. When variable flow occurs it means that the
change in the stream lines rotates the resultant away from or toward the vertical and this of
course causes the L and D components to vary inversely in magnitude. Most of the graphs
show this: That is they show that in regions where the L drops suddenly the D rises suddenly
but there are some cases, namely, airfoils 24, 28, 30, and 47, where one component changes
radically with no corresponding change in the other. This is probably due to a flow at the
time one component was measured, different from the flow at the time the other was measured.
In every test where there was variable flow, repeat tests were made and the results as shown
were checked.

“There are other errors inherent in the balance and method. Thus the balance weighs 65
pounds and this weight has to be carried by knife edges which are required to respond to forces
as low as 0.00L pound. This means that the percentage error in small ‘D measurements is
bound to be high. This balance is so designed that it is impossible to set the knife edges so
accurately as to reduce the friction to as low a figure as can be obtained with the point sup-
port in the N. P. L. type. There is another error caused by variable flow which alters the
velocity calibration constant, and this error is probably inherent in all wind tunnel work. The
combined effect of these errors has been found, from scores of repeat tests, to be of such mag-
nitude that it makes the third decimal place in absolute coefficients uncertain by as much as
two units. This possible error must be taken into consideration in interpreting and using these
graphs.

““Attention is called to airfoils 11, 16,21, and 26. These show an increase in positive L as
the angle of incidence decreases in the region of —1° Airfoil 21 was tested through angles
down to —23° and two maxima for positive L were found, namely, at —5° and —18°. A
similar phenomenon has been found for thick screw airfoils at the Aerodynamic Laboratory of
the Massachusetts Institute of Technology.”

The serial numbers of the 80 model propellers with the radii of the various sections and the
numbers of the corresponding airfoils are shown in Table I. The models are arranged in groups
or families; in each of which a single plan form, area, and set of sections is represented. The
difference between any two members of a single group is thus in pitch or in distribution of pitch

only. For further detailed description the reader is referred to National Advisory Committee

for Aeronautics Report No. 141.
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TABLE I
.- Radius
Group Serfal number of propeller and description of section, ?;%‘;geﬁ

No. . inches

111, 51,59, 13,17, 21, 86, 111, 145, Straight or club form, noncambered driving face, mean blade width
5.

21 25, 29,33, 37,41, 45, Straight or club form, concave driving face, ziean blade width.16r........

S
6D 00 ~1GR Ty G BD

312 G,ié(),hlfi, 18, 22, 81, 112, 146. Straight or club form, noncambered driving face, mean blade
widgh 201, .

4 | 26, 30, 34, 38, 42, 46. Straight or club form, concave driving face, mean blade width 20r..._____

5138, 7,11, 15, 19, 23, 82, 113, 127, 128, 129, 130, 131, 132, 133, 134, 135, 138, 137, 138, 139. Curved or
saher form, Tnoncambered dnvmg face, mean ‘blade width .15r.

6 | 27, 31, 35, 39, 43, 47. Curved or saber form, concave driving face, mean blade width .15r______

-3

4, S’dmh 16, 2(), 24, 83, 114, 144. Curved or saber form, noncambered driving face, mean blade
wi 20r

8 | 28, 32, 36, 40, 44, 48. Curved or suber form, concave driving face, mean blade width 201 ...

9| 90, 92, 94. Curved or saber form, slightly coneave driving face, mean blade width .15 s

o e e et e e e e e PR R e DR T,
Pt
O =3 v
R

10 | 115, 116, 117,118, 119. Curved or saber form, slightly convex driving face, mean blade width .15r _

AIRFOIL THEORY OF THE PROPELLER

The form in which the airfoil theory has been developed for use in this particular investi-
gation may be outlined as follows:
In Figure 2 let the hatched area denote an element-of the propeller with notation as follows:

dA = area.
L =lift.
D=drag.

dT=element of thrust.
dR =element of transverse resistance.
r=radius.
k,=1ift coefficient.
k,=drag coeflicient.
p=geometrical pitch.
¢=advance per revolution.
v=speed of advance along an axial line (OF, fig. 2).
u=velocity through air along line OC.
n=revolutions per second.
A=density of air (kg. per cu. m. or lb. per cu. ft.).
=angle of attack BOC.
B pitch angle BOA.
e=angle of motion of element with transverae
y=cot—~1L/D.
@ =torque.
U=useful power in foot pounds per sec.
E=effective power in foot pounds per sec.
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Y¥e have then:

dT=Lcosa—Dsinea - oo __(1)
dBR=Lsna+D 08 @ e oo oo oo . (2}
We have from the theory of the airfoil:
gL=k,AdAW . ....(3)
dD=k,AdA v . ______ (D)

where L and D are measured in gravity units and %,, &, are nondimensional coefficients. Substi-
tuting these values of L and D in equations (1), (2) we have

gdT=AdAw* (kcosa—kysine)y ... ... ()
gdR=AdA v (ysina+k,co8a) oo oooe oo _.(B)

- Fig. 2

We now define an auxiliary angle v by cot y=L/D=Fk,/k, and substitute for k, in terms of
%, and tan v, placing for u*its value, n? (4 =* 72+ ¢%).
This gives the values in the form:

gdT=k AdA n*secyoos (at+y) 4=+ .. . ... ... (D
gdR=k, AdAn*secysin (a+y) b2 +¢) ... (8
Whence, summing for the entire blade, we have
gT=An? S [k, ddsecyeos (a+y) a2+ ... (9)
L grR=9Q=An?Z [k, dd secysin (a+v)r{dar+¢)]-. ... ... (10)

We may then employ additional notation as follows:

D =diam. of propeller.

z=v/nD.

n=efficiency = U+ E.

I, =integration of quantities in bracket of (9).
I,=integration of quantities in bracket of (10).

We note also g=v/n="Dnz.

We have then:
gU=An*v I,
gE=27An® I,

Then

_w I\ Dz/I
”‘2%(2 _%<Z>"""“""""“"“""“ (11)
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For E we define the coeflicient
gE 2«1,
AnD P

Comparison with the results of the wind tunnel model tests have been made throughout by
means of these two quantities, 7 (efficiency) and €, (effective power coefficient).

For the purposes of the investigation, sections of the model blade were taken at five radial
distances as indicated at 2, 3, 4, 5, 6, Figure 1. Model airfoils were then made up representing
these sections and tested as elsewhere noted. These tests plotted graphically give values of
k., k, and hence cot v and v for any stated or assumed value of 8, the angle of attack.

The next step is to compute the bracket expressions in (8) and (10) for each of the five
sets of values as given by the sections 2 to 6. Thus:

f=F—a=tan™! 2%7 —tan™* 573; -

k, =1ift coefficient as found by experiment-on the model airfoils.

dA =elements of area. For purposes of integration, however, we must consider this

as dA4d +dr with a dr outside the bracket. With this understanding and the
foot as the unit, the measure of dA/dr becomes the width of the blade at the
given point, measured in feet.

v=cot™ L{D=cot™ k/k, and found therefore directly from the model airfoil
research.

= e ee a2 (12)

Dz
o=tan™t ﬁ;: as above. L

LT

g¢=Dx as above.

In this connection it is useful to note that the ratio of the two bracket expressions of (9)
and (10) is » tan (a+7v). We have, therefore, simply to multiply the value as found for (9)
by this factor in order to-derive the value for (10). o

The next step is then to effect an integration of the bracket- expreesmn over the effectlve
length of the blade, using for this purpose the five sample values as found.

i
|
i
: — 3" 3"
Ay 2 3. 7
Fig. 3
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To this end the effective length of blade has been considered as extending from location 1,
Figure 1, at 2 inches from the center, out to the tip of the blade. The problem is therefore
to effect an integration of an area ABC’D Figure 3, extendmg between ordinates 1 and 7, but
using only ordinates 2 to 6, inclusive.

To this end it was assumed that the second degree parabolic law which might be taken as
holding for ordinates 4, 3, 2, might be extended to include ordinate 1, and similarly for ordinates
4,5,6,and 7. On this assumption a rule was developed as follows:

4 : i
A= [T+ +4W ) +5Y] oo (13)
where A denotes the area in question and y,, v/,, ete., the successive ordinates y, to y,.

Denote the summation of the functions within the bracket of equation (13) as carried out -
for (9) and (10) respectively, by 2, and Z,.
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We shall then have, for a single blade of the propeller:
4
I= gfzx
4
g1
and from (13) for the propeller as a whole

Dzl Dz/Z :

Likewise from (12) for a single blade with D=3 ft.

T
£, =

8wzt <«
01=8—11—);=.001277 =,
or for two blades:
0= 002554 2y o oo (D)
A sample computation follows:
T .5
oo e 1.5
Y, . 333 . 583 . 833 1.083 1. 333
/2 2.7 2.7 2.7 2.7 2.7
tan B.... .. 1.2892 . 7368 . 5158 . 3969 . 3223
tane - .___ .T177 . 4098 . 2867 . 2205 . 1796
8. ... 52°-12 36°-23’ 27°-17 21°-39’ 17°-52’
e ._.. 35°=40 22°-17’ 16°-00’ 12°-26t 10°-11'
6. .. _.___ 18°-32 14°-08’ 11°-17’ 9°-13’ 7°-35'
Airfoill No.._.__.. 21 22 23 24 25
By oo .188 . 377 . 625 . 550 . 496
coby_._.____ 1.46 3.30 10. 64 11. 14 11.46
Yoo 34925 16°-517 5°-22/ 5°-08" . °—59’
SeC Y- oooooo 1.212 1.045 1. 005 1. 004 1.004
1= a0 S 70°-05’ 3908’ 21°-227 17°-34' 15°-10’
cos {at+v).. .3407 .T753 . 9313 ¢ . 9534 . 9652
4 =2 P+t 6. 64 15. 68 29. 66 48. 58 72. 44
dd ________ . 250 . 268 . 262 . 223 . 1585
(1@ .- .129 1.283 4. 550 5.725 5. 505
tan (a+v)-- 2.7600 . 8136 . 3912 - . 3166 .2711
Tjao .- . 119 . 609 1. 481 1. 968 1. 990
Yy . L1209 N £ 1
Yo oo ____ 5.505 Voo ____ 1.990
Sum. ..o 5.634XT7=39.438 |Sum._._.______.______.__ 2.109X7=14.763
Yy commemeeeeemoo oo 1,283 Ygo o e . 809
Y5 aeeoeooeeee e o= B.725 Ysoomm e e eemm e oo 1,968
Sum ... oooo_o__.. 7.008X4=28.032 |Sum..__................. 2.577X4=10.308
Yy oo 4550 5=22.750 |y . . __....... L481X5= 7.405
Z,=90.220 Z,= 32.476
C,=32.476x .002554=-.0830
(13) 90.22x1.5 663

1732476 X 2x
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DISCUSSION OF RESULTS

The results of computations similar to that illustrated in the preceding section, and for
values of v/nD represented by the range of angle of attack used in the airfoil tests, together
with values of €, and n as determined by tests of the model propellers, are shown in Figures
4 to 11 and Table II.

From the diagram and table it may be seen that there is a general similarity in form for
the power coefficient (€} and the efficiency (4) curves, as derived by the two methods. There
appears to be, however, no relation generally consistent for all propellers. In some cases the
computed C, is more than that determined by propeller test and in others it is less. The same
is true for the efliciency 7.

It may be seen that the computations for C; and 7 for a single set of airfoils, representing a
single group or family of propellers, are generally consistent. The following points of variation,
or of similarity between computed and propeller test results, are noted for the various groups.

Group 1.—Computed O, is generally less than propeller test value. Computed 7 is slightly
smaller than propeller test value for moderate and large pitch ratio propellers, but greater for
small pitch ratio propellers. Computed 5 is often high for small v/2D and low for large v/nD,
the curves thus crossing.

Group 2.—Computed O, is generally less than propeller test value. Computed 5 is generally
close to propeller test-value, but is high for small ¥/nD and low for large v/nD, the two curves
thus crossing near the peak.

Group 8.—Computed O, is generally more than propeller test value, but sometimes decreases
at small v/nD until less than propeller test value. Computed 7 is generaly more than that-derived
from propeller test, the difference being greater for propellers of small p1tch ratio.

Group 4 —Same as for Group 3.

Group 5.—Computed €, is generally lower but, sometimes in close agreement-with pmpellel
test-results. Computed » is generally low except for small pitch ratio propellers, where it is
high.

Group 6.—Computed C, is generally close to propeller test value, with a tendency to be high
at small o/nD and low at large v/nD, the curves thus crossing. Computed » generally close to pro-
peller test results but with tendency to be high at small v/nD and low at large v/nD.

Group 7.—The same as for Groups 3 and 4.

Group 8.—The same as for Groups 3, 4 and 7.

Group 9.—Computed C, generally low Computed » generally close to propeller test value,
but high for small /2D and low for large v/nD, being thus like Group 2.

Group 10.—Computed C, generally close to propeller test value except at small »/nD. Com-
puted 4 generally close to propeller test value.

From the above the following tendencies may be noted: Groups 1, 2, 5, 6, 9, and 10, narrow
blade propellers having a mean aspect ratio of about 6, which is the aspect ratio of the airfoils,
give computed values of €, usually less than those derived from propeller tests. Computed »
for these groups is generally lower than the propeller test-value but often close to it.

Groups 3, 4, 7, and 8, wide blade propellers having a mean aspect ratio ofabout 4.5, give com-
puted C; and 5 generally more than propeller test values.

About 450 values of C; and n were computed. Of the 300 computed values of C, that are
within the usual working ranges of the 80 model propellers, 153 are less than those shown by
model test, and 147 are more. Forty-four are within 2 per cent. The mean divergence from
model test results is 7.6 per cent. For the corresponding computed efficiencies, 140 are less
than those shown by model test, 3 are the same, and 157 are more. Forty-eight are within one
point. The mean divergence is 3.2 points.

In order to check previous work and to determine if variation in the section of airfoil might
in some measure be the cause of the above differences, two further tests beside those shown in
Figures 14 to 61 were made at the California Institute of Technology. The first was upon airfoil
9, which, before testing, was examined with reference to warping or change of form. No sensi-
ble change in form was found. The second was upon airfoil 4A, presumably the same as No. 4.



COMPARISON OF MODEL PROPELLER TESTS WITH AIRFOIL THEORY

| I
FPropeller 1
v
el
.09 —] = \ .9
(23
PO tutnd N
S e gy 7
R
07 AL N IN 7
,/ Sso \
G ’ . , N .
,/ \\\
a5 /, - 5
.03 .3
Prop. fest
Compuited mamm e e
'0{/ 3 .5 .7 .9 -
Fig. 4 vfnD
N
FPropeller 3
.09 .9
/_——— \
o <
r S e e K4
.07 e I \\ 7
5; I’,/ \L\
4 AN
I' h
.05 / - .5
.03 3
Prog. 1eSF e e
Compred mm e e
‘0_’.'/ C .7 R
fig. 6 v/nD
Propeller 5
=t~ N
.07 =< .7
o 17} 7
7 T
.05 7/ PN .5
\\\
1+
.03 3
FProp. fest
Cormpured oo,
T ,
. .3 S 7 g .
Fig. & v/nD

245

I b
Fropeller 2
i gy gy
G == I
L \ \\\
\ \\\J
.09 N \\\ .9
N
PRE
TNy
-~ h%
.07 — N .7
M 4
R // .5
.03 RC4
Frop. fesfe
Compited mamu o me e \
- 3 5 7 g !
Fig. & vfnD :
vy
: Propeller 4
T
.09 s .9
\\\:\
.07 e \ .7
C; 7 - 74 i
P I 4 p
.03 | .3
FProp. teste— |
Compurted ame oo __
o | 1M ,
Wi 3 5 7 e
Fig. 7 v/nD
|
Prope//elr g
.07 |
// Ny
05 7L
g G4 T
.03 // \\ 3
Frop. fest
Compufed memmaomao
015 3 5 7 R
Fig. § v/nll



246 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

7 T T T
Prope;/er 80 : Fr oie"//fr* /"
13 A3 - =
CS’,——"'_— ---- Fee \
vy . : vz \
G B N \\
---- - '-"‘~\~‘ \\ \
.09 ANIAN 9 .09
e k7
07 i X7 07 - ,//,"
2] P
a A 77 C:' b
7
4
05 = 5 .05
.03 3 .03
Prop. teste | ] Prop. fes?
Computed mmammmaaaan C‘ompu;‘ed-__...._.._l_---
0/ | 1| o |
Wi K] 5 7 K roof 3 5 7 9 ]
Fig.10 u/nD Fig. I/ v/inD

This airfoil was laid out by a draftsman without reference to the template used in making No. 4.
A new template and airfoil, 4A, were made. After the airfoil was finished it was compared with
No. 4. The two were found to be very slightly different. They had the same chord and same
maximum thickness but 4A was found to be about 0.01"’ thinner than No. 4 midway between
the maximum thickness ordinate and the trailing edge. Either No. 4 or 4A was believed to be
as nearly representative of the 13’/ radius section of propellers 1, 5, 9, etc., as it was practicable
to make them with ordinary drafting methods and woodworking tools.

The tests of airfoil 4A gave a lift coefficient; k,, and a lift-drag ratio somewhat greater than
for No. 4, the difference for k, being about 8 per cent of the value for No. 4. In the case of
L/D there was the same order of difference but it was less uniform. The two tests of airfoil 9
showed, however, differences in the same direction and of about the same moment.

Some further tests of airfoils 21 to 25 were also made in order to determine: First, if the breaks
or irregularities in the curves of the coefficients, k,, k,, and L/D, as shown in Figures 14 to 61,
would disappear if the airfoils were tested at high speeds; and second, if substantially the same
values would result from tests made in two different laboratories but using speeds substantially
the same. These further tests were conducted at Langley Memorial Aeronautical Laboratory.
The first were run with a velocity of 30 meters per second or about 67 miles per hour, and the
second with a velocity of 30 miles per hour, the same as that used at the California Institute of
Technology.

The 67 miles per hour tests gave results considerably different from those at the lower speed.
In all but airfoil 21 the variable flow that occurred at the lower speed entirely disappeared.
With No. 21, however, a variable flow that did not occur at the lower speed appeared at the
higher one. The values of L/D as determined by the high-speed tests were generally much high-
er than those for low speed.

The 30 miles per hour tests of Langley Memorial Aeronautical Laboratory gaveresults gen-
erally similar to those of the California Institute of Technology, about the same variable flow
occurring at the same angles of attack. There was, however, a sufficient difference between
the coefficients as determined by the two labaratories, to make an appreciable difference in
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computed propeller performance. Figures 12 and 13 show the results of computations for
propellers 3 and 7 from the three sets of airfoil tests. By a comparison of Figure 12 with Figure
6 and of Figure 18 with propeller No. 7 of Table IT, it may be seen that the | as determined by
model propeller test is, except for low values of v/nD, generally close to the mean of the computed
values as derived from the two airfoil tests of Langley Memorial Aeronautical Laboratory,
and considerably more than the computed value as derived from the airfoil tests of the Cali-
fornia Institute of Technology. For 5 the propeller model tests indicate an efficiency near
the mean of all airfoil tests. The 30 miles per hour tests of both laboratories show efficiencies
lower than those derived from propeller model tests and the 67 mile per hour airfoil tests give
efficiencies higher.

It may be noted that the difference in the values of C; as computed from the 30 miles
per hour airfoil tests of the two laboratories is about 7.5 per cent, while the difference in the
values of 4 is about two points. The results of computations from tests of airfoils by different
laboratories, but at the same air speeds, thus differ by about the same amount as the mean
divergence of computed results from propeller test results.

From the foregoing it appears that if propeller power and efficiency are computed from air-
foil tests at moderate speed, an error of sensible amount may be anticipated in both. It also
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appears that while corrections for inflow velocity, for V7 ratio and aspect ratio might in some
instances bring computed coefficients closer to those derived by propeller model tests, in other
instances the differences would apparently be increased.

It seems probable that the unknown elastic properties of the model propellers, causing
various forms to yield when under heavy load in different amounts and in various ways, may be
a considerable factor contributing to the difference between computed performance and model
test, under high and extreme values of the slip. At moderate slips, however, the forces acting
upon the model propellers are not of such magnitude as to cause sensible distortion and an
explanation of differences in the propeller coefficients as derived from airfoil tests and propeller
tests must be looked for elsewhere, presumably in the relative delicacy of the former, and in
the difficulty of determining within a probable error of some per cent the values of lift and drag
coefficients applicable over some considerable range of air speeds, and especially as derived
from airfoils of small size and at a single speed no greater than 30 miles per hour.

An examination of the aerodynamic characteristics of the various airfoils as shown in
Figures 14 to 61 shows the very considerable frequency of variable flow, with consequent
uncertainty in the values to be employed. This condition is presumably due to the relatively
low wind speed employed as previously noted. To the extent to which such conditions of
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instability are likely to present themselves in airfoil tests to a corresponding degree will the
data be of uncertain significance in connection with computations such as those dealt with in
the present report.

It is, of course, equally true that should conditions of instability of air flow develop in the
operation of the model propeller, then the same uncertainties will be reflected in tests on the
model. However, considering the actual speed of the blade as the resultant of the wind speed
and of the rotative speed, the likelihood of multiple modes of flow in the propeller seems rela-
tively small and it seems reasonable to hope that with a consistent and single value set of
coefficients for the airfoils as representing the propeller sections, some considerably nearer approach
might be made toward a consistent empirical relation between the two sets of results than is
evidenced by the results of the present investigation.

Whatever may be the likelihood of developing a relatively simple systematic and consistent
relation between model propeller tests and the results of airfoil computations, it is clear that
no such end can be realized as long as we are confronted with the phenomenon of mutiple modes
of flow and with resulting uncertainty in the values to be employed. Further progress in this
direction will therefore depend in very large measure upon the practicability of establishing a
set of aerodynamic characteristics for airfoil, free from uncertainties due to instability of flow,
and at the same time consistently applicable to the range of speed conditions to be met with
in the model test.

TABLE II
PROPELLER NO. 1 PROPELLER NO. @
1‘ Propl Cy Propell K G G ; 1
i oD rggset e | Computed | . rggset e | Computed sl Pr%gsetller Computed Prcggsetller Computed
| o : )
k B
0.3 0.0940 0.0795 0470 | 4s2 0.95 | ocom2 | oo 0.461 0. 534
4 . 0052 - 0814 585 566 L1 Wiet L0788 <635 666
5 S0938 0815 “667 es0 |- 5 0655 L0731 S710 15
s J0893 R 70 723 8 $ 0560 10645 1733 1760
7 10825 -G708 70 L7t 7 10466 $0505 1708 kN
'8 Lo737 10636 788 77
‘9 10630 0302 1780 (768 - -
[ ) PROPELLER NO. 7
PROPELLER NO. 2
.25 0. 0686 0.0589 0.473 0.493
; .4 . 0667 L0611 . 650 . 642
0.3 0.1068 0.1068 0.472 0.531 5 10626 10580 730 (710
4 1057 1082 585 635 6 0568 10532 7 730
5 1024 1080 674 700 7 L0404 L0447 LT . 604
8 095G 1040 738 758
P)oE &) E)
0 L0563 10645 75 L7682 _ PROPELLER NO. 8
0.25 0.0726 0.0732 0. 463 0.573
PROPELLER NO. 3 .4 0677 L0718 634 687
. . 5 0805 10876 708 2700
, 8 0517 - 0591 755 178
0.2 0.0870 0. 0774 0.487 0.447 7 0421 0430 734 735
T4 <0880 - 0818 504 . 560
s ost2 08z 79 1659 :
: 5 : . ras 718 .
7 0802 0749 N 1788 ‘ PROPELLER NO. 9
‘2 0733 660 800 L770 i :
0y 06D 0558 805 722 0.2 0.0455 | 0.0402 0.419 0. 492
' ) tE cE) ) e
. " 0405 © 0386 : :
PROPELLER NO. 4 5 0359 L0330 . 084 1623
1 _ , -
0.3 | 0,108 0.0970 0.476 0.537 ‘
1 1030 ] L1om . 583 L846 PROPELLER NO. 10
5 - 0904 11000 l66 712 ~
A~ T 02 | eomr | oo | oml | om
-8 .0732 L0730 .797 -810 ' S - gaus i s
® 0590 - 0606 78 7o 5 0337 10379 659 1692
PROPELLER NO. 5
) PROPELLER NO. 11
0.25 0.0713 | -0.0603 0. 461 0. 464 _ ’
4 . 0605 - 0600 . 630 653 0F 0. 0451 0.0412 0. 43¢ 0.48¢
5 - 0861 0561 S0 . 696 '3 0440 - 0410 500 - 601
6 0601 10523 J7a5 J728 i g417 0380 (682 1689
7 " 0526 1042 (743 680 5 L0378 -0350 707 L840




COMPARISON OF MODEL PROPELLER TESTS WITH AIRFOIL THEORY

TABLE IT—Continued

PROPELLER NO. 12 PROPELLER NO. 20

(453 7 [ :
| HaD Prcggsetller Computed| T mtg‘etller Computed #nD Prcg&eéler Computed Prtg;{&ﬂer Computed
; .
0.2 0. 471 0. 0468 0.426 0.533 0.25 0. g754 0.0715 0.455 "0.499
.3 . 0453 . 0461 .5T1 .619 " _ o701 L0715 _629 © 681
4 it L0432 1655 70 5 - 0638 0666 TTia 751
5 -0340 . 0353 -665 -671 -8 - 0556 LeE67 L7685 . om
7 ot 0440 757 T
PROPELLER NO. 13
* PROPELLER NO. 21
E 5 ) .
I o3 0.0928 | 0.0500 0.469 0.484 S i o S L f
i .4 L0034 0824 . 530 568 | 0.25 | 0. 0455 0. 201 0.495 t0.a%4 E
| 5 S0916 L0823 -669 -658 -4 e . (3718 - 664 892 |
.8 L0367 L L0804 .736 722 25 - 0316 - 0340 70 . .665 F
|7 lgs L0782 1779 155 | : i S : f
[ Tmos | L0656 1796 78 7 g
Pl 20610 -0485 779 104 PROPELLER NO. 22
| } :
N | o2 Po0oer0 00517 0.412 . 0.515
PROPELLER NO. 14 l 30w . 0504 . .55 {658
P A lue 0445 643 DT
03 | ol | oiou 0.466 0.887 ! I ol . O I
a . 1085 . 1095 315 -630 : - - ,
2 A -1 580 - PROPELLER NO. 23
7 - 0560 68 775 .798 ; — s
8 S 0731 “e8 1786 811 b
‘ x 8l T e 0.0413 0.0412 0.425 0. 484
-9 - 0586 - 6L -750 -t Sy 3 L0403 0403 2 B
S 1 L0373 -6384 1673 “664
51 35 L0349 .69 “618
PROPELLER NO. 15 !
) PROPELLER NO. 24
0.3 0.0888 0. 0761 0.475 0.430
1 . 0908 . 0829 . 556 .530 : T ;
5 T 0202 J0828 TBes T667 02 0.045¢ | 0.0450 | 0420 0.53 |
.8 . 0865 . 0802 LTS 120 .3 .0427 [ LodsT | 576 .666 |
T 10800 0733 Rt 785 vt 03w L le0 | 663 1705 ¢
8 it <0661 804 67 5 c03i0 | Tosx T et et |
.9 . 0622 L0537 780 . 649 ! e - ;
- B o~ T
PROPELLER NO. 25 ’
PROPELLER NO. 16 :
, - 0.3 0.1140 0.0%03 0.433 0.496 ;
; - - - 4 1 . 546 572
P oas 0.1030 0. 098 0.478 0.54 .
1 .1016 L1024 “557 614 -5 - 1162 - 1004 - 636 - 663
5 10679 11010 673 1 -6 1% -y -3 -7
.6 . 0915 L0967 -T45 Nt ~§ T ooar T 52 - fT '529
7 8% L0875 791 -805 -3 ‘e - e -8 -1
8 0717 -0735 803 .308 . - 087 - 068 - 735 -694 |
-9 L0570 L0517 E T4 .T6L _— _
PROPELLER NO. 2
PROPELLER NO. 17 _
- ; 0.4 0.1178 01198 0.564 0.62¢
. - . Jp 5 L1187 5! ~651 !
P tae | CEe | R % S| e | Cmio (0 me | l7sg
5 L0813 ~057T -710 2 -7 - lad -758 -8
6 L0545 ~0514 “761 731 -5 - 08 - - 159 -790
.7 -0463 -0422 .759 -669 . - 073 - G810 - 705 -721
!
PROPELLER NO. I8 PROPELLER NO. 77
; 0.4 0.1027 0.0989 0.578 0.582 |
0.25 0. 0738 0. 0739 0.418 0.533 | \5 . 1033 . 1020 ~659 .65 |
.4 . 0650 . 0780 50 | 890 -6 11003 1006 o719 JTe
| .5 - 0607 076 717 T 7 je90 ' loset 1759 76
| s L0517 L6682t 162 i -8 0854 | 0882 72 et
- 0418 . 0506 728 751 .9 L0751 l -0741 746 Je9t
‘ : i
PROPELLER NO. I8 PROPELLER NO. 28
| f F Poos ! 1o | oo 0. 565 639
0.25 0.0611 0.0605 | 0.462 0.500 b5 b T L1129 L646 L702
| "% [0 - 0607 L6847 L6t b6 17s ¢ Lum 73 739
[ ls 10855 L0573 2730 713 bool7p Loess ' L1060 L763 784
6 | loso L0526 T 15T folg o lgess | L0935 T L7858
| s L0458 78 706 | ] 9 com o Tad L7235

249




250

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
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The new absolute coeffieients (' and Cp, which are twice as large as the old absolute L¢ and D, are used
on these figures.
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The new absolute coefficients 'y and Cp, which are twice as large as the old absolute L¢ and Dg, are used
on these figures.
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The new absolute coefficients €, and Cp, which are twice as large as the old absolute L¢ and Dy, are used
on these figures.
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The new absolute coefficients Cy, and ¢ p, which are twice as large as the old absolute L¢ and D¢, are used
on these figures.
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The new absolute coefficients 'z and C'p, which are twice as large as the old absolute L¢ and Dg, are used

on these figures.
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The new absolute coefficients Cr and Cp, which are twice as large as the old absolute L¢ and Dg, are used
on these figures.
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The new absolute coeﬁiczents Cr. and Cp, which are twice as large as the old absolute L¢ and Dy, are used

on these figures.
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Name: Durand 43 00 0.0
-4 Size of model: 18“x 3" _
Wind velocity: 44 ffjsec] 0z
Where fested: C.IL.T.
-8 Dote: 1922 -04
—45 00 40 80 /20 /6\ 20“ 243

Angle of attack
Fig. 56

[ A0 13 20 30 40 50 60 77 8¢ 93 190

o,

L
7
€3
L &
D A
i
& 4 i:
T
6 2 a I =
/2 D/ .
<
8 {Z N P \\
1 -
o Nome: Durand 46 |
- Size of model: /8"x 3*
Wind velocify: 44 fi{sec.
~ Where testfed: C.I.T.
g Date: /922
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o Name: Durand 44 | 0000
_ Size of model: /8"x 3"} _, 5
4 Wind velocity: 44 Flfsec] O
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Name: Ourand 47 0000
Size of model: 18"x 3*] —02
-4 Wind velocity: 44 fifsec.] -
Where fesfed: C.I.T. _
-8 Dote: 1922 04
-4° 0° 4° 8° /2" /16° 20“ E4°

Angle of attack
FIG. 60

Angle of attack
F16. 61

The new absolute coeficients € and C'p, which are twice as large as the old absolute L¢ and Dc, are used
on these figures.
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g Name Durand 48 0008
Size of model: 18*x 3* ] 02
4 Wind velocity: 44 fifsec.] -
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