NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 221

MODEL TESTS WITH A SYSTEMATIC SERIES OF 27 WING SECTIONS AT FULL REYNOLDS NUMBER

By MAX M. MUNK and ELTON W. MILLER

PRICES SUBJECT TO CHANGE

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce springfield, VA. 22151

Springfield, VA. 22151

GOVERNMENT PRINTING OFFICE

AERONAUTICAL SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

		Metrio	English	
	Symbol	Unit Symbol	Ünit	Symbol
	Length	meter m	foot (or mile) second (or hour)	ft. (or mi.). sec. (or hr.).
	Force	weight of one kilogram.	weight of one pound	b. • •
and the second second	Power	kg/m/sec m/sec	horsepowerml./ht	нр. М. Р. Н.

GENERAL SYMBOLS, ET

Weight, W = mq. Standard acceleration of gravity, $g = 9.80605 \text{ m/sec}^3 = 32.1740 \text{ ft./sec}$.

Mass, $\pi = -$

Density (mass per unit volume), p Standard density of dry air, 0.12497 (kg-msec²) at 15°C and 760 mm = 0.002378 (b. tr-sec²)

True airspeed,

Dynamic (or impact) pressure, $q = \frac{L}{2}\rho$ Lift, L; absolute coefficient $C_1 = \frac{L}{2}$

Drag, D; absolute coefficient $C_p = \frac{2}{gS}$. Cross-wind force, C; absolute coefficient

Co=aS

Resultant force, R

(Note that these coefficients are twice as large as the old coefficients L_c , D_c .) Angle of setting of wings (relative to thrust line), is Angle of stabilizer setting with reference to

thrust line, i.

Specific weight of "standard" air, 1.2255 kg/m⁴ =0.07651 lb./ft.⁴

Moment of inertia, mk^2 (indicate axis of the radius of gyration, k, by proper subscript)

Ares, S; wing area, S, etc.

Gap, G. Span, b; chord length, c

Aspect ratio = b/c.

Distance from c. g. to elevator hinge, f. Coefficient of viscosity, μ .

AERODYNAMICAL SYMBOLS

Dihedral angle, γ

Reynolds Number $= \rho \frac{Vt}{\mu}$ where t is a linear dimension.

e.g., for a model airfoil 3 in. chord, 100 ml./hr., normal pressure, 0°C: 255,000 and at 15°C, 230,000;

or for a model of 10 cm chord, 40 m/sec, corresponding numbers are 299,000 and 270,000.

Center of pressure coefficient (ratio of distance of C. P. from leading edge to chord length), C_{n} .

Angle of stabilizer setting with reference to lower wing. $(i_t - i_w) = \beta$.

Angle of attack, α . Angle of downwash, ϵ

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

·

Baited floor in and Resourch Elevation East Hartford, Connectiout]

1

REPORT No. 221

MODEL TESTS WITH A SYSTEMATIC SERIES OF 27 WING SECTIONS AT FULL REYNOLDS NUMBER

By MAX M. MUNK and ELTON W. MILLER National Advisory Committee for Aeronautics

REPORT No. 221

MODEL TESTS WITH A SYSTEMATIC SERIES OF 27 WING SECTIONS AT FULL REYNOLDS NUMBER

By MAX M. MUNK and ELTON W. MILLER

SUMMARY

A systematic series of 27 wing sections, characterized by a small travel of the center of pressure, have been investigated at 20 atmospheres pressure in the variable density wind tunnel of the National Advisory Committee for Aeronautics.

The results are consistent with each other, and indicate that for such "stable" sections a small effective camber, a small effective S-shape and a thickness of 8 to 12 per cent lead to good aerodynamic properties.

PURPOSE OF THE INVESTIGATION

This report contains the results of the investigation of the first systematic series of wing sections, 27 all together, made in the variable density wind tunnel of the National Advisory Committee for Aeronautics at about 20 atmospheres pressure. It was desired to obtain information about those aerodynamical properties of the wing sections which can not be computed. These are the drag at several angles of attack, and the two values of the lift coefficient when (a) the lift coefficient has its maximum and (b) when the air forces change irregularly, commonly known as the "burble point." Without additional work, there was also obtained a check on the aerodynamic properties open to computation, namely, the lift and the moment.

PROGRAM OF THE INVESTIGATION

In this first systematic series the measurements were confined to one tank pressure, about 20 atmospheres. This gives approximately a full size Reynolds number, for the model scale is about one-tenth, the velocity about one-half of the actual velocity.

The investigation was confined to such wing sections as have a very small travel of the center of pressure. The rate of the travel of the center of pressure is certainly an aerodynamic property of great practical importance, affecting the usefulness of the section for design purposes; it is not wise to compare the performance of several wing sections without taking the different rates of travel of the center of pressure, if any, into account. Within the useful range of the angle of attack, the wing sections described in this report have their center of pressure at about 25 per cent of the chord. Their rate of travel of the center of pressure is accordingly small, and the comparison of their performance is all that remains to be done. Wing sections with a larger rate of travel of the center of pressure may be taken up in a later research.

ARRANGEMENT OF THE TESTS

The 27 models were made of duralumin and were rectangular and not warped. The span is 30 inches, the aspect ratio is 6. The 27 wing sections form a systematic series. The series begins with three symmetrical sections of different thicknesses, M1, M2, and M3. The curves are affine—i. e., the three sets of ordinates can be obtained from each other by multiplying

Preceding page blank

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

each ordinate by a constant. Three more sections are then obtained by adding to each of the sets of ordinates M1, M2, M3 the set of ordinates of a certain camberline, say "a," so chosen that theoretically its center of pressure does not travel. The series is further increased by substituting double the ordinates, 2a for a; then another camber line "b," with the same stability characteristics, and then combinations of the two camber lines. The camber lines "a" and "b" will be most easily recognized in wing sections M4 and M10. This process of obtaining the shapes of the wing sections leads to their classification in Table XXVIII. The ordinates of the sections are given in Table XXIX in per cent of the chord. Each figure contains a drawing of the section.

Each airfoil was exposed to the air stream of the variable density wind tunnel of the National Advisory Committee for Aeronautics. It was fastened by thin wires to the balance of this tunnel. Moreover, a skid rigidly fastened to the airfoil was hinged to a vertical bar, forming a part of the balance. This bar extends across the air stream in rear of the model; it is shielded from the air stream and can be moved up and down. When moved thus, the angle of attack of the airfoil is changed. After the airfoil was put in, the tank was closed and the air pressure increased up to about 20 atmospheres. The air forces of the airfoil were then determined over a range of several angles of attack. The drag of the wires and of other attachments were determined in a separate test under the same conditions of flow. The measured drag has been corrected for this drag of the fastening parts in the usual way.

RESULT OF THE TESTS

The results of the tests are given in Tables I to XXVII and are illustrated in the 27 figures. The angle of attack always refers to a line fixed with respect to the section as shown in each diagram. In the tables the air forces are represented by the lift coefficients, the drag coefficients, and the moment coefficients. The lift and drag coefficients are obtained by dividing

the lift or drag by the wing area and by the dynamic pressure $V^2 \frac{\rho}{2}$, where V denotes the velocity

of the air stream and ρ the mass density of the air. The diagrams are so-called polar curves. The lift coefficient is plotted vertically up and against it to the right the drag coefficient and to the left the moment coefficient. This latter refers to the moment of the air forces with respect to a point of the chord, one quarter chord from the leading edge. This point is chosen because it gives the least variation of the moment coefficient. The moment is divided by the wing area, by the dynamic pressure, and by the length of the chord. The Reynolds number is computed with the chord as the characteristic length.

The parabola of the induced drag coefficient for the aspect ratio 6 has been inserted in each diagram. No correction has been made for the influence of the tunnel walls, which may be perceptible, as the wing span is half the tunnel throat diameter. This question is not yet sufficiently cleared up.

In Table XXX a survey of the series and of the results obtained is given. The first column gives the number of the wing section. The next three columns contain the minimum drag coefficient, the lift coefficient at the "burble point," and the maximum lift coefficient, if any. The last column gives the average moment coefficient, which is always small for the wing sections considered in this investigation.

DISCUSSION OF THE RESULTS

The main results of this test lie in the presentation of new information about the properties of the wing sections given in the tables and in the diagrams.

It seems that a small travel of the center of pressure is generally combined with a smaller maximum lift coefficient. Good sections are in the neighborhood of M6.

The test charts show that at full size Reynolds Number the minimum drag is much smaller than we are accustomed to obtain in the ordinary atmospheric wind tunnel. The maximum lift is not necessarily larger at a larger Reynolds Number.

One remark concerning the results seems pertinent. As shown by mathematical reasoning in Technical Report No. 191 of the National Advisory Committee for Aeronautics, the moment curves in the diagrams should theoretically be straight vertical lines. Most of them have approximately this shape, but not all of them. The small discrepancies can often be explained by taking the second approximation of the computations into account. For instance, with actual sections of a finite thickness, the theoretical leading edge is situated halfway between the actual one and the center of curvature of the leading edge, giving a shorter effective chord than the actual one. A very thick section, besides, is slightly more stable than a thin section of the same mean curve. Quite irregular moment curves can only be explained by sudden changes of the character of the flow just as at the burble point.

CONCLUSION

Looking at the results obtained in the variable density tunnel (including Technical Report No. 217) from a broader point of view, it is now established that the results obtained at the full size Reynolds Number do not agree with the results at a diminished Reynolds Number. Furthermore, tests now under way show that the variable density tunnel operated at one atmosphere gives results with a given wing section similar to the results obtained in other wind tunnels.

We conclude from these facts that the results obtained at full size Reynolds Number will give better information to the designer than tests run at largely reduced Reynolds Number. The information from the new tunnel will become more and more useful in the same degree as more results are obtained from it, so that results of new tests can be compared with results of similar older tests made under the same conditions.

TABLE I

Section No. M1. Span 30 in. (76.2 cm). Areas 0.0968 m³. Average temperature 40.5° C. Average Reynolds No. 3,600,000.

Angle of

attack degrees

-3.0-1.5 0.0 1.5 3.0

4.5 6.0 9.0 12.0 15.0 18.0 21.0

Dynam

pressur

Section No. M3. Span 30 in. (76.2 cm). Area 0.0968 m⁻¹. Average temperature 30.0° C. Average Reynolds No. 3,670,000.

Dynamic

pressure

kg/m¹

Model No. 23. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.15 atmos.

Moment

coefficient

С¥

0. 015 . 013 . 014 . 017 . 021 . 026 . 052 . 019 . 019 . 014 -. 033

-. 035

Dynamic	Lift	Drag	Moment	Angle of
pressure	coefficient	coefficient	coefficient	attack
kg/m ²	CL	CD	C _M	degrees
659 665 665 665 665 667 664 666 665 661 660 659	0. 208 104 006 120 . 231 . 341 - 458 . 667 . 782 . 805 . 788 . 742	0.0093 .0075 .0072 .0077 .0108 .0145 .0199 .0344 .1012 .1962 .2574 .2967	0.008 .006 .005 .012 .007 .011 .085 .085 .085 .085 .017 .065 100 094	$\begin{array}{r} -3.0 \\ -1.5 \\ 0.0 \\ 1.5 \\ 3.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \\ 18.0 \\ 21.0 \end{array}$

BLE II	
BLE II	

Lift coefficient

CL

-0. -. 120

. 23(

.097 .207 .315 .428 .652 .860 .903 .881 .835

Drag coefficient C_D

0.0105

.0087 .0100 .0145 .0185

. 0337 . 0591 . 1181 . 2436 . 3031

Section No. M2. Span 30 in. (76.2 cm). Area 0.0968 m⁴. Average temperature 37.0° C. Average Reynolds No. 3,620,000.

Angle of attack degrees

-3.0 -1.5 0.0 1.5 3.0 4.5 9.0 12.0 15.0 15.0 18.0 21.0

Dynamic

pressure g kg/m'

Model No. 22. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 19.95 ssure 19.95 atmos

Moment coefficient

CM

0.010 .003 .010

.010 .009 .015 .007 .015

.015 -.009 -.026 -.095

Section No. M4. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 33.0° C. Average Reynolds No. 3,680,000. Model No. 24. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.0 atmos.

Angle of	Dynamic	$\begin{array}{c} \text{Lift} \\ \text{coefficient} \\ C_L \end{array}$	Drag	Moment
attack	pressure		coefficient	coefficient
degrees	kg/m ¹		Cp	C _M
-4.5 -3.0 -1.5 0.0 1.8 3.0 4.5 6.0 9.0 12.0 15.0	668 672 672 672 672 672 668 668 669 668 669 668 667 666	-0. 279 180 087 . 025 . 138 . 248 . 359 . 472 . 700 . 905 . 941	0. 0286 0146 0075 0077 0067 0108 0141 0199 0369 0602 1340	0,005 .008 .014 .015 .016 .021 .022 .023 .021 .022 .023 .021 .022

TABLE III

Lift coefficient

CL

-0. 197

. 095

882

1.

TABLE IV

Drag coefficient

Cp

0.0096

. 0082 . 0089 . 0096 . 0126 . 0162

.0214 . 0591 . 0843 . 1628

. 3495

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE V

12.00

-2

· · · ...

TABLE VIII

Lift coefficient *CL*

-0.166 .056 .171 .283 .505 .729 .949 1.138 1.183 1.170

TABLE IX

Section No. M5. Span 30 in. (76.2 cm). Area 0.0968 m¹. Average temperature 41.5° C. Average Reynolds No. 3,600,000.

Model No. 25. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.1 atmos.

Section No. M8. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 44.0° C. Average Reynolds No. 3,450,000.

Angle of attack degrees

-3.0 0.0 1.5 3.0 6.0 9.0 12.0 15.0 18.0 21.0

Dynamic pressure

kg/m³

20

n.25

Model No. 28. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.0 atmos.

Moment coefficient

 C_M

 $\begin{array}{c} 0.016\\.017\\.016\\.017\\.017\\.029\\.026\\.015\\-.037\end{array}$

-. 085

Drag coefficient C_D

0.0100 .0088 .0101 .0133 .0229 .0393 .0620 .0921 .1589 .2275

Angle of attack degrees	Dynamic pressure q kg/m³	Lift coefficient CL	Drag coefficient CD	Moment coefficient CM
$ \begin{array}{c} -1.5\\0.0\\1.5\\3.0\\4.5\\6.0\\9.0\\12.0\\15.0\\18.0\\21.0\end{array} $	655 655 655 662 662 663 663 663 663 663 652 653	-0. 108 . 004 . 117 . 231 . 338 . 452 . 681 . 888 1. 076 1. 132 1. 077	$\begin{array}{c} 0.\ 0076\\ .\ 0073\\ .\ 0062\\ .\ 0108\\ .\ 0145\\ .\ 0190\\ .\ 0356\\ .\ 0581\\ .\ 0884\\ .\ 1625\\ .\ 2528 \end{array}$	0. 018 . 021 . 020 . 021 . 015 . 025 . 025 . 021 . 016 . 020 020 046

TABLE VI -

Section No. M6. Span 30 in. (76.2 cm). Area 0.0968 m². Average temperature 35.0° C. Average Reynolds No. 3,660,000.

Section No. M9. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 37.5° C. Average Reynolds No. 3,620,000.

Model No. 29. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.1 atmos.

Angle of attack degrees	Dynamic pressure q kg/m ¹	Lift coefficient CL	Drag coefficient C _D	Moment coefficient CM	-
$ \begin{array}{r} -3.0 \\ -1.5 \\ 0.0 \\ 1.5 \\ 3.0 \\ 4.5 \\ 9.0 \\ 12.0 \\ 15.0 \\ 18.0 \\ 21.0 \\ \end{array} $	662 663 663 663 665 665 664 661 663 663 662 661	0. 202 007 . 016 . 126 . 237 . 340 . 456 . 665 . 875 1. 073 1. 222 1. 169	0. 0108 . 0093 . 0080 . 0097 . 0111 . 0147 . 0212 . 0356 . 0565 . 0565 . 0616 . 1188 . 1891	0.009 011 012 014 015 026 018 021 025 033 014 022	

TABLE VII

Lift coefficient C_L

-0.155 -.051 .054 .167 .279 .387 .505 .738 .973 1.139 1.123 1.011

Drag coefficient Cp

0.0372 .0246 .0088 .0101 .0129 .0161 .0227 .0407 .0407 .0454 .0983 .1983 .2708

Angle of attack degrees	Dynamic pressure g kg/m³	Lift coefficient C_L	Drag coefficient Cp	Moment coefficient C _M
-3.0	650	-0.148	0.0113	0.009
0.0	656	.077	.0101	.014
8.0	655	.294	.0148	.018
4.5	655	.604	.0183	.025
6.0	654	.514	.0249	.028
9.0	654	.739	.0428	.025
12.0	654	.947	.0648	.021
15.0	653	1.096	.0920	.015
18.0	651	1.137	.1450	004
21.0	645	1.112	.2015	022

TABLE X

Section No. M7. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 36.0° C. Average Reynolds No. 3,640,000.

Angle of attack degrees

 $\begin{array}{r} -3.0 \\ -1.5 \\ 0.0 \\ 1.5 \\ 3.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \\ 18.0 \\ 21.0 \end{array}$

Dynamic

pressure kg/m³

Model No. 27. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.0 atmos.

Moment coefficient *C*_M

0.008 .007 .018 .021 .019 .019 .024 .022 .018 .022 -.014 -.086

Section No. M10. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 41.0° C. Average Reynolds No. 3,630,000. Model No. 30. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.4 atmos.

Angle of attack degrees	Dynamic pressure q kg/m²	Lift coefficient CL	Drag coefficient Cp	Moment coefficient CM
6.0 3.0 1.5 0.0 1.5 3.0 4.5 6.0 9.0 12.0 15.0 18.0 21.0	654 664 617 665 665 611 662 661 660 650 656 650	-0.345 132 020 .089 .203 .313 .451 .545 .771 .965 1.004 .962 .907	0.0179 .0080 .0068 .0071 .0094 .0130 .0194 .0241 .0437 .0728 .1472 .2425 .3053	-0.007 044 034 006 002 002 002 002 002 001 008 .000 012 029

- 2-

TABLE XI

Section No. M11. Span 30 in. (76.2 cm). Area 0.0968 m¹. Average temperature 36.0° C. Average Reynolds No. 3,860,000.

Angle of attack degrees	Dynamic pressure g kg/m ¹	Lift coefficient C_L	Drag coefficient Co	Moment coefficient C _M
-3.0 -1.5 0.0 1.5 3.0 4.5 6.0 9.0 12.0 15.0 18.0 21.0	717 724 717 715 720 719 719 721 721 728 710 708	-0.120 -018 .094 .206 .313 .428 .544 .762 .969 1.060 1.028 .998	0.0091 .0078 .0089 .0110 .0137 .0186 .0236 .0435 .0682 .1135 .2159 .3095	-0.018 019 018 017 006 014 012 014 020 082 146

Model No. 31. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.3 atmos.

TABLE XIV

Section No. M14. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 41° C. Average Reynolds No. 3,600,000.

Model No. 34. Chord 5 in. (12.7 cm). Aspect ratio 6. Average temperature 20.3 atmos.

1

Angle of attack degrees	Dynamic pressure g kg/m ¹	Lift coefficient CL	Drag coefficient C _D	Moment coefficient CM
$-4.5 \\ -3.0 \\ -3.0 \\ -1.5 \\ -0.0 \\ 1.5 \\ -0.0 \\ 1.5 \\ -0.0 \\ 1.5 \\ -0.0 \\ 1.5 \\ -0.0 \\ 12.0$	660 661 660 662 661 656 656 656 656 654 654 654 651	-0.118 004 .101 .217 .332 .444 .560 .671 .560 .671 .100 1.224 1.244 1.150	0.0106 .0097 .0096 .0119 .0149 .0200 .0263 .0263 .0347 .0675 .0856 .1241 .1962 .2850	-0.040 002 045 048 035 048 030 027 030 027 031 051 034 121

TABLE XV

Section No. M15. Span 30 in. (76.2 cm). Area 0.0965 m². Average temperature 38° C. Average Reynolds No. 3,580,000.

Model No. 35. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 19.95 atmos.

Angle of attack degrees	Dynamic pressure q kg/m ²	$\begin{array}{c} \text{Lift}\\ \text{coefficient}\\ C_L \end{array}$	Drag coefficient CD	Moment coefficient CM
-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 9.0 12.0 15.0 15.0 15.0 21.0	640 635 635 641 646 645 644 648 648 648 645 645 651 639	-0.108 .002 .112 .227 .339 .456 .566 .671 .895 1.097 1.243 1.250 1.170	0.0101 .0091 .0103 .0129 .0166 .0213 .0283 .0283 .0283 .0845 .1147 .1097 .2457	-0.032 032 029 026 035 035 030 030 032 034 081 141

TABLE XVI

Model No. 38. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.05 atmos.

Angle of	Dynamic	Lift	$\begin{array}{c} \text{Drag}\\ \text{coefficient}\\ C_D \end{array}$	Moment
attack	pressure	coefficient		coefficient
degrees	kg/m [‡]	CL		CM
-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 9.0 12.0 15.0 18.0 21.0	648 651 650 652 653 653 655 655 655 655 655 654 652 648 641	-0.197 -0.699 .018 .135 .347 .367 .478 .597 .830 1.040 1.119 1.065 1.040	0.0332 .0145 .0090 .0094 .0119 .0159 .0217 .0295 .0610 .0767 .1310 .2172 .3116	$\begin{array}{r} -0.011 \\015 \\000 \\003 \\003 \\010 \\002 \\ +.002 \\ +.002 \\004 \\017 \\045 \\088 \end{array}$

TABLE XII

Section No. M12. Span 30 in. (76.2 cm). Area 0.0968 m². Average temperature 34.0° C. Average Reynolds No. 3,500,000.

Model Nó. 32. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 19.86 atmos.

Angle of attack degrees	Dynamic pressure g kg/m ¹	Lift coefficient CL	Drag coefficient Co	Moment coefficient CM
3.0 1.5 0.0 1.5 3.0 4.5 6.0 9.0 12.0 15.0 15.0 15.0 21.0	706 706 706 705 713 710 - 706 707 706 707 706 706	0. 118 017 . 096 . 207 . 318 . 417 . 537 . 760 . 971 1. 155 1. 293 1. 165	0.0097 .0089 .0091 .0120 .0156 .0191 .0261 .0261 .0441 .0662 .0034 .1277 .2203	-0.049 005 005 008 008 008 008 008 008 008 008 008 008 002 008 002 007

TABLE XIII

 $\begin{array}{c} \text{Lift}\\ \text{coefficient}\\ C_L \end{array}$

-0. 127 -. 000 . 091 . 209 . 324 . 437 . 549 . 670 . 897 1. 104 1. 229 1. 063 1. 044

Drag coefficient

CD

0. 0408 . 0236 . 0116 . 0127 . 0167 . 0214 . 0290 . 0378 . 0602 . 0903 . 1324 . 2500 . 3210

Section No. M13. Span 30 in. (76.2 cm). Area 0.0966 m³. Average temperature 40.0° C. Average Reynolds No. 3,630,000.

Angle of attack degrees

 $\begin{array}{r} -4.5 \\ -3.0 \\ -1.5 \\ 0.0 \\ 1.5 \\ 3.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \\ 18.0 \\ 21.0 \end{array}$

Dynamic

pressure kg/m³

Model No. 33. Chord 5 in (12.7 cm). Aspect ratio 6. Average pressure 20.2 atmos.

'Moment coefficient

CM

-0.043 -.011 -.038 -.029 -.014 -.019 +.023 -.021 -.021 -.023 -.033 -.112 -.128

Section No. M16. Span 30 in. (76.2 cm). Area 0.0968 m¹. Average temperature 38° C. Average Reynolds No. 3,640,000.

TABLE XVII

Model No. 37. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 19.93 atmos.

Section No. M17. Span 30 in. (76.2 cm). Area 0.0908 m¹. Average temperature 37° C. Average Reynolds No. 3,600,000.

te realio	us 140. 5,000	,000.		
Angle of attack degrees	Dynamic pressure g kg/m ¹	Lift coefficient CL	Drag coefficient Co	Moment coefficient <i>C</i> _M
-4.5 -3.0 -1.5 3.0 4.5 9.0 12.0 15.0 12.0 18.0	640 641 639 648 648 645 644 644 644 644 644 643 641 640 640	-0. 191 092 .017 .133 .244 .360 .476 .588 .823 1. 029 1. 221 1. 233	0.0307 .0095 .0092 .0103 .0126 .0163 .0236 .0300 .0495 .0745 .1064 .1783	$\begin{array}{r} -0.010 \\014 \\011 \\008 \\006 \\001 \\ +.003 \\ +.010 \\ +.003 \\019 \\001 \\048 \end{array}$
21.0	638	1.230	. 2513	040

TABLE XX

Section No. M20. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 51° C. Average Reynolds No. 3,350,000.

Model No. 40. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.0 atmos.

 $\begin{array}{c} \text{Moment} \\ \text{coefficient} \\ C_{M} \end{array}$

 $\begin{array}{c} -0.037\\ -.038\\ -.038\\ -.035\\ -.002\\ -.034\\ -.023\\ -.036\\ -.036\\ -.068\\ -.068\\ -.133\end{array}$

				The second se	and the second sec
nent cient N	-	Angle of attack degrees	Dynamic pressure g kg/m²	Lift coefficient CL	Drag coefficient <i>CD</i>
010 014 011 008 006 001 003 010 003 019 001 045 040		-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 9.0 12.0 15.0 18.0 21.0	$\begin{array}{c} 613\\ 614\\ 622\\ 616\\ 622\\ 624\\ 624\\ 624\\ 616\\ 617\\ 626\\ 625\\ 620\\ \end{array}$	$\begin{array}{r} -0.078 \\ +.029 \\ .136 \\ .252 \\ .369 \\ .487 \\ .592 \\ .713 \\ .946 \\ 1.156 \\ 1.311 \\ 1.300 \\ 1.256 \end{array}$	0.0531 .0404 .0287 .0173 .0233 .0310 .0408 .0652 .0405 .1310 .1884 .2488

TABLE XVIII

Section No. M21. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 40° C. Average Reynolds No. 3,530,000.

Model No. 41. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.09 atmos.

Drag coefficient CD

0.0132 .0115 .0119

.0147 .0180 .0233 .0305 .0393 .0609 .0882 .1365 .1927 .2376

Angle of	Dynamic	Lift	Drag	Moment
attack	pressure	coefficient	coefficient	coefficient
degrees	kg/m ³	CL	Cp 1	CM
$ \begin{array}{r} -4.5 \\ -3.0 \\ -1.5 \\ 0.0 \\ 1.5 \\ 4.5 \\ 6.0 \\ 9.0 \\ 12.0 \\ 18.0 \\ 21.0 \end{array} $	630 633 633 639 636 635 645 645 645 645 645 639 638 635 635	$\begin{array}{r} -0.175 \\ -0.055 \\ .052 \\ .164 \\ .282 \\ .393 \\ .630 \\ .614 \\ .823 \\ 1.018 \\ 1.123 \\ 1.188 \\ 1.188 \\ 1.194 \end{array}$	0.0111 .0093 .0096 .0117 .0149 .0188 .0250 .0322 .0342 .0342 .0342 .0769 .1220 .1717 .2315	$\begin{array}{c} -0.002 \\015 \\012 \\009 \\007 \\064 \\ +.003 \\ .000 \\005 \\005 \\005 \\051 \end{array}$

ITTUTE ALL

 $\begin{array}{c} \text{Lift}\\ \text{coefficient}\\ C_L \end{array}$

-0.115 .030 .123 .249 .384 .496 .598 .719 .946 1.153 1.258 1.171 1.137

Section No. M19. Span 30 in. (76.2 cm). Azea 0.0968 ml. Average temperature 43° C. Average Reynolds No. 3,500,000.

Angle of attack degrees

-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 0.0 12.0 15.0 18.0 21.0

Dynamic pressure

kg/m³

639

Model No. 39. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.2 atmos.

Moment coefficient

См

 $\begin{array}{r} -0.031 \\ +.015 \\ -.032 \\ -.031 \\ -.023 \\ -.015 \\ -.021 \\ -.023 \\ -.011 \\ -.031 \\ -.052 \\ -.079 \\ -.168 \end{array}$

Drag coefficient Cp

0.0570 .0441 .0341 .0257 .0189 .0240 .0297 .0389 .0633 .0940 .1392 .1994 .2999

Section M22. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 38° C. Average Reynolds No. 3,510,000.

 $\begin{array}{r} -4.5 \\ -3.0 \\ -1.5 \\ 0.0 \\ 1.5 \\ 3.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \\ 18.0 \\ 21.0 \end{array}$

Model No. 42. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 19.6 atmos.

Angle o attack degrees	d Dynamic pressure g kg/m ¹	Lift coefficient <i>C</i> L	Drag coefficient Co	Moment coefficient <i>C</i> _M
-4.5 -3.0 -1.5 3.0 4.5 6.0 9.0 12.0 15.0 18.0 21.0	633 637 633 637 630 635 634 633 634 633 632 631 631 630 625	-0. 184 	0.0616 0.483 0370 0273 0165 0187 0250 0340 0582 0008 1388 1901 2751	$\begin{array}{c} +0.006\\013\\013\\013\\006\\001\\005\\003\\002\\028\\031\\065\\103\end{array}$

Section No. M18. Span 30 in. (76.2 cm). Area 0.0968 m¹. Average temperature 45° C. Average Reynolds No. 3,530,000.

Model No. 38. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.08 atmos. Angle of attack degrees

TABLE XXI

-0.088 .019 .131 .250 .365 .472 .589 .697 .913 1.097 1.176 1.212 1.217

TABLE XXII

Dynamic

pressure

kg/m¹

Moment

coefficient

CM

 $\begin{array}{c} -0.029 \\ -.030 \\ -.029 \\ -.029 \\ -.021 \\ -.020 \\ -.019 \\ -.021 \\ -.024 \\ -.025 \\ -.049 \\ -.072 \\ -.073 \end{array}$

`

TABLE XXIII

Section No. M23. Span 30 in. (76.2 cm). Area 0.0968 m¹. Average temperature 48° C. Average Reynolds No. 3,370,000.

Model No. 43. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 19.94 atmos.

Section No. M25. Span 30 in. (76.2 cm). Area 0.0968 m³. Average temperature 35° C. Average Reynolds No. 3,640,000.

Model No. 45. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.0 atmos.

Angle of attack degrees	Dynamic pressure g kg/m ¹	Lift coefficient C _L	Drag coefficient Co	Moment coefficient CM
$ \begin{array}{r} -4.5 \\ -3.0 \\ -1.5 \\ 0.0 \\ 1.5 \\ 3.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \\ 18.0 \\ 21.0 \\ \end{array} $	611 613 617 620 620 611 612 607 610 606 606	-0. 148 033 . 073 . 192 . 306 . 425 . 531 . 665 . 880 1. 100 1. 232 1. 236 1. 234	0. 0614 0. 0614 0. 0617 0. 0361 0. 0208 0. 0201 0. 0205 0. 0255 0.	-0.001 -007 -009 +004 +004 +014 +017 +004 +014 -008 -004 -018 -008

TABLE XXIV

Section No. M24. Span 30 in. (76.2 cm). Area 0.0968 m². Average temperature 40° C. Average Reynolds No. 3,500,000.

Model No. 44. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.0 atmos.

Angle of attack degrees	Dynamic pressure g kg/m ¹	Lift coefficient CL	Drag coefficient CD	Moment coefficient C _M
-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 9.0 12.0 15.0 18.0 21.0	641 640 635 635 638 638 637 637 636 640 632 631	-0.133 019 .087 .204 .320 .431 .533 .653 .875 1.055 1.126 1.133 1.155	0. 0150 0128 0123 0143 0281 0282 0367 0683 0686 1294 1868 2293	$\begin{array}{r} -0.027\\021\\014\\013\\ +.002\\ +.035\\ +.025\\014\\013\\ +.025\\014\\086\\087\\064\\ \end{array}$

TABLE XXVII

•••

Section No. M27. Span 30 in. (76.2 cm). Area 0.0968 m¹. Average temperature 35° C. Average Reynolds No. 3,630,000.

Model No. 47. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.2 atmos.

Angle of attack degrees	Dynamic pressure g kg/m ³	$\begin{array}{c} \mathbf{Lift}\\ \mathbf{coefficient}\\ C_{L} \end{array}$	Drag coefficient C _D	Moment coefficient C _M
-4.5	640	-0.011	0.0497	0.030
-3.0	640	.081	.0300	036
-1.5	641	.182	.0203	034
0.0	640	.295	.0189	029
1.5	645	.411	.0232	023
3.0	644	.519	.0285	026
4.5	843	.624	.0358	020
6.0	642	.737	.0457	019
9.0	642	.929	.0707	027
12.0	641	1.007	.100	042
15.0	640	1.048	.1508	044
18.0	637	1.061	.1913	079
21.0	631	1.086	.2380	072

49247-25†---2

ion No. M25	
n 30 in. (76.2 cm).	
0.0069 ml	
10.0800 m	

Angle of attack degrees	Dynamic pressure q kg/m ³	Lift coefficient CL	Drag coefficient Gp	Moment coefficient C _M
$\begin{array}{r} -4.5 \\ -3.0 \\ -1.5 \\ 0.0 \\ 1.8 \\ 3.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \\ 18.0 \\ 21.0 \end{array}$	657 653 652 653 653 653 653 653 653 653 650 645 645 645 645 645	$\begin{array}{c} -0.114\\ -0.008\\ .111\\ .251\\ .381\\ .592\\ .630\\ .745\\ .920\\ 1.111\\ 1.224\\ 1.232\\ 1.220\end{array}$	0.0662 .0543 .0470 .0424 .0381 .0364 .0388 .0460 .0790 .1114 .1496 .2029 .2455	+0.005 014 025 030 028 028 023 017 032 045 045 045 064 078 080

TABLE XXV

TABLE XXVI

Section No. M26. Span 30 in. (76.2 cm). Area 0.0968 m¹. Average temperature 41° C. Average Reynolds No. 3,510,000.

Model No. 46. Chord 5 in. (12.7 cm). Aspect ratio 6. Average pressure 20.0 atmos.

Angle of attack degrees	Dynamic pressure g kg/m ;	$\begin{array}{c} \text{Lift} \\ \text{coefficient} \\ C_L \end{array}$	Drag coefficient CD	Moment coefficient CH
-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 9.0 12.0 15.0 18.0	636 633 632 632 632 632 632 630 630 630 630 626 628	-0.082 .039 .159 .283 .402 .532 .634 .753 .976 1.133 1.186 1.197	0.0684 .0671 .0484 .0410 .0293 .0294 .0359 .0459 .0702 .1114 .1654 .2012	$\begin{array}{c} -0.011 \\023 \\032 \\032 \\023 \\023 \\026 \\026 \\026 \\026 \\061 \\066 \\114 \end{array}$

TABLE XXVIII

CLASSIFICATION OF THE SECTIONS

Section	Camber line	Thickness	Section	Camber line	Thickness	Section	Camber line	Thickness
M1 M2 M3 M4 M5 M6 M7 M8 M9	Straight Straight Straight a a 2a 2a 2a 2a 2a		M10 M11 M12 M13 M14 M15 M16 M17 M18	b b a+b a+b (2a+b) (2a+b) (2a+b)	I II II II II II II II III	M 19 M 20 M 21 M 22 M 23 M 24 M 25 M 26 M 27	(2b) (2b) (2b) (a+2b) (a+2b) (a+2b) (a+2b) 2(a+b) 2(a+b) 2(a+b)	

TABLE XXIX

ORDINATES FOR N. A. C. A. AIRFOILS MI TO M27

[U-Upper camber. L-Lower camber]

<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	-							Per cen	t of ch	ord							
No.	0	1. 25	2. 50	5. 0	7.5	10	.15	20	25	30	40	50	60	70	80	90	95	100
M1 U	0.00	1.03 -1.03	1. 36 -1. 36	1. 80 -1. 80	2.10 -2.10	2.34 -2.34	2.67 -2.67	2. 88 -2. 88	3. Q1 - 3. 01	3. 08 -3. 08	3. 05 3. 05	2.85 -2.85	2.53 -2.53	2.08 -2.08	1.54 -1.54	0. 91 , 91	0. 57 57	0. 20 20
M2 UL	. 00	1. 30 -1. 30	1, 74 1, 74	2.33 -2.33	2.74 -2.74	3. 05 3. 05	3. 49 3. 49	3. 78 3. 78	3. 95 3. 95	4. 03 -4. 03	4.00 4.00	3. 74 3. 74	3. 30 3. 30	2.71 -2.71	1. 99 1. 99	1. 15 -1. 15	. 69 69	- 20
M3 U L	. 00	1. 86 -1. 86	2.51 -2.51	3,39 -3,39	4.00 -4.00	4. 47 - 4. 47	5, 14 5, 14	5. 57 	5. 83 5. 83	5, 95 5, 95	5. 89 5. 89	5. 50, 5. 50	4. 85 4. 85	3. 96 3. 96	2. 88 2. 88	1. 62 -1. 62	93 93	. 20 20
M4 UL	1. 10 1. 10	2.32 .19	. 2. 86 . 07	3.67 .01	4.31 .02	4.83 .07	5. 61 . 20	6. 16 . 33	6. 51 . 38	6. 67 . 39	6.56 .33	6. 08 , 18	5. 24 . 05	4.30 .01	3.39 .21	2.59 .71	2.29 1.09	2.09 1.60
M5 U L	1.89 1.89	3. 28 . 59	3.93 .34	4.87 .09	5.63 .02	6. 23 . 00	7.14 .04	7.77 .07	8. 15 . 11	8.34 .13	8.26 .07	7.699 .02	6.80 .02	5. 77 . 17	4.73 .59	3. 78 1. 33	3. 38 1. 89	3. 13 2. 50
M6 UL	.00	1.97 -1.76	2 81 2 20	4.03 -2.73	4, 94 3, 03	5. 71 -3. 24	6. 82 3. 47	7.55 -3.62	8. 01 3. 71	8. 22 3. 79	8. 05 -3. 90	7. 26 3. 94	6. 03 3. 82	4, 58 3, 48	3.06 2.83	1.55 -1.77	. 88 1. 08	. 26 26
M7 U	. 76 . 76	2.05 .00	2.77	3. 92 . 32	4.87 .65	5.68 .99	6. 89 1. 58	7. 74 1. 98	8. 26 2. 23	8. 49 2. 31	8. 25 2. 06	7.32 1.53	5.99 .85	4.51 .27	3.13 .00	2. 13 . 30	1.87 .71	1. 79 1. 32
M8 UL	. 95 . 95	2.56 .06	3.52 .01	4.82	5.86 .37	6.73 .64	8.08 1.09	9.00 1.43	9.57 1.63	9.82 1.72	9.60 1.55	8. 80 1. 05	7, 22 , 51	5. 63 . 10	4.12 .04	2, 94 . 59	2, 56 1, 12	2.31 1.91
M9 UL	1.81 1.81	4.06	5.14 .15	6.76 .00	8.03 .05	9.08 ,16	10. 69 . 42	11. 74 . 63	12.38 .75	12.73 .80	12.51 .66	11. 43 . 40	9.83 .09	7.98 .01	6. 11 . 32	4. 52 1. 25	3.94 2.03	3. 53 3. 06
MIO UL	1.34 1.34	2.49 .41	2.97 .19	3.68 .04	4. 24 . 01	4.71 .01	5.40 .04	5. 87 . 08	6.16 .11	6.31 .12	6.25 .09	5.82 .03	5. 13 . 01	4.28 .09	3.35 .27	2.40 .58	1.92 .79	1. 42 1. 03
MII U L	2 13 2 13	3. 59 . 93	4. 24 . 67	5.12 .39	5. 78 . 23	6.31 .15	7.11	7.66 .04	7.99 .02	8. 16 . 01	8.10 .02	7.61 .07	6. 83 . 21	5.83 •46	4. 73 . 87	3. 57 1. 43	2, 97 1, 76	2.39 2.15
M12 U L	. 00 . 00	2.03 -1.65	2.86 -2.14	4.01 -2.72	4. 89 -3. 07	5. 59 3. 31	6. 61 3. 60	7.30 3.80	7. 74 3. 92	7.95 -3.98	7.86 -3.96	7. 25 -3. 82	6. 27 -3. 50	4. 98 -3. 00	3. 50 -3. 31	1. 89 -1. 37	1.07 81	20 20
MI3 U L	. 84 . 84	2.11 .02	2.76 .01	3.77 .15	4, 58 . 35	5. 24 . 55	6.28 .93	6.98 1.21	7. 43 1. 38	7.65 1.44	7. 51 1. 34	6. 86 1. 05	5.81 .66	4.55 .30	3.22 .07	1. 87 . 00	1. 23 . 05	. 60 . 16
MI4 U	1.28 1.28	2.80 .16	3.56 .05	4.70 .04	5. 63 . 13	6. 37 . 25	7.51 .51	8.31 .74	8.78 .87	9.01 .93	8.89 .83	8.15 .58	6.99 .30	5.56 .06	4.02 .01	2.42 .05	1.62 .18	. 80 . 38
M15 U L	2.41 2.41	4.47	5. 44 . 42	6. 89 . 13	8.04 · .02	8.97 .00	10. 33 . 03	11, 28 . 09	11.87 .14	12. 17 . 17	12.03 .11	11. 20 . 03	9.86 .00	8.16 .14	6. 29 . 41	4.33 1.02	3, 35 1, 44	2, 39 1, 94
N16 U L	. 83 . 83	2.04	2.71 .04	3. 81 . 25	4. 69 51	5, 42 . 78	6.56 1,24	7.34 1.59	7.82 1.80	8.03 1.88	7.85 1.71	7.06 1.30	5.83 .72	4.48 .26	3, 14 . 01	1.96 .13	1.49 .35	1.16 .68
M17 U L	1. 16	2.72 .08	3. 51 . 01	4.75 .07	5. 74 . 23	6.54 .43	7.70 .78	8.52 1.06	9.14 1.26	9.37 1.30	9.23 1.15	8.37 .80	7.05 .38	5.55 .07	4.01 .02	2.64 .33	2.06 .68	1.57 1.16
M18 U L	2. 20 2. 20	4. 25 . 56	5. 25 . 25	6.78 ,03	7.99 .00	8.94 .03	10.47	11. 48 . 31	12. 12 . 41	12, 42 , 46	12.26 .41	11. 33 . 19	9.82 .03	8.09 .05	6. 23 , 40	4. 45 1. 17	3.66 1.75	2.95 2.51
M19 U L	. 75 . 75	2.04	2.88 .20	4.30 .68	5. 39 1. 21	6. 39 1. 71	7.81 2.54	8.88 3.12	9.50 3.48	9.80 3.63	9. 54 3. 43	8.50 2.74	6. 94 1. 84	5.16 .96	3.37	1.87 .02	1, 24	. 71 . 33
M20 U L	. 98 . 98	2. 64 . 00	3. 57 . 03	5. 13 . 39	6.32 .82	7. 41 1. 25	8, 95 1, 95	1004 2.46	10.77 2.78	11. 07 2. 92	10. 81 2. 72	9.70 2.11	8.04 1.32	6.10 .58	4.16	2.40	1.66 .24	1.05 .58
M21 U	1, 68 1, 68	3.89 .17	5.04 .02	6. 86 . 83	8. 30 . 30	9.50 .55	11. 33 1. 03	12.58 1.42	13.34 1.66	13.70 1.75	13. 46 1. 57	12.23 1.11	10. 36 . 54	8.17 .12	5.89 .03	3, 70	2.73	1.92
M22 U L	. 72	2.11	2.98 .22	4. 45 . 79	5. 60 1. 38	6.66 1.92	8. 22 2. 84	9.31 3.48	9, 96 3, 87	10. 25 4. 00	9.94 3.73	8.75 2.88	7.06	5. 14 . 84	3.36	1.97	1, 53 . 33	1.32
M23 U	. 87	2.60 .01	3.63 .12	5.23 .54	6, 51 1, 01	7.60 1.49	9. 28 2. 30	10. 44 2, 86	11. 15 3. 21	11. 48 3. 34	11. 19 3. 06	9. 95 2. 30	8, 14 1, 40	6.08 .53	4.09	2.53	1.98 .54	1.66 1.12

TABLE XXIX-Continued

			Per cent of chord																
No.	ō	1. 25	2, 50	5.0	7.5	10	15	20	25	30	40	50	60	70	80	90	95	100	
	M24 U	1. 50	3. 80	5. 00	6. 92	8.38	9.66	11. 59	12. 93	13. 72	14. 08	13. 76	12.40	10. 39	8. 11	5. 82	3. 85	3. 09	2. 48
	L	1. 50	. 12	. 01	. 13	.40	.72	1. 31	1. 77	2. 04	2. 13	1. 92	1.33	. 64	. 13	. 04	. 63	1. 26	2. 13
	M25 U	. 67	2.28	3. 24	5. 04	6. 39	7. 60	9. 52	10. 89	11. 69	12.05	11. 68	10. 22	8. 16	5. 86	3.66	1.90	1.31	. 93
	L	. 67	.09	. 45	1. 28	2. 15	2. 91	4. 14	5. 04	5. 54	5.78	5, 44	4. 36	2. 96	1. 54	.47	.00	.11	. 48
	M26 U	. 82	2.60	3. 71	5. 66	7. 11	8. 41	10. 47	11.96	12. 80	13, 19	12.82	11.32	9. 11	6. 68	4.32	2.35	1.65	1. 20
	L	. 82	.02	. 25	. 94	1. 68	2. 39	3. 54	4.35	4. 84	5, 04	4.72	3.73	2. 44	1. 19	.29	.02	.26	. 72
	M27 U	1. 22	3.67	5.06	7. 23	9.00	10, 47	12.72	14. 28	15. 24	15, 69	15, 33	13. 72	11. 36	8.65	5. 93	3. 56	2.64	1. 91
	L	1. 22	.04	.05	. 44	1.00	1, 55	2.47	3. 17	3. 57	3, 74	3, 45	2. 59	1. 53	.59	. 04	. 23	.68	1. 39

TABLE XXX

AERODYNAMIC PROPERTIES OF THE SECTIONS:

Sec- tion No.	Minimum drag coefficient	Maximum lift coefficient	Burble lift coefficient	Average moment ¹ coefficient	
1 2 3 4 5 6 7 8 9 9 10 11 11 12 13 14 15 6 17 18 19 20 20 21 22 22 22 22 23	0.0072 0073 0062 0067 0069 0068 0069 0101 0068 0078 0078 0078 0078 0078 0078 0078	0.805 903 1.069 1.132 1.222 1.339 1.183 1.137 1.004 1.989 1.244 1.250 1.249 1.244 1.250 1.119 1.245 1.131 1.221 1.226	0.75 .85 .05 .95 .15 .20 .15 .20 .10 .05 .30 .20 .20 .20 .20 .30 .20 .30 .20 .20 .20 .20 .20 .20 .20 .20 .20 .2	0.008 .010 .018 .020 .022 .020 .000	
25 26 27	. 0364 . 0293 . 0189	1. 234 1, 197	. 90	030 030 030	

¹ Moments taken about a point at 25 per cent of the chord. ¹ The last column gives the average moment coefficient, which is always small for the wing sections considered in this investigation.

13

210

.2

-.5

210

.2

-.5

-.4

C,

-4

na series de la companya de la comp A series de la companya de la company Manganga (manganga de la companya de

合约数分 经运行

1.200 5.20

15

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT NATIONAL ADVISORY COMMITTEE FOR AEBONAUTICS

ions of szes and angles (forces and moments) are

199

Axis			Mome	nt abou	t azis	Angle		Veloci	ties
Designation	Sym- bol	Force sarallel o axis) ymbol	Designa- tion	Sym- bol	Positive direction	Designation	Sym- bol	Linear (compo- nent along axis)	Angular
Longitudinal. Lateral Normal		X Y Z	olling oitching awing	L N N	X	roll pitch yaw		9 9 9	200

Absolute coefficients of moment $C_{*} = \frac{L}{q\delta S} C_{*} = \frac{M}{q\delta S} C_{*} = \frac{N}{qfS}$ ingle of set of control surface (relative to neutral position), & (Indicate surface by

proper subscript.)

PROPELLER SYMBOLS

Thrust, T

Diameter, D

- Pitch (a) Aerodynamic pitch, p_a (b) Effective pitch, p_a
 - (c) Mean geometric pitch, p_{σ} (d) Virtual pitch, p_{τ}
- (e) Standard pitch, p. Pitca ratio, p/DInflow velocity, V^2
- Slipstream velocity, V.
- 1 HP. 76.04 kg/m/sec = 550 lb./ft./sec. 1 kg/m/sec=0.01315 HP. 1 mi./hr. = 0.44704 m/sec
- I m/sec = 2,23693 mi./hr.

- Torque, Q Power, P. (If "coefficients" are introduced all units would must be consistent.) Efficiency $\eta = T V/P$. Revolutions per sec., n; per min., N.
- Effective helix angle $\Phi = \tan^{-1} \left(\frac{V}{g_{\pi T T}} \right)$

5. NUMERICAL RELATIONS

1 lb. - 0.4535924277 kg 1 kg = 2.2046224 lb. 1 mi. = 1609.35 m = 5280 ft. I m = 3.2808333 ft.