brought to you by CORE

REPORT No. 217

PRELIMINARY WING MODEL TESTS IN THE VARIABLE DENSITY WIND TUNNEL OF THE NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

By MAX M. MUNK National Advisory Committee for Aeronautics

. в в

.

.

· ·

REPORT No. 217

PRELIMINARY WING MODEL TESTS IN THE VARIABLE DENSITY WIND TUNNEL OF THE NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

By MAX M. MUNK

SUMMARY

The following report contains the results of a series of tests with three wing models. By changing the section of one of the models and painting the surface of another, the number of models tested was increased to five. The tests were made in order to obtain some general information on the air forces on wing sections at a high Reynolds Number and in particular to make sure that the Reynolds Number is really the important factor, and not other things like the roughness of the surface and the sharpness of the trailing edge.

The few tests described below seem to indicate that the air forces at a high Reynolds Number are not equivalent to respective air forces at a low Reynolds Number (as in an ordinary atmospheric wind tunnel). The drag appears smaller at a high Reynolds Number and the maximum lift is increased in some cases. The roughness of the surface and the sharpness of the trailing edge do not materially change the results, so that we feel confident that tests with systematic series of different wing sections will bring consistent results, important and highly useful for the designer.

ARRANGEMENT OF TESTS

The models used in the tests described in this report were made of aluminum and were smoothly cut to shape, without any polishing.

The chord was 5 in., the span 30 in., which latter is half the throat diameter of the wind tunnel. This ratio is so large that the influence of the tunnel walls begins to be perceptible. The actual aspect ratio of the wing models, which were square and not warped, was 6; but the influence of the walls theoretically changes the air forces as if the aspect ratio had been 6.85.

To lift balance

No. I

This report contains all forces and angles of attack as actually observed, making no allowance for the influence of the tunnel walls. We have inserted in the diagrams the parabola of the induced drag for an aspect ratio of 6.85. (References 1 and 2.)

wire ochmer 5 Spindle is in center of tunnel С when $\alpha =$ 6.35 mm To drag balance ¢ of tunnel Attoched to wing model 38.1 mm 195.1 mm 31 75 mm at center of span. 250 mm 276.2 mm 766.8 mm To balance To balance weight weight FIG. 1

Figure 1 shows diagrammatically how the models were attached to the balance ring. It is a combination of wire attachment and rigid

connection. A pair of vertical wires A are stretched from top to bottom of the balance ring. These wires are connected to the wing at one quarter of the chord behind the leading edge. Furthermore, one skid B, screwed to the wing, is hinged to a vertical bar C, which runs across the air stream and can be moved up and down. The bar is well shielded from the air stream by a tube in which it slides and its motion is used to change the angle of attack.

205

To lift balance

No.2

..==

RESULTS

The results are given in the figures and tables, both of which contain the conditions of each test. There is also a table of ordinates of the three wing sections Nos. 97, 98, and 99. Moreover, the cambered section 98 with round rear edge was milled off to obtain a square end, and the cambered section No. 97 (with a sharp trailing edge), Figure 2, was covered with oil paint after the test had been finished, to study the influence of the surface roughness.

We have, therefore, 5 different models, each of which could be measured at-different density of the air. All in all, we have made 18 different runs, each time varying the angle of attack within a large range and determining the lift and drag. In some of the tests we have also determined the pitching moment with respect to a point on the chord and at one quarter of the chord behind the leading edge. The moment is considered positive if it makes the leading edge rise. This reference point is of special importance; the theory of thin wing section gives a pitching moment with respect to this point independent of the angle of attack. This makes it more convenient for practical use. (Reference 2.)

The coefficient of the component of the air force at right angles to the chord is

$$C_{\rm m} = C_{\rm L} \cos \alpha + C_{\rm p} \sin \alpha.$$

Hence the center of pressure can be computed from the moment coefficient, the lift coefficient and the drag coefficient by means of the formula

$$C. P. = 25\% - \frac{C_{\mathrm{M}}}{C_{\mathrm{L}} \cos \alpha + C_{\mathrm{D}} \sin \alpha} \cdot 100\%.$$

C. P. denotes here the distance in per cent of the chord from the leading edge. The moment coefficient is derived from the moment itself by dividing it by the dynamical pressure $V^2 \frac{\rho}{2}$ and by the product of the wing area and the mean chord of the wing.

In the figures the lift coefficient $\frac{L}{Sq}$ is plotted upward. The induced drag coefficient for an aspect ratio of 6.85, the observed drag coefficient, and the moment coefficient $\frac{M}{cSq}$ are plotted against the lift coefficient to the right. The value of the angle of attack is inserted along the lift-drag curve.

Figures 3 to 8 refer to the strut section. The moment is expected to be zero and is nearly so in the figures. The small difference can be explained by taking into account the effect of the finite curvature at the leading edge. The reader will observe that at high pressure the wing shows a marked improvement; the minimum and the mean drag coefficient decreases, while the lift coefficient increases from 0.79 to 1.1. Figures 9 to 14 are corresponding tests with a cambered section of the same thickness. Here we observe the same decrease of the drag coefficient when the Reynolds Number increases, but the maximum lift keeps about constant. It just happens to be slightly larger at 16 atmospheres but resumes its old value at 20.9 atmospheres. The moment curve in Figure 12 coincides with the theoretical vertical straight line quite closely. Figure 14 gives the results for the same model not painted. The increase of roughness was easily felt by touching the model. The difference in the result is, however, of no important magnitude. PRELIMINARY WING MODEL TESTS

FIG. 5.—Test No. 56-5. Tank pressure 4.05 atmospheres. Dynamic pressure q=120 kg/m². Reynolds Number 719,000

FIG. 7.—Test No. 56-9. Tank pressure 8.3 atmospheres. Dynamic pressure g=256 kg/m². Reynolds Number 1,440,000

FIG. 8.—Test No. 56–11. Tank pressure 16.24 atmospheres. Dynamic pressure g=543 kg/m². Reynolds Number 2,950,000

The remaining tests, Figures 15 to 19, were made on the cambered section with different trailing edges. The thick rounding of the rear edge of course increases the drag but does not otherwise change the character of the result. The same holds true for Figure 20 with the square trailing edge.

DISCUSSION OF RESULTS

The tests suggest the general rule that at a full Reynolds Number the cambered wing has a smaller drag, the symmetrical section both a smaller drag and a larger maximum lift than in the old type wind tunnel. The roughness of the surface and the sharpness of the trailing edge, if reasonably chosen, have no influence on the results. The results, as those in any wind tunnel should not be scrutinized too closely and not too literally interpreted. The new tunnel will show the direction and the way to the improvement of aircraft, but the results with a square wing alone in an airflow without fuselage and propeller can not give absolute information regarding the air forces on the wings of a real airplane. However, the results obtained give us the right to expect confidently consistent and qualitative results from the investigation of a systematic series of wing models now to be taken up, as likewise from later studies of wings with ailerons and of combinations of several parts of the airplane at full-size Reynolds Number.

TABLE I

TABLE III

Lift

SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 om AREA, 0.0988 m² ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO, 6.80. AVERAGE TEMPERATURE, 27° C. PRESSURE, 1 ATMOSPHERE. REYNOLDS NUMBER, 175,000. SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0988 m³ ASPECT RATIO, 6. FICTITIOUS ASPECT RATIO, 685. AVERAGE TEMPERATURE, 35° C. AVERAGE PRESSURE, 8 AT-MOSPHERES. REYNOLDS NUMBER, 1,450,000.

						 The Constraint states	
Angle of attack, degree	g <u>kg</u> m²	Lift L kg	Lift coef. Cz	Drag coef. Co	Moment coef. C _M	Angle of attack, degree	
 $ \begin{array}{c} -11.6\\ -9.2\\ -6.7\\ -4.1\\ -2.8\\ -1.7\\4\\ .8\\ 2.1\\ 3.2\\ 5.6\\ \end{array} $	27.4 27.8 27.8 27.8 27.8 27.8 27.5 27.5 27.5 27.5 27.5 27.5	0. 18 04 . 50 . 95 1. 23 1. 47 1. 76 1. 95 2. 18 2. 40 2. 81	-0.068 015 .196 .857 .402 .551 .601 .778 .820 .904 1.05	0. (353 . 0705 . 0242 . 0237 . 0272 . 0322 . 0389 . 0440 . 0529 . 0601 . 0605	0.033 106 202 156 197 179 180 200 159 127 133	-11.6 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -11.6 -19.2	
7.9 10.5 13.4 14.7 15.9 17.0 18.4	27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	3, 21 3, 51 3, 62 3, 63 3, 60 3, 58 2, 55	1.21 1.32 1.36 1.37 1.36 1.36 1.36 1.34	. 0981 . 1242 . 1585 . 1781 . 1970 . 2160 . 2340	117 050 048 024 037 005 . 024	10.5 13.4 14.7 16.9 17.0 18.4 19.8	

attack, degree	kg m ¹	L kg		Drag oper.
-11.6	246	-5.03	-0.211	0.0182
-9.2	246	80	033	. 0187
-4.2	240 24A	7.59	. 318	.0178
-9.8	248	10.24	. 429	.0214
-1.0	246	12.40	. 511	. 0264
4	246	14.48	. 606	. 0323
- 0 1	240	10.77	. /00	- 0393
82	246	20.50	. 864	. 0546
5.0	246	24.39	1.03	. 0740
7.9	246	27.22	1.14	. 0956
10.5	246	29.98	1.25	. 1250
113.4	240	8L.77 20.91	1.02	. 1008
· 17.6	240	32.31	1.36	2023
17.0	246	32, 33	1.36	. 2276
18.4	246	31.96	1.35	. 2514
19.8	244	81.64	1.35	. 2800
21.1	244	81.07	1.82	3000
6.62	240	00.02	1.01	1 10400

TABLE IV

TABLE II

SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0963 m³ ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO, 6.86. AVERAGE TEMPERATURE, 20°C. PRESSURE, 4.1 ATMOS-PHERES. REYNOLDS NUMBER, 740,000.

SECTION NO. N. A. C. A. 97. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0668 m² ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO, 8.85.

6.85. AVERAGE TEMPERATURE, 87°C. AVERAGE PRESSURE, 16 AT-MOSPHERES. <u>REYNOLDS NUMBER</u>, 2,810,000

			1		and the second distance of	and the last	تباللهان والمجاهدته	لمناقب ف	A		
Angle of attack, degree	g kg m ²	Lift L -:-i- kg	Lift coef.	Drag coef. Co	Angle of attack, degree	g kg m'	Lift L kg	Lift coef. CL	Drag coef. CD	Moment about c/4 kg-cm	Moment cocí. CM
-11.6 -9.27 4.28 1.42 2.8 2.1 42	122 122 122 122 122 122 122 122 122 122	L 42 14 I 91 4 15 5 32 6 47 7 47 9 56 10 61 12 53 13.99 15 10 15 67 15 70 15 67 15 60 14 77	-0.119 -012 -012 -012 -012 -012 -012 -012 -012	0. 0154 0141 0121 0154 0155 0257 0359 0378 0400 0535 0735 0535 1215 1827 2240 2480 2735 2940 2480 2735 2943 3200		524 525 525 525 525 523 523 523 523 523 523	-11. 64 -2. 43 6. 23 16. 399 21. 06 24. 57 38. 65 38. 79 65. 38 66. 06 70. 63 66. 06 70. 63 66. 65 65. 65 65. 65	-0.230 -0.48 -123 -223 -415 -605 -605 -765 -765 -765 -765 -765 -765 -765 -76	0.0158 0.0156 0102 0150 0150 0228 0231 0228 0416 0255 0416 0255 0416 0255 0446 0455 0466 1225 1660 1425 1660 1425 1425 1425 1425 1425 1425 1425 1425	139.0 -88.9 -90.9 -88.9 -86.0 -20.2 -50.8 -180.0 -87.8 -83.7 -83.7 -83.8 -83.8 -83.8 -83.8 -83.8 -83.8 -83.8 -83.6 -83.8 -83.6 -83.8 -83.6	0. 217 138 141 138 133 079 029 133 029 126 130 153 008 104 139 131 133 143 135 141 136 139 131 135 135 135 135 135 135 135 135 135 135 136 135 143 155

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

F10. 13.—Test No. 58-5. Tank pressure 20.9 atmospheres. Dynamic pressure q=703 kg/m². Reynolds Number 3,850,900

F10.14.—Test No.61-8. Tank pressure 16.7 atmospheres. Dynamic pressure q=507 kg/m². Reynolds Number 3,030,000. Airfoil painted

PRELIMINARY WING MODEL TESTS

.Fro. 17.—Test No. 57-3. Tank pressure 8.2 atmospheres. Dynamic pressure g=258 kg/m³. Reynolds Number 1,490,000 Fro. 18.—Test No. 57-4. Tank pressure 16.44 atmospheres. Dynamic pressure g=531 kg/m¹ Reynolds Number 2,880,000

Fig. 20,—/Test No. 59-1. Tank pressure 16.2 atmospheres. Dynamic pressure g=575 kg/m². Reynolds Number 2,470,000. Trailing edge milled off square

. .

- ..

.

÷

	ΤA	BL	Æ	V	
--	----	----	---	---	--

SECTION NO. N. A. C. A. 87. MODEL NO. 9. SPAN 30 IN., 76.2 cm CHORD 6 IN., 12.7 cm ASPECT RATIO, 6. SECTION NO. N. A. C. A. 87. FICTITIOUS ASPECT RATIO, 6.85. TEMPERATURE, 88° C. PRESSURE, 20.9 ATMOS-PHERES. ASPECT RATIO, 6. REYNOLDS NUMBER, 985,000.

SECTION NO. N.A. C.A. 93.FICTITIOUS ASPECT RATIO,
0.85.MODEL NO. 10.6.85.SPAN 30 IN., 76.2 cmAVERAGE TEMPERATURE,
2.7 cmCHORD 5 IN., 12.7 cmAVERAGE TEMPERATURE,
2.7 CAREA 0.0098 mAVERAGE PRESSURE, 4.15
ATMOSPHERES.ASPECT RATIO, 6.AVERAGE TEMPERATURE,
2.7 C A.S. AVERAGE TEMPERATURE, 27°C. AVERAGE PRESSURE, 4.15 ATMOSPHERES. -REYNOLDS NUMBER, 155,000.

Angle of attack, degree	r kg m ⁱ		Lift coef. CL	Drag coel.
$\begin{array}{c} -11.6\\ -9.2\\ -6.7\\ -2.8\\ -1.6\\ -2.8\\ 2.12\\ 3.2\\ 2.12\\ 3.6\\ 7.9\\ 11.1\\ 13.4\\ 16.4\\ 16.4\\ 17.0\end{array}$	700 705 705 713 711 711 710 709 704 704 704 704 704 704 704 704 704 704	-14, 1 -2, 05 10, 76 28, 82 30, 65 42, 75 42, 75 45, 13 53, 38 55, 12 69, 94 79, 03 88, 48 - 90, 04 90, 04 90, 05 87, 48	-0, 209 	$\begin{array}{c} 0.0354\\ .0134\\ .0136\\ .0136\\ .0136\\ .0220\\ .0275\\ .0332\\ .0396\\ .0472\\ .0556\\ .0780\\ .0971\\ .1412\\ .1672\\ .1948\\ .2107\\ .2397\\ .2720\\ \end{array}$

Angle of attack, degree	kg m ²	Lift L kg	Lift coef. CL	Drag coef. Cp
- 42.2 - 42.1 - 45.8 - 4 - 5.8 - 4 - 5.8 - 4 - 5.8 - 4 - 5.8 - 10.5 - 10	122 124 125 125 125 122 122 122 122 124 124 125 125 125 125 125 125 124 124 122 122 124 122 122	-0.96 .23 1.49 3.77 4.76 6.02 7.06 8.21 9.11 10.09 12.24 13.95 16.29 14.11 16.09 16.09 16.09 16.79	-0.081 .019 .123 .305 .305 .591 .090 .761 .837 1.01 1.15 1.27 1.33 1.33 1.35 1.33	0.0212 0192 0125 0225 0225 0238 0410 0454 0747 0545 1188 1844 1731 1933 2126 2309 2019

TABLE VIII

TABLE VI

SECTION NO. N. A. C. A. 97	FICTITIOUS ASPECT RATIO
(PAINTED).	6.85.
MODEL NO. 9.	TEMPERATURE, 37° C.

SPAN 30 IN., 78.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0968 m² ASPECT BATIO, 6.

PRESSURE, 16.7 ATMOS-PHERES. REYNOLDSNUMBER, 3,030,000.

TABLE IX

 SECTION NO. N. A. C. A. 98.
 FICTITIOUS ASPECT RATIO, 85.

 MODEL NO. 10.
 6.85.

 SFAN 30 IN., 76.2 cm
 AVERACE TEMPERATURE, 33° C.

 AREA.0.0968 m¹
 AVERAGE PRESSURE, 8.2 AT-MOSPHERES.

 ASPECT RATIO, 6.
 BEYNOLDS NUMBER, 1,490,000

Angle of attack, degree	e Mili	Lift L kg	Lift coef. CL	Drag coef. CD	Moment about c/4	Moment coel. Cu	
$-11.9 \\ -9.4 \\ -7.2 \\ -3.2 \\ -1.9 \\4.5 \\ -3.2 \\ -1.9 \\4.5 \\5.2 \\ -1.9 \\4.5 \\5.2 \\5$	585 568 568 568 568 568 569 569 569 569 569 565 569 565 570 565 570 565 570 565	-12. 36 -3. 26 6. 71 22. 83 28. 71 32. 96 37. 77 41. 31 45. 45 61. 53 70. 23 70. 23 66. 89 64. 52	-0. 226 059 . 122 . 327 . 406 . 523 . 599 . 688 . 753 . 822 1.01 1.11 1.29 1.31 1.29 1.31 1.29 1.31	0. 0181 . 0117 . 0111 . 0158 . 0196 . 0249 . 0300 . 0367 . 0421 . 0510 . 0723 . 0834 . 1212 . 1699 . 1783 . 2186 . 2458	$\begin{array}{c} -96.8 \\ -68.4 \\ -94.5 \\ -100.3 \\ -90.8 \\ -92.6 \\ -97.2 \\ -84.1 \\ -86.4 \\ -71.8 \\ -69.4 \\ -76.7 \\ -64.5 \\ -17.4 \\ -70.7 \\ -101.2 \end{array}$	-0, 189 -, 135 -, 135 -, 144 -, 130 -, 134 -, 139 -, 139 -, 120 -, 109 -, 109 -, 025 -, 115 -, 146	

÷				
Angle of attack, degree	g kg m ¹	Lift L kg	Lift coef. CL	Drag coef. Co
	258 259 258 258 258 258 258 258 258 258 258 258 258 258 258 256 257 257 257	-0.16 2.91 7.44 12.42 14.63 16.81 18.78 20.87 24.05 28.02 31.33 33.41 33.91 33.41 33.45 34.45 34.45 34.64 34.51	-0.063 .117 .297 .496 .586 .674 .782 .837 .995 1.12 1.26 1.39 1.39 1.39 1.40 1.39	0.0177 .0168 .0280 .0385 .0335 .0401 .0470 .0552 .0733 .0530 .1170 .1831 .1748 .1038 .2162 .2440 .22688 .2041

 	_		_
ТА	BL	Е	VII

SECTION NO. N. A. O. A. 98 MODEL NO. 10. SPAN 80 IN., 70.2 cm CHORD 5 IN., 12.7 cm AREA 0.0068 m³ ASPECT RATIO, 6. SPAN 50 IN., 12.7 cm AREA 0.0068 m³ CHORD 5 IN., 12.7 cm CHORD 5 IN., 12.7 c

77

S.

4

-

تنقف التلقف ا

CTION N ODEL NO AN 30 IN. HORD 5 IN REA 0.0968 SPECT RA	O. N. A. O. A . 10. ., 76.2 cm N., 12.7 cm m ³ .TIO, 6.	A. 98 FICT 6.85. AVER 23.5° PRE PHE REYN	ITIOUS ASP AGE TEM C. SSURE, I RE. OLDS NUM	ECT RATIO, PERATURE, ATMOS- IBER, 176,000.	SECTION MODEL 1 SPAN 30 I CHORD 5	NO. N VO. 10. N., 76.2 IN., 12	. A. C. A.	TABLE 08. FIC 08. FIC 08. FIC 08. FIC 08. FIC 08. FIC 08. FIC 08. FIC	X TITIOUE MPERAT ESSURE,	ASPECT URE, 42.0 10.44	r RATIO, C. ATMOS
Angle of attack, degree	g kg m ²	Lift L kg	Lift coef. CL	Drag coef. Co	AREA, 0.0 ASPECT	RATIO	, 0.	REY	Dreg	NUMBE Moment	R, 2,880,000.
8.1 6.8 5.7	27.8 27.8 27.8	0.01 38 60	0.037 .141 .223	0. 0632 0282 . 0278	attack, degree	kg m ²		CL	coef. Cp	about c/4 kg-cm	ecef. Cu
	27.8 27.8 27.8 27.8 28.0 28.1 28.1 28.1 28.1 28.1 27.6 27.6 27.6 27.6	1, 15 1, 18 1, 18 1, 16 1, 38 1, 66 1, 38 1, 68 1, 38 1, 44 2, 35 2, 35 3, 35,	. 336 . 429 . 515 . 621 . 704 . 792 . 869 961 . 961 . 1.2 1.25 1.34 1.39	0290 0314 0314 0413 0463 0463 0463 0463 0463 0463 0463 046	-9.2 -6.8 -4.4 -9.9 -1.0 4 8 2.1 8.7 5.8 7.8 10,4 13,2 14,6	526 527 527 529 534 534 534 534 534 533 533 533 533 533	-3.95 0.84 14.73 19.44 25.10 25.92 35.48 42.41 51.07 58.12 05.31 72.00	-0.078 130 289 280 436 575 556 744 825 .990 1.12 1.27 1.36 1.40	0.0157 0168 0182 0208 0271 0325 0383 0455 0534 0718 0907 1168 1533 1533	-90.6 -163.0 -82.3 -91.0 -82.3 -86.5 -87.3 -84.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -75.1 -75.5 -95.6	-0.140 251 135 140 125 132 133 125 125 128 128 128 128 120 126 126 100
14.5 15.7 16.8 18.1 19.5	27.6 27.6 27.6 27.6 27.6 27.6	3. 75 3. 74 3. 74 3. 69 3. 65	1.40 1.40 1.39 1.38 1.38	. 1710 . 1895 . 2063 . 2258 . 2502	15,7 16,8 18,1 19,5 20,7	531 531 530 530	72 20 72 38 71 99 71 27 70,44	1.40 1.41 1.40 1.39 1.37	. 1945 . 2160 . 2340 . 2721 . 2972	73. 2 72. 9 79. 5 79. 8 89. 2	112 112 123 128 137

TABLE XI

TABLE XIV

Lift ccef. CL

-0. 030

.050

.217 .295 .375 .452 .583 .653 .752 .695 .589 .589 .589

SECTION NO. N. A. C. A. 98.FICTITIOUS ASPECT RATIO,
6.85.MODEL NO. 10.6.85.SPAN 30 IN., 76.2 cmTEMPERATURE, 35° C.CHORD 5 IN., 12.7 cmPRESSURE, 20.4 ATMOS-
PRESS.AREA, 0.0985 m²PHERES.ASPECT RATIO 6.REYNOLDS NUMBER, 3,780,000. 6.85. TEMPERATURE, 35° C. PRESSURE, 204 ATMOS-PHERES. REYNOLDS NUMBER, 3,780,000.

₹ <u>k</u>g m²

Lift L kg

-0.16

.28

Angle of attack,

degree

-0.4

.79 4.25 6.67 11.5 12.59 11.5 12.59 11.5 12.59 19.0

SECTION NO.N.A.C.A. 99. MODEL NO.11. SPAN 30 IN., 75.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0928 m⁴ ASPECT BATIO, 6. SPAN 30 IN., 75.2 cm AVERAGE TEMPERATURE, 27° C. AVERAGE PRESSURE, 2.03 ATMOSPHERES. DESCRIPTION STRUCTURE STRUCTURE AVERAGE PRESSURE 200 ATMOSPHERES. DESCRIPTION STRUCTURE STRUCTUR AVERAGE TEMPERATURE, 27° C. AVERAGE PRESSURE, 2.03 ATMOSPHERES. REYNOLDS NUMBER, 352,000.

Drag ocef. Cp

0.0117

.0130 .0149

. 0221

.0264 .0333 .0439 .0604 .1572 .2000

. 2278

Moment ccel. Cw

61,0285 0.0235 .0001 .0070 .0042 .0195 .0150

. 0015 0150 . 0150

. 0150 . 0260 --. 0250 --. 0500 --. 0510

Angle of	f	Lift	Lift	Drag
attack,	kg	L	coef.	Coef.
degree	m ¹	kg	CL	Cp -
-9.2 -8.1 -5.7 -2.9 -1.6 	697 695 695 697 696 695 695 695 695 695 695 695 695 695	-5. 41 1. 33 12. 06 24. 24 30. 44 37. 98 43. 35 48. 26 54. 19 66. 50 75. 30 91. 05 92. 19 91. 55 92. 19 91. 32 89. 89 86. 63	0.080 .020 .178 .359 .451 .583 .645 .718 .802 .970 1.115 1.25 1.35 1.37 1.38 1.34 1.33 1.28	0.0152 0137 0150 0200 0241 0317 0374 0436 0516 0701 0895 1146 1610 1725 2100 2366 2466 2666 2666

TABLE XII

SECTION NO. N. A. C. A. 98FICTITIOUS ASPECT RATIO,
(MILLED T. E.).SECTION NO. N. A. C. A. 99.MODEL NO. 10.5.90.MODEL NO. 11.SPAN 30 IN., 76.2 cmPRESSURE, 16.2 ATMOS-
PHERES.SPAN 30 IN., 76.2 cm
CHORD 4.95 IN., 12.57 cm
PHERES.SPAN 30 IN., 76.2 cm
PHERES.AREA, 0.0953 m²REYNOLDS NUMBER, 2,470,000.AREA, 0.0968 m²
ASPECT RATIO, 6.

TABLE XV

FICTITIOUS ASPECT RATIO,

6.85. AVERAGE TEMPERATURE, 30.5° C. AVERAGE PRESSURE, 4.05 ATMOSPHERES. REYNOLDS NUMBER, 719,000

Moment Moment Angleof Drag coef. Cp Lift ĹίΩ q kg m' coef. CL attack, degree coel. Cx L c/4 kg-cm kg -101.0 -104.0 -102.0 -103.0 $\begin{array}{c} -0.260\\ -.077\\ .109\\ .308\\ .404\\ .632\\ .786\\ .632\\ .786\\ .632\\ .103\\ 1.17\\ 1.32\\ 1.42\\ 1.42\\ 1.42\\ 1.42\\ 1.42\\ 1.43\\ 1.42\\ 1.35\\ \end{array}$ -0.145 -.149 -.147 -.143 -.143 -.144 -.159 -.130 -.130 -.134 -.134 -.134 -.134 -.134 -.134 -.138 -.134 -.138 -.130 -.138 -.130 -.138 -.130 -.138 -.139 -.145 -11.7 $\begin{array}{c} -14.39\\ -14.25\\ 6.010\\ 22.607\\ 37.51\\ 37.52\\ 47.55\\ 47.569\\ 37.699\\ 78.899\\ 79.29\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 79.29\\ 57.28\\ 56.899\\ 77.28\\ 57.28\\$ 0.0211 -9.0 -6.7 -4.4 -8.0 577 578 578 .0154 .0142 .0180 578 575 575 575 575 576 576 576 .0217 -99.1 -97.8 -99.6 -99.5 -95.5 -1.6 -.4 .0265 .0265 .0321 .0396 .0455 .0543 .0735 .8 3.06 7.74 13.24 14.7 16.8 18.1 19.4 20.7 577 579 566 579 566 579 577 577 577 577 562 .0931 . 1192 . 1564 . 1634 . 2004 . 2203 . 2454 . 2676 . 2998

TABLE XIII

Angle of	e	Lift	Lift	Drag
attack,	kg	L	coef.	coef.
degree	m ¹	kg	C_L	C _D
-0.4 1.9 8.0 4.2 6.6 7.7 9.4 11.5 15.2 16.8 19.0	120 120 120 120 120 120 120 120 120 120	-0.48 .54 2.46 3.46 4.47 5.38 6.36 7.78 9.52 8.24 7.54 7.22	0.040 .046 .136 .211 .297 .382 .460 .545 .666 .805 .817 .702 .651 .625	0. 0134 . 0132 . 0150 . 0171 . 0194 . 0232 . 0277 . 0334 . 0437 . 0590 . 1125 . 1986 . 2374 . 2845

TABLE XVI

SECTION NO. N. A. C. A. 99. MODEL NO. 11. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0963 m² ASPECT RATIO, 6. FICTITIOUS ASPECT RATIO.

6.85. AVERAGE TEMPERATURE, \$1° C. AVERAGE PRESSURE, 6 ATMOSPHERES. REYNOLDS NUMBER, 1,070,-

000

SECTION NO. N. A. C. A. 99.FICTITIOUS ASPECT RATIO, 6.85.MODEL NO. 11.6.85.SPAN 80 IN., 76.2 cmAVERAGE TEMPERATURE, 28° CCHORD 5 IN., 12.7 cm28° CAREA, 0.0568 m²PRESSURE, I ATMOSPHERE. BEPECT RATIO, 6.					
Angle of attack, degree	e kg H ²	Lift L kg	Lift coef. CL	Drag coef. CD	
-0.4 1.9 3.22 5.4 6.7 7.7 1.5 13.6 16.8 10.0	2.66 2.7.5 7.5	-0.08 .24 .43 .56 .72 .14 1.44 1.92 1.72 1.57 1.50 1.48	0.032 .089 .161 .209 .273 .346 .427 .539 .612 .722 .645 .591 .568 .557	0.0136 0173 0186 0207 0266 0260 0341 0403 0536 0300 1705 2034 2034 2034 2316 2594	

Angle of attack, degree		. Lift L kg	Lift coef. CL	Drag coef. C _D
-0.4 .7 1.9 3.0 4.2 5.4 6.6 7.7 9.4 11.5 13.6 15.2 16.8 19.0	183 183 183 183 183 183 183 183 183 183	-0.66 .70 2.22 3.61 5.21 7.04 8.18 9.56 11.92 14.26 16.42 18.42 16.14 16.04	$\begin{array}{r} -0.037\\ .040\\ .126\\ .204\\ .295\\ .396\\ .462\\ .541\\ .672\\ .805\\ .928\\ 1.03\\ .906\\ .906\end{array}$	0.0124 0129 0140 0156 0226 02270 0413 0413 0458 0705 0692 1738 2057

213

. .

<u>_ 11</u>

: s- - y -

:.<u>+</u>...= 15

> . .------

میں۔ چندہ

- 5

-<u>--</u>-

- -

<u>منين</u> ز _____

TABLE XVII

TABLE XIX

Airfoil No. 97

Lower

Upper

trail

edge.

of)

ഷ്

% of chord 4.17 4.1 7.93 .7 9.50 .7 10.80 .1 11.80 .1 13.30 .1 14.28 .1 14.80 .1 15.90

8. 57

SECTION NO. N. A. C. A. 99. FICTITIOUS ASPECT RATIO, MODEL NO. 11. 6.85. SPAN 30 IN., 76.2 om AVERAGE TEMPERATURE, CHORD 5 IN., 12.7 om 88° C. AREA, 0.0968 m¹ AVERAGE PRESSURE, 8.3 AT-ASPECT RATIO, 6. MOSPHERES.

TABLE OF ORDINATES OF AIRFOIL SECTIONS. NOS. 97, 98 AND 99

Upper

 % of chord

 4.00

 4.00

 9.60

 10.85

 11.93

 13.40

 14.88

 14.96

 15.30

 14.28

 14.28

 14.28

 14.28

 14.28

 14.28

 14.28

 14.28

 15.30

 14.28

 10.30

 7.70

 4.87

 90

Airfoil No. 98

Lower

8.57

0.'93

Airfoil No. 99

Lower

of chord -0.00 -8.50 -4.33 -4.90 -5.33 -6.03 -6.43 -6.03 -6.03

8.57

Upper

0.8.4.4.5.6.6.6.6.6.8.4.3.2.1. . .

SPECT RATIO, 6. MOSPHERES. REYNOLDS NUMBER, 1,		ER, 1,440,000.	Station		
Angle of attack, degree	g kg m ¹	Lift L kg	Lift coef. CL	Drag coef. Cp	Per cent of chord
-0.4 1.9 3.0 4.2 5.4 6.6 7.7 9.4 11.6 18.6 18.6 18.6 18.6 19.0 20.7	257 256 256 257 258 257 255 255 255 255 255 255 255 255 255	-1. 18 8. 25 5. 20 7. 55 9. 59 11. 80 18. 86 16. 85 20. 34 28. 66 28. 60 28. 50 28. 50 28. 50 27, 28	0.047 181 209 302 385 473 547 662 822 952 1.06 1.15 1.15 1.09	$\begin{array}{c} 0.0129\\ 0.0135\\ 0.0187\\ 0.0137\\ 0.0232\\ 0.0266\\ 0.0320\\ 0.0409\\ 0.0566\\ 0.0566\\ 0.0568\\ 0.0568\\ 0.0589\\ 1.078\\ 1.595\\ 2.2310\\ \end{array}$	0
	TA	BLE XVI	II TIONS ASPE		Radius of leading edge. Radius of

TABLE XVIII

SECTION NO. N. A. C. A. 99. MODEL NO. 11. SPAN 30 IN., 76.2 cm CHORD 5 IN., 12.7 cm AREA, 0.0968 m² ASPECT RATIO, 6.

FICTITIOUS ASPECT RATIO, AVERAGE TEMPERATURE, 40° C. AVERAGE PRESSURE, 16.24 ATMOSPHERES, REYNOLDS NUMBER, 2,950,000.

Angle of	e	Lift	Lift	Drag	Moment
attack	kg	L	coef.	coef.	coef,
degree	m ³	kg	CL	CD	Cu
$\begin{array}{c} -0.4 \\ 7 \\ 1.9 \\ 3.0 \\ 4.2 \\ 5.4 \\ 6.6 \\ 7.7 \\ 9.4 \\ 11.6 \\ 15.2 \\ 16.8 \\ 19.0 \\ 20.7 \end{array}$	544 544 544 545 545 545 545 545 543 543	-9, 21 2, 16 6, 77 11, 51 16, 34 20, 49 24, 83 25, 63 35, 63 35, 63 45, 19 49, 81 55, 82 55, 89 45, 55 45, 55	0.042 .041 .129 .309 .389 .471 .655 .678 .823 .350 1.06 1.02 .928 .868	0.0109 0107 0117 0138 0165 0201 0246 0392 0390 0392 0390 0392 0390 0392 0390 0392 0390 0392 0390 0392 0390 0392 0390 0392 0390 0390	0.0028 0034 .0012 .0029 .0030 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0120 .00900 .0380 0290 .0380 0780 1150

REFERENCES

- 1. Max M. Munk: The Modification of Wind Tunnel Results by the Wind Tunnel Dimensions. Journal of Franklin Institute, August, 1923.
- 2. Max M. Munk: Elements of the Wing Section Theory and of the Wing Theory. N.A. C.A. Technical Report No. 191. 1924.
- 3. Max M. Munk: The Determination of the Angles of Attack of Zero Lift and Zero Moment, Based on Munk's Integrals. N. A. C. A. Technical Note No. 122. 1923.

\sim -	
	1
12	

APPENDIX

COMPARISON WITH THEORY

By George J. Higgins

In this appendix, the aerodynamic properties of the N. A. C. A. airfoil No. 97 are computed as far as the present theory allows. This comprises the computation of the lift and the moment characteristics at any angle of attack.

The lift characteristics.—The angle of attack, at which the lift force is zero, is first computed. The method employed is obtained from the N. A. C. A. Technical Note No. 122 (Reference 3). The five-point method is used because of its greater accuracy.

$$-\alpha_{k_0} = F_1 \frac{\xi_1}{c} + F_2 \frac{\xi_2}{c} + \dots + F_n \frac{\xi_n}{c} + \dots$$

in degrees where,

 α_{L_0} = angle of attack at which the lift is zero.

 ξ =ordinate of the mean camber line at a point (x) on the chord line, minus the ordinate of the trailing edge.

c = the chord of the airfoil.

$$\alpha_{L_0} = \Sigma \xi f = f_1 \xi_1 + f_2 \xi_2 + f_3 \xi_3 + f_4 \xi_4 + f_5 \xi_5 \quad (\text{Reference 3})$$

$x_1 = 99.458\%c$	$f_1 = 1252.24$	$\xi_1 = 0.13\%c$
$x_2 = 87.426\% c$	$f_2 = 109.048$	$\xi_2 = 2.91\%c$
$x_s = 50.000\% c$	$f_{s} = 32.596$	$\xi_8 = 8.16\% c$
$x_4 = 12.574\% c$	$f_4 = 15.684$	$\xi_4 = 6.31\%c$
$x_{\rm s} = 0.542\% c$	$f_{\rm s} = 5.978$	$\xi_5 = 3.71\%c$

 $-\alpha_{L_0} = \Sigma f \xi = 1.63 + 3.17 + 2.66 + 0.989 + 0.222$

 $\alpha_{L_0} = -8.671^{\circ} \sim 8^{\circ} 40'$

This value agrees well with the observed value. A graphical determination is also made by the two methods shown in the accompanying diagram (Fig. 21).

The angles determined there are:

One-point method, $\alpha_{L_0} = -9^\circ 15'$

Two-point method, $\alpha_{L_0} = -8^\circ 50'$

The lift force and the lift coefficient for any other angle of attack are obtained from the following expressions (Reference 2):

FIG. 21.—Angles of zero lift and zero moment (around enord). Airfoll N. A. C. A. No. 97. Found by computation

$$L = 2\pi\alpha \text{ (radians)} \frac{\rho}{2} \nabla^2 S \frac{1}{1 + \frac{2S}{b^2}}$$
$$= \frac{2\pi\alpha \text{ (degrees)} qS}{57.3 \left[1 + \frac{2S}{b^2}\right]} \cdot$$
$$C_L = \frac{L}{qS} = \frac{2\pi\alpha \text{ (degrees)}}{57.3 \left[1 + \frac{2S}{b^2}\right]}$$

348-267-15

where

L = lift force= angle of attack α = density ρ V = velocityS 📼 surface area Ъ ⇔span q = dynamic pressureFor the N. A. C. A. No. 97 airfoil, $S = 0.0968 \text{ m}^3$ b = 0.762 m $2\pi\alpha$ (degrees) 57.3 1+ $=.0822 \alpha$ (degrees)

$$\frac{dC_{L}}{d\alpha \text{ (degrees)}} = .0822$$

 $2 \times .0968$

The slope of the observed lift coefficient curve has a magnitude that is about 86 per cent of that computed.

$$\frac{dC_{L}}{d\alpha}$$
 (observed) = .0710

The moment characteristics.-- The angle of attack, at which the moment about the 50 per cent point of the chord is zero, is computed first in determining the moment. The method is also obtained from the N. A. C. A. Technical Note No. 122 (Reference 3).

$$\alpha_{\mu_0} = 62.634 \left[\frac{\xi_1}{c} - \frac{\xi_2}{c} \right]$$

where,

 α_{X_0} = angle of attack, at which the moment about the 50 per cent point of the chord is zero.

 ξ = ordinate of the mean camber line at a point (x) on the chord, minus the ordinate of the trailing edge.

$$\begin{array}{ll} x_1 = 95.74\% \ c. & \xi_1 = 1.03\% \ c. \\ x_2 = 4.26\% \ c. & \xi_2 = 4.67\% \ c. \\ \alpha_{\mu_0} = 62.634 \ (1.03 - 4.67) \\ = -2.28^\circ \sim -2^\circ \ 17' \end{array}$$

 α_s = effective angle.

=8° 40′-2° 17′ = 6° 13′~6.216°

 $\alpha_{\mathbf{E}} = \alpha_{L_0} - \alpha_{\mathbf{M}_0}$

The graphical construction shown in the diagram (Fig. 21), gives:

$$\alpha_{\mathbf{x}_0} = -2^\circ 20'$$

The effective angle, corresponding to the lift at the angle for zero moment, is next determined from the values of the angles for zero lift and zero moment (Fig. 22).

When the airfoil is in the position such that the moment about the 50 per cent point of the chord is zero, the resultant force passes through this point. Neglecting the moment due to the drag force, which is very small, the moment about any other point on the chord can be computed by obtaining the product of the lift force and its lever arm about that point. By this method, the magnitude of the moment about a point at 25 per cent of the chord is determined. This moment is theoretically constant for all angles of attack and values of lift. When plotted against the lift, the curve will be a straight line parallel to the lift axis.

 $M = L \times l = \frac{2\pi \alpha_{sg}S}{57.3 \ l + \frac{2S}{h^2}} \times \frac{-c}{4}$

where:

The computed and the observed values of moment coefficient are shown in the chart of observed values for the N. A. C. A. No. 97 airfoil, Figure 23, for purposes of comparison.