NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 344

$$
c^{3}
$$

THE DESIGN OF PLYWOOD WEBS FOR AIRPLANE WING BEAMS

By GEORGE W. TRAYER

For sale by the Superintendent of Documents, Washington, D. C.

AERONAUTICAL SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

	Symbol	Metric		English	
		Unit	Symbol	Unit	Symbol
Length Time. Force-	$\begin{aligned} & l \\ & t \\ & F \end{aligned}$	meter second weight of one kilogram	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~s} \\ & \mathrm{~kg} \end{aligned}$	foot (or mile) second (or hour) weight of one pound	ft . (or mi.) sec. (or hr.) lb.
Power Speed.	P	$\mathrm{kg} / \mathrm{m} / \mathrm{s}$ (km/hrm/s.	$\begin{aligned} & \text { k.p.h. } \\ & \text { m. p.s. } \end{aligned}$	horsepower mi . hr . ft./see.	$\begin{aligned} & \text { hp } \\ & \text { m. p. h. } \\ & \text { f. p. s. } \end{aligned}$

2. GENERAL SYMBOLS, ETC.
W, Weight, $=m g$
g, Standard acceleration of gravity $=9.80665$ $\mathrm{m} / \mathrm{s}^{2}=32.1740 \mathrm{ft} . / \mathrm{sec} .^{2}$
m, Mass, $=\frac{W}{g}$
ρ, Density (mass per unit volume).
Standard density of dry air, $0.12497\left(\mathrm{~kg}-\mathrm{m}^{-4}\right.$
$m k^{2}$, Moment of inertia (indicate axis of the radius of gyration, 7 , by proper subscript).
S, Area.
S_{w}, Wing area, etc.
G, Gap.
s^{2}) at $15^{\circ} \mathrm{C}$ and $760 \mathrm{~mm}=0.002378$ (lb.- c, Chord length.
ft. ${ }^{-4} \mathrm{sec}^{2}$). $\quad b / c$, Aspect ratio.
Specific weight of "standard" air, 1.2255 f , Distance from C. G. to elevator hinge. $\mathrm{kg} / \mathrm{m}^{3}=0.07651 \mathrm{lb} . / \mathrm{ft}^{3}{ }^{3}$
μ, Coefficient of viscosity.
3. AERODYNAMICAL SYMBOLS
V, True air speed.
q, Dynamic (or impact) pressure $=\frac{1}{2} \rho V^{2}$
L, Lift, absolute coefficient $C_{L}=\frac{L}{q S}$
D, Drag, absolute coefficient $C_{D}=\frac{D}{q S}$
C, Cross-wind force, absolute coefficient $C_{C}=\frac{C}{q S}$
R, Resultant force. (Note that these coefficients are twice as large as the old coefficients L_{C}, D_{C}.)
$\dot{i}_{v 2}$, Angle of setting of wings (relative to thrust β, line).
i_{t}, Angle of stabilizer setting with reference to thrust line.
γ, Dihedral angle.
$\rho \frac{V l}{\mu}$, Reynolds Number, where l is a linear dimension.
e. g., for a model airfoil 3 in. chord, 100 mi./hr. normal pressure, $0^{\circ} \mathrm{C}: 255,000$ and at 15° C., 230,000;
or for a model of 10 cm chord $40 \mathrm{~m} / \mathrm{s}$, corresponding numbers are 299,000 and 270,000.
C_{p}, Center of pressure coefficient (ratio of distance of C. P. from leading edge to chord length).
β, Angle of stabilizer setting with reference to lower wing, $=\left(i_{t}-i_{20}\right)$.
a, Angle of attack.
ϵ Angle of downwash.

REPORT No. 344

THE DESIGN OF PLYWOOD WEBS FOR AIRPLANE WING BEAMS

By GEORGE W. TRAYER
Forest Products Laboratory

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

NAVY BUILDING, WASHINGTON, D. C.

[^0]Joseph S. Ames, Ph. D., Chairman.
President, Johns Hopkins University, Baltimore, Md.
David W. Taylor, D. Eng., Vice Chairman,
Washington, D. C.
Charles G. Abbot, Sc. D.,
Secretary, Smithsonian Institution, Washington, D. C.
George K. Burgess, Sc. D.,
Director, Bureau of Standards, Washington, D. C.
William F. Durand, Ph. D.,
Professor Emeritus of Mechanical Engineering, Stanford University, California.
James E. Fechet, Major General, United States Army,
Chief of Air Corps, War Department, Washington, D. C.
Benjamin D. Foulois, Brigadier General, United States Army,
Chief, Matériel Division, Air Corps, Wright Field, Dayton, Ohio.
Harry F. Guggenheim, M. A.,
President, The Daniel Guggenheim Fund for the Promotion of Aeronautics, Inc., New York City.
William P. MacCracken, Jr., Ph. B., Chicago, Ill.
Charles F. Marvin, M. E.,
Chief, United States Weather Bureau, Washington, D. C.
William A. Moffett, Rear Admiral, United States Navy,
Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
S. W. Stratton, Sc. D.,

President, Massachusetts Institute of Technology, Cambridge, Mass.
J. H. Towers, Commander, United States Navy,

Assistant Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
Edward P. Warner, M. S.,
Editor "Aviation," New York City.
Orville Wright, Sc. D.,
Dayton, Ohio.

> George W. Lewis, Director of Aeronautical Research. John F. Victory, Secretary.
> Henry J. E. Reid, Engineer in Charge, Langley Memorial Aeronautical Laboratory, Langley Field, Va. John J. Ide, Technical Assistant in Europe, Paris, France.

EXECUTIVE COMMITTEE

Joseph S. Ames, Chairman. David W. Taylor, Vice Chairman.

$$
\begin{array}{ll}
\text { Charles G. Abbot. } & \text { William A. Moffett. } \\
\text { George K. Burgess. } & \text { S. W. Stratton. } \\
\text { James E. Fechet. } & \text { J. H. Towers. } \\
\text { Benjamin D. Foulois. } & \text { Edward P. Warner. } \\
\text { William P. MacCracken, Jr. } & \text { Orville Wright. }
\end{array}
$$

Charles F. Marvin.
John F. Victory, Secretary.

REPORT No. 344

THE DESIGN OF PLYWOOD WEBS FOR AIRPLANE WING BEAMS

By George W. Trayer ${ }^{1}$

Abstract

SUMMARY This report of the Forest Products Laboratory deals with the design of plywood webs for wooden box beams to obtain maximum strength per unit weight. A method of arriving at the most efficient and economical web thickness, and hence the most suitable unit shear stress, is presented and working stresses in shear for various types of webs and species of plywood are given. The questions of diaphragm spacing and required glue area between the webs and the flange are also discussed.

INTRODUCTION

The study of wooden box wing beams built with spruce flanges and plywood webs involves, first, the design of the flanges and, second, the design of the webs. The design of the flanges is discussed in previous aircraft reports prepared by the Forest Products Laboratory, United States Department of Agriculture, for publication by the National Advisory Committee for Aeronautics (Reports Nos. 181 and 188). The present report deals with the results of tests relating to the design of the webs. Approximately 200 representative box and double I beams were tested at the Forest Products Laboratory for the purpose of developing the most efficient and economical design of plywood webs and to determine the working stresses for various types of webs. The project was conducted in cooperation with the Bureau of Aeronautics, Navy Department.

FUNCTION OF THE WEBS

The function of the plywood webs of box beams for airplane wings is to resist a very minor portion of the bending moment and the major portion of the shear acting on the beam. Tests made at the Forest Products Laboratory indicate that, with plywood in which the grain of successive plies is alternately parallel and perpendicular to the longitudinal axis of the beam, only that portion of the plywood in which the grain is parallel to the axis should be considered in calculating the moment of inertia I. With plywood in which the grain of alternate plies forms angles of $\pm 45^{\circ}$ with the longitudinal axis of the beam one-half the thickness of the plywood may be considered in calculating I. In

[^1]calculating the form factor of a box section with either type of web, however, the total thickness of the plywood should be used.
Sheai stresses are a maximum over the plywood portion of the cross section of the beam. Hence the chief function of the plywood webs is to resist these stresses with a minimum of distortion. Keeping distortion to a minimum is especially important when beams are subjected to combined bending and axial compression.

FORMULAS FOR COMPUTING SHEAR

Before we can discuss allowable design stresses for plywood webs, we must decide upon a formula with which to compute the maximum shear stress in a box beam. Two formulas are recommended and it will generally be found that the results they yield agree quite closely. The two formulas ${ }^{2}$ are:

$$
\begin{align*}
& q=\frac{V Q}{I t} \tag{1}\\
& q=\frac{V}{a t} \tag{2}
\end{align*}
$$

In each formula t represents the total thickness of both webs, V the external shear, q the shear stress in pounds per square inch, Q the statical moment of the area above or below the neutral axis when the maximum shear stress is desired, I the moment of inertia of the section, and a the distance between the centers of gravity of the flanges exclusive of the plywood. The same rules, expressed in a preceding paragraph, apply to the calculation of Q that apply to I as regards thickness of plywood considered, but t is the total thickness of both webs.
The external shear V is the derivative of the bending moment and this fact applies to a beam either with or without axial load accompanying a transverse load. For combined axial and transverse load the shear V is also numerically equal to the sum of the shear from side load and the component of the axial load that is normal to the elastic curve.
For a beam subjected to an axial compression and a concentrated load at the center

$$
\begin{equation*}
V=\frac{W}{2 \cos \frac{L}{2 J}} \tag{3}
\end{equation*}
$$

[^2]in which W is the side load, L the length of span, and
\[

$$
\begin{equation*}
J=\sqrt{\frac{E I}{P}} \tag{4}
\end{equation*}
$$

\]

In this abbreviated formula, (4), P is the axial load, E the modulus of elasticity, and I the moment of inertia.
For a beam subjected to an axial compression and equal concentrated side loads at the third points,

$$
\begin{equation*}
V=\frac{W}{2 \sin L / J}\left(\sin \frac{2 L}{3 J}+\sin \frac{L}{3 J}\right) \tag{5}
\end{equation*}
$$

From this we obtain the approximate formula

$$
\begin{equation*}
V=\frac{W}{2}\left(1+\frac{P L^{2}}{9 E I}\right) \tag{6}
\end{equation*}
$$

by using the first two terms of the sine series and by dropping all powers of $\frac{L}{J}$ greater than the second.

This approximate formula, (6), was used to calculate the shear values given in Tables I and II.

For an axially loaded beam having a uniformly distributed side load,

$$
\begin{equation*}
V=w J \tan \frac{L}{2 J} \tag{7}
\end{equation*}
$$

in which w is the load per unit length. From this we obtain the approximate formula

$$
\begin{equation*}
V=\frac{w L}{2}\left(1+\frac{P L^{2}}{12 E I}\right) \tag{8}
\end{equation*}
$$

by using the first two terms of the series for $\tan \frac{L}{2 J}$.
The exact expressions for the bending moments corresponding to the preceding and other loading conditions may be found in Prescott's Applied Elasticity. ${ }^{3}$ From these the corresponding exact expressions for the shear are obtained by differentiating with respect to x.

STRENGTH OF PLYWOOD VARIES WITH DENSITY

In general, dense wood of any species has greater strength than wood of low specific gravity. As a matter of fact, fairly definite mathematical relations between specific gravity and the various strength properties have been worked out. Plywood is no exception to the general rule and it must be expected that for any series of tests on plywood of a given species to be of value either the density of the wood must be known or the number of tests must be great enough for the average to be representative of the species. The recommendations that are to follow are based on the results of nearly 200 tests made at the Forest Products Laboratory on box and double I beams with plywood webs, the quality of which was fairly definitely known. Accompanying tables give the results of these tests.

[^3]
BASIS FOR ARRIVING AT DESIGN STRESS

The most effective way of approaching the problem of efficient web thickness and hence correct design shear stress is to test a number of beams of suitable over-all dimensions and various web thicknesses and to compare their efficiencies. By efficiency is meant maximum load divided by beam weight. Figure 1

Figure 1.-The relation between load-weight ratio and thickness of web for 3 by $87 / 16$ inch box beams with the grain of the plywood webs at ± 45 degrees to the length of the beam. Flange depth $11 / 2$ inches
shows the results of such a series for spruce and yellow poplar webs with the grain running at an angle of $\pm 45^{\circ}$ to the length of the beam. The beams were 3 inches wide by $87 / 16$ inches deep with flanges $1 \frac{1}{2}$ inches deep. Two loads 44 inches apart were symmetrically applied between the supports, which were 16 feet apart. The results used in Figure 1 are taken from Tables III, IV, V, and VI. A great number of tests would group themselves in a milky way along the line CDGB and between the bounding lines UEF and LHI, which represent the maximum and minimum values for the group. The line $A B$ is calculated on the basis of failure in the compression flange and a weight of 27 pounds per cubic foot. The line CD is based on the loads that the two flanges will sustain after the web has collapsed. The line CD will naturally slope down-

No Diaphragms
No Diaphragms
No Diaphragms
BEAM WITHOUT DIAPHRAGMS
 DIAPHRAGM SPACING FOR BEAMS NOS. 69D-71D-73D AND 75D-TABLE 5
ward to the right to the point where the maximum load for a box beam exceeds the load that the two flanges alone will sustain. Along the line DG failure will be by shear and the shear stresses represented by this line are shown in the upper portion of the figure. The intersection of $D G$ and $A B$ represents the theoretical thickness of web and the resulting shear stress at which there will be equal likelihood of failure by shear or by compression in the compression flange. What actually happens, however, is that beams with a web thickness represented by the intersection of these curves fail in the compression flange although they buckle in the web and consequently give lower average values than those indicated by the intersection. Therefore, in place of a maximum shear stress of 1,225 pounds per square inch, as shown on the upper curve, a stress of about 1,175 pounds should be expected. The fillet in the shear curve produces the fillet GK in the efficiency curve and throws the point of maximum efficiency to a web thickness of approximately 0.13 inch, which corresponds to a shear stress of 1,135 pounds.

There is one important matter that is commended to the careful attention of the designer at this point. It has to do with minimum values. If a web thickness that gives equal likelihood of failure by shear or by compression is selected, there is a possibility of getting a beam low either in shear or in compressive strength. By using a slightly heavier web with practically no loss in efficiency the chances of getting a dangerous minimum are reduced 50 per cent. Further, a glance at the line of minima LHI (fig. 1) shows that the maximum of these minimum values is at a thickness greater than that recommended. Considering all these facts, a recommended shear stress of 1,000 pounds per square inch for 45° webs of beams without diaphragms seems the best from the standpoint of safety and economy.

That more of the points of Figure 1 are above the average line than below is accounted for by the facts that more of the material was above the average in quality than below and that, although the average line is based on spruce webs, a number of the beams shown had yellow poplar webs, which on the average are somewhat stronger than spruce.

USE OF DIAPHRAGMS

No exhaustive study of the proper spacing and size of diaphragms was made. In a few instances, however, beams were made with diaphragms to point out their possibilities. Thus beams 73D, 77D, and 81D, Table V, all of which failed in shear, can be compared directly with 72,76 , and 80 , respectively. The first set had diaphragms spaced as shown in Figure 2 while the second three had no diaphragms. Beams 10,15 , and 20, Table VI, can also be compared with other beams in this same group; their diaphragm spacing is also shown in Figure 2. While beam 9 without
diaphragms failed in shear at 934 pounds per square inch shear stress, No. 10 with the same thickness of plywood and a diaphragm spacing of two and threetenths times the clear distance between flanges failed in compression. It must be noted, however, that beams 7 and 8 with thicker webs and no diaphragms gave better load-weight ratios. Beam 15, with very thin plywood of low-density stock and diaphragms spaced two and three-tenths times the clear distance between flanges, failed in shear with a maximum shear stress intensity of 1,482 pounds per square inch. Beam 20, with thin webs of high-density stock and with a diaphragm spacing of one and sixteen onehundredths times the clear distance between flanges, failed in compression when the maximum shear intensity was 1,992 pounds per square inch.
The beam sections listed in Table VII, which were tested in shear, show too, in a limited measure, the effect of diaphragm spacing. For example, S-6 and S-7, with high-density webs and with 20 inches between end blocks, average over 1,800 pounds per square inch, while $\mathrm{S}-18$ and $\mathrm{S}-19$, with even slightly greater density but with 74 inches between end blocks, average only 1,050 pounds per square inch.

RECOMMENDED DESIGN STRESSES IN SHEAR FOR 45-DEGREE PLYWOOD

A careful analysis of the nearly 200 tests previously mentioned leads to the following recommended shear stresses for either 2-ply or 3-ply 45° plywood webs for box beams of a depth not greatly exceeding the maximum depth of those tested ($95 / 8$ inches).
When no diaphragms are used or when the diaphragm spacing exceeds three times the clear distance between flanges, use four-thirds of the design stress in shear recommended for the species. (Table VIII.) The actual values for four species follow:

Spruce: 1,000 pounds per square inch.
Yellow poplar: 1,070 pounds per square inch.
True mahogany: 1,150 pounds per square inch.
Birch: 1,735 pounds per square inch.
For a diaphragm spacing from one and one-half to two and one-half times the clear distance between flanges use five-thirds of the design stress in shear recommended for the species. Some actual values follow:

Spruce: 1,250 pounds per square inch.
Yellow poplar: 1,335 pounds per square inch.
True mahogany: 1,435 pounds per square inch.
Birch: 2,165 pounds per square inch.
For a diaphragm spacing up to one and one-half times the clear distance between flanges use double the design stress in shear recommended for the species. Actual values follow:

Spruce: 1,500 pounds per square inch.
Yellow poplar: 1,600 pounds per square inch.
True mahogany: 1,720 pounds per square inch.
Birch: 2,600 pounds per square inch.

A study of the results of shearing tests and static tests of beams leads to the conclusion that plywood webs are most efficient when the grain of one ply is at 90° to the grain in adjacent plies, when the web is so arranged that the grain of half of the materials is at 90° to the grain of the other half, and when the grain of all the plies is at $\pm 45^{\circ}$ to the longitudinal axis of the beam.

DESIGN SHEAR STRESSES FOR PARALLEL-PERPENDICULAR PLYWOOD

Allowable shear stresses for plywood webs so constructed that the plies are alternately parallel and perpendicular to the length of the beam should not exceed $87 \frac{1}{2}$ per cent of those recommended for 45° plywood. The beams with 45° plywood webs are also stiffer than the others, because of the fact that the shearing modulus for the 45° webs is higher than for the parallel-perpendicular webs.

The shearing moduli recommended for both types of webs appear in the second paragraph following.

DESIGN SHEAR STRESSES FOR SPECIES OF PLYWOOD NOT LISTED

Stresses for plywood of species other than those listed can be obtained from the shear values of the wood given in standard strength tables by applying the same factors as those required to obtain the values for the four species of plywood listed.

SHEARING MODULI FOR PLYWOOD WEBS

The shearing modulus or mean modulus of rigidity of spruce wood is equal to the modulus of elasticity along the grain divided by 15.5 and the shearing modulus of 45° spruce plywood is five times the shearing modulus of spruce wood. Therefore, the shearing modulus of 45° spruce plywood may be obtained by dividing the modulus of elasticity of spruce by 3.1. These ratios have not been definitely obtained for other species, but scattered tests indicate that the radio of modulus of elasticity to modulus of rigidity ranges between 14 and 18 .
Very few data are available relative to the shearing modulus of plywood webs the grain of which is alternately parallel and perpendicular to the length of the beam. What data are available indicate that the shearing modulus of such plywood is the same as that for solid wood of the same species. In other words, the shearing modulus of 45° plywood is about three times as great as that for parallel-perpendicular plywood.

SHEAR STRESSES IN BENDING COMPARED WITH SHEAR STRESSES IN TORSION

For a diaphragm spacing up to one and one-half times the clear distance between flanges, an ultimate shear stress of 1,500 pounds per square inch is recommended for spruce plywood webs of beams subjected
to bending or to combined axial and side load. Tests of a large number of torsion specimens indicate that a much higher calculated ultimate shear stress is obtained in torsion. In fact, the average for a series of torsion tests was 2,370 pounds per square inch. This value is recommended for spruce plywood under torsional stresses when the diaphragm spacing does not exceed one and one-half times the unsupported height of the plywood.

COMPARISON OF FOREST PRODUCTS LABORATORY TESTS WITH OTHER TESTS

All Forest Products Laboratory tests, with the exception of those listed in Table VII, were made on comparatively long beams in which the filler blocks at the end reaction points and at the load points were not glued to the flanges or webs and in fact had actually been waxed in order to prevent any shearing resistance. The results given in Table VII are for beam sections tested as illustrated in Figures 3 and 4. The shear blocks shown in these figures were made in various lengths with flanges either 1 inch or $1 \frac{1}{2}$ inches deep. Filler blocks were fitted but not glued in the ends. The results of all tests, therefore, represent the resistance to shear offered by the webs only. Manufacturers and others, in testing short beams in which filler blocks have been glued, repeatedly report higher stresses than those representative of the webs tested. There are two reasons for this. First, the shear formulas for beams are increasingly inaccurate as the span-depth ratio is reduced and, second, the glued-in filler blocks take part of the shear. As the glued-in filler blocks occupy an increasing: percentage of the length of the beam, their resistance to shear increases until a point is reached where no webs would be required. Our stresses represent what the webs will take and any allowance for the shear taken by the filler blocks must be provided for by the designer.

GLUE AREA BETWEEN WEB AND FLANGE

Very often the question of glue area between flanges and webs is given insufficient consideration by the designer. It has been the practice at the Forest Products Laboratory to determine the stress on this glue area by dividing the maximum shear in 1 inch of the plywood by the area of contact per inch between the plywood and the flanges. For example, the shear stress on the area of contact is

$$
\begin{equation*}
f=\frac{q t^{\prime}}{d} \tag{9}
\end{equation*}
$$

in which q is the maximum shear stress in the plywood, t^{\prime} the thickness of one web, d the depth of flange, and f the shear stress required.

In arriving at a suitable value for the allowable shear stress between flange and web, two things must be considered. First, the grain of the plywood is not
parallel to the grain of the flanges and therefore the bond between the two as far as shear is concerned is no greater than that between successive plies of plywood, which is about one-half of that for glued construction in which the grain of the different pieces is all in one direction. Second, as the beam deflects secondary

Fig Ure 3.-One method used to apply shearing loads to relatively short beam sections. (The dimensions of the test pieces appear in Table VII)
stresses are set up, the distribution across the entire area of contact is not uniform, and failures occur at a calculated uniform stress of about one-half the crossbanding figure or one-fourth the shearing stress of the wood parallel to the grain.
There is no doubt that with long spans, slender cap strips, and no diaphragms, the secondary stresses would exceed the primary stresses. Likewise, there are conditions under which the secondary stresses would be small in comparison with the primary stresses. We know only in a very general way, however, the extent to which the various factors influence these secondary stresses and therefore we can not take advantage of the low secondary stresses that exist at times.
Insufficient data are available in regard to the stresses at which failure will occur in the glue and the influence of secondary stresses upon such failures. The few cases that are presented in the following discussion, however, yield some information on this subject.

PN-7 beams 1 to 9, Table IX, had flanges in the overhang that varied in thickness and a total shear in the overhang that was uniform. Hence, the stress on
the area of contact varied. The first value in Table X is for the stress at the outboard edge of the block at the outer support and the second value is the stress at the inboard edge or the block set in the end of the beam. It must be remembered in this connection that the test beams extended 59.28 inches beyond the outer support and that a 6 -inch block was set in the end of each to take a concentrated load 56.28 inches from the outer support.

TAble X.-SHEAR STRESSES IN THE GLUE LINE OF TABLE IX BEAMS HAVING FLANGES OF VARYING THICKNESS IN THE CANTILEVER

Beam number	Shear stress	Failure
	Pounds per square inch	
PN-7-1	230 to 309	Other than glue.
PN-7-2	249 to 334	Do.
PN-7-3	221 to 298	Do.
PN-7-4	280 to 382	Glue.
PN-7-5	291 to 392	Do.
PN-7-7	164 to 217 279 to 403	Other than glue.
PN-7-8	244 to 330	Diue.
PN-7-9	153 to 196	Other than glue.

When failure occurred in the glue line it started not near the end of the beam but at the outboard edge of

Figure 4.-A second method used to apply shearing loads to beam sections. (The dimensions of the test pieces appear in Table VII)
the block, at the strut point, where the shear stress was the lowest. This was due to the secondary stresses at that point.

PN-7 beams 10,11 , and 12 , Table IX, all have a uniform flange thickness in the cantilever. Table XI gives the stress in the glue line.

Table XI--SHEAR STRESSES IN THE GLUE LINE OF TABLE IX BEAMS HAVING FLANGES OF UNIFORM THICKNESS IN THE CANTILEVER

Beam number	Shear stress	Failure
$\begin{aligned} & \text { PN-7-10. } \\ & \text { PN-7-11. } \\ & \text { PN-7-12. } \end{aligned}$	Pounds per square inch 197 203 153	Glue. Other than glue. Do.

Very few additional data are available. In Air Service Information Circular No. 516, The Design of Plywood Webs for Box Beams, by R. A. Miller, there are reported two beams tested by the Air Service, Engineering Division, which failed in the glue line at a calculated stress of 284 pounds per square inch. Beam No. III, Table II of the present paper, and beams 12, 13, and 15 , Table III, failed in the glue line at stresses ranging from 52 to 114 pounds per square inch. These beams were made and tested seven or eight years ago, since when there has been considerable development in the art of gluing and some development in glues. Of our more recent tests, one beam, PN-7-10, failed at a stress slightly below 200 pounds per square inch. The other failures are at calculated stresses much higher than 200 pounds per square inch.
Considering all factors and bearing in mind that no economic design figure can shut out every possibility of failure in the glue, it seems desirable that the glue area between web and flange be based on an allowable stress of one-fourth the shear stress of the wood being glued. If two different species are being glued
together, the shear stress of the weaker species should govern.

CONCLUSIONS

As a result of this investigation it is concluded that, to obtain a balance between economy and safety, the following shear stresses should be used in designing 45° plywood webs for wing beams: Twice the customary allowable design stress in shear for the weaker species in the bond, when the diaphragms are spaced not to exceed one and one-half times the clear distance between flanges; five-thirds the stress allowable for the species when the diaphragms are spaced one and one-half to two and one-half times the clear distance between flanges; and four-thirds the stress allowable for the species for a diaphragm spacing of three or more times the clear distance between flanges.
For 3-ply webs with the grain of the plies alternately parallel and perpendicular to the longitudinal axis of the beam, shear stresses should not exceed $87^{1 / 2}$ per cent of those recommended for the 45° construction.
Attention should be given to the question of glue area between the flanges and the webs of box beams. In the light of available information it seems desirable that the stress on this area, when calculated by the method employed in the analysis presented here, should not exceed one-fourth the customary allowable design shear stress for the species of wood used.

Forest Products Laboratory, Forest Service, United States Department of Agriculture,

Table I.-BOX AND DOUBLE I-BEAMS SUBJECTED TO COMBINED AXIAL AND TRANSVERSE LOADING. DATA FROM UNPUBLISHED FOREST \leftharpoondown PRODUCTS LABORATORY REPORT, "USE OF PLYWOOD IN WING BEAMS," BY GEORGE W. TRAYER

$\begin{aligned} & \text { Beam } \\ & \text { No. } \end{aligned}$	Type of beam	$\begin{aligned} & \text { Width } \\ & \text { of } \\ & \text { beam } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { beam } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { flanges } \end{aligned}$		Moisture con-tent	$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \\ & \text { side } \\ & \text { load } \end{aligned}$	$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \\ & \text { end } \\ & \text { load } \end{aligned}$	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { beam } \end{gathered}$	Web construction			E	I	Q	a	V^{\prime}	K	$\begin{gathered} V \\ \text { equals } \\ V^{\prime} K \end{gathered}$	Maximum shear stress		Failure
										Direction of face grain	Ply thick- ness	Actual thickness of 2 webs 2 web								By (1)	By (2)	
				Inches		Per cent	ds	Pounds	Pounds				$1,000 \mathrm{lbs}$. per sq. in.	Inches ${ }^{\text {4 }}$	Inches ${ }^{3}$	ches	Pounds		Pounds	Lbs. per sq. in.	$\begin{gathered} \text { Lbs. per } \\ \text { sq. in. } \end{gathered}$	Shear in webs.
	Box ${ }^{1}$	$\begin{gathered} 1 \\ 2.969 \\ 2.969 \end{gathered}$				11.0 11.0	2,580 2,764	7,0007,500	31.0730.19					123.1123.1	18.79	6.3756.375	1,2901,382					
				2.000 2.000	0.411 .383 .					Vertical		$\begin{array}{rl} 0 \\ 0 & 200 \\ .200 \end{array}$	$\begin{aligned} & 1,262 \\ & 1,058 \end{aligned}$		18.79			1. 1114		$\begin{aligned} & 1,100 \\ & 1,211 \end{aligned}$	$\begin{aligned} & 1,130 \\ & 1,244 \end{aligned}$	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \\ & \text { Do. } \\ & \text { Do. } \end{aligned}$
	Double I	2. 969	8. 375	2. 000	. 377	10.8	3,480	9,500	28.83			200	1,642	121.1	18. 53	6. 375		1. 124			1,535	
8	do	2. 2.969	8.3758.375	2. 2000	. 422	11.410.6	3,3162,948	$\begin{aligned} & 9,000 \\ & 8,000 \end{aligned}$	29. 294	Vertical-		200	1,606	121.1	18.53 18.53	6. ${ }^{6} .375$	$\begin{aligned} & 1,658 \\ & 1,474 \end{aligned}$	1. 1.120	$\begin{aligned} & 1,856 \\ & 1,720 \end{aligned}$	$\begin{aligned} & 1,4 \% 0 \\ & 1,315 \end{aligned}$	$\begin{aligned} & 1,456 \\ & 1,349 \end{aligned}$	
9	Box																				1,349	
10	do	2.9692.9692.9692.9692.969	8. 375	2. 000	398	11.0	$\begin{aligned} & 3,224 \\ & 2,746 \\ & 2,764 \\ & 3,472 \\ & 3,500 \end{aligned}$	$\begin{aligned} & 8,750 \\ & 7,450 \\ & 7,500 \\ & 9,425 \\ & 9,500 \end{aligned}$	$\begin{aligned} & 29.96 \\ & 29.98 \\ & 27.32 \\ & 28.79 \\ & 31.23 \end{aligned}$	$\begin{gathered} \text { Horizontal } \\ \hline 45^{\circ} \text { do-. } \\ 45^{\circ} \end{gathered}$		$\begin{aligned} & .200 \\ & .200 \\ & .200 \\ & .200 \\ & .200 \end{aligned}$	$\begin{aligned} & 1,132 \\ & 1,1 / 3 \\ & 1,095 \\ & 1,413 \\ & 1,421 \end{aligned}$	$\begin{aligned} & 121.1 \\ & 121.1 \\ & 121.1 \\ & 121.1 \\ & 121.1 \end{aligned}$	$\begin{aligned} & 18.53 \\ & 18.53 \\ & 18.53 \\ & 18.53 \\ & 18.53 \end{aligned}$	$\begin{aligned} & 6.375 \\ & 6.375 \\ & 6.375 \\ & 6.375 \\ & 6.375 \end{aligned}$	$\begin{aligned} & 1,612 \\ & 1,373 \\ & 1,382 \\ & 1,736 \\ & 1,750 \end{aligned}$	$\begin{aligned} & \text { 1.166 } \\ & \text { 1.136 } \\ & 1.147 \\ & 1.143 \\ & 1.143 \end{aligned}$	$\begin{aligned} & 1,880 \\ & 1,560 \\ & 1,586 \\ & 1,985 \\ & 2,000 \end{aligned}$	$\begin{aligned} & 1,438 \\ & 1,194 \\ & 1,212 \\ & 1,517 \\ & 1,529 \end{aligned}$	$\begin{aligned} & 1,475 \\ & 1,224 \\ & 1,244 \\ & 1,556 \\ & 1,568 \end{aligned}$	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
11			3. 375	2. 000	393	11.4																
12	do		8. 375	2. 000	351	11.2																
13			8. 375	2. 0000	. 373	10.8																
14			8. 375	2. 000	410	11.5																
5A	do. ${ }^{1}$	2. 9692.9693.0313.1253.031	$\begin{aligned} & 8.375 \\ & 8.375 \\ & 8.375 \\ & 8.375 \\ & 8.375 \end{aligned}$	2. 0002.0002.0002.0002.000	$\begin{array}{r} 411 \\ .383 \\ .377 \\ .322 \\ .422 \end{array}$	$\begin{aligned} & 11.0 \\ & 11.0 \\ & 10.8 \\ & 11.4 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5,744 \\ & 4,532 \\ & 5,306 \\ & 5,524 \\ & 5,416 \end{aligned}$	$\begin{aligned} & 15,800 \\ & 12,300 \\ & 14,400 \\ & 15,000 \\ & 14,770 \end{aligned}$	$\begin{aligned} & 32.23 \\ & 31.42 \\ & 30.63 \\ & 36.25 \\ & 31.61 \end{aligned}$	45° _-............Vertical$45^{\circ}$$45^{\circ}$$45^{\circ}$		$\begin{aligned} & .333 \\ & .333 \\ & .333 \\ & .500 \\ & .333 \end{aligned}$	$\begin{aligned} & 1,893 \\ & 1,17 \\ & 1,456 \\ & 1,656 \\ & 1,642 \\ & 1,464 \end{aligned}$	$\begin{aligned} & 122.1 \\ & 122.1 \\ & 121.4 \\ & 122.4 \\ & 121.4 \end{aligned}$	18.6918.6918.6618.9218.66	$\begin{aligned} & 6.375 \\ & 6.375 \\ & 6.375 \\ & 6.375 \\ & 6.375 \end{aligned}$	$\begin{aligned} & 2,872 \\ & 2,266 \\ & 2,653 \\ & 2,762 \\ & 2,708 \end{aligned}$	$\begin{aligned} & 1.175 \\ & 1.123 \\ & 1.186 \\ & 1.194 \\ & 1.215 \end{aligned}$	$\begin{aligned} & 3,378 \\ & 2,545 \\ & 3,150 \\ & 3,500 \\ & 3,290 \end{aligned}$	$\begin{aligned} & 1,552 \\ & 1,170 \\ & 1,455 \\ & 1,021 \\ & 1,520 \end{aligned}$	$\begin{aligned} & 1,590 \\ & 1,198 \\ & 1,482 \\ & 1,036 \\ & 1,548 \end{aligned}$	Compression. Shear in webs. Compression. Do.
7A	Double																					
10A	B																					
12A	do	$\begin{aligned} & \text { 3. } 031 \\ & \text { 3.031 } \\ & \text { 3.125 } \\ & \text { 3.125 } \\ & \text { 3. 125 } \end{aligned}$	$\begin{aligned} & 8.375 \\ & 8.375 \\ & 8.375 \\ & 8.375 \\ & 8.375 \end{aligned}$	$\begin{aligned} & \text { 2.000 } \\ & \text { 2.000 } \end{aligned}$	$\begin{aligned} & .351 \\ & .410 \\ & .379 \\ & .393 \\ & .373 \end{aligned}$	$\begin{aligned} & 11.2 \\ & 11.5 \\ & 10.6 \\ & 11.4 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 4,200 \\ & 4,422 \\ & 5,234 \\ & 5,488 \\ & 5,416 \end{aligned}$	$\begin{aligned} & 11,400 \\ & 12,000 \\ & 14,200 \\ & 14,900 \\ & 14,700 \end{aligned}$	$\begin{aligned} & 30.24 \\ & 32.80 \\ & 34.41 \\ & 35.18 \\ & 34.12 \end{aligned}$	Horizontal Verticaldo. 45° ---.... Horizontal		$\begin{array}{r} .333 \\ .333 \\ .500 \\ .500 \\ .500 \end{array}$	$\begin{aligned} & 1,154 \\ & 1,138 \\ & 1,355 \\ & 1,625 \\ & 1,355 \end{aligned}$	121.4121.4122.4122.4122.4	$\begin{aligned} & 18.66 \\ & 18.66 \\ & 18.92 \\ & 18.92 \\ & 18.92 \end{aligned}$	6. 3756. 3756.3756. 3756. 375	$\begin{aligned} & 2,100 \\ & 2,211 \\ & 2,617 \\ & 2,744 \\ & 2,708 \end{aligned}$	$\begin{aligned} & 1.211 \\ & 1.226 \\ & 1.222 \\ & 1.195 \\ & 1.230 \end{aligned}$	$\begin{aligned} & 2,541 \\ & 2,712 \\ & 3,795 \\ & 3,280 \\ & 3,330 \end{aligned}$	1,173	$\begin{aligned} & 1,196 \\ & 1,277 \\ & 1,002 \\ & 1,029 \\ & 1,045 \end{aligned}$	Do. Shear in webs. Compression. Do. Do.
14 A																				$\begin{aligned} & 1,254 \\ & 1,254 \\ & 988 \\ & 1,015 \\ & 1,030 \end{aligned}$		
9 A																						
11 A.	-																					
13A.																						
15	Double I	3. 031	$\begin{aligned} & 8.375 \\ & 8.375 \\ & 8.375 \\ & 8.375 \\ & 8.375 \end{aligned}$	$\begin{aligned} & 2.000 \\ & 1.938 \\ & 1.938 \\ & 2.000 \\ & 2.000 \end{aligned}$.387.362.455.434.384	$\begin{aligned} & 12.1 \\ & 12.7 \\ & 11.4 \\ & 11.9 \\ & 11.6 \end{aligned}$	$\begin{aligned} & 4,496 \\ & 4,864 \\ & 5,672 \\ & 5,708 \\ & 4,496 \end{aligned}$	$\begin{aligned} & 12,200 \\ & 13,200 \\ & 15,400 \\ & 15,500 \\ & 12,200 \end{aligned}$	$\begin{aligned} & 30.40 \\ & 29.98 \\ & 34.36 \\ & 34.16 \\ & 30.48 \end{aligned}$			$\begin{array}{r} .333 \\ .333 \\ .333 \\ .333 \\ .333 \end{array}$	$\begin{aligned} & 1,333 \\ & 1,478 \\ & 1,925 \\ & 1,824 \\ & 1,518 \end{aligned}$	$\begin{aligned} & 121.4 \\ & 120.1 \\ & 120.1 \\ & 121.4 \\ & 121.4 \end{aligned}$	$\begin{aligned} & 18.66 \\ & 18.48 \\ & 18.48 \\ & 18.66 \\ & 18.66 \end{aligned}$	$\begin{aligned} & 6.375 \\ & 6.437 \\ & 6.437 \\ & 6.375 \\ & 6.375 \end{aligned}$	$\begin{aligned} & 2,248 \\ & 2,243 \\ & 2,836 \\ & 2,885 \\ & 2,248 \end{aligned}$	$\begin{aligned} & 1.196 \\ & 1.193 \\ & 1.173 \\ & 1.182 \\ & 1.172 \end{aligned}$	$\begin{aligned} & 2,690 \\ & 2,902 \\ & 3,325 \\ & 3,375 \\ & 2,635 \end{aligned}$	$\begin{aligned} & 1,242 \\ & 1,340 \\ & 1,536 \\ & 1,558 \\ & 1,216 \end{aligned}$	$\begin{aligned} & 1,266 \\ & 1,355 \\ & 1,552 \\ & 1,590 \\ & 1,241 \end{aligned}$	Do. Do. Do. Do. Do.
16	$\begin{aligned} & \text { do. } \\ & - \text { do. } \\ & \hline \text { do. } \\ & \hline \text { do. } \\ & \hline \text { do. } \end{aligned}$	$\begin{aligned} & \text { 3. } 031 \\ & \text { 3. } 031 \\ & \text { 3. } 031 \\ & \text { 3. } 031 \end{aligned}$																				
18																						
19																						
20.	Box-	3. $\begin{aligned} & \text { 3. } 031 \\ & \text { 2. } 781 \\ & \text { 2 } 781 \\ & 3 \\ & 2\end{aligned}$. 400	11.7	4,716	12,800	30. 70	45°	1/24-1/12-1/24	. 333	1,638	121.4	18. 66	6. 375	2,358	1. 167	2,750	1,270	1,295	Do.
21			9.625	${ }^{(3)}$. 390	10.8	3,876	11, 940	${ }^{21 .} 94$	45°	1/24-1/12-1/24	. 333	1,484	120.7	15. 00	8. 190	1,939	1.173	2, 272	848	833	
22			9. 625	${ }^{(3)}$. 387	11.2	4, 002	12,325	${ }_{31}^{21.91}$								2, 2 , 321			866 1,280	1, 304	
23	Double I	3. 031	8. 375 8.375	2. 2000 2. 000	.371 .378	12.8 13.4	4,642 4,422	12,600 12,000	31.61 31.36	45°		333 .333	1,403 1,664	122. 12.4	18. 66 18.69	6. 6.375	2, 211	1.193	2, 250	1, 1780	1, 1201	Do.
24	Box ${ }^{1}$.	2. 969	8.375	2. 000	. 378	13.4	4, 422	12,000	${ }^{31.36}$				1,664									
25.	Double	3. 031	8. 375	1. 938	. 369	12.9	4,422	12,000 12,300	31.43 3.78			$.333$	1,440 1,762	120.1 121.4	18. 18.48 18.66	6. 6337 6.375	$\xrightarrow{2,211}$	1.180	$\xrightarrow{2,610}{ }_{2}^{2,602}$	1, 1,206	1, ${ }_{1}^{1,226}$	Do. Do.
26.	do	3. 031	8.375	2. 000	. 388	13.0	4, 532	12, 300	32.78													

${ }^{1}$ Webs glued to two-thirds of flanges,
${ }^{3}$ These 21 as fillets.
The webs of all beams were of yellow poplar plywood and the grain of the core was at 90° to the grain of the faces. All beams were tested in combined loading. The column length was 152.875 inches and the distance slide rule.
$K=1+\frac{P L^{2}}{9 E I}$
$K=1+\frac{P E I}{9 E I}$
$L=152.875$ inche
(1) $q=\frac{V Q}{I t}$
(2) $q=\frac{V}{a t}$

TABLE II.-BOX BEAMS SUBJECTED TO COMBINED AXIAL AND TRANSVERSE LOADING. DATA FROM UNPUBLISHED FOREST PRODUCTS LABORATORY REPORT, "THE USE OF PLYWOOD IN WING BEAMS," BY GEORGE W. TRAYER

In computing I and Q one-half the plywood was considered. All beams had routed flanges. Beams were tested in combined loading. Column length was 152.875 inches and the distance between side load reactions was 141 inches. Side load was symmetrically applied to two points 47 inches apart. Stiffeners
$7 / 32$-inch strip was glued. They were spaced $201 / 2$ inches and simulated the rib connection.

$K=1+\frac{P L^{2}}{9 E I}$

$L=152.875$ inches.
(1) $q=\frac{V Q}{I t}$
(2) $q=\frac{V}{a t}$

Beam No.	$\begin{aligned} & \text { Width } \\ & \text { of } \\ & \text { beam } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { beam } \end{aligned}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { flanges } \end{gathered}$	Specific gravity of $\stackrel{\text { of }}{\text { flanges }}$	$\begin{gathered} \text { Mois- } \\ \text { ture } \\ \text { content } \end{gathered}$	$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \\ & \text { load } \end{aligned}$	Weightofbeam	$\begin{aligned} & \text { Load- } \\ & \text { weight } \\ & \text { ratio } \end{aligned}$	Web construction			E	I	Q	a	V	$\underset{\text { stress }}{\text { Maximum shear }}$		Failure
									Direction of face grain	Ply thickness	Actual thick ness of 2 webs						By (1)	By (2)	
					Per cent	Pounds	Pounds			$\begin{gathered} \text { Inch } \\ 1 / 30-1 / 30-1 / 30 \\ 1 / 16-1 / 6-1 / 16 \\ 1 / 30-1 / 30-1 / 30 \\ 1120-1.20-1 / 20 \\ 1 / 24-1 / 24-1 / 24 \end{gathered}$	Inch	$\begin{aligned} & 1,000 \mathrm{lbs} . \\ & \text { per sq. in. } \end{aligned}$	Inches 4	Inches ${ }^{3}$	Inches	Pounds	$\begin{aligned} & \text { Lbs. per } \\ & \text { sq. in. } \end{aligned}$	$\begin{gathered} \text { Lbs. per } \\ \text { sq. in. } \end{gathered}$	Shear in webs. Compression. Shear in webs. Compression. Shear in webs.
		8. 42	${ }_{1} 1.47$	0. 40	Per cent	3, 150		95.9125.0			0. 216	1,321.	103. 5	14.75	6.95	$1,575$	$\begin{array}{r} 14.038 \\ 1850 \end{array}$		
2	$\begin{aligned} & 2.98 \\ & \text { 2.00 } \\ & \text { 2. } 94 \\ & \text { 2. } 99 \end{aligned}$	8. 45	1.50	$\bigcirc .41$	13.6 10.8				Vertical		$\begin{array}{r} .376 \\ .376 \end{array}$	$\begin{aligned} & 1,512 \\ & 1,638 \end{aligned}$	103. 103.8	14.79 14.94	6. 95	$\begin{aligned} & 2,225 \\ & 1,850 \end{aligned}$		1, 049	
3		8. 8.44	1.50 1.50	. 41	9. ${ }^{9} 2$	3,700 4,630	-30.03	123.2 134.8	do		$\begin{aligned} & .220 \\ & .292 \\ & .290 \end{aligned}$					2,3151,950	$\begin{aligned} & 1,214 \\ & 1,138 \end{aligned}$	$\begin{array}{r} 852 \\ 1,211 \\ 1,142 \\ 1,120 \end{array}$	
4		8.44	1.48	. 44	8.6	4,900	34. 35 33.98	114.8			. 232		104. 2	14.90 14.88	6. 6.94		$\begin{aligned} & 1,138 \\ & 1,200 \end{aligned}$	$\begin{aligned} & 1,142 \\ & 1,207 \end{aligned}$	
	$\begin{aligned} & \text { 3. } 00 \\ & \text { 3. } 00 \\ & \text { 2.98 } \\ & \text { 3. } 00 \\ & \text { 3. } 02 \end{aligned}$	8.41	1. 46	. 43	9.3	3,800	33. 83	112.3	do	$1 / 24-1 / 24-1 / 24$ $1,20-1 / 20-1 / 20$ 1/16-1/16-1/16 1/12-1/12-1/12 1/24-1/24-1/24	.230.290.374.490.220	$\begin{aligned} & 1,520 \\ & 1,462 \\ & 1,495 \\ & 1,607 \\ & 1,307 \end{aligned}$	$\begin{array}{r} 102.8 \\ 103.4 \\ 95.8 \\ 8.8 \\ 106.8 \end{array}$	$\begin{aligned} & 14.76 \\ & 14.82 \\ & 13.61 \\ & 12.50 \\ & 15.24 \end{aligned}$	$\begin{aligned} & 6.95 \\ & \text { 6. } 96 \\ & 7.10 \\ & 7.22 \\ & \text { 6. } 95 \end{aligned}$	$\begin{aligned} & 1,900 \\ & 2,090 \\ & 2,080 \\ & 1,865 \\ & 1,650 \end{aligned}$	$\begin{array}{r} 1,186 \\ 1,033 \\ 790 \\ 536 \\ 1,072 \end{array}$	$\begin{array}{r} 1,188 \\ 1,035 \\ 783 \\ 527 \\ 1,078 \end{array}$	Do.Compression.Do.Do.Shear in webs.
		8. 44	1.48	. 41	10.3	4,180	35. 04	119.3	do										
8		8. 8.45 8.44	1.35	. 40	10.2 10.0	4,160 3,730	33.99 32.39	122.4 115.3	- do-										
10		8. 45	1. 50	. 39	9.3	3,300	31.54	104.8											
11	3. 013. 023. 002. 982. 98	$\begin{aligned} & \text { 8. } 45 \\ & \text { 8. } 46 \\ & \text { 8. } 43 \\ & \text { 8. } 45 \\ & \text { 8. } 46 \end{aligned}$	$\begin{aligned} & \text { 1. } 50 \\ & \text { 1.50 } \\ & \text { 1.50 } \\ & \text { 1.50 } \\ & \text { 1. } 50 \end{aligned}$	$\begin{array}{r} .40 \\ .39 \\ .39 \\ .38 \\ .38 \end{array}$	$\begin{array}{r} 10.2 \\ 9.8 \\ 9.5 \\ 9.8 \\ 9.7 \end{array}$	3,1004,6254,6754,3254,425	$\begin{aligned} & 31.71 \\ & 35.19 \\ & 34.92 \\ & 33.81 \\ & 33.83 \end{aligned}$	$\begin{array}{r} 97.7 \\ 131.5 \\ 133.9 \\ 127.9 \\ 130.8 \end{array}$			$\begin{aligned} & .220 \\ & .300 \\ & .296 \\ & .362 \\ & .362 \end{aligned}$	$\begin{aligned} & 1,288 \\ & 1,504 \\ & 1,550 \\ & 1,516 \\ & 1,544 \end{aligned}$	$\begin{aligned} & 106.1 \\ & 105.1 \\ & 103.8 \\ & 102.3 \\ & 102.6 \end{aligned}$	$\begin{aligned} & 15.16 \\ & 15.06 \\ & 14.95 \\ & 14.68 \\ & 14.75 \end{aligned}$	$\begin{aligned} & \text { 6. } 95 \\ & \text { 6. } 96 \\ & \text { 6. } 93 \\ & \text { 6. } 95 \\ & \text { 6. } 96 \end{aligned}$	$\begin{aligned} & 1,550 \\ & 2,312 \\ & 2,338 \\ & 2,162 \\ & 2,212 \end{aligned}$	$\begin{array}{r} 1,007 \\ 1,105 \\ 1,137 \\ 857 \\ 878 \end{array}$	1,0741,0141,1071,140859878	
12																			
13																			
14.																			
16	3. 00	$\begin{aligned} & \text { 8. } 45 \\ & \text { 8. } 45 \\ & \text { 8. } 47 \\ & \text { 8. } 47 \\ & \text { 8. } 45 \end{aligned}$	1. 501. 501. 501. 501. 49	.39.41.41.41.39	$\begin{aligned} & 11.0 \\ & 10.2 \\ & 12.8 \\ & 13.1 \\ & 12.8 \end{aligned}$	4,6254,8004,6254,6704,4704,250	$\begin{aligned} & 37.41 \\ & 37.14 \\ & 36.93 \\ & 36.52 \\ & 32.45 \end{aligned}$	$\begin{aligned} & 123.6 \\ & 129.2 \\ & 125.2 \\ & 122.4 \\ & 131.0 \end{aligned}$			$\begin{array}{r} .494 \\ .400 \\ .294 \\ .296 \\ .242 \end{array}$	1,7321,7231,5061,5321,615	$\begin{aligned} & 100.4 \\ & 100.3 \\ & 105.8 \\ & 105.6 \\ & 107.4 \end{aligned}$	$\begin{aligned} & 14.54 \\ & 14.54 \\ & 15.12 \\ & 15.11 \\ & 15.43 \end{aligned}$	$\begin{aligned} & 6.95 \\ & 6.95 \\ & 6.97 \\ & 6.97 \\ & 6.96 \end{aligned}$	$\begin{aligned} & 2,312 \\ & 2,400 \\ & 2,312 \\ & 2,235 \\ & 2,125 \end{aligned}$	$\begin{array}{r} 678 \\ 695 \\ 1,125 \\ 1,080 \\ 1,261 \end{array}$	$\begin{array}{r} 674 \\ 691 \\ 1,129 \\ 1,084 \\ 1,261 \end{array}$	Compression.Do.Do.Do.Shear in webs.
17	$\begin{aligned} & \text { 3.00 } \\ & \text { 3. } 00 \\ & \text { 3. } 02 \\ & \text { 3. } 01 \end{aligned}$																		
18 19																			
20																			
21	3. 00	$\begin{aligned} & 8.42 \\ & \text { 8. } 46 \\ & \text { 8. } 45 \\ & \text { 8. 44 } \\ & \text { 8. } 44 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.50 \\ & 1.50 \\ & 1.50 \\ & 1.50 \end{aligned}$.40.40.49.46	12.8	$\begin{aligned} & 4,370 \\ & 4,200 \\ & 4,260 \\ & 4,285 \\ & 3,850 \end{aligned}$	$\begin{aligned} & 33.93 \\ & 32.80 \\ & 32.14 \\ & 36.63 \\ & 35.10 \end{aligned}$	$\begin{aligned} & 128.8 \\ & 128.1 \\ & 132.5 \\ & 111.5 \\ & 109.6 \end{aligned}$		$1 / 24-1 / 24-1 / 24$$130-1 / 30-1 / 30$$130-1 / 30-1 / 30$$1 / 2-1 / 24-1 / 24$$1 / 24-1 / 24-1 / 24$$1 / 24$	$\begin{aligned} & .238 \\ & .220 \\ & .228 \\ & .252 \\ & .252 \end{aligned}$	$\begin{aligned} & 1,565 \\ & 1,524 \\ & 1,522 \\ & 1,455 \\ & 1,445 \end{aligned}$	$\begin{aligned} & 106.4 \\ & 108.2 \\ & 108.5 \\ & 104.5 \\ & 104.8 \end{aligned}$	$\begin{aligned} & 15.40 \\ & 15.54 \\ & 15.57 \\ & 15.05 \\ & 15.04 \end{aligned}$	$\begin{aligned} & 6.92 \\ & 6.96 \\ & 6.95 \\ & 6.94 \\ & 6.94 \end{aligned}$	$\begin{aligned} & 2,185 \\ & 2,100 \\ & 2,130 \\ & 2,042 \\ & 1,925 \end{aligned}$	$\begin{aligned} & 1,329 \\ & 1,371 \\ & 1,340 \\ & 1,165 \\ & 1,096 \end{aligned}$	$\begin{aligned} & 1,326 \\ & 1,371 \\ & 1,344 \\ & 1,168 \\ & 1,101 \end{aligned}$	Compression Side buckling Shear in webs. Do.
22	$\begin{aligned} & \text { 3. } 01 \\ & \text { 3. } 02 \\ & \text { 3. } 00 \\ & \text { 3. } 00 \end{aligned}$				$\begin{aligned} & 12.8 \\ & 12.2 \\ & 12.0 \\ & 13.8 \end{aligned}$														
${ }_{24}^{23}$																			
25				44	14.2														
26.	2.993.01	$\begin{aligned} & 8.45 \\ & 8.45 \end{aligned}$	1.501.50	.47.45	12.613.3	$\begin{aligned} & 3,320 \\ & 3,275 \end{aligned}$	$\begin{aligned} & 36.60 \\ & 35.20 \end{aligned}$	$\begin{aligned} & 90.8 \\ & 93.1 \end{aligned}$		$\begin{aligned} & 1 / 24-1 / 24-1 / 24 \\ & 1 / 24-1 / 24-1 / 24 \end{aligned}$	$\begin{array}{r} 246 \\ .248 \end{array}$	$\begin{aligned} & 1,958 \\ & 1,842 \end{aligned}$	$\begin{aligned} & 107.0 \\ & 107.9 \end{aligned}$	$\begin{aligned} & 15.40 \\ & 15.51 \end{aligned}$	$\begin{aligned} & 6.95 \\ & \text { 6. } 95 \end{aligned}$	1, 660 1,638	${ }_{950}^{971}$	${ }_{950}^{971}$	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
27																			

The webs of all beams were of yellow poplar plywood and the grain of the core was at 90° to the grain of the faces. Nominal dimensions of the beams were 3 by $87 / 16$ inches by 16 feet $41 / 2$ inches. The test span was 16 feet and two toads were symmetrically applied at points 44 inches apart. In cal
one-half the thickness was used. All calculations were made with a slide rule.
(1) $q=\frac{V Q}{I t}$
(2) $q=\frac{V}{a t}$

Table IV.-box beams subjected to transverse loading only. Data from unpublished forest products laboratory
REPORT, "USE OF PLYWOOD IN AIRPLANE WING BEAMS," BY G. E. HECK

The webs of all beams were of yellow poplar plywood. Nominal dimensions of the beams were 3 by $87 / 6$ inches by 16 feet $47 / 2$ inches. The test span was 16 feet and two loads were symmetrically applied at points 44 ine webs of all beams were or yell
(1) $q=\frac{V Q}{I t}$
(2) $q=\frac{V}{a t}$

Table V.-BOX BEAMS SUBJECTED TO TRANSVERSE LOADING ONLY. DATA FROM UNPUBLISHED FOREST PRODUCTS LABORATORY REPORT, "USE OF PLYWOOD IN AIRPLANE WINGS BEAMS," BY G. E. HECK

$\begin{aligned} & \text { Beam } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { of } \\ & \text { beam } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { beam } \end{aligned}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { flanges } \end{gathered}$	Diaphragms	Speci-fic- gravflanges	$\begin{aligned} & \text { Mois- } \\ & \text { ture } \\ & \text { con- } \\ & \text { tent } \end{aligned}$	$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \\ & \text { load } \end{aligned}$	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { beam } \end{gathered}$	$\begin{gathered} \text { Load- } \\ \text { weight } \\ \text { ratio } \end{gathered}$	Web construction						E	I	Q	a	V	Maximum shear stress		Failure
										Direction of face grain	Direction of core grain	Grain of faces in opposite webs	Grain of faces in each web	Ply thickness	Actual thickness of 2 webs						By (1)	By (2)	
68	$\begin{gathered} \text { Inches } \\ 2.98 \end{gathered}$	$\begin{array}{\|c} \text { Inches } \\ 8.39 \end{array}$	$\begin{gathered} \text { Inches } \\ 1.47 \end{gathered}$	$\begin{gathered} \text { Inches } \\ \text { None-.-. } \end{gathered}$	0. 403	$\begin{gathered} \text { Per } \\ \text { cent } \\ 9.6 \end{gathered}$	$\begin{gathered} L b s . \\ 4,788 \end{gathered}$	${ }_{37.65}^{L b s .}$	127.2	Vertical_	Longitudi-	Parallel.-.-	Parallel	$\begin{gathered} \text { Inch } \\ 1 / 16^{-1 / 8-1 / 16 \ldots} \end{gathered}$	$\begin{aligned} & \text { Inch } \\ & 0.484 \end{aligned}$	$\begin{gathered} 1,000 \\ c b s, p e r \\ \text { sq, in. } \\ 1,660 \end{gathered}$	$\begin{gathered} \text { Inches } 4 \\ 100.8 \end{gathered}$	$\begin{aligned} & \text { Inches }{ }^{3} \\ & 14.83 \end{aligned}$	$\begin{gathered} \text { Inches } \\ 6.92 \end{gathered}$	$\underset{2,394}{L b s .}$	$\begin{gathered} \text { Lbs. } \\ \text { persq. } \\ \text { in. } \\ 728 \end{gathered}$	$\begin{gathered} \text { Lbs. } \\ \text { per } \begin{array}{c} \text { inq. } \\ \text { in } \end{array} . \end{gathered}$	Compression.
698 70	2.97 ${ }_{2}^{2.97}$	8.37 8.38	1.46 1.47	Spaced 177/6------- None---	. 404	10.6 10.4	$\begin{aligned} & 4,740 \\ & 4,590 \end{aligned}$	$\begin{aligned} & 37.68 \\ & 36.31 \end{aligned}$	$\begin{aligned} & 125.8 \\ & 126.4 \end{aligned}$	45° do....		Perpendic-	-.do-	$\begin{aligned} & 1 / 6-1 / 6-1 / 6 \ldots \\ & 1 / 6-1 / 8-1 / 16-\ldots \end{aligned}$	$.480$	$\begin{aligned} & 1,672 \\ & 1,610 \end{aligned}$	$\begin{array}{r} 99.7 \\ 100.4 \end{array}$	$\begin{aligned} & 14.67 \\ & \text { 14. } 74 \end{aligned}$	$\begin{aligned} & 6.91 \\ & 6.91 \end{aligned}$	$\begin{aligned} & 2,370 \\ & 2,295 \end{aligned}$	$\begin{aligned} & 726 \\ & 702 \end{aligned}$	$\begin{aligned} & 714 \\ & 692 \end{aligned}$	$\begin{aligned} & \text { Do. } \\ & \text { Tension. } \end{aligned}$
71 D	2.98 2.99	8.36 8.41	1. 1.47	Spaced 177/i6 None..	. 402	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4,610 \\ & 3,615 \end{aligned}$	$\begin{aligned} & 38.22 \\ & 33.39 \end{aligned}$	$\begin{aligned} & 120.6 \\ & 108.3 \end{aligned}$	$\begin{aligned} & 45^{\circ} \\ & \text { Vertical } \end{aligned}$	45° Longitudi-	$\begin{gathered} \text { do } \\ \hline \text { Parallel } \end{gathered}$	do-	$\begin{aligned} & 1 / 6-1 / 6-1 / 6 \\ & 1 / 32-1 / 16-1 / 32 \end{aligned}$	$\begin{aligned} 494 \\ .252 \end{aligned}$	$\begin{aligned} & 1,698 \\ & 1,582 \end{aligned}$	$\begin{aligned} & 100.2 \\ & 105.9 \end{aligned}$	$\begin{aligned} & 14.76 \\ & 15.30 \end{aligned}$	$\begin{aligned} & 6.89 \\ & 6.91 \end{aligned}$	$\begin{aligned} & 2,305 \\ & 1,808 \end{aligned}$	$\begin{array}{r} 687 \\ 1,036 \end{array}$	$\begin{array}{r} 677 \\ 1,038 \end{array}$	Compression. Shear in webs
73 D	2.98 2.99	8. 43 8.41	1. 50	Spaced 177/16. None.-.----	. 402	8.4 9.4	$\begin{aligned} & 4,230 \\ & 4,520 \end{aligned}$	33.30 32.27	127.0 140.1		45°	Perpendic-	--do	$\begin{aligned} & 1 / 22-1 / 16-1 / 32 \\ & 1 / 32-1 / 16-1 / 32 \end{aligned}$	$\begin{array}{r} 256 \\ .248 \end{array}$	$\begin{aligned} & 1,515 \\ & 1,736 \end{aligned}$	$\begin{aligned} & 105.9 \\ & 105.0 \end{aligned}$	$\begin{aligned} & 15.30 \\ & 15.16 \end{aligned}$	$\begin{aligned} & \text { 6. } 93 \\ & \text { 6. } 93 \end{aligned}$	$\begin{aligned} & 2,115 \\ & 2,260 \end{aligned}$	$\begin{aligned} & 1,194 \\ & 1,303 \end{aligned}$	$\begin{aligned} & 1,192 \\ & 1,315 \end{aligned}$	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
75 D	2. 99	8. 42	1. 48	Spaced 177/6.	. 398	9.0	4,480 3	32.74	136. 8		45°	do	--do	1/32-1/6-1/32-	254	1,758	105.3	15.18	6.94	${ }_{1}^{2,240}$	1, 275	1,270	Compression,
77 D -	3.3. 96	8. 8.43	1. 1.48	None--15\%--	. 428	10.1 10.0	3,900 4,770	34. ${ }^{37}$	${ }_{141.5}^{113.8}$				--do		204	1,928	105.3	${ }_{15}^{15.35}$	6.98	${ }_{2}^{1,385}$	1,290	1,680	Do.
78	2. 96	8.45	1. 48	None	438	9.8	3,820	33.80	113.0	Vertical	Longitu	Parallel	do	1/40-1/20-1/40-	202	1,600	105.5	15. 12	6. 97	1,910	1,355	1,356	Do.
79 D	2.97	8. 44	1. 48	Spaced 1158.-	. 420	9.9	4,325	34. 21	126. 2	do	na.	do	---do.	1/40-1/20-1/0-	212	1,610	105. 5	15.15	6. 96	2,162	1,463	1,465	Do.
80	2. 97	8. 42	1. 48	None	${ }_{4}^{430}$	9. 8	${ }^{4,610}$	${ }_{34}^{34.23}$	134.7	do...-			-	12-10	240	1,606	104. 7	${ }_{14}^{15.08}$	6. 94	2, 305	1,383	1,384	Do.
81 D --	2. 2.97	8. 88	1.48 1.47	Spaced 115/--------	${ }_{420}^{426}$	9.8		34.69 33.91	139.0 140.3	${ }_{45}{ }^{\circ}$	45		---do-		248	1,670 1,890		14.89 14.95					Do. Do.
82	2.97	8. 40	1.47	None.	420		4,760		140. 3			Perpendicular.	---do	1/32-1/16-1/32-	250	1,890	103.8	14.95	6.93				
83 D	2.97	8. 40	1.47	Spaced 1158.-	. 432	9. 9	5,290	34. 96	151.4	$45^{\circ} \ldots$		-do	-.-do	1/32-1/16-1/32	. 248	1,935	103. 6	14.94	6. 93	2, 645	1,536	1,539	Compress
84	2. 96	8.43	1.46	None-...-----	. 396	8.9	4,995	33.97	147. 1	Vertical.	Longitudinal.	Parallel	--do.-.-	1/24-1/12-1/24-	. 324	1,330	102.7	14.86	6. 97	2,498	1,115	1,105	Do.
$\begin{aligned} & 85 \mathrm{D} \\ & 86 .- \end{aligned}$	2.96 2.96	$\begin{aligned} & \text { 8. } 44 \\ & 8.41 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.46 \end{aligned}$	Spaced 115/8 None. \qquad	$.381$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4,680 \\ & 4,470 \end{aligned}$	$\begin{aligned} & 34.33 \\ & 32.25 \end{aligned}$	$\begin{aligned} & 136.3 \\ & 138.6 \end{aligned}$		45°--	Perpendic-	---do.	$\begin{aligned} & 1 / 2-1 / 12-1 / 24 \\ & 1 / 24-1 / 12-1 / 24-1 \end{aligned}$	$\begin{aligned} & .326 \\ & .324 \end{aligned}$	$\begin{aligned} & 1,258 \\ & 1,355 \end{aligned}$	$\begin{aligned} & 102.7 \\ & 102.4 \end{aligned}$	$\begin{aligned} & 14.82 \\ & 14.84 \end{aligned}$	$\begin{aligned} & 6.99 \\ & 6.95 \end{aligned}$	$\begin{aligned} & 2,340 \\ & 2,235 \end{aligned}$	$\begin{aligned} & 1,035 \\ & 1,000 \end{aligned}$	$\begin{array}{r} 1,026 \\ 993 \end{array}$	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
87D .-	2.97	8.45	1.46	Spaced 115\%.-	. 385	9.1	4,450	33.43	133.1	45°	45°	do	-.d	1/24-1/12-1/24	322	1,308	103.7	14.98	6. 99	2,225	998	989	Do.

[^4]Table VI-BOX beams subjected to transverse loading only. Data from unpublished forest products laboratory REPORT, "DESIGN OF PLYWOOD WEBS FOR BOX BEAMS," BY GEORGE W. TRAYER

$\begin{aligned} & \text { Beam } \\ & \text { Ne. } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { of } \\ & \text { beam } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { beam } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { flanges } \end{aligned}$	$\begin{array}{\|l} \text { Specific } \\ \text { gravity } \\ \text { of } \\ \text { flanges } \end{array}$	Mois-turecon-tent	$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \\ & \text { load } \end{aligned}$	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { beam } \end{gathered}$	Loadweight ratio	Web construction					E	I	Q	a	V	$\underset{\text { stress }}{\text { Maximum shear }}$		Failure
									Direction of face grain	Species of wood	$\begin{aligned} & \text { Specific } \\ & \text { gravity } \end{aligned}$	Number of plies	Actual thick2 ness of						By (1)	By (2)	
1 1 2 3 4 4 5	Inches 3. 01 2. 99 3. 02 2. 99 3. 02	$\begin{aligned} & \text { Inches } \\ & \text { 8. } 45 \\ & \text { 8.45 } \\ & \text { 8. } 46 \\ & 8.46 \\ & 8.40 \end{aligned}$	Inches 11.498 1.498 1.497 1.498 1.485	0.352 .349 .352 .354 .318	Per cent ${ }_{\text {13, }} 13.8$	Pounds 3,630 3,565 3,640 3,515 3,680	Pounds 31.31 33.26 31.80 33.50 28.41	116.0 107.1 114.5 105.0 129.2	$\begin{aligned} & 45^{\circ} \\ & \text { Vertical } \\ & 45^{\circ} \text { - } \\ & \text { Vertical } \\ & 45^{\circ} \end{aligned}$	Sitka spruce Yellow poplar Sitka spruce Yellow poplar. Sitka spruce.	0.32	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{gathered} \text { Inch } \\ 0.312 \\ .300 \\ .322 \\ .298 \\ .390 \end{gathered}$	$\begin{gathered} 1,000 \mathrm{lbs} . \\ \text { persq. i. . } . \\ 1,545 . \\ 1,393 \\ 1,549 \\ 1,383 \\ 1,374 \end{gathered}$	107.1 104. 0 107.6 104.4 104.4	$\begin{gathered} \text { Inches }{ }^{8} \\ 15.41 \\ 14.90 \\ 15.50 \\ 14.94 \\ 15.26 \end{gathered}$	$\begin{aligned} & \text { Inches } \\ & 6.952 \\ & 6.952 \\ & 6.963 \\ & 6.962 \\ & 6.915 \end{aligned}$	$\begin{gathered} \text { Pounds } \\ 1,815 \\ 1,782 \\ 1,820 \\ 1,758 \\ 1,840 \end{gathered}$	$\begin{array}{\|c\|} \text { Lbs. per } \\ \text { sq. in. } \\ 837 \\ 852 \\ 815 \\ 844 \\ 690 \end{array}$	$\begin{gathered} \text { Lbs. per } \\ \text { s.i. } \\ 837 \\ 854 \\ 812 \\ 848 \\ 848 \\ 682 \end{gathered}$	Compression. Do. Do. Do. Do. Do
$\begin{aligned} & 9 \\ & 10 \end{aligned}$	3.00 3.00 3.00 3.00 3.00 3.00	8. 43 8.42 8.42 8.42 8.40 8.39	1.500 1.490 1.495 1.485 1.490	.321 .317 .318 .315 .316	8. 6 8. 2 8. 6 8. 4 8. 8	3,880 3,985 4,000 3,080 3,760	27.64 26.56 25.91 25. 95 26. 35	140.4 150.0 154.4 132.0 144.1	$\begin{aligned} & 45^{\circ} \\ & 45^{\circ} \\ & 45^{\circ} \\ & 45^{\circ} \\ & 4{ }^{\circ} \end{aligned}$		$\begin{array}{r}.32 \\ .32 \\ .32 \\ .32 \\ .32 \\ \hline\end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .344 \\ & .300 \\ & .276 \\ & .238 \\ & .236 \end{aligned}$	$\begin{aligned} & 1,364 \\ & 1,381 \\ & 1,374 \\ & 1,385 \\ & 1,378 \end{aligned}$	105.8 105.5 106.5 105.5 105.5 10.2	15.33 15.27 15.33 15.32 15.22 15.25	$\begin{aligned} & 6.930 \\ & 6.930 \\ & 6.925 \\ & 6.915 \\ & 6.900 \end{aligned}$	$\begin{aligned} & 1,940 \\ & 1,992 \\ & 2,000 \\ & 1,540 \\ & 1,880 \end{aligned}$	$\begin{array}{r} 815 \\ 961 \\ 1,047 \\ 934 \\ 1,155 \end{array}$	$\begin{array}{r} 813 \\ 958 \\ 1,046 \\ 936 \\ 1,154 \end{array}$	Do. $\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$ Do. Shear. Compression.
	2.99 2.99 3.00 3.00 3.00 3.00	8.45 8.44 8.44 8.45 8.45 8.46	1. 486 1. 488 1.486 1.489 1. 488	.332 .338 .326 .326 .326	8.9 8. 9.2 9.1 9.1 9.4	3,550 2,640 2,050 1,540 2,870	26. 53 25.74 25. 29 24.71 25. 37	133.9 102.5 81.1 62.3 113.1	45° 45° 45° 45° 45° 	$\begin{aligned} & \text { - do }- \text { do } \\ & - \text { do } \end{aligned}$.33 .33 .33 .33 .33	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$.240 .206 .166 .134 .138	1,355 1,389 1,356 1,223 1,175	106.8 107.0 107.8 100.8 108.2	15.33 15.34 15.42 15.47 15.49	6. 6. 964 6. 952 6. 6. 6.	1,775 1,320 1,025 770 1,435	$\begin{array}{r} 1,061 \\ 919 \\ 883 \\ 822 \\ 1,482 \end{array}$	$\begin{array}{r} 1,061 \\ 922 \\ \hline 887 \\ 825 \\ 1,490 \end{array}$	Shear $\begin{aligned} & \text { Do. } \\ & \text { Do. } \\ & \text { Do. } \end{aligned}$ Do.
$16 \ldots$ $17 . \ldots$ 18 19 19 20.	3. 00 3.00 2. 99 2.99 2.99 2.99	8. 47 8.46 8.44 8.47 8.47	1.495 1.490 1.490 1.495 1.500	.322 .323 .324 .324 .326	10.8 10.8 10.7 10.6 11.2 10.9	3,440 3,230 2,365 1,545 3,570	28.23 28.24 26.12 25.60 26.76	121.9 118.5 90.6 60.4 129.7	45° 45° 45° 45° 45° 	$\begin{aligned} & \text { - do- } \\ & \text { do- } \\ & \text { do- } \\ & \text { do- } \end{aligned}$.44 .44 .44 .44 .44	2 2 2 2 2 2	.248 .206 .162 .130 .124	1,282 1,315 1,290 1,162 1,225	107.7 107.8 107.2 108.9 109.9	15.53 15.43 15.35 15.52 15.52	6. 975 66.970 66.950 6. 675 670	$\begin{aligned} & 1,720 \\ & 1,615 \\ & 1,182 \\ & 772 \\ & 1,735 \end{aligned}$	1, 002 1, 122 1, 040 1,848 1,992	$\begin{array}{r} 995 \\ 1,124 \\ 1,049 \\ 851 \\ 2,008 \end{array}$	Compression. Shear. Do. Do. Compression.
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	2. 99 3. 00 2. 98 3.00	8. 47 8.41 8.45 8.45 8.50	1.500 1.495 1.495 1.495	.328 .328 .326 .326	10.4 10.0 10.5 9.9	3,960 3,795 3,965 3,600	28. 58 27.98 28.36 27.96	138.5 135.7 139.8 128.8 12.8	$\begin{aligned} & \begin{array}{l} 5^{\circ} \\ 45^{\circ} \\ 45^{\circ} \\ 5^{\circ} \end{array} . \end{aligned}$	$\begin{aligned} & \text { do } \\ & \text { do. } \\ & \text { do. } \\ & \text { do. } \end{aligned}$	$\begin{array}{r} .33 \\ .33 \\ .33 \\ .33 \end{array}$	3 2 2 3 2	$\begin{aligned} & .250 \\ & .258 \\ & .244 \\ & .258 \end{aligned}$	1,443 1, 466 1,435 1,428	$\begin{aligned} & 107.8 \\ & 106.0 \\ & 106.5 \\ & 108.8 \end{aligned}$	15.44 15. 29 15.27 15.49	6. 970 66.915 66.955 7.005	$\begin{aligned} & 1,980 \\ & 1,898 \\ & 1,982 \\ & 1,800 \end{aligned}$	$\begin{aligned} & 1,134 \\ & 1,060 \\ & 1,166 \\ & 1993 \end{aligned}$	$\begin{aligned} & 1,135 \\ & 1,064 \\ & 1,168 \\ & 996 \end{aligned}$	Do. Shear. Compression. Shear.

 inches.
(1) $q=\frac{V Q}{I t}$
(2) $q=\frac{V}{a t}$

TABLE VII - BEAM SECTIONS TESTED IN DIRECT SHEAR AS ILLUSTRATED IN FIGURES 3 AND 4. DATA FROM UNPUBLISHED FOREST PRODUCTS LABORATORY REPORT, "DESIGN OF PLYWOOD WEBS IN BOX BEAMS," BY GEORGE W. TRAYER

Block No.	Type of	Type of web	Depth of	Actual thickness of two webs	$\begin{aligned} & \text { Specific } \\ & \text { gravity } \\ & \text { of web } \\ & \text { material } \end{aligned}$	Shear stress	Distance center to center of end blocks	Block No.	$\underset{\text { Type of }}{\text { test }}$	Type of web	Depth of	$\begin{gathered} \text { Actual } \\ \text { thickness } \\ \text { of two } \\ \text { webs } \end{gathered}$		Shear stress	Distance center to center of end blocks
S-1 S-2 S-6. S-7 S-11	Fig. 3		$\begin{array}{r} \text { Inches } \\ 8.42 \\ 8.42 \\ 8.42 \\ 8.44 \\ 8.43 \\ 8.43 \end{array}$	Inch 0.138 166 .126 .126 .170 .122 .122 .170	$\begin{array}{r} 0.34 \\ .34 \\ .44 \\ .45 \\ .34 \\ .38 \end{array}$	Pounds per square inch 1,387 1, 306 1, 886 1, 505 1, 513	Inches $\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	S-16-. S-17-. S-18-1 S-19 PS-1.			$\begin{array}{r} \text { Inches } \\ 8.40 \\ 8.41 \\ 8.43 \\ 8.44 \\ 7.55 \end{array}$	Inch 0.134 . 176 . 130 .168 .250	$\begin{aligned} & 0.34 \\ & .34 \\ & .46 \\ & .46 \\ & .35 \end{aligned}$	$\begin{gathered} \text { Pounds per } \\ \text { square inch } \\ 753 \\ 835 \\ 933 \\ 1,137 \\ 1,066 \end{gathered}$	Inches 74 74 74 74 26

The grain of all plies was at $\pm 45^{\circ}$ to the longitudinal axis of the beam and the grain of 50 per cent of the material was at 90° to the other 50 per cent. All calculations were made with a slide rule.

Common and botanical names	Specific gravity based on volumeand weight when oven-dry		Weight at 15 per cent moisture content	Shrinkage from green to ovendry condition		Static bending				Compression parallel to grain		Compression perpendicular to grain	Shearing strength parallel to grain ${ }^{5}$	Hardness, side; load required to imbed 0.444 -inch ball to one-half its diameter
			Radial	Tangen- tial	$\begin{aligned} & \text { Fiber stress } \\ & \text { at elastic } \\ & \text { limit } 1 \end{aligned}$	Modulus of rupture ${ }^{1}$	Modulus of elasticity ${ }^{2}$	$\underset{\substack{\text { Work to } \\ \text { maximum } \\ \text { load }}}{ }$	Fiber stress at elastic limit ${ }^{1}$	$\begin{aligned} & \text { Maximum } \\ & \text { crushing } \\ & \text { strength } 1 \end{aligned}$				
hardwoods (broad-leaved species)	Average 0.53 .62 .40 .66 .68 .53 .43 .66 .53 .79 .47 .51 .67 .69 .43 56	Minimum permitted		Pounds per cubic foot	Per cent	Per cent	Pounds per square inch	Pounds per square inch	1,000 pounds per square inch	Inch-pounds per cubic inch	Pounds per square inch	Pounds		
Ash, commercial white (Fraxinus		$\bigcirc .56$	${ }_{41}$	4.3	6.9	8,900	14,800	1, 460	14.2	5,250	7 7,000	2, 250	1,380	760 1,180
Basswood (Tilia glabra)		36	26	6. 6	9.3	5,600	8,600	1,250	6. 6	3,370	4, 500	-620	${ }^{720}$	${ }^{1} 70$
Beech (Fagus grandifolia)		${ }^{60}$	44	4.8	10. 6	8,200	14, 200	1,440	13.5	4, 880	6,500	1,670	1,300	1,060
Birch (Betula sp.) ${ }^{7}$		58	44	7. 0	8.5	9,500	15,500	1,780	18. 2	5,480	7,300	1,590	1,300	1,100
Cherry, black (Prunus serotina)		${ }_{39}^{48}$	${ }_{29}^{36}$	3. 7	7.1	8,500	12, 800	1,330 1,190	$\begin{array}{r}11.7 \\ 7 \\ \hline\end{array}$	5,100 3 5	6,800 4 7	1,170	1,180	900
Elm, rock (Ulmus racemosa).--		60	45	4.8	8.1	7,900	15,000	1,340	19.3	5, 180	6,900	2,090	1,360	1, 230
Gum, red (Liquidambar styraciflua)		48	34	5.2	9.9	7, 500	11, 600	1,290	10.9	4, 050	5,400	1,190	1,100	650
Hickory (true hickories) (Hicoria sp.)		71	51			10, 600	19,300	1,860	27.5	6,520	8,700	3,100	1,440	
Mahogany, African (Khaya sp.)		42	32	4.8	5.5	7,900	10, 800	1,280	8.0	4,280	5,700	1,400	980	720
Mahogany, true (Swietenia sp.)		46	34	3.4	4.7	8,800	11, 600	1, 260	$\begin{array}{r}7.3 \\ 13 \\ \hline 13\end{array}$	4,880	6,500 7 7 500	1,760 2 2 170	860 1,520	790 1,270 1
		${ }_{60}^{60}$	${ }_{45}^{44}$	4.8 4.6	9. ${ }_{9}{ }^{\text {a }}$	9,500 7800	15,000 13800	1,600 1,490	13.7 13.6	5, 620 4,950	6, 600	2, 178 1,870	1, 1,3200	1,270 1,240
Poplar, yellow (Liriodendron tulipifera)		38	28	4. 0	7.1	6,000	9, 100	1, 300	6.5	3,750	5,000	, 810	, 800	1,240
Walnut, black (Juglans nigra)..		52	39	5.2	7.1	10, 200	15, 100	1,490	11.4	5,700	7,600	1,730	1,000	990
SOFTWOODS (CONIFERS)														
Cedar, incense (Libocedrus decurrens)	. 36	32	25	3.3	5.7	6, 000	8,700	1,020	5.6	4,320	5,400	900		
Cedar, Port Orford (Chamaecyparis lawson	. 44	40	30	4. 6	6.9	${ }^{7}, 400$	11,000	1, 520	8. 7	4,880	6,100	1,030	760	520
Cedar, western red (Thuja plicata) --.--	34	31	${ }^{23}$	2.5	5. 1	5, 100	7,800	1,030	5.8	4,000	5,000	800	630	320
Cedar, northern white (Thuja occidentalis)	32	29	22	2.1	4.9	4,700	6, 600	700	4.9	3,040	3,800	560	610	300
Oypress, southern (Taxodium distichum)	48	. 43	32	3.9	6.1	7, 100	10, 500	1,270	7.7	4,960	6, 200	1,230	720	480
Douglas fir (Pseudotsuga taxifolia)	. 51	. 45	34	5.0	7.8	8, 000	11, 500	1,700	8.1	5,600	7,000	1,300	810	${ }^{620}$
Pine, Norway (Pinus resinosa)	. 51	. 46	34	4.6	7.2	8,500	11, 900	1,560	8.9	5,280	6,600	1,080	870	520
Pine, sugar (Pinus lambertiana)	. 38	. 34	${ }_{27}^{26}$	2.9	5.6	5,600	8,000	1,040	5.4	3,680	4, 600	810	730	370
Pine, western white (Pinus monticola)	. 42	. 38	27	4.1	7.4	6, 000	9, 300	1,310	7.9	4, 240	5,300	750	640	360
Pine, northern white (Pinus strobus)	. 38	. 34	${ }_{2}^{26}$	2.2	6. 0	5,900	8,700	1, 140	6.3	3,840	4, 800	780	640	380
Spruce (Picea sp.) ${ }^{11}$. 40	. 36	27	4.1	7.4	6, 200	9,400	1,300	7.8	4, 000	5,000	840	750	440

1 The average values for fiber stress at elastic limit and modulus of rupture in static bending, fiber stress at elastic limit, and maximum crushing strength in compression parallel to grain have been multiplied by 2 factors
obtain values for use in design. A statement of these factors and of the reasons for their use follows: It was thought best, in fixing upon strength values for use in design, to allow for the variability of wood and the fact that a greater number of values are below the average than above it, and the most probable value (as represented by the mode of the frequency curve) was accordingly decided upon as the basis for design figures. From a study of the ratios of most probable to average values for three species (Sitka spruce, Douglas fir, and white ash), 0.94 was adopted as the best value of this ratio for general application to the properties in question. The
stress that wooden members can carry depends on its duration. A factor of 1.17 has been applied to test results to get values of the stress that can be sustained for a period of 4 seconds, being assumed that the maximum load will not be maintained for a longer period. 2 The values given are the most probable values (92 per cent of the average) of the apparent modulus of elasticity (E_{c}) as obtained by substituting results from tests of 2 by 2 -inch beams on a 28 -inch span with load at
the center in the formula $E_{c}=P l^{3} / 48 \Delta I$. The use of these values of E_{c} in the usual formulas will give the deflection of beams of ordinary length with but small error. For exactness in the computation of deflections of I and box beams, particulary dor short spans, the formula that takes into account shear deformations (see National Advisory Committee for Aeronautics Report No. 180, "Deflection of Beams with Special Reference to Shear given in the table. If the I or box beam has the grain of the web parallel to the axis of the beam, or parallel and perpendicular thereto, as in some plywood webs, the value of F may be taken as $E_{T / 16}$ or $E_{c} / 14.5$. If the web
is of plywood with the grain at 45° to the axis of the beam F may be take is of plywood with the grain at 45° to the axis of the beam F may be taken as $E_{T /} / 5$ or $E_{c} / 4.5$. woods, 0.80 for conifers. Values as given are to the nearest 10 pounds.
4 Wood does not exhibit a definite ultimate strength in compression perpendicular to grain, particularly when the load is applied over only a part of the surface, as it is at fittings. Beyond the elastic limit the load continues to increase slowly until the deformation and crushing become so severe as to seriously damage the wood in other properties. Figures in this column were obtained by applying a duration of stress factor of 1.17 (see ${ }_{5}$ Values in this column are for use in computing resistance of beams to longitudinal shear. They are obtained by multiplying average values by 0.75 . This factor is used because of the variability in strength and in order that failure by shear may be less probable than failure from other causes. Furthermore, tests have shown that because of the favorable influence upon the distribution of stresses resulting from limiting shearing not occur.
6 Includes white ash (F. americana), green ash (F. pennsylvanica lanceolata), and blue ash (F. quadrangulata)

I Includes sweet birch (B. lenta) and yellow bigleaf shagbark hickory (H. laciniosa), mockernut hickory (H. alba), pignut hickory (H. glabra), and shagbark hickory (H. ovata)
Includes material from Central America and Cuba.
 swamp red oak (Q. pagodaefolia), willow oak (Q. phellos), and yellow oak (Q. velutina).
in Includes red spruce (P. rubra), white spruce (P. glauca), and Sitka spruce (P. sitchensis).

Table IX.-SC- 1 AND PN- 7 BOX BEAMS SUBJECTED TO COMBINED AXIAL AND TRANSVERSE LOADING. DATA FROM UNPUBLISHED FOREST PRODUCTS LABORATORY REPORT, "DESIGN OF PLYWOOD WEBS FOR BOX BEAMS," BY GEORGE W. TRAYER

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis		Force(parallel to axis) symbol	Moment about axis			Angle		Velocities	
Designation	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$		$\begin{aligned} & \text { Designa- } \\ & \text { tion } \end{aligned}$	$\underset{\text { bol }}{\text { Sym- }}$	Positive direction	$\begin{aligned} & \text { Designa- } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$		Angular
Longitudinal Lateral Normal	$\begin{aligned} & X \\ & Y \\ & Z \end{aligned}$	$\begin{aligned} & X \\ & Y \\ & Z \\ & Z \end{aligned}$	rolling pitching yawing	L M N	$\begin{aligned} & Y \longrightarrow Z \\ & Z \longrightarrow X \\ & X \longrightarrow Y \end{aligned}$	roll pitch yaw	¢ Ψ Ψ	$\begin{aligned} & u \\ & v \\ & v \end{aligned}$	${ }_{\sim}^{p}$

Absolute coefficients of moment

$$
C_{L}=\frac{L}{q b S} \quad C_{M}=\frac{M}{q c S} \quad C_{N}=\frac{N}{q f S}
$$

Angle of set of control surface (relative to neutral position), δ. (Indicate surface by proper subscript.)
4. PROPELLER SYMBOLS
D, Diameter.
p_{e}, \quad Effective pitch.
p_{g}, Mean geometric pitch.
p_{s}, Standard pitch.
p_{v}, Zero thrust.
p_{a}, Zero torque.
p / D, Pitch ratio.
V^{\prime}, Inflow velocity.
V_{s}, Slip stream velocity.

T, Thrust.
Q, Torque.
P, Power.
(If "coefficients" are introduced all units used must be consistent.)
η, \quad Efficiency $=T V / P$.
n, Revolutions per sec., r. p. s.
N, Revolutions per minute, r. p. m.
Φ, Effective helix angle $=\tan ^{-1}\left(\frac{V}{2 \pi r n}\right)$

5. NUMERICAL RELATIONS

$1 \mathrm{hp}=76.04 \mathrm{~kg} / \mathrm{m} / \mathrm{s}=550 \mathrm{lb} . / \mathrm{ft} . / \mathrm{sec}$.
$1 \mathrm{~kg} / \mathrm{m} / \mathrm{s}=0.01315 \mathrm{hp}$
$1 \mathrm{mi} . / \mathrm{hr} .=0.44704 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~m} / \mathrm{s}=2.23693 \mathrm{mi} . / \mathrm{hr}$.
$1 \mathrm{lb} .=0.4535924277 \mathrm{~kg}$
$1 \mathrm{~kg}=2.2046224 \mathrm{lb}$.
$1 \mathrm{mi} .=1609.35 \mathrm{~m}=5280 \mathrm{ft}$.
$1 \mathrm{~m}=3.2808333 \mathrm{ft}$.
\because

[^0]: (An independent Government establishment, created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight. Its membership was increased to 15 by act approved March 2, 1929 (Public, No. 908,70 th Congress). It consists of members who are appointed by the President, all of whom serve as such without compensation.)

[^1]: ${ }^{1}$ Senior engineer, Forest Products Laboratory, Forest Service, U. S. Department of Agriculture. Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

[^2]: ${ }^{2}$ British units of measure are assumed throughout this report.

[^3]: ${ }^{3}$ Prescott, J. Applied Elasticity. 92-105. London, New York (etc.). 1924

[^4]: The webs of all beams were of yellow poplar plywood. Nominal dimensions of beams were 3 by $87 / 6$ inches by 16 feet $41 / 2$ inches. The test span was 16 feet and two loads were symmetrically applied at points 44 inches
 apart. In calculating I and Q one-half the plywood was used. All calculations were made with a slide rule.
 (1) $q=\frac{V Q}{I t}$
 (2) $q=\frac{V}{a t}$

