https://ntrs.nasa.gov/search.jsp?R=19930091367 2020-06-17T04:39:25+00:00Z

CASE FILE COPY

FILE COPY NO. I-W

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 298

EFFECT OF VARIATION OF CHORD AND SPAN OF AILERONS ON ROLLING AND YAWING MOMENTS IN LEVEL FLIGHT

By R. H. HEALD and D. H. STROTHER

UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON 1929 To be returned to the files of the National

Advisory Committee for Aeronautics Washington, D. C.

AERONAUTICAL SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

	Symbol	Metric		English			
	100 100 100 100 100 100 100 100 100 100	Unit	Symbol	Unit	Symbol		
Length Time Force	l t F	meter second weight of one kilogram	m sec kg	foot (or mile) second (or hour) weight of one pound	ft. (or mi.) sec. (or hr.) lb.		
Power Speed	P	kg/m/sec {km/hr m/sec		horsepower mi./hr ft./sec	HP. M. P. H. f. p. s.		

2. GENERAL SYMBOLS, ETC.

- W, Weight, = mg
- g, Standard acceleration of gravity = 9.80665m/sec.² = 32.1740 ft./sec.²

$$m, Mass, = -W$$

- g g
- ρ , Density (mass per unit volume).
- Standard density of dry air, 0.12497 (kg-m⁻⁴ sec.²) at 15° C and 760 mm = 0.002378 (lb.-ft.⁻⁴ sec.²).
- Specific weight of "standard" air, 1.2255 kg/m³=0.07651 lb./ft.³
- V, True air speed.
- q, Dynamic (or impact) pressure = $\frac{1}{2} \rho V^3$
- L, Lift, absolute coefficient $C_L = \frac{L}{qS}$
- D, Drag, absolute coefficient $C_{D} = \frac{D}{aS}$
- C, Cross-wind force, absolute coefficient $C_{\sigma} = \frac{C}{qS}$
- R, Resultant force. (Note that these coefficients are twice as large as the old coefficients L_c , D_c .)
- i_w Angle of setting of wings (relative to thrust line).
- i_t , Angle of stabilizer setting with reference to thrust line.

- mk^3 , Moment of inertia (indicate axis of the radius of gyration, k, by proper subscript).
- S, Area.
- Sw, Wing area, etc.
- G, Gap.
- b, Span.
- c, Chord length.
- b/c, Aspect ratio.
- f, Distance from c. g. to elevator hinge.
- μ , Coefficient of viscosity.

3. AERODYNAMICAL SYMBOLS

 γ , Dihedral angle.

 $\frac{Vl}{\mu}$, Reynolds Number, where l is a linear dimension.

- e. g., for a model airfoil 3 in. chord, 100 mi./hr. normal pressure, 0° C: 255,000 and at 15° C., 230,000;
- or for a model of 10 cm chord 40 m/sec, corresponding numbers are 299,000 and 270,000.
- C_p , Center of pressure coefficient (ratio of distance of C. P. from leading edge to chord length).
- β , Angle of stabilizer setting with reference to lower wing, = $(i_t - i_w)$.
- α , Angle of attack.
- e, Angle of downwash.

REPORT No. 298

EFFECT OF VARIATION OF CHORD AND SPAN OF AILERONS ON ROLLING AND YAWING MOMENTS IN LEVEL FLIGHT

By R. H. HEALD and D. H. STROTHER Bureau of Standards

1

5622-29-1

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

NAVY BUILDING, WASHINGTON, D. C.

(An independent Government establishment, created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight. It consists of 12 members who are appointed by the President, all of whom serve as such without compensation.)

JOSEPH S. AMES, Ph. D., Chairman. Provost, Johns Hopkins University, Baltimore, Md.
DAVID W. TAYLOR, D. Eng., Vice Chairman. Washington, D. C.
CHARLES G. ABBOT, Sc. D., Secretary, Smithsonian Institution, Washington, D. C.
GEORGE K. BURGESS, Sc. D., Director, Bureau of Standards, Washington, D. C.
WILLIAM F. DURAND, Ph. D., Professor Emeritus of Mechanical Engineering, Stanford University, California.
JAMES E. FECHET, Major General, United States Army, Chief of Air Corps, War Department, Washington, D. C.
WILLIAM E. GILLMORE, Brigadier General, United States Army, Chief, Matériel Division, Air Corps, Wright Field, Dayton, Ohio.
EMORY S. LAND, Captain, United States Navy, Assistant Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
WILLIAM A. MOFFETT, Rear Admiral, United States Navy, Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
WILLIAM A. MOFFETT, Rear Admiral, United States Navy, Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
S. W. STRATTON, Sc. D., President Massachusetts Institute of Technology, Cambridge, Mass.

President Massachusetts Institute of Technology, Cambridge, Mass. ORVILLE WRIGHT, Sc. D.,

Dayton, Ohio.

GEORGE W. LEWIS, Director of Aeronautical Research. JOHN F. VICTORY, Secretary. HENRY J. E. REID, Engineer in Charge, Langley Memorial Aeronautical Laboratory, Langley Field, Va. JOHN J. IDE, Technical Assistant in Europe, Paris, France

EXECUTIVE COMMITTEE

JOSEPH S. AMES, Chairman. DAVID W. TAYLOR, Vice Chairman.

CHARLES G. ABBOT. GEORGE K. BURGESS. JAMES E. FECHET. WILLIAM E. GILLMORE. EMORY S. LAND.

CHARLES F. MARVIN. William A. Moffett. S. W. Stratton. Orville Wright.

JOHN F. VICTORY, Secretary.

REPORT No. 298

EFFECT OF VARIATION OF CHORD AND SPAN OF AILERONS ON ROLLING AND YAWING MOMENTS IN LEVEL FLIGHT

By R. H. HEALD and D. H. STROTHER

SUMMARY

This report presents the results of an investigation of the rolling and yawing moments due to ailerons of various chords and spans on two airfoils having the Clark Y and U.S.A. 27 wing sections. Some attention is devoted to a study of the effect of scale on rolling and yawing moments and to the effect of slightly rounding the wing tips.

The results apply to level flight with the wing chord set at an angle of attack of $+4^{\circ}$ and to conditions of zero pitch, zero yaw, and zero roll of the airplane. It is planned later to extend the investigation to other attitudes for monoplane and biplane combinations.

The work was conducted in the 10-foot wind tunnel of the Bureau of Standards (fig. 1) on models of 60-inch span and 10-inch chord.

FIG. 1

INTRODUCTION

The investigation was undertaken for the Aeronautics Branch of the Department of Commerce in cooperation with the National Advisory Committee for Aeronautics for the purpose of making available to the industry data relative to the rolling and yawing moments due to conventional ailerons on some representative American wing sections. But little systematic work has been done along this line, the outstanding contributions being those of Archer (Reference 1) and Irving, Owen, and Hankins (Reference 2).

DESCRIPTION OF APPARATUS AND MODELS

THE WIND TUNNEL

The air is drawn through the 10-foot wind tunnel by means of a four-blade 14-foot tractor propeller driven by a 200-HP. direct-current motor. The lower and upper limits of the speeds available are, respectively, 20 feet per second and 100 feet per second. A calibration of the tunnel for speed distribution, which was made in the area subsequently occupied by the model, showed the speed to be uniform within ± 1 per cent.

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

AIRFOILS

The wing models, 60 inches span and 10 inches chord, shown in Figures 2 and 3, were constructed of $\frac{3}{4}$ -inch mahogany strips and on completion showed a maximum deviation from the templates of ± 0.02 inch. The metal templates were constructed accurately to the dimensions of the two sections as given in N. A. C. A. Technical Report No. 233. It was felt that this deviation was permissible in wooden models of this size. Two models of each wing were prepared, in order to permit tests in biplane combination.

Figure 3 illustrates the method adopted for obtaining a variation of aileron chord and span. The ailerons of varying chord were built into the right portion of the wing, those of varying span

into the left portion of the wing. Thus a study of the characteristics of the individual ailerons was possible through a rather wide range of chord and span variation.

The ailerons were so mounted that their axes of rotation were midway between the upper and

FIG. 2.-Dimensions of wing sections. Source N. A. C. A. Technical Report No. 233

lower surfaces of the wing. When under test, all slots were filled with wax and smoothed. The section of the wing was constant along the span, there being no tapering or feathering.

FUSELAGE AND UNIVERSAL JOINT

The wings were mounted on a fuselage or fairing which formed the housing for a ball-bearing universal joint from which the whole system was supported by a ³/₄-inch mast bolted and

guyed by stay wires to the side of the tunnel. Provision was made for setting the wings at various angles to the axis of the fuselage. The general arrangement of the set-up is shown in Figures 4, 5, and 6.

ARRANGEMENT OF BALANCES

For convenience in observation, the model was mounted in the tunnel with the span of the wing vertical, and the rolling and yawing forces were read on balances of the pendulum type (fig. 4). Both balances were calibrated before making the observations. A further check was made on the precision of the complete system by applying known moments directly to the model.

METHOD OF MEASUREMENT

Simultaneous readings of the rolling and yawing moments were made at speeds of 40, 58.7, and 80 feet per second (respectively, 27.3, 40, and 54.5 miles per hour) with the axis of the fuselage parallel to the wind direction and with the angle of incidence of the wing set at $+4^{\circ}$. This setting corresponds to 0.55 of the maximum lift coefficient of the Clark Y wing and 0.52 of the maximum lift coefficient of the U. S. A. 27 wing. (Reference 3.)

Observations were made with the ailerons set at angles of 8° to 16° to the wing chord and at 4° intervals thereafter up to 44°. The aileron angles were set by means of metal templates, but because of a slight warp along the trailing edge of the aileron the precision of setting was $\pm 1^{\circ}$, the values given being the mean of the inclinations at the tip and root of the aileron.

FIG. 5

FIG. 6

5

Indication of unsteady flow about the ailerons was noted early in the investigation in the case of aileron angles greater than 16°. The effect of this burbling flow was so marked on the rolling moment balance that considerably heavier damping was necessary than was used for the yawing moment balance. The region of greatest unsteadiness occurred in the neighborhood of 24° aileron setting. The flow appeared to steady down somewhat for aileron angles greater than 32° .

REDUCTION OF OBSERVATIONS

Small rolling and yawing forces, which appeared to be due to the drag of the balance wires and possibly to a slight asymetry in the model, were noted at zero aileron angle in all cases. Correction was made for these forces in the reduction of observations.

The results are expressed in the usual N. A. C. A. form of absolute coefficients given below:¹

$$C_L = \frac{L}{qbS}$$
 and $C_N = \frac{N}{qfS}$

where C_L and C_N are the absolute rolling and yawing moment cofficients for one aileron.

¹ Note that the coefficients are based on wing dimensions which are held constant throughout the investigation; i. e.— $L = C_L q \times a \operatorname{constant} = C_L q \times 20.83$ and $N = C_N q \times a \operatorname{constant} = C_N q \times 8.68$ L and N are respectively rolling and yawing moments in pounds-feet.

$$q = \frac{1}{2} \rho V^2 = 0.001189 V^2$$

b = wing span in feet.

f = distance from center of rotation of model to end of tail.

(Note: This distance was chosen as closely representing the distance from the

center of gravity of the airplane to the leading edge of the elevator.)

S = wing area in square feet (chord length + span.)

V = wind speed in feet per second.

 $\rho = 0.002378$ slugs per cubic foot at 15° C. and 760 mm pressure.

The reference axes are body axes and the directions are conventional, a moment tending to produce clockwise rotation as viewed from the pilot's seat being considered positive. The values given in Tables I–IV and those plotted in Figures 7–20 refer to a single aileron on the right half of the wing.

RESULTS

REPRESENTATIVE CURVES

Figures 7 and 8 are representative of plots of the observed values, reduced to the coefficients C_L and C_N , for varying aileron angles. Since only a slight scale effect was noted within the range of speeds employed, a faired curve was drawn through all the points, and the values given in Tables I–VIII and subsequently plotted were read from these curves.

ROUNDED AND RECTANGULAR TIPS

The models were originally made with corners rounded to a radius equal to 15 per cent of the wing chord. These were afterwards filled in to form rectangular tips, as it seemed desirable to use a standard plan form for systematic tests. Some comparative observations were made, and the results are plotted in Figure 9.

The effect of rounding the tips is negligible on the rolling moment coefficient with the aileron up, but is somewhat more pronounced in the case of the yawing moment coefficient. Both rolling and yawing moment coefficients show slight increases when the rounded aileron is put down.

EFFECT OF VARYING AILERON CHORD AND SPAN

Figures 10-21 and Tables I-IV present the major results of the investigation. The values of C_L and C_N are plotted against aileron chord or aileron span expressed in per cent of the corresponding wing dimension. The coefficients due to various differential combinations are obtainable by the use of Tables I-IV, and direct combinations of the values are given in Tables V-VIII and plotted in Figures 23-25.

ROLLING MOMENT COEFFICIENTS

Comparison of the ratios of the rolling moment coefficients for ailerons in the up and down positions shows that for corresponding angles the rolling moment due to the aileron in the up position exceeds that due to the down aileron by from 2 to 85 per cent, depending on the wing section and the chord, span, and angle of the aileron. The larger ratios of $\frac{C_L \text{ up}}{C_L \text{ down}}$ occur in the case of the ailerons having a chord length 35 per cent of that of the wing. The increase of the ratio $\frac{C_L \text{ up}}{C_L \text{ down}}$ as the aileron angle is increased is not marked in the case of ailerons of short chord length, but becomes greater as the chord length is increased. For example, in the case of the aileron on the Clark Y wing whose chord length is 15 per cent of that of the wing the ratio of $\frac{C_L \text{ up}}{C_L \text{ down}}$ is 1.36 at 8° and 1.20 at 44°. For an aileron having the same span but with a chord length 35 per cent of that of the wing the ratio at 44°. Lengthening the ratio $\frac{C_L \text{ up}}{C_L \text{ down}}$ is 1.24 at 8° and 1.85 at 44°.

1

ROLLING AND YAWING MOMENTS IN LEVEL FLIGHT

FIG. 10.—Clark Y wing. Aileron span 20 inches. Aileron chord varying. Aileron up

FIG. 9.—Clark Y wing. Aileron span 20 inches. Aileron chord 2.5 inches. Curve line represents rectangular tips—points not shown

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

FIG. 11.—Clark Y wing. Aileron span 20 inches. Aileron chord varying. Aileron down

FIG. 12.—Clark Y wing. Aileron span varying. Aileron chord 2.5 inches. Aileron up

FIG. 14,—Clark Y wing. Aileron span 20 inches. $N/L=0.417 C_N/C_L$

16°

CL

65%

FIG. 19.-U. S. A. 27 wing. Aileron span varying. Aileron chord 2.5 inches. Aileron down

span of the aileron results in relatively small changes in the ratio $\frac{C_L \text{ up}}{C_L \text{ down}}$ for corresponding

aileron angles. Relationships of the same order occur in the case of the U.S.A. 27 wing.

Comparison of the curves and tables will show that the differences in the rolling moments produced by ailerons of the same size on the two wings are not great. In general, an aileron on the Clark Y wing shows slightly greater rolling moment than the corresponding aileron on the U. S. A. 27 wing for the same setting.

There appears to be no systematic relationship between aileron dimension and rolling moment except that an increased rolling moment accompanies an increase in aileron span or chord, the angle being held constant. In some cases an approximately linear relationship between the two quantities is indicated.

YAWING MOMENT COEFFICIENTS

Coincident with the increase of the rolling moment coefficient as the aileron chord is increased there is an increase in the yawing moment coefficient. In the case of the Clark Y wing with an aileron chord 15 per cent of the wing chord the ratio $\frac{C_N \text{ up}}{C_N \text{ down}}$ is 0.28 for an aileron angle of 44°. This ratio increases to 0.62 for the aileron whose chord is 35 per cent of the wing chord. The ratio $\frac{C_N \text{ up}}{C_N \text{ down}}$ decreases in value as the aileron chord is increased, for small angles,

and increases as the chord is increased, for large angles, the minimum value occurring in the neighborhood of 20°, depending on the wing section and the dimensions of the aileron.

In all cases a slightly negative yawing moment occurs in the case of both wings for aileron angles below 12° . The angle of zero yawing moment changes somewhat, decreasing as the aileron chord is increased. The effect is more marked in the case of the Clark Y wing, where the angle of the aileron for zero yawing moment is 26° when the aileron chord length is 15 per cent of the chord length of the wing. When the aileron chord length is increased to 35 per cent of that of the wing, the angle of zero yawing moment is decreased to 18° . For the same range of variation in aileron chord length on the U. S. A. 27 wing, the angle of the aileron for zero yawing moment decreases from 20° to 11° .

Within the limits of this investigation the ailerons on both wings show an approximately linear relationship between yawing moment coefficient and aileron chord. The relationship between yawing moment coefficient and aileron span is also approximately linear.

RATIO OF YAWING MOMENT ROLLING MOMENT

Inspection of the curves² for $\frac{N}{L}$ (figs. 14, 15, 20, 21) shows that the down aileron is the greater contributing factor to the net yawing moment. The difference is most marked in the case of the Clark Y wing (fig. 14), where the maximum value for $\frac{N}{L}$ with the aileron up is 0.15, approximately the same as the minimum value with the aileron down.

There appears to be no systematic variation of $\frac{N}{L}$ with span. The magnitude of the variations in $\frac{N}{L}$ due to changes in span are small in comparison with those due to changes in chord length.

There is a more nearly linear relationship between $\frac{N}{L}$ and aileron chord or span for both wings in the case of the up aileron.

COMBINED COEFFICIENTS

The values given in Tables I–IV for one aileron in corresponding up and down positions have been combined in Tables V–VIII and are shown plotted in Figures 22–25.

² Note that $\frac{N}{L} = 0.417 \frac{C_N}{C_L}$ due to the differences in the factors b and f in the rolling and yawing moment equations.

FIG. 23.—Clark Y wing. Combined rolling and yawing moment coefficients. $N/L=0.417~C_N/C_L$

FIG. 24.—U. S. A. 27 wing. Combined rolling and yawing moment coefficients. $N/L=0.417 C_N/C_L$

FIG. 26.—Clark Y wing. Aileron span 20 inches. Aileron chord 3.5 inches. Scale effect

There is a continued increase in the value of the combined rolling moment coefficient up to 44° aileron and a decrease in slope of the curves in the neighborhood of 20°.

The curves of combined yawing moment coefficients indicate a tendency toward a common value in the neighborhood of 44°.

SCALE EFFECT

Measurements were made for speeds ranging from 20 feet per second to slightly above 80 feet per second on both airfoils and for aileron settings of 8° and 44° up and down. The values of rolling and yawing moment coefficients are shown plotted against Reynolds Number in Figures 26 and 27. The scale effect is slight within the

limits of this investigation, the maximum being of the order of 2 per cent.

CONCLUSIONS

The greater rolling moment is produced by the up aileron, the magnitude of the ratio C_{τ} up

 $\frac{O_L}{C_L} \frac{\mathrm{d}p}{\mathrm{down}}$ varying from 1.02 to 1.85, depending on the wing section and the angle and dimensions

of the aileron.

There is a slightly negative yawing moment due to the up aileron, which may persist to angles in the neighborhood of 24° (depending on the aileron dimensions and angle) before becoming positive.

The rolling and yawing moment coefficients due to one aileron show a fairly uniform increase with chord or span as the aileron angle is increased to 44° .

The effect of rounding the wing corners to a radius equal to 15 per cent of the chord length of the wing is slight in the cases of both rolling and yawing moments.

The effect of scale on rolling and yawing moments is small between Reynolds Numbers of 200,000 and 440,000.

There is a region of unstable flow set up about the ailerons when inclined at angles to the wing chord in the neighborhood of 20°. The effect is much more marked on the rolling moment than on the yawing moment and is usually more marked in the case of the up aileron.

The occurrence of larger rolling moments and smaller yawing moments in the case of the up aileron suggests the possibility of control by means of large ailerons working through a small range of angles in the up direction. Sufficient control could doubtless be obtained, but whether the proposition would be practicable from a structural standpoint is open to question.

We wish to point out in conclusion that the preceding statements apply only to level flight at a small angle of attack of the wing. The effect of increasing the angle of attack is to modify greatly the relations shown previously, especially in the neighborhood of the stalling angle, as will be shown in a subsequent report.

ACKNOWLEDGMENT

The authors wish to acknowledge with thanks the assistance of Messrs. B. H. Monish, W. Hunter Boyd, and P. S. Ballif in this investigation and to express appreciation to Mr. W. H. King for his painstaking workmanship on the exceptionally large models.

BUREAU OF STANDARDS, WASHINGTON, D. C., July 10, 1928.

FIG. 27.-U. S. A. 27 wing. Aileron span 20 inches. Aileron chord 3.5 inches. Scale effect

BIBLIOGRAPHY

Reference 1. Archer, Lieut. C. E.: Wind Tunnel Test of Aileron Characteristics as Affected by Design and by Airfoil Thickness. Air Corps Information Circular No. 535, Sept. 1, 1925.

- Reference 2. Irving, H. B., Ower, E., and Hankins, G. A.: An Investigation of the Aerodynamic Properties of Wing Ailerons. Part I.—The Effect of Variation of Plan Form of Wing Tip and of Span of Aileron. British Reports & Memoranda No. 550, October, 1918.
 - Irving, H. B., and Ower, E.: An Investigation of the Aerodynamic Properties of Wing Ailerons. Part II.— The Effect of Variation of Chord of Aileron. The Effect of "Wash-Out" on Ailerons. Tests on Ailerons of the "Panther" Type in which the Ailerons Do Not Extend to the Wing Tips. Effect of Variation in Taper Toward the Tips for Wings of given Plan Form. British Reports & Memoranda No. 615, June, 1919.
- Reference 3. National Advisory Committee for Aeronautics: Aerodynamic Characteristics of Airfoils-IV. Technical Report No. 244. N. A. C. A. Sept. 1926.

TABLE I.—CLARK Y WING SECTION— C_L AND C_N FOR ONE AILERON

[Varying chord of aileron. Angle of attack of airplane, 0°; angle of attack of wing, +4°; angle of yaw, 0°; angle of roll, 0°]

NOTE.-The values apply to either right or left aileron; the signs refer to the right aileron

AILERON SPAN, 20 INCHES

		1.5-inch cl	hord		2.0-inch chord					
θ	Aileron up Ailero			n down		Ailer	Aileron up		Aileron down	
	C_L	C_N	C_L	C_N	0	C_L .	C_N	C_L	C_N	
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0115 \\ +.\ 0235 \\ +.\ 0305 \\ +.\ 0390 \\ +.\ 0465 \\ +.\ 0465 \\ +.\ 0595 \\ +.\ 0646 \\ +.\ 0691 \\ +.\ 0730 \end{array}$	$\begin{array}{c} 0 \\\ 0020 \\\ 0035 \\\ 0042 \\\ 0040 \\\ 0029 \\\ 0011 \\ +.\ 0008 \\ +.\ 0030 \\ +.\ 0057 \\ +.\ 0085 \\ +.\ 0114 \end{array}$	$\begin{array}{c} 0\\\ 0090\\\ 0173\\\ 0249\\\ 0313\\\ 0370\\\ 0420\\\ 0465\\\ 0503\\\ 0538\\\ 0580\\\ 0610 \end{array}$	$\begin{matrix} 0 \\ +. \ 0028 \\ +. \ 0057 \\ +. \ 0090 \\ +. \ 0125 \\ +. \ 0163 \\ +. \ 0203 \\ +. \ 0243 \\ +. \ 0285 \\ +. \ 0328 \\ +. \ 0371 \\ +. \ 0415 \end{matrix}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0150 \\ +.\ 0280 \\ +.\ 0382 \\ +.\ 0470 \\ +.\ 0545 \\ +.\ 0614 \\ +.\ 0678 \\ +.\ 0730 \\ +.\ 0785 \\ +.\ 0830 \\ +.\ 0876 \end{array}$	$\begin{array}{c} 0\\\ 0024\\\ 0035\\\ 0040\\\ 0038\\\ 0020\\ +.\ 0008\\ +.\ 0040\\ +.\ 0040\\ +.\ 0070\\ +.\ 0110\\ +.\ 0148\\ +.\ 0190 \end{array}$	$\begin{array}{c} 0\\ \ 0120\\ \ 0212\\ \ 0290\\ \ 0370\\ \ 0430\\ \ 0436\\ \ 0479\\ \ 0519\\ \ 0555\\ \ 0589\\ \ 0618 \end{array}$	$\begin{matrix} 0 \\ +. \ 0040 \\ +. \ 0076 \\ +. \ 0125 \\ +. \ 0170 \\ +. \ 0215 \\ +. \ 0262 \\ +. \ 0307 \\ +. \ 0353 \\ +. \ 0400 \\ +. \ 0450 \\ +. \ 0500 \end{matrix}$	

		3.0-inch cl	nord				3.5-inch cl	hord		
θ	Ailero	n up	Ailero	n down		Ailere	Aileron up		Aileron down	
0	C_L	C_N	C_L	C_N	θ	C_L	C_N	C_L	C_N	
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0185 \\ +. \ 0350 \\ +. \ 0520 \\ +. \ 0670 \\ +. \ 0800 \\ +. \ 0800 \\ +. \ 0920 \\ +. \ 0970 \\ +. \ 1030 \\ +. \ 1120 \end{matrix}$	$\begin{matrix} 0 \\ \ 0027 \\ \ 0041 \\ \ 0041 \\ \ 0028 \\ +. \ 0003 \\ +. \ 0062 \\ +. \ 0121 \\ +. \ 0182 \\ +. \ 0244 \\ +. \ 0304 \\ +. \ 0365 \end{matrix}$	$\begin{array}{c} 0\\ \ 0160\\ \ 0270\\ \ 0350\\ \ 0413\\ \ 0472\\ \ 0525\\ \ 0570\\ \ 0606\\ \ 0640\\ \ 0665\\ \ 0686\end{array}$	$\begin{matrix} 0 \\ +.\ 0038 \\ +.\ 0092 \\ +.\ 0165 \\ +.\ 0235 \\ +.\ 0305 \\ +.\ 0372 \\ +.\ 0438 \\ +.\ 0500 \\ +.\ 0560 \\ +.\ 0612 \\ +.\ 0661 \end{matrix}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0194 \\ +. \ 0380 \\ +. \ 0550 \\ +. \ 0730 \\ +. \ 0890 \\ +. \ 0960 \\ +. \ 1000 \\ +. \ 1040 \\ +. \ 1090 \\ +. \ 1180 \\ +. \ 1270 \end{matrix}$	$\begin{matrix} 0 \\ & 0025 \\ & 0040 \\ & 0038 \\ & 0020 \\ +. & 0023 \\ +. & 0078 \\ +. & 0139 \\ +. & 0210 \\ +. & 0273 \\ +. & 0363 \\ +. & 0460 \end{matrix}$	$\begin{array}{c} 0 \\ \ 0185 \\ \ 0306 \\ \ 0402 \\ \ 0481 \\ \ 0530 \\ \ 0560 \\ \ 0595 \\ \ 06631 \\ \ 0655 \\ \ 0673 \\ \ 0686 \end{array}$	$\begin{matrix} 0 \\ +.\ 0043 \\ +.\ 0095 \\ +.\ 0175 \\ +.\ 0265 \\ +.\ 0340 \\ +.\ 0408 \\ +.\ 0408 \\ +.\ 0541 \\ +.\ 0610 \\ +.\ 0680 \\ +.\ 0748 \end{matrix}$	

ROLLING AND YAWING MOMENTS IN LEVEL FLIGHT

TABLE II.—CLARK Y WING SECTION— C_L AND C_N FOR ONE AILERON

[Varying span of aileron. Angle of attack of airplane, 0°; angle of attack of wing, +4°; angle of yaw, 0°; angle of roll, 0°] Note.—The values apply to either right or left aileron; the signs refer to the right aileron

AILERON CHORD, 2.5 INCHES

		10-inch sp	oan		. 15-inch span					
θ	Ailer	Aileron up Ailero			0	Aileron up		Aileron down		
θ	C_L	$\cdot C_N$	C_L	C_N	0	C_L	C_N	C_L	C_N	
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0080 \\ +. \ 0153 \\ +. \ 0226 \\ +. \ 0300 \\ +. \ 0490 \\ +. \ 0410 \\ +. \ 0445 \\ +. \ 0460 \\ +. \ 0485 \\ +. \ 0508 \\ +. \ 0530 \end{matrix}$	$\begin{matrix} 0 \\ & 0013 \\ & 0018 \\ & 0012 \\ & 0002 \\ +. & 0012 \\ +. & 0018 \\ +. & 00041 \\ +. & 0068 \\ +. & 0096 \\ +. & 0125 \\ +. & 0155 \end{matrix}$	$\begin{array}{c} 0 \\ 0078 \\ 0150 \\ 0204 \\ 0250 \\ 0286 \\ 0300 \\ 0333 \\ 0356 \\ 0372 \\ 0389 \\ 0400 \end{array}$	$\begin{matrix} 0 \\ +. \ 0022 \\ +. \ 0054 \\ +. \ 0093 \\ +. \ 0133 \\ +. \ 0173 \\ +. \ 0211 \\ +. \ 0250 \\ +. \ 0288 \\ +. \ 0320 \\ +. \ 0356 \\ +. \ 0385 \end{matrix}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +. \ 0115 \\ +. \ 0230 \\ +. \ 0345 \\ +. \ 0450 \\ +. \ 0550 \\ +. \ 0600 \\ +. \ 0625 \\ +. \ 0650 \\ +. \ 0680 \\ +. \ 0710 \\ +. \ 0750 \end{array}$	$\begin{array}{c} 0 \\\ 0021 \\\ 0035 \\\ 0033 \\\ 0022 \\ 0 \\ +.\ 0035 \\ +.\ 0068 \\ +.\ 0104 \\ +.\ 0140 \\ +.\ 0181 \\ +.\ 0225 \end{array}$	$\begin{array}{c} 0 \\ \ 0110 \\ \ 0210 \\ \ 0300 \\ \ 0495 \\ \ 0425 \\ \ 0432 \\ \ 0461 \\ \ 0492 \\ \ 0520 \\ \ 0541 \\ \ 0556 \end{array}$	$\begin{array}{c} 0 \\ +.\ 0020 \\ +.\ 0055 \\ +.\ 0111 \\ +.\ 0165 \\ +.\ 0212 \\ +.\ 0262 \\ +.\ 0310 \\ +.\ 0360 \\ +.\ 0410 \\ +.\ 0450 \\ +.\ 0485 \end{array}$	

20-inch span										
θ	Ailer	on up	Aileron down							
θ	C_L	C_N	C_L	C_N						
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0150 \\ +. \ 0300 \\ +. \ 0440 \\ +. \ 0570 \\ +. \ 0675 \\ +. \ 0775 \\ +. \ 0810 \\ +. \ 0870 \\ +. \ 0925 \\ +. \ 0985 \end{matrix}$	$\begin{matrix} 0 \\ & 0020 \\ & 0040 \\ & 0030 \\ & 0025 \\ +. & 0002 \\ +. & 0038 \\ +. & 0136 \\ +. & 0126 \\ +. & 0175 \\ +. & 0220 \\ +. & 0270 \end{matrix}$	$\begin{array}{c} 0 \\ & 0125 \\ & 0230 \\ & 0325 \\ & 0410 \\ & 0450 \\ & 0475 \\ & 0540 \\ & 0598 \\ & 0632 \\ & 0658 \\ & 0670 \end{array}$	$\begin{array}{c} 0 \\ +.\ 0035 \\ +.\ 0078 \\ +.\ 0131 \\ +.\ 0190 \\ +.\ 0248 \\ +.\ 0308 \\ +.\ 0308 \\ +.\ 0420 \\ +.\ 0420 \\ +.\ 0474 \\ +.\ 0528 \\ +.\ 0580 \end{array}$						

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE III.-U. S. A. 27 WING SECTION-CL AND CN FOR ONE AILERON

[Varying chord of aileron. Angle of attack of airplane, 0°; angle of attack of wing, +4°; angle of yaw, 0°; angle of roll, 0°]

NOTE.—The values apply to either right or left aileron; the signs refer to the right aileron

AILERON SPAN, 20 INCHES

		1.5-inch ch	nord		2.0-inch chord					
θ	Ailer	on up	Aileron down			Aileron up		Aileron down		
0	C_L	C_N	C_L	C_N	0	C_L	C_N	C_L	C_N	
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0126 \\ +. \ 0230 \\ +. \ 0320 \\ +. \ 0390 \\ +. \ 0430 \\ +. \ 0430 \\ +. \ 04505 \\ +. \ 0505 \\ +. \ 0560 \\ +. \ 0615 \\ +. \ 0672 \\ +. \ 0710 \end{matrix}$	$\begin{array}{c} 0\\\ 0012\\\ 0020\\\ 0018\\\ 0010\\ 0\\ +.\ 0018\\ +.\ 0040\\ +.\ 0067\\ +.\ 0094\\ +.\ 0120\\ +.\ 0150\end{array}$	$\begin{array}{c} 0 \\ \ 0098 \\ \ 0180 \\ \ 0242 \\ \ 0300 \\ \ 0355 \\ \ 0402 \\ \ 0450 \\ \ 0450 \\ \ 0530 \\ \ 0595 \end{array}$	$\begin{array}{c} 0 \\ +. \ 0015 \\ +. \ 0032 \\ +. \ 0055 \\ +. \ 0080 \\ +. \ 0110 \\ +. \ 0142 \\ +. \ 0180 \\ +. \ 0217 \\ +. \ 0262 \\ +. \ 0311 \\ +. \ 0360 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0155 \\ +. \ 0285 \\ +. \ 0405 \\ +. \ 0495 \\ +. \ 0560 \\ +. \ 0605 \\ +. \ 0645 \\ +. \ 0745 \\ +. \ 0795 \\ +. \ 0855 \end{matrix}$	$\begin{array}{c} 0\\\ 0015\\\ 0024\\\ 0012\\ 0\\ +.\ 0022\\ +.\ 0050\\ +.\ 0083\\ +.\ 0120\\ +.\ 0152\\ +.\ 0195\\ +.\ 0245 \end{array}$	$\begin{matrix} 0 \\ 0120 \\ 0200 \\ 0290 \\ 0355 \\ 0405 \\ 0450 \\ 0500 \\ 0542 \\ 0584 \\ 0614 \\ 0640 \end{matrix}$	$\begin{matrix} 0 \\ +. \ 0018 \\ +. \ 0044 \\ +. \ 0085 \\ +. \ 0125 \\ +. \ 0125 \\ +. \ 0205 \\ +. \ 0205 \\ +. \ 0247 \\ +. \ 0295 \\ +. \ 0342 \\ +. \ 0395 \\ +. \ 0450 \end{matrix}$	

		3.0-inch ch	nord				3.5-inch c	hord	
θ	Aileron up Ailer			n down		Aileron up		Aileron down	
	C_L	C_N	C_L	C_N	0	C_L	C_N	C_L	C_N
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +. \ 0155 \\ +. \ 0310 \\ +. \ 0460 \\ +. \ 0720 \\ +. \ 0720 \\ +. \ 0825 \\ +. \ 0860 \\ +. \ 0904 \\ +. \ 0945 \\ +. \ 0985 \\ +. \ 1020 \end{array}$	$\begin{array}{c} 0 \\\ 0020 \\\ 0022 \\\ 0010 \\ +.\ 0022 \\ +.\ 0065 \\ +.\ 0120 \\ +.\ 0120 \\ +.\ 0120 \\ +.\ 0230 \\ +.\ 0230 \\ +.\ 0335 \\ +.\ 0390 \end{array}$	$\begin{array}{c} 0 \\ \ 0145 \\ \ 0280 \\ \ 0368 \\ \ 0435 \\ \ 0495 \\ \ 0525 \\ \ 0525 \\ \ 0530 \\ \ 0568 \\ \ 0608 \\ \ 0660 \\ \ 0685 \end{array}$	$\begin{array}{c} 0 \\ +.\ 0035 \\ +.\ 0080 \\ +.\ 0130 \\ +.\ 0185 \\ +.\ 0250 \\ +.\ 0312 \\ +.\ 0372 \\ +.\ 0440 \\ +.\ 0500 \\ +.\ 0558 \\ +.\ 0615 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0177 \\ +.\ 0353 \\ +.\ 0510 \\ +.\ 0655 \\ +.\ 0790 \\ +.\ 0890 \\ +.\ 0961 \\ +.\ 1016 \\ +.\ 1058 \\ +.\ 1116 \\ +.\ 1180 \end{array}$	$\begin{matrix} 0 \\ \ 0010 \\ \ 0010 \\ +. \ 0004 \\ +. \ 0033 \\ +. \ 0076 \\ +. \ 0130 \\ +. \ 0130 \\ +. \ 0195 \\ +. \ 0265 \\ +. \ 0335 \\ +. \ 0406 \\ +. \ 0477 \end{matrix}$	$\begin{array}{c} 0\\\ 0159\\\ 0290\\\ 0405\\\ 0510\\\ 0553\\\ 0560\\\ 0545\\\ 0595\\\ 0617\\\ 0660\\\ 0690\\ \end{array}$	$\begin{array}{c} 0 \\ +.\ 0035 \\ +.\ 0079 \\ +.\ 0149 \\ +.\ 0222 \\ +.\ 0298 \\ +.\ 0360 \\ +.\ 0419 \\ +.\ 0476 \\ +.\ 0533 \\ +.\ 0592 \\ +.\ 0650 \end{array}$

ROLLING AND YAWING MOMENTS IN LEVEL FLIGHT

TABLE IV.—U. S. A. 27 WING SECTION— C_L AND— C_N FOR ONE AILERON [Varying span of aileron. Angle of attack of airplane, 0°; angle of attack of wing, +4°; angle of yaw, 0°; angle of roll, 0°]

NOTE.—The values apply to either right or left aileron; the signs refer to the right aileron

AILERON CHORD 2.5 INCHES

		10-inch spa	an		15-inch span				
	Aileron up Ail			Aileron down		Aileron up		Aileron down	
θ	C_L	C_N	C_L	C_N	θ	C_L	C_N	C_L	C_N
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0069 \\ +. \ 0140 \\ +. \ 0211 \\ +. \ 0290 \\ +. \ 0375 \\ +. \ 0397 \\ +. \ 0397 \\ +. \ 0497 \\ +. \ 0450 \\ +. \ 0490 \\ +. \ 0530 \end{matrix}$	$\begin{matrix} 0 \\ \ 0009 \\ \ 0011 \\ \ 0010 \\ 0 \\ +. \ 0021 \\ +. \ 0044 \\ +. \ 0069 \\ +. \ 0128 \\ +. \ 0128 \\ +. \ 0159 \\ +. \ 0191 \end{matrix}$	$\begin{array}{c} 0\\\ 0055\\\ 0108\\\ 0161\\\ 0211\\\ 0257\\\ 0295\\\ 0310\\\ 0328\\\ 0348\\\ 0368\\\ 0382 \end{array}$	$\begin{matrix} 0 \\ +. \ 0015 \\ +. \ 0036 \\ +. \ 0065 \\ +. \ 0098 \\ +. \ 0130 \\ +. \ 0198 \\ +. \ 0232 \\ +. \ 0232 \\ +. \ 0270 \\ +. \ 0310 \\ +. \ 0350 \end{matrix}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +. \ 0120 \\ +. \ 0230 \\ +. \ 0330 \\ +. \ 0426 \\ +. \ 0500 \\ +. \ 0534 \\ +. \ 0557 \\ +. \ 0590 \\ +. \ 0685 \\ +. \ 0745 \end{array}$	$\begin{matrix} 0 \\ & 0010 \\ & 0010 \\ +. & 0004 \\ +. & 0036 \\ +. & 0063 \\ +. & 0095 \\ +. & 0131 \\ +. & 0172 \\ +. & 0219 \\ +. & 0269 \end{matrix}$	$\begin{array}{c} 0\\ \ 0100\\ \ 0200\\ \ 0268\\ \ 0318\\ \ 0358\\ \ 0358\\ \ 0390\\ \ 0414\\ \ 0440\\ \ 0445\\ \ 0490\\ \ 0514 \end{array}$	$\begin{array}{c} 0 \\ +.\ 0025 \\ +.\ 0055 \\ +.\ 0090 \\ +.\ 0127 \\ +.\ 0127 \\ +.\ 0218 \\ +.\ 0260 \\ +.\ 0300 \\ +.\ 0343 \\ +.\ 0382 \\ +.\ 0420 \end{array}$

20-inch span										
	Ailero	on up	Aileron down							
θ	C_L	C_N	C_L	C_N						
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0155 \\ +. \ 0296 \\ +. \ 0420 \\ +. \ 0535 \\ +. \ 0630 \\ +. \ 0660 \\ +. \ 0720 \\ +. \ 0775 \\ +. \ 0830 \\ +. \ 0886 \\ +. \ 0940 \end{matrix}$	$\begin{matrix} 0 \\ & 0018 \\ & 0020 \\ & 0010 \\ +. & 0013 \\ +. & 0049 \\ +. & 0085 \\ +. & 0124 \\ +. & 0170 \\ +. & 0217 \\ +. & 0270 \\ +. & 0322 \end{matrix}$	$\begin{array}{c} 0 \\ \ 0129 \\ \ 0238 \\ \ 0330 \\ \ 0405 \\ \ 0445 \\ \ 0445 \\ \ 0494 \\ \ 0526 \\ \ 0568 \\ \ 0610 \\ \ 0650 \end{array}$	$\begin{array}{c} 0 \\ +. \ 0025 \\ +. \ 0061 \\ +. \ 0101 \\ +. \ 0145 \\ +. \ 0196 \\ +. \ 0250 \\ +. \ 0304 \\ +. \ 0360 \\ +. \ 0412 \\ +. \ 0465 \\ +. \ 0520 \end{array}$						

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE V.—CLARK Y WING SECTION—COMBINED VALUES OF C_L AND C_N , RIGHT AILERON UP, LEFT AILERON DOWN

[Varying chord of aileron. Angle of attack of airplane, 0°; angle of attack of wing, +4°; angle of yaw, 0°; angle of roll, 0°] AILERON SPAN, 20 INCHES

1.5-inch chord		2.0-inch chord			3.0-inch chord			3.5-inch chord			
θ	C_L	C_N	θ	C_L	C_N	θ	C_L	C_N	θ	C_L	C_N
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0205 \\ +.\ 0408 \\ +.\ 0554 \\ +.\ 0703 \\ +.\ 0835 \\ +.\ 0885 \\ +.\ 1098 \\ +.\ 1184 \\ +.\ 1271 \\ +.\ 1340 \end{array}$	$\begin{array}{c} 0 \\\ 0048 \\\ 0092 \\\ 0132 \\\ 0165 \\\ 0192 \\\ 0214 \\\ 0235 \\\ 0255 \\\ 0255 \\\ 0271 \\\ 0286 \\\ 0301 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 32^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ + . 0270 \\ + . 0492 \\ + . 0672 \\ + . 0840 \\ + . 0975 \\ + . 1050 \\ + . 1157 \\ + . 1249 \\ + . 1340 \\ + . 1419 \\ + . 1494 \end{array}$	$\begin{array}{c} 0 \\0064 \\0111 \\0165 \\0208 \\0235 \\0254 \\0267 \\0283 \\0290 \\0302 \\0310 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0345 \\ +.\ 0620 \\ +.\ 0870 \\ +.\ 1083 \\ +.\ 1272 \\ +.\ 1385 \\ +.\ 1490 \\ +.\ 1576 \\ +.\ 1670 \\ +.\ 1745 \\ +.\ 1806 \end{array}$	$\begin{array}{c} 0 \\ & 0065 \\ & 0133 \\ & 0206 \\ & 0302 \\ & 0310 \\ & 0317 \\ & 0318 \\ & 0316 \\ & 0308 \\ & 0296 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0379 \\ +.\ 0686 \\ +.\ 0952 \\ +.\ 1211 \\ +.\ 1420 \\ +.\ 1520 \\ +.\ 1595 \\ +.\ 1671 \\ +.\ 1745 \\ +.\ 1853 \\ +.\ 1956 \end{array}$	$\begin{array}{c} 0 \\\ 0068 \\\ 0135 \\\ 0213 \\\ 0285 \\\ 0317 \\\ 0330 \\\ 0336 \\\ 0331 \\\ 0337 \\\ 0317 \\\ 0288 \end{array}$

TABLE VI.—CLARK Y WING SECTION—COMBINED VALUES OF C_L AND C_N , RIGHT AILERON UP, LEFT AILERON DOWN

[Varying span of aileron. Angle of attack of airplane, 0°; angle of attack of wing, +4°; angle of yaw, 0°; angle of roll, 0°] AILERON CHORD, 2.5 INCHES

	10-inch sp	an		15-inch sp	an	20-inch span			
θ	C_L C_N		θ	C_L	C_N	θ	C_L	C_N	
$0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \\ \end{array}$	$\begin{array}{c} 0 \\ +. \ 0158 \\ +. \ 0303 \\ +. \ 0430 \\ +. \ 0550 \\ +. \ 0765 \\ +. \ 0710 \\ +. \ 0765 \\ +. \ 0816 \\ +. \ 0857 \\ +. \ 0897 \\ +. \ 0930 \end{array}$	$\begin{array}{c} 0 \\ \ 0035 \\ \ 0072 \\ \ 0113 \\ \ 0145 \\ \ 0175 \\ \ 0193 \\ \ 0209 \\ \ 0220 \\ \ 0224 \\ \ 0231 \\ \ 0230 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +. \ 0225 \\ +. \ 0440 \\ +. \ 0645 \\ +. \ 0845 \\ +. \ 0975 \\ +. \ 1032 \\ +. \ 1086 \\ +. \ 1142 \\ +. \ 1200 \\ +. \ 1251 \\ +. \ 1306 \end{array}$	$\begin{array}{c} 0\\\ 0041\\\ 0090\\\ 0144\\\ 0187\\\ 0212\\\ 0227\\\ 0242\\\ 0254\\\ 0254\\\ 0269\\\ 0260 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0275 \\ +. \ 0530 \\ +. \ 0765 \\ +. \ 0980 \\ +. \ 1125 \\ +. \ 1205 \\ +. \ 1205 \\ +. \ 1315 \\ +. \ 1408 \\ +. \ 1502 \\ +. \ 1583 \\ +. \ 1655 \end{matrix}$	$\begin{array}{c} 0 \\\ 0055 \\\ 0118 \\\ 0161 \\\ 0215 \\\ 0250 \\\ 0270 \\\ 0282 \\\ 0294 \\\ 0299 \\\ 0306 \\\ 0310 \end{array}$	

ROLLING AND YAWING MOMENTS IN LEVEL FLIGHT

TABLE VII.—U. S. A. 27 WING SECTION—COMBINED VALUES OF C_L AND C_N , RIGHT AILERON UP, LEFT AILERON DOWN

 $[Varying chord of aileron. Angle of attack of airplane, 0^\circ; angle of attack of wing, +4^\circ; angle of yaw, 0^\circ; angle of roll, 0^\circ]$

AILERON SPAN, 20 INCHES

1.5-inch chord			2.0-inch chord			3.0-inch chord			3.5-inch chord		
θ	C_L	C_N	θ	C_L	C_N	θ	C_L	C_N	θ	C_L	C_N
$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. 0224 \\ +. 0410 \\ +. 0562 \\ +. 0690 \\ +. 0785 \\ +. 0862 \\ +. 0955 \\ +. 1050 \\ +. 1145 \\ +. 1237 \\ +. 1305 \end{matrix}$	$\begin{array}{c} 0\\ -\ .\ 0027\\ -\ .\ 0052\\ -\ .\ 0073\\ -\ .\ 0090\\ -\ .\ 0110\\ -\ .\ 0124\\ -\ .\ 0124\\ -\ .\ 0140\\ -\ .\ 0150\\ -\ .\ 0168\\ -\ .\ 0191\\ -\ .\ 0210 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0275 \\ +.\ 0485 \\ +.\ 0695 \\ +.\ 0850 \\ +.\ 0965 \\ +.\ 1055 \\ +.\ 1145 \\ +.\ 1237 \\ +.\ 1329 \\ +.\ 1409 \\ +.\ 1495 \end{array}$	$\begin{array}{c} 0\\\ 0033\\\ 0068\\\ 0097\\\ 0125\\\ 0143\\\ 0155\\\ 0164\\\ 0175\\\ 0190\\\ 0200\\\ 0205 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0300 \\ +.\ 0590 \\ +.\ 0828 \\ +.\ 1035 \\ +.\ 1215 \\ +.\ 1350 \\ +.\ 1390 \\ +.\ 1472 \\ +.\ 1553 \\ +.\ 1645 \\ +.\ 1705 \end{array}$	$\begin{array}{c} 0 \\ & 0055 \\ & 0102 \\ & 0140 \\ & 0163 \\ & 0185 \\ & 0192 \\ & 0197 \\ & 0210 \\ & 0220 \\ & 0223 \\ & 0225 \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{array}{c} 0 \\ +.\ 0336 \\ +.\ 0643 \\ +.\ 0915 \\ +.\ 1165 \\ +.\ 1343 \\ +.\ 1450 \\ +.\ 1506 \\ +.\ 1611 \\ +.\ 1675 \\ +.\ 1776 \\ +.\ 1870 \end{array}$	$\begin{array}{c} 0 \\ & 0045 \\ & 0089 \\ & 0145 \\ & 0189 \\ & 0222 \\ & 0230 \\ & 0224 \\ & 0211 \\ & 0198 \\ & 0186 \\ & 0173 \end{array}$

TABLE VIII.—U. S. A. 27 WING SECTION—COMBINED VALUES OF C_L AND C_N , RIGHT AILERON UP, LEFT AILERON DOWN

 $[Varying span of aileron. Angle of attack of airplane, 0^{\circ}; angle of attack of wing, +4^{\circ}; angle of yaw, 0^{\circ}; angle of roll, 0^{\circ}]$

AILERON CHORD, 2.5 INCHES

-		10-inch sp	an		15-inch sp	an	20-inch span			
-	θ	C_L	C _N	θ	C_L	C_N	θ	C_L	C_N	
	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. 0124 \\ +. 0248 \\ +. 0372 \\ +. 0501 \\ +. 0632 \\ +. 0692 \\ +. 0695 \\ +. 0740 \\ +. 0798 \\ +. 0858 \\ +. 0912 \end{matrix}$	$\begin{matrix} 0 \\ 0024 \\ 0047 \\ 0076 \\ 0098 \\ 0109 \\ 0119 \\ 0129 \\ 0134 \\ 0142 \\ 0151 \\ 0159 \end{matrix}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. 0220 \\ +. 0430 \\ +. 0598 \\ +. 0744 \\ +. 0858 \\ +. 0924 \\ +. 0924 \\ +. 1030 \\ +. 1035 \\ +. 1175 \\ +. 1259 \end{matrix}$	$\begin{array}{c} 0\\\ 0035\\\ 0065\\\ 0094\\\ 0117\\\ 0135\\\ 0155\\\ 0165\\\ 0169\\\ 0171\\\ 0163\\\ 0151\\ \end{array}$	$\begin{array}{c} 0^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 20^{\circ} \\ 24^{\circ} \\ 28^{\circ} \\ 32^{\circ} \\ 36^{\circ} \\ 40^{\circ} \\ 44^{\circ} \end{array}$	$\begin{matrix} 0 \\ +. \ 0284 \\ +. \ 0533 \\ +. \ 0750 \\ +. \ 0940 \\ +. \ 1075 \\ +. \ 1128 \\ +. \ 1214 \\ +. \ 1301 \\ +. \ 1398 \\ +. \ 1496 \\ +. \ 1590 \end{matrix}$	$\begin{matrix} 0 \\\ 0043 \\\ 0081 \\\ 0111 \\\ 0132 \\\ 0150 \\\ 0165 \\\ 0180 \\\ 0190 \\\ 0195 \\\ 0198 \end{matrix}$	

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS U.S.GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 10 CENTS PER COPY \bigtriangledown

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis	and a second	Form	Mome	ut axis	Angle		Velocities		
Designation	Sym- bol	(parallel to axis) symbol	Designa- tion	Sym- bol	Positive direction	Designa- tion	Sym- bol	Linear (compo- nent along axis)	Angular
Longitudinal Lateral Normal	$egin{array}{c} X \ Y \ Z \end{array}$	X Y Z	rolling pitching yawing	L M N	$\begin{array}{c} Y \longrightarrow Z \\ Z \longrightarrow X \\ X \longrightarrow Y \end{array}$	roll pitch yaw	$\Phi \\ \Theta \\ \Psi$	น ข พ	p q r

Absolute coefficients of moment

$$C_L = \frac{L}{qbS} C_M = \frac{M}{qcS} C_N = \frac{N}{qfS}$$

Angle of set of control surface (relative to neutral position), δ . (Indicate surface by proper subscript.)

an and the second second

4. PROPELLER SYMBOLS

- D,Diameter.
- Effective pitch pe,
- Mean geometric pitch. p_g ,
- Standard pitch. p_s ,
- Zero thrust. p_v ,
- Zero torque. pa,
- p/D, Pitch ratio.
- V', Inflow velocity.
- V_s , Slip stream velocity.

- - T, Thrust.
 - Q, Torque.
 - P, Power.
 - (If "coefficients" are introduced all units used must be consistent.)
 - η , Efficiency = T V/P.
 - n, Revolutions per sec., r. p. s.
 - N, Revolutions per minute., R. P. M.
 - Φ , Effective helix angle = $\tan^{-1}\left(\frac{V}{2\pi rn}\right)$

5. NUMERICAL RELATIONS

1	HP = 76.04 kg/m/sec. = 550 lb./ft./sec.
1	kg/m/sec. = 0.01315 HP.
1	mi./hr.=0.44704 m/sec.
1	m/sec. = 2.23693 mi./hr.

1 lb.=0.4535924277 kg. 1 kg = 2.2046224 lb. 1 mi. = 1609.35 m = 5280 ft. 1 m=3.2808333 ft.