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APPLICATION OF PRACTICAL HYDRODYNAMICS TO AIRSHIP DESIGN

By RALPH H. UPSON and W. A. KLTKOFF

SUMMARY

l%e design of a large high-speed airship is pi-imariLy
a struchm-d probbm, in which the most important
str@8e8 are those due, directly or indirectly, to aero-
dynamic forces on tlw surface of tha hull ‘The force
on any 8d elemenz! Oj the surface i8 71L08tConmmie?lily
divided into two componeti, rtxpecttiely tangeni and
normal to the surface. The tangent or 8kin--i0n
force8 are so 8md per unit area that they are structurally
almost negligible compared with the normal jorca; yet
their tots! integrated res?dtan.t h respo?wible jor &no8t
the etiire drag oj the hull, wherecn the normal components
of pressure are 80 nearly balanced owr a good hull th.ai
their n-d rdanl h practically zero. The intemeadion
of tlwse very substantial forctx is, of course, through the
medium of stres8es in the hW, and in combin.dion wiih
fin and india forc~ they are e8seniial not only from a
structural standpoint but abo in the com”deration oj
8tabWy and control. Tlu dM-ibution of relocdy and
8kin friztion can also be indiredly determined from the
normdform distribution. An accurate i%terminatbn of
the kiter and ii% @ect8 ik therefore of the wry jirst
importance.

The premum on eUip80i.dal 8hupe.s ~ ~awnted$rst in
Part I aa a foundation for more generalid formulas.
Although any e?+?ipsoidi% susceptible of accuraie mutlie-
maiical treaiment, only the me of a prolate spheroid
with circular cro88 section i8 inm.stigated here became
oj it8 approximation to aitwhip hulls.

Part II W with importani adaptation.s of the eRip-
soidaLformulas, and other hydrodynamic relu$i.om to any
air8hip hull, wilh partim?ar referemx to 8tructuraJ
reguiremen$8.

In Part III the theoretical results are applied to tha
practical computation of aw8hip st~ity, and rdation$
establi.dud which can be evalu.sled from simple wind-
tunnd tests.

In Part IV the 8ame fundamentals are used in the
determination oj visww jorces, leading to an improued
claxsi$cation of air8hip drq, and a new outlook on drag
generaUy.

Exampt?e8 oj practtial air8hip character&ics are em-
ployed throughmd.

. .

INTRODUCITON

A determination of pressure distribution in a wind
tunnel usually is tedious, expensive, and inaccurate.
Even full-scale pressure readings have so far failed to
give very consistent results, presumably due to local
interference effects. Enough has been done experi-
mentally, however, to show conclusively that the normal
pressure is substantially unaffected by viscosity and
skin friction except near the stern. The same con-
clusion is also reached from considering the above
mentioned small magnitude of the unit tangential
force. b most of the work the viscosity may there-
fore be ignored; and this is exactly the assumption on
which the study of classical hydrodynamics has been
based. This time-honored science, which for centuries
was not much more than a mathematical toy, has thus
found for itself at last a directly practical outlet in its
increasing aeronautical use, particularly for lighter-
than-air.

The aerodynamic forces on airship hulls have lately
been investigated by different methods based on
hydrodynamical theory of flow. Professor Von Kar-
msn (reference 5) has applied the method of sources
and sinks combined with assumed vortices at the stern
to the investigation of pressur~ on model of airship
.Lm Angela. Dr. R. Jones (reference 3) determined
the pressure distribution on a prolate spheroid based on
classical hydrodynamical theories. Dr. M. Munk
(reference 2) by applying the theory of momentums has
derived the rwtitsnt moment acting on the ah-ship;
and by assuming 2-dimemional transverse flow, has
approximated the distribution of transverse force
acting on airship hulls. Some of these investigations
have been presented in complicated manner and some,
by disregarding certain factors, lead to erroneous
conclusions.

This paper, submitted at the request of the National
Advisory Committee for Aeronautic, aims to over-
come certain diilicnhies and to bring the subject gen-
erally up to date. The purpose of the fit two parts
is to present in conoise shape all the formulas required
for computation of the hydrodynamic forces, so that
they can be @y computed for either straight or
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curvilinear flight. Improved approximations are also
introduced having a high degree of accuracy through-
out the entire range of practical proportions. The
remaining two park of the report axe devoted respec-
tively to stability and skin friction, as functions of the
same hydrodynamic forces.

SYMBOLS USED

P= any point on the surface,
PO=point at zero velocity,

p= density of air (standmd= 0.00237 slugs),
P= coefficient of viscosi~,
V- Veloci@ at point P (feet per second),

Vo=velocity of hull relative to air at OJ(feet per second),
p =pressure at point P (pounds per square foot),

g= P== prwwe at PO=; V02 (pounds per square
foot.)

-Fmmess rotb

Coefficients of additional mass of ellipsoids:
A=l+kl

@ (n’– 1)*

()
1+6”n~~~–nlog(n+ ~

e–~ ~ ‘log G

where,
*-I

e= eccentrici~ of ellipse- ~ ]

n= iineness ratio - a/b, “-
a= major @ of ellipsoid,
b= minor axis of ellipsoid,

B= 1+k,, and is such quantity that~+~- 1,

kl, ka, aud k’ may be taken from tables of Lamb and
Munk, for A, B, and G-see Table I and Figure 1,

0= angle the direction of tid makes with x&
(pitched flight),

COMMf’M!EE FOR MZRONAIJIHCS

*= tie the direction of wind makes with axis
@awed illight),

40= wgle the tiwticm of wind makes with d
(circular fLight)-(at centm of volume),

a-angle the tangent at P makes with the major
axis,

%= We tie ta%ent at POmakea with the major
&e,

4- @e of mch between point P and a meridian
perpendicular to the plane of the turning’
circle, or the horizontal meridian (equator)
in case of pitched liight,

z,y - proiile coordinates of the point P with center
of ellipsoid taken as origin. (Fig. 2), z posi-
tive backward,

r =y -radius of circular cross section at point P,
Vo =.Ru (for curved flight), where u= angular ve-

locity of ellipsoid (radians per second),
R =radius of circle in which center of vol-
ume moyes (1?-hull drag in l?art IV),

M\, ~\,Y

Fmulm2-13emmtrfc31notation

S’= cross section mea of ellipsoid at point P= d,
S’m= mbnum cross section area of ellipsoid= ~b~,

dS/dx = rate of change of cross section=2 m tan a,
vol = volume of the hull,

AFT= tmmzverseforce per foot of w&3,
~’=longitudinal force per foot of axis,

AM~-longitudinal moment per foot of axis,
FL=longitudinal force from bow to any station z,
M=iltz+ M.= moment about station zof all forces

forward of that point,
MO= total turning moment about center of volume,
M== moment about station z of transverse forces

forward of that point,
M“= same, of longitudinal force9, ~

Q=~~v~e shem fim bow back to any sta-
tion x.

See Figg 10 for additional symbols applying to
Part III.
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PART I

HYDRODYNAMICFORCES ACTING ON A PROLATESPHEROID

I?or the fundamentals on which this study is bssed
it is suggested that the references, particularly ref-
erence 1, be consulted. It is suiiicient to state here
that the velocity distribution assumes frictionless,
incompressible, irrotational flow (whether the fight
path is curved or straight), as given by Laplace’s
equation for velocity potential Q. The pressure at
any point P is then given by the expression:

:L$ :

where v is the air velocity at P relative to undisturbed
air. This is equivalent to an adaptation of Bernoulli’s
equation:

2=?.; (ref. 3)
P

where U is the free sir velocity of point P (= VOfor
n point at radius R from center of turn), or for any
point on the hull in str~~ht flight.

NORMAL PEESSUREDISTRIBUTION

For curvilinear flight, the most general case (see
reference 3), the pressure at any point can be alge-
braically expressed as:

( 9
2

– Bsin#o+~ COS’ + (1)

(See Pt. HI for the relation between +0 and l?.)
In csse the ellipsoid is moving straight at a certain

angleof pitch 6,R = m, X.= 8,and the expressionreduces
to:

In csse 0= O, the expression for pressure at my point
reduces to:

Point PO,where veloci@ = O, and pressure is a msxi-

mum
()

P= 1 a be locatid where cot cro=~ tan 0.
!Z

it the point of minimum pressure where a= ~— q

~_l–Al ~o# o–B~ Sinz o

-1_ A2cosg 0=1_B%n2 O
?il&q cos~ a“

At point of zero pressure, where V= V“

V9W .

m~’ (%–4”1

when 0=0, the zero pressure occurs at the point where
..
COS a=—i

The pressure at any point for pitched flight in the
plane of symmetry may also be expressad as:

():=1– ; 2 72m=a~2(w+=1–F
o

If we designate the side of ellipsoid turned to the
flOW as “windward,” and the pressure at this side
pm;the side turned away horn flow “leeward,” and the
pressure p,; calling the meridiu plane between the
sides equatorial and expressing pressure on meridk
plane p,; then in csse of pitched ili.ght:

$nl_(Acosa~s6+B~~fi6)2 (3)

%1-(A COS & COS 6–Bsinasiney
!l

(3a}

;=l–B2 ~2 6–AZ cog ~coazfl (3b)

If the values of pm,P1, and pe we plotted along the
diameter of symmetry they do not lie on a straight line,
except for a very elongated shape. (See fig. 3.)

At the equator the flow is at an angle #’ to the
meridh such that,

Btan O
‘m #’-A Coa ~

and the resultant velocity ratio,

~2=~ sing0+A2 COS2 a COS? 6
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.INTEGRATEDFORCES

Consider an element on the surface of an ellipsoid of
revolution. The force due to aarodynam.icpressure on
a small arc per foot of axis will be dF=pr d @

This force can be subdivided into three compon-
ents (fig. 2):

(a) Transverse, perpendicular to the axis AA.

dFT=prsindd@

(b) Longitudinal, parallel to the &s of ellipsoid.

dF~=pr tan a d ~

(c) Perpendiculm to plane of sy&etry, parallel to
the axis AA; this component is evidently balanced
by the component on the other side of the hull and is
here disregarded.

.

+4?0

FxXJ2E3.—H9dmd9namioPTOSSM%dfshmltb overtwo- do-
ZMGS plottedasnfnstthedfamet=ofmmnetrx .9-10’,17-H31u.P.h

o The resultant transverse force per foot of b on
any section perpendicular to the asis, in case of circuhu
flight is,

– ~ [(2AC– 2A.+ sec2 a) LS-AC5’4] cos2a00s *O

h case of pitched flight,

R=w,

The longitudinal component of pressure produces a
longitudinal force per foot of axis,

J+dJAF.=2 pr tan,ad~.

In case of circular fight this evaluates to:

(
2

)[
–z (AcosxOcosa)2– Bsin$O+~O – Bsin$osba

(6)

11
.-,

+ (20S– 0S-– 2S) X % fl tan a

In case of pitched ~~ht the same expression r%
duces to:

AF==g {2–2A* COS9o COS=a

–B2(l+&2a)ti2e} titana (64

In case of straight flight at 0= O,

The effect of this force, although often disregarded in
the present design of airships will undoubtedly be con-
sidered with increase of speed. “

The longitudinal force per foot of b if integrated
over the length of ellipsoid will give the total longitu-
dinal aerodpamic force to any section. If integrated
over the whole length of the hull it will be equal to:

in case of circular flight. In case of pitched flight it
will return to zero at the end.

The total longitudinal force will reach its maximum
compressive value a short distance behind the bow.
At the matium section it has a slight negative (tin-
sion) value, which in case of straight flight of the ellip-
soid (0= O) is,

L
[

FL=@’mm I.-A*
(

-& 1–2;5 )1 ~
The expression of transverse force if integrated

either graphically or mathematically over the length
of ellipsoid from the bow to any station z produces the
curve of aerodynamic shear. At the mafium sec-
tion the sheaxreaches the value:

(~ Zlogn
Q=#muxn& – —n’–l )

(Vol)
sjn 2#o—2g ~ kl cos #o

By integrating the shear curve over the total length
the expression for aerodynamic moment around the
stern due to transveme force can be obtained.
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‘vO1)k, Cos*,itf= -g (h- kl) (vol) & sin 2#o– 2ga ~

The lwt two expressions for shear and immsverse
moment are derived for the case of circular flight;
in case of pitched flight (#0=0), the last terms of these
equations will evidently be equal ta zero.

The longitudinal component of pressure, neglected
in some of the recent investigations, produces a reverse
moment, dML=r sin @ ~L=# tan a sin @ d #=r
tan a dFT.

Then the longitudinal moment per foot of axis,

s~L=2 ~p r t8n a ~T= - rA ~T tan a

This moment will always have a sign opposite to the
sign of transverse shear. If integrated over the length
of the ellipsoid for either pitched or curved tl.ight, it
produces a total longitudinal moment,

(Vol) .
M..-g(lkl)l) ~]w 2 Al.

Combining this moment with the transvtmk mo-
ment, the &pression for total turning moment around
the stern to which the ship is subjected,

M= g(k2–kJ (Vol) sin 2 *O– 2 g h (d) ; cog +0.

If the moment is taken around the center of volume,
the last term disappears, making the total moment for
either circular or pitched flight:

Ildo-q(k,-k,) (Vol) SiIi2 +0. (7)

This agrees with the expression derived”by Doctor
Munk in his”consideration of general flow around air-

Ship hulls.
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&teference 2.) In his other work Doctor
Munk has disregarded the effect of longitudinal com-
ponents of pressure and, as will be shown, his expres-
sion for transverse force is needlessly inexact.

The fundamental dillerence between the circular and
pitched fli@ in an ideal fluid is that in cas6 of pitched
flight there are no remih%mttmmsveme or longitudinal
forces; while in case of circdar f&ht there is a net
transverse force component:

Cos$0
~T= ~(kl) (vo1)~

aud also a net longitudinal force component:

sin *O
~L= 2g(k,) (vol) ~

The two components have a resultant

(8)

(9)

passing
through the cenh of tl.ight path curvatur~, th~
satisfying the total energy condition.

It will be interceding to note that some of the aero-
dynamic loads may be expressed as functions of
“windward,” ‘leeward,” and “equatorial” pressures
which were previously discussed, e. g.,

@T=~ ~ @u–p,)

t
AML=TJ(pI-pJ tan a

The above expressions are theoretically correct for
circulax as well as pitched @ht.
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OF PRACTICAL HYDRODYNAMICS TO AIRSHIP DESIGN

PART II

APPROXKM.4TIONOF HYDRODYNAMICFORCES ON AIRSHIP HULLS

A critical study of the “mathematicalformulas apply-
ing to true dlipsoids throws comiderable light on the
effect of other curves.

It may be observed that all the pressures and inte-
grated forces are functions of the radius of cross section
and the slopes at the particular point, and of general
nondimensional coeilicienti of additional mass. Fur-
thermore, there is a direct connection between these
characteristics. Thus, for ellipsoids, it maybe shown
that

A=ah

J.Cc&adz
We no-ivproceed to apply the expressions derived for

an ellipsoidal shape to any airship hull. Several
methods can be used for this purpose.

Equivalent ellipsoids.-h the bows of many air-
ships approach or are actually sections of ellipsoids
(ZMC-2, R-101), these maybe computed as ellipsoids

and a motied curve can then be drawn for the stern
of the ship. This method is recommended by Doctor
Cox (reference 8), and will be discussed with the tmms-
veme stern force distribution.

Another method for shapes departing more from the
ellipsoid is to determine the additional mass coefficients
for the complete hull and use them as constanta in the
ellipsoidal forrmdas, determining the actual airship
forces from known characteristics of the airship curve
(radius and slope). For the determination of addi-
tional mass coefficients three simple methods of figuring
equivalent ellipsoids may be used:

1. Actual n=;

d
GZ?-

2. By length n = =,

6 (vol)
3. By diameter n-~

The truth will usually be best expressed by the
formula which gives the-lowest result: Fine pointed
shapes, for example, take the last formula, because the
extreme point of the tail simply adds to the geometrical
length without appreciably affecting the aerodymunic
characteristics. The effective value of n is also de-

12s

creased by the dissymmetry between the bow and
stern profiles, but not as far as would be obtained by
assuming the bow-profle at both ends,

A still more general, but still approximate method,
is to fit at any point on the hull profile an ellipsoidal
element, which would reproduce all the hydrodynamic
characteristics at that point. This ellipsoidal element
will, as far as possible, have the same geometric char-
acteristics as the point on the curve, but tentatively,
may be a psi% of an ellipsoid whose over-all dimensions
do not correspond at all to the hull profde, i, e., its
additional mass coefficients may be entirely difFerent
from the hull shape. The application of these equiv-
alent ellipsoidsmay be checked by applying the general
hydrodynamic proposition for frictioiksa, nonviscous
fluid that integration of axial and transveme pressure
components over the surface of any streamline shape
must equal zero for uniform straight motion. This
method wdl be more particularly applied to the deter-
mination of transverse force to be described later.

The pressure didribution plotted according to this
method is shown on Figure 4, curve 1. ‘IME curve was
plotted resuming the equivalent ellipsoid fitted to any
point on the hull to have the follotig characteristics
relative to the original hull curve:

1. Concentric about longitudinal ~,
2. Maximum diameter equal, (D= 26,),
3. VerticaJ ordinatas at the point equal, (r= y,),
4. Product of first and second derivatives of the

cu.rwx at the point equal,
which lead to the following relation between the iine-
neas ratio of an equivalent ellipsoid and ‘- -
taristics of the point on the hull curve:

PRESSURE DISTRIBUTIONBY SOURCE

the charac-

lNTENSITY

For still greater accuracy we must go back to more
fundamental relations. The method of detmmining a
stremdine form from a predetermined source and sink
line is not new and was used in Naval Architecture and
Airship Design. (References 4 and 6.) It was expected
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that the forms of low rwistmce could be determined
by this method and that these forms would have an
advantage that, bowing the hull profile and the in-
tensity of sources and sinks, the pressure distribution
could be easily found. In most cases, however, a
predetermined distribution of sources and sinks does
not give 8 protie curve with any simple mathematical
equation that can be conveniently manipulated.
Therefore, in practice it seems preferable to predeter-
mine the profle curve and iind the source distribution
to correspond, though recognizhqg the greater initial
labor involved.

I?or determination of the sink and source line shown
on Figure 4, Taylor% method (reference 6) was used,

characteristics. The same procedure was then applied
to the actual airship hull:

These equations after being solved for j(z), repro-
duced the sink and source line corresponding to the
hull shape. Knowing ~(z) values, the horizontal
velocity at the point was determined by the equation,

then the final velocity at the point,

~ V,+V,.—
Cosa

This value of the velocity was used in the pressure
equation,

7

6

5 -

$
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except that the problem was the reverse one of plot-
ting the curve of source and sink intensi~ for a
known body. This waa done by means of the equation
(for any one transverse section):

Where f (23),the source intensity,varies as a function
of z (here called Z h distinguish it from the abscissa of
the section under investigation), and is integrated over
the length of the hull in each case.

Thus a complete series of equations was derived, aU
these equations being intercomected by the known
equatio~ of the hfl- curve.
checked by reproducing a full

The me~od was first
ellipsoid having lmown

():=1– ; ‘
o

for determination of the pressure at a given point.

Von Kmnum (reference 5) made an independent
investigation of pressure distribution using a sink and
source line to determine the flow in a longitudinal
plane, and a eystam of double sources to determine
the flow in a transverse plane. By writing general
exprtions for the flow, he detarmiued the values of
the velocity components in both phmes, due to each
system of flow sepmately. Knowing the values of
these velocities, the pressure was determined by
Berno&s equation.
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The pressure distribution curves based on ellipsoidal
formulas for straight flight are plotted in Figure 4 for
the metal-clad Zi’kf&9 hull: (1) by the method of
fitting ellipsoids h points on the hull; (2) by applying
the mass coefficients of the complete hull to equation
(2); for comparison (3), the actual hydrodynamic
pressure distribution by the method of sources and
sinks is also shown in the same figure.

TRANSVERSEFORCE lN PITCHED FLIGHT -

The main difficulty in applying ellipsoidal elements
lies in the approximation of additional mass coefficients
to fit not only the point where the forces me investi-
gated, but also to fit the complete hull.

In this connection an interesting observation was
made that the product of inertia coeflkients ~ X B for

~TE(@os=LYsin20=qlr rsin2esin2a (10)

The above simple, single formula is all that is neces-
sary for plotting this most importmt aerodynamic
force with a high degree of accuraoy as to general
distribution and magnitude. (l?ig. 6.) After this force
is plotted it will be found, due tQthe above ‘approxhna-
tion, that the positive force over tho bow and negative
force over the stern do not balance exactly. I?rom a
quantitative standpoint this discrepancy is unim-
portant, but if further analysis is required on the
basis of an ideal fluid, it may be desirable tc hove an
exact balance. This can be easily done, at the same
time making the force curve at the bow a still closer
approximation, by simply moving the whole curve

/20 62
~ /

Joo
/ ~

. .- -M9tfOfO/hycho’ynomtc .=
bedlng mansd

\ 80

i

$
1500: 60

Lor@iudmolnmmen tperf f ofoxIs--j’

g
& Trms. erse force per ff.ofo.%-i3-0

-40

FmuEE6.-HYdmdmomIclc=@ shq andmom@n*ZMG9 ML EH me wfthE .$ter%8-W, o-W m P.h ToM lowitudlmlfaca cmPtItcdfore-~

all usable fineness ratios is practically equal to two,
as is shown in Table I.

Returning to the ellipsoidal formulas, it will be
noticed that the mass coefficients are represented

AB.
exclusively by the factor ~ m the expression (4a)

for transveme force per foot of axis. Thus for ellip-
soidal type of flow the point characteristics (i. e.,
ordinate and dope) of any sectional element determine
the transverse force almost independently of charac-
teristics elsewhere. We may assume that the same
holds true for a series of gradually varying elements
and hence for the hull curve itself.

It would thus appear that the factor% can be

neglected, for most practical purposes, over the
entire range of usable fineness ratios. The general
formula for transverse force in pitched flight may
then be written,

bodily up or down enough to, make the positive and
negative arms balance.

The close approximation of the lateral force derived
by the above method to the force measured by wind
tunnel tests can be seen from 17igures 6, 7, and S,
showing the distribution of transverse force on modern
SirShip hulls.

Von Karman (reference 5), extending his investi-
gation of pressure distribution to ddmmimtion of
transverse forces has mrived at the following expres-
sion,

u==@i’T(’l&Wz+UrW,).

Where u and w are the velocities due to the longi-
tudinal and transverse motion, respectively, the sub-
letters z and r refer to the respective longitudinal
and radial components at a point in the plane of sym-
metry.

Applying this expression to ellipsoidal analysis, we
get,



APPLICATION OF PRACI’ICAL HYDRODYNAMICS TO AIRS~ DESIGN 131

vo2sin2asin2e or,

v:approximately, - —~ sin 2 a sin 219(the same result).

AERODYNAMICSHEAR IN PITCHED FLIGHT

After the curve of lmmverse force is plotted, it can
be graphically integrated by means of a planimeter
and the curve derived will represent the aerodynamic
shear Q to any point, in pitched flight. The maximum
shear, at a point where AFT= O,may be approximated
by a similar method to what wss used for transveme
force, thus:

Q-’ dFA S- sin20
where,

d~A- ~~ .

is the mean effective value using appment mass coeffi-
cients for the entire hull.

LONGITUDINALMOMENTIN PPN2HEDFLIGHT (PER
FOOT OF AXIS)

As was mentioned for ellipsoids, the longitudinal
moment per foot of ati,

Ad4z=-A~rr tana

Knowing therefore the value of AFT and the geo-
metrical characteristics of the point, the expression

the moment reaching a maximum at this point. @’ig.
5.) The net value of moment curve ordinate at the
stern represents the total hydrodynamic turning
moment on the hull, and must satisfythe equation (7).

M=g (k,–k,) (Vol) sin 2 e
.m

i
./5 i

o

-.10
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TRANSVERSESTERN FORCE

The plottirg of hydrodynamic forces, shears, and
momen’ti does not cmrespond to actual conditions
observed on the airship hull. It will be noticed that
in an idesl fluid no resultant force occurs, and the air-
ship is subjected only to the action of a couple, whose
magnitude equals the hydrodynamic moment. Ac-
tually, the area under the distributed transverse force

.1

a ~ — — — —
@o

o
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-.I
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for longitudinal moment can be easily plotted. The
longitudinal moment should have a negative sign over
the entire length of hull.

NET AERODYNAMICMOMENT IN PIT~D FLIGHT

The net moment to any point will be the algebraic
sum or ~erence of the areas under the shear and
longitudinal moment curves. This assumes tempo-
rarily that the hull is held as a cantilever at the stern,

curve at the skrn is considerably smaller than at the
bow, producing a resultxmt force at the bow in the
direction of in&nation of the ship’s axis. (l?@ 6, 7,
and 8.) Superimposed on the hydrodynamic flow at
the stern there is evidently ,an airfoil type of flow in
a direction opposite to the ship’s inclination, producing
vortices as is the case with rm airplane wing.

Doctor Von Karman (reference 5) has computed the
magnitude of these vortices and has mrived at results I
closely approaching the actual load conditions.



132 REPORT NATIONAIJ &OVISOItY

The folIowing method, somewhat approaching that
recommended by Doctor C!QX(reference 8), can be
more conveniently used. In this cam it is desirable
to obtain from wind tunnel tests at high Reynolds
Number the resultsat force and moment on the bare
airship hull under conditions similar to those analyzed.
When these wilues are not available, they can be
approximated from results of tests of airship models
of shapes similar to the one analyzed. The curve of
hydrodynamic transverse force can be then modified
at the stern in such manner that its area would be
reduced by the amount equal to the force determined
in the wind tunnel. The shape of the curve should be
modified to approach the curves of trarwerse force as
determined in wind tunnels on hulls of similar general
characteristics. This distribution of transverse force
will then approach very closely to the actwd condi-
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conditions. Therefore, the investigation of pitohed
flight alone will usually serve as a guide for the deter-
mination of the longitudinal strength of airships, al-
though circular flight should also beat least tentatively
investigated, if there are any doubts aa to the
strength in this plane. The relation between R and
x,in actual flight and their effect on stability is treated
in Part III.

CONCLUSION
The investigation of the possibility of applying the

hydrodynamic ellipsoidal formulaa to airship hulls
leads to the conclusion that these formulas can be
divided into two groups: (1) Formulas whioh can be
approximated to permit the determination of flow
characteristics from geometrical properties of the
individual point at which the flow is desired, and (2)
formulas which include the general shape as a whole.

FIGURE S.—’rmnsva-m formon modolI&lOl (@-l@). Scsleof model.o~ , FmuBE9.—OirmhrII@& HYdnMgnnmfoIcm&jshmre.jond moments-Bow’ZM&?
Imgthofmm301-MStlfndm

tions, and if the forces at the control surfaces and the
inertia or other balancing forces are also considered,
the complete load diagram can be reproduced.

CIRCULARFLIGHT

For the determination of forces in circular flight, the
exact ellipsoidal expressions should be used, making
approximation for the additional mau coefficients aa
outlined above. The distribution of transverse force
over the bow for circular f@ht of the Z&f&l! is shown
in I?@me 9. This distribution is plotted for the same
speed, with the angle of yaw at c. g. the same as in the
pitched flight investigation. It can easily be observed
that the transverse force is smaller in the case of cir-
cular flight than in the corresponding case of pitched
ilight. Considering ako that the transverse force in
circular flight is balanced by inertia force hrgely dis-
tributed over the hull, while the force in pitched flight
may be largely balanced by excem of weight concen-
trated at the points of load application, it can clearly
be seen that pitched flight will produce higher shears
and moments than circuhw flight for otherwise similar

(#4@, O-M m. 9. ~ R-w fret)

The formulaa which include only the geometrical
point characteristics, such aa the formula for trans-
verse force in pitched flight, leading to the determina-
tion of shear and bending moment, oan be applied b
any airship hti, and for the most part are probably
even more accurati than the results of aotual tats.

The formulas for pressure distribution and for longi-
tudinal force in the case of pitched flight, and for all
the aerodynamic forces in caae of circular flight, are
dependent on charactitics of the point and also on
the hull shape as a whole. Jn this case the designer
should be caxeful in choosing the coefficients of addi-
tional mass corresponding to the designed hull, If
these are properly applied results very closely ap-
proaching those of true hydrodynamic flow can be
obtained.

In regard to the stern force, it should be noted that
the hull force in the immediate neighborhood of the
&, particularly between and behind them, is further
modified by the presence of the iins themselves. It is
proposed to deal with this more particularly in rtsub-
seuuqnt report on lin design.
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OF PRACTICAL HYDRODYNAMICS TO AIRSHIP DESIGN

PART III

AIR- STABILrI’Y

The consideration of aimhip stability in yaw is
baaed on the principle that any tendency of the air-
ship to yaw from its path may be considered as the
tendency to swing into a circular path deviating fxom
the original direction. The study of stability in yaw
therefore simplifies itself to a study of the airship in
circular tlight and a consideration of the transverse
forces and moments acting on it.

In this connection it should be tit noted that for
motion of the airship deviating from the straight path
the angle of attack is no longer fixed but will vary
throughout the length of the airship, reaching’ the
highest values at the stern. The wind-tunnel teats
give only the momenti at a constant @e of attack
throughout the hull; but as the principal stabilizing
forces on the airship act at the stern, the wind tunne
results may be utilized providing proper allowance is
made for the abov~mentioned variation of yaw angle
in actual fight. This may be done by the use of hy-
drodynamic pticiplea.

Conaider an airship of mass m- PX vol, traveling
on a circular path, with angle bf yaw= #0 (relative to
undisturbed air); velocity tangential to path= VOand
radius=1? (all taken at the center of volume). The
center of gravity is assumed to be coincident with
the center of volume. kl and k, are additional masa
coefficients of the airship, A and B the total virtual
mass coefficients. Q@. 10.)

The airship is asw+ned to be subjected to the fol-
lowing forces:

1. Transverse component of centrifugal force due

to the mass of the ship itself
mVo’

‘~ COS~0 distributed

through the hull, with reauh%mtacting at center of
volume.

2. Tmnsveme component of virtual centrifugal
force due to the additiond mass of air set in motion

mVo2
around the hull = ~ kl cos $0 which appears as aero-

dynamic pressure with rewih%nt applied at center of
volume. This is equivalent to the ellipsoidal equa-
tion (8), but may also be derived from a more general
consideration of momentum. @eference 2.)

3. Distributed aerod~muic force which does not
produce any resultant force but produces an unbal-

mVo2ancing moment, .140=~ (kz–lcJ sin 2 +0; from

equation (7).
4. Sbrn force acting at a distance 1from the center

of gravity, whose magnitude b balance the above
mVo2moment should be y(ks– kl) sin 2 +0.

—

.—

+(2’

—.

(3J

#’=’wwxzf&g.
m -p (voLJ= airsh!>m-
Y -y~:n~:,ce measured tn

N== yaw momenf measured
infunnel

MO” momenf due fodi4nibuf-
ed f~e [3)

C = djsaf:nf~cebcphfof zero

?2 = diw’ante foPO pf ofsiem
fa-cea.pp17d/onf+lync.g-

V “ %f%c~%f%%:i ‘0
~, k=_ oddlfmna o~renfmoss

facfors (~,[2),(3),[4)= ftzms-
vense forces.

FI13uEEIo.—’rmmvsme fm one,lmhfphullh oimlhrfflght

Relation between turning radius wndangle of yaw.—
A3 long as the airship is in a condition of steady turn>

I the forces should balance or, from the above,

thus,

mVo2
~ (l+kJ cos 10=m+ (h–k,) sin 2 @fI. (11)

(1 +kJ _ (k,–kl) ~ *O
R 1

A B–Ati ~.
E= 7-
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from which,

(*0 indegrees).
It maybe noticed that the angle of yaw of any one

point on the mis is a li.neaxfunction of distance along
the axis. Thus as #0 is the angle of yaw at the c. g.,
let c be the distance forward of c. g. ta point where the
local sqgle of yaw is zero. Then,

Al
c= Rdn$o=— B–A

If if is the local angle of yaw at the point of applic-
tion of the stern force (1feet behind the c. g.),

tan +,
C+l

=ytan *o”:twl *O

or,

(13)

from which we get as an alternative value of the turn-
ing radius,

~= 57.3 Bl
#dB-A)

(12a)

The above considerations of an airship in a perfect
fluid in a condition of neutral stability are only approxi-
mated in practice, due to the distributed nature of the-
tail force, as already noted. In the case of a bare hull
at a fixed angle of pitch or yaw, the distributed hydro-
dynamic force at the stern is reduced while the dis-
tributed force at the bow remains the same. usually
this difference is termed “dynamic lift on bare hull” of
the airship. Its red center of action is, of course, for-
ward of the c. g. I?or the purpose of the above analysis,
however, it is considered not in the sense of a resultant
force at the bow of the airship, but as a force at the
stern acting in a direction ti oppose the theoretical
_ mommt ikfo which would otherwise apply in
the analysis of a perfect fluid. This force is the Yb
force which is measurable in wind-tunnel tests on a
bare hull for a certain angle of yaw x or p~tch 0. Its
moment arm about the c. g. w measured in the wind
tunnel is,

@f&Nb.

When the fin surfacea are introduced they produce a
force Yf and moment Y, Zfi For the purpose of mmly-
ais we here assume I?b= lf= 1 combining Yb and Yf into
a single force Y, which is not far from actual results.

An experimental check is found in a comparison of
the radius of turn computed from formula (12) with
that obtained in full scale teds. In the case of the
bs Angek the computed radii are 4 per cent off from
the experimental, but are closer to the experimental

values than the results derived by the hydrodynwni-
cally inexact formula used in N. A. C. A, Technical
Iteport No. 333. The full scale tests on the (Y7 (N. A.
C. A. Technical Report No. 208) are within 2.3 per
cent of the computed figure. A somewhat 1arger dis-
crepancy in the case of the ZMG13 will be considered
later iu comection with the car effect.

Stabili~ miteria.--Comparing actual flight with the
theoretical, where the forces were in balance, it mm be
seen that if the actual force at the stern is larger than
the theoretical stern force opposing the turning move-
ment, the airship will tend to return from the circular
tQits original straight path.

Whether this condition is fuliilled may now be deter-
mined from a simple static wind-tumel test, preferably
at high Reynolds Number. The only further ssaump-
tion involved is that the stern force for a given airship
speed is determined by the angle of yaw ai the fins,
regdlcsa of what it is elsewhere. & will be shown
later, this seems to be almost exact for the fin force
proper and usually a fair approximation for the balance
of the stern force. Thus, for stability computation,
the wind-tunnel angle # must now be taken as equiva-
lent to #f, not to #e, because from (13)

(13a)

Referrirg back to the condition for neutral stabiliti,
equation (11) for small angles can now be written:

of which the first term is the actual centrifugal force,
includ@ that of the additional air mass, and the
second term ‘is the balancing stern force necwsary to
hold a constant radius of turn. If Y exceeds this force
we have positive stabili@-. Generally speaking then,
we may dei?methe degree or critmion of stability m
the ratio of the actual stern force to the balanoing
stern force. Then any value greater than unity is
stable. Thus we get stability critmion No. 1:

is.al--
28.61YB .

q(vol)A(B – A)# (14)

The same method of reasoning can be also applied
to moments. The moment measured in the tunnel
for a certain angle of yaw will be evidently:

N=MO’ – y~h– YJ,

The moment due to the stern force alone is evidently,

EM.’ –N= Y.zh+ YJt= ~ (15)

This moment should be larger than the theoretical
moment to have the ship stable, or
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Taking the ratio as before, we get stability criterion
No. 2:

A third stability criterion maybe based on an exper-
imental determination of the rmi.st@ yawing moment
by the use of damp@g apparatus or a whirling arm.
It seems obvious, however, that additional mechanical
complications of this kind are not justied unless they
serve to reproduce more closely the type of motion
found in actual flight. For example, the oscillating
type of damping apparatus would seem to be par-
ticularly futile. Though any method by which the
stern force or moment can be plotted against the local
angle of attack at the stern gives a means of approx-
imating the required ratio, the most importmt test
condition is high Reynolds Number.

The evaluation of a damping testis best expressed
as rLmoment ND arwmd the c. g. (computed from the
teat moment around the actual center used) for a
given transverse component of stern speed v, at the

position 1behind the c.g. Then # corresponds to #,
0

(in radians), and we got as stabfi~ criterion No. 3:

(s. G=; l–
ND )pvoVol (3– A) Uf

(17)

Tail arm length,-Proper use of the formula for
S, (7.~ depends on getting the correct value for 1.
The fin arm lJ may be taken as the distance from the
c, g, of the ship back to the mean c. p. of the fins, the
latter point for any one fin being found as follows:
Find the centroid of the entire iin, including control
surface; draw a line through the centroid, in the phme
of the fin, parallel to the hull meridkm at the front
of the fin; from where this line cuts the leading edge,
measure back along the same line one-fourth of its
length from leading edge to trailing edge. For most
models 1 can be taken as approximately equal to I?j
but is more accurately given by the expression:

ZU~<~YU$& vol (B–A)Y–N) (18).

In case this gives a value diflering much from 1,, the
bare hull force and tail arm, Y, and 1, may be similarly
determined from a teat without the hs, and the figures
checked by equation (15). In special cases portions
of the hull force may be considered quite separately
from the fin force, in a simik manner to the car force,
now to be considered.

Effeot of oar.—It is clear that an additional fin force
at the center of gravity, such as due to a car, will serve
to carry part of the centrifugal force. For a given
angle of yaw it will cause the ship to turn on a smaller
radius, which in turn will produce a larger local angle
at the fins, thus impro~ the stability. Another,
1sssprecise way, of expkiining it is to say that there is
a relative damping moment between the car and the

149900-3%10

fins which opposes a tendency to turn. The important
thing to noti here is that the above two statements
are not of two di.fbrent effects, but refer to one and
the sanm effect.

Though the more general case of a plurality of side
forces at different points on the hull maybe solved by a
si.mik method, there seems to be no practical impork
ante in trying to express the result in a single algebraic
formula. Hence, we return to the case of a side force
at the c. g. In this case, let Yc be the dift%rencein
tmnsversive force with cm on and off, measured at an
angle of # in the tunnel. Then by the principle

already laid down, the actual cm force in free flight—

will be ‘}40 for an angle of # at the fins. The balance

of forces for equilibrium is:

my%y :M~ (19)

where,

Mo= mV$(B–A)&
.

and,
R-57. 31

+–+0
From (19) we get,

which can be substituted in the expression for R. For
a wind tunnel moment N, we have the second stabili~
requirement as before:

M–w mVz (B–A)& (20)
.

which, expressed as a ratio in terms of ~ is:

( 9[ 18.0..’=:+~ 1 ‘q vo~iB6_NA)~ (21)

Thus, aside flom interference effects, the stability is
slightly improved by a fin force at the c. g. Even
further forward, there is not likely to be much negative
effect, due to approaching the point of zero yaw. Put
more broadly, it is on the safe side to consider any
distributed load as concentrated at the point of appli-
cation of its rewiltxmt.

A word of warn@ here: measure N with the car (or
cars) on, to be sure of catching any blanketing of the
hs so caused. If Y is the stern force, S. C. ~’ is
derived from equation (20) by putting M–N= YZand
substituting for #o in terms of ~.

Pressure and velocity distribution.-Having deter- .
mined the free flight comection between $., ~ and R
we may substitute either way in equation (l), Part I.
A practical example is plotted in Figure 9. Expressed
in terrhs of the stern tingle #, where z= 1 by means of
equations (12a) and (13a), we have a convenient means
of checking the validitg of the assumptions on which
the stabili~ criteria are based.
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The particular question here is whether there is
enough difference, in the hitherto unconsidered flow
pattern, ESbetween turning and simple yaw to make
a serious difference in the resulting darn force for a
given vslue of #. Taking the extreme condition of a
fin element subjected to the full theoretical flow at the
hull surface, its actual reaction, compared to the free
air vslue, ia increased in the ratio,

where, +’ is the angle between the stremdine and the
meridk at the point in question. But for small
angles (ii radims),

#t=ti+?=;

or,
w. V.v.

‘=m=m

whera V~ is the meridian cwmponent and V. the cir-
cumferential component of V.

Equation (l), by its derivation, consists of four main
terms of which the fit two are the component terms

of ~ the third is ~ and the fourth isv.
g. For the

position of maximum&effectiveness@= O;‘&o putting
sin $.= *O(radians), MS #0=1 and substituting for 1?,
$0 and x ss abo~e we get,

Referring now to Table I or to Figure 1, it maybe

( B?
seen that the factor A A.+ O—A— takes a value of

2.25 for n-l, 2.0 for n= w, and 1.94 for n,=5, or is
practically equal to 2 for the entire range of usable
fineness ratios.

Applying aimihm appro@nations to equation (3b)
for simple yaw (0= *), we get as the factor of increase,

P=AB cm a=f2 cm a=F’

Therefore, within the range of hydrodynamic condi-
tions, the iin force at small sagle9 is close to a straight
line function of # for either curved @&t or simple
yaw, ss originally assumed. The boundary- layer and
other moditicationa of flow, probably of small effect
in relation to the present subject matter, will be taken
up in a later report.

Limitation of assumptions.-It should be noted
finally that the sssumed shight line variation of the
hull and fin forces with yaw angle is modified for the
hydrodynamic forces -when# becomes so lwge that the
relation,
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sin 2*=2 Sin $-2+

no longer holds within the desired order of accuracy.
And the assumption for the fin force breaks down
entirely at the burble point of the h airfoils. This is
particularly noticeable for iins of high aspect ratio,
such as used on the Z&fG%, this ship ahowing a very
definite tendency to “spin” in an extreme turn.

Conclusions.-For most purposes, equations (14)
and (16) are recommended, giving greatest credence
to the one giving the lowest value of S. 0. and designing
so as to make it at least 1.0 and preferably 1.16.
Serious discrepancies between the two criteria should,
however, be investigated for effects of distributed force,
interference, and burbling. The angle is preferably
taken as half of the algebraic difference between equal
positive md negative anglea, not more than + 10°,
Y and iV being similarly derived. For larger angles,

of s. 0. against +.
Stabili@ in pitch may be analyzed in exactly the

same way, the principal difference being the negligible
effect of the cars, and the static righting moment due to
the vertical distance between the center of volume and
the c. g. For the lattm reason there is seldom any
difficulty about the stability in pitch if that iu yaw is
satisfactmy.

The 234(%?, designed by these methods, indicated u
slightly positive stability at small angles, a result well
substantiated in practice. Examples of unstable air-
ships were the S%enundoah,and the Army AU, There
is no question about the latter by results from either
wind tunnel or actual flight. The Shenundcah, how-
ever, although admittedly unstable in flight, did not
Beemto have as bad a reputation as ita low criterion
would indicate. Its very long and generally poor shape
gives a distribution of transverse hull force suifioient
to be a substantial factor. But even taking this into
account the criterion is still quite low, Hence, it seems
probable that the results of experience with the airship
were hugely colored by the large radius of turn, and
by the time element contributed by the large moment
of inertia involved in any unstable deflection from the
straight path. In this case the principal danger of an
unstable condition remains in its effect of magnifying
the forces due to a sudden gust. Thus a sound and
xweful analysis of stabili~ is of the utmost importance,
prticuhdy in the csse of large airabips where the
result from a control standpoint is likely to be masked
by elements involved in the size as such.

In any csse the establishing of stability is but a ~
preliminmy to the determination of actual forces for
Tec.iiic conditions of flight.
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PART IV

FRICTIONALFORCES

Here we determine the amroxhnate distribution and
m&nitude of the frictiond-&ag on a large aimhip hull.
Analysis will proceed on the following assumptions:

1. Turbulent type of boundmy layer, of negligible
thickness compared to the hull dimensions.

2. Flow othenvise frictionless and irrotational.
3. Distribution of unit tangential force proportional

to the square of the local air velocity relative to the
surface.

4. Magnitude of the total integrated force deter-
mined with reference to the mean effective Reynolds
Number of the hull as a whole.

6. Axial motion of an ellipsoidal hull.
Foroe and energy relations.-bt dRo be the hori-

zontal component of skin fiction resistance on a cir-
cular element of surface of tial dimension dz. In the
preliminary analysis we assume that this force varies
exactly as the area, and as the square of the airvelocity.
Therefore, we may write, &= CPT.Y~ dx, where ~ iS

a coefficient, and p k the density in slugs. From the
1

ellipse equation, y=;~=d, by hydrodynamics,

Eq. (2)
P=A2V: COS= a

-f:?:)

Then, for the entire ellipsoid,

Jl&=2czp ,a@wx

where VOis the speed of the ship (feet per second) and

A is the hydrodynamic r~ation, >:-1 +kl. BY ~-

togration between the prescribed limits,

%= ~ 0pA2Vta=~, (1)

With the proper m-due of 0, to be determined, the
above equation gives the integrated axial force con-

xibuted by the skin friction. That it is not the total
hag due to the skin friction may now be made appw-
mt by energy considerations.

I& .dll be the ene~ per unit time absorbed by the
!ame circular element of surface, along the meridian
ncrement d8. Then if dF is the force along ds (inta-
yated aronnd the circle);

dE” vdF’ cPn-llv3&a
DUt,

1

Substituting and integrating as before,

But if the total drag is R, E=V&,
and,

~c 3 22.JWLR-3 PA Voa (n+l)2

or,

(2)

(3)

In other words, the skin friction drag R. must be
incremed by a “pressure dr~~” of kJ& im get the
total drag R due directly to the viscous forces. This
strongly discredits the opinion sometim& advanced (as
a result of unreliable tests at low Reynolds Number)
that it is possible b get a negative pressure drag. It
also makes the direct viscous drag of airahips (and
boats) quite sensitive to changes of form as well as to
changes of surface area and ship speed.

True visoous force.—To get an idea of the mag-
nitude of force involved, O must now be evaluatid,

137
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taking into account the errors already introduced by
the preliminrmy assumptions as to the exponenb of
the length and velocity. Using the formula of
Diehl ~’Engineering Aerodynamics,” and N. A. C. A.
Technical Note No. 102),

C= CPU0.0375 (6,350X VJ)4JSZ &0j;OJ5 (4)

(for standard sea-level conditions); where L may be
taken as the axial length of the hull, rather than the
meridian length, to allow for the end taper; or,

L-2a

V. is the mean effective velocity, which may be
evaluated as follows:

Referring to equation (3), this maybe written in the
form,

R= C;SV: (3’)

.-
Fnensss m%

~GUEE 12—VariatiOnof~m withflnmm l-do

.

in which the surface area,

S=K, a b

K, being a geometrical coefficient vaxying from 12.0
for n=2 to 11.4 for n=8. From equations (3)
(3’) we then have,

from which,
v: - #A3n (n+ 2) V,’ J

K, (n+l)’

Substituting in (4),
K,O.0i6 (n+ 1)0.15

c= 0.0077 aIJ.15Al)= ~0~75(n+ 2)0-076Voa15

and from (3),
(n+ 2)amR=o.00011 Aan6 als VJ= ~0.~ (n+ ~)lw

(for P= O.00238and K,= 11.7)

“-sOfthevO1me(”%$)’

c== (n+ l)O.l’
100AOa volom n0~75(n+ 2)0”w5 Voo”15

and

(5)

(5’)
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and,
R= A2”n5nl.’w (n+ 2)0”mV010”017V/&—.

22,000 (n+ I)lfi
((3)

For practical use this can be simplified to

R - CEV01°a17Vol~ (6’)

where CR is a coefficient involving A and n (A also
depend@ on n) which is plotted on the attaohed
chart (fig. 12) for various values of n.

Dimussion of results.-An interdng fact about the
curve is that the minimum drag is shown M a fineness
ratio greater than what would cause any great amount
of burbling over a properly shaped hull. Thus the
finenew ratio for minimum drag is apparently deter-
mined mairdy by fictional forces alone. A supple-
mentary indication is that practically minimum fric-
tiomd drag, for a given volume, may be attained with
any tlnenes.sratio between about 3 and 6. But natu-
rally the proper hull curve to prevent burbling becomes
increwiingly important for the lower iinenees ratios;
and with a ratio much under 4 a considerable amount
of burbling must apparently be reckoned with at the
best. In line with modern boundwy layer theory, it
appears further that this burbling at the lower fineness
ratios is indirectly due to the sharp increase of energy
loss from viscous friction, particularly around the
maximum section.

The magnitude of the axial skin friction component
around any one section, per unit axial length, is given
by,

d-%~= 2CgA~77 cod a (7)

where C has the value given in equation (6). The
approximation here involved in a5suming C constant

dl?o
over a long hull makes the calculated value of ~ a

little too low at the bow and too high at the stern.
Greater accuracy in respect to the actual force chetri-
bution will depend on further research into the detailed
structure and growth of the boundwy layer.

Equations (6’) and (7) are in a form which can be
applied to any fair hull shape by estimating the equivm
lent ellipsoid, discussed in Part II.

A similar method may be followed in dealing with
other problems involtig the boundary layer, includ-
ing cases of inclined and curvilinear flight.

It should be noted that there is still some question
about the exact coefficient and exponent of the Rey-
nolds Number. For smooth surfaces the coefficient
as here used is more likely to be high than low. I?or
the exponent, Von Karman uies – 0.2 instead of – 0,15
(with a coefficient to correspond), but the bulk of the
evidence seems to favor the exponent here use,d. (See
reference 12.)

Additional light on this point may be had from the
values for various model tests in the variable density
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wind tunnel as plottod in Figure 12. These are on the
basis of ORin equation (6’), all at a Reynolds Number
of about 2 X 107. It will be noted that most of them
fall below the theoretic~ curve; and most of them also
show less variation with Reynolds Number than pre-
dicted horn theory. An oflhand conclusion might be
that the exponent and coefficient both need revision.
However, data collected by B. M. Jones (reference 12),
shows. quite clearly that the laminar type of flow is
still often an appreciable element at the Reynolds
Number of 107, but probably would not be so at full
scale values of 108 and over. b other words, these
test results are probably not yet out of the imnsition
stage, and hence do not quite oomply with the iirst
assumption on which this study was based. An experi-
mental check of this supposition might be had from
obsetig the change due to an artiiiical increase of
turbulence in the same tunnel. Lacking evidence to
the contrary, it seems to be another caaeof the theoreti-
cal result being on the whole more reliable and practical
than the direct experiment; although in this case the
extrapolation of several of the test results leads ahnost
exactly to the theoretical value for full scale conditions.

In the computation of the parasite drag of outside
parts the proper coefficient and esponent will, of
course, depend on the character of the part in ques-
tion, If the true local velocity V (instead of VO) is
used, however, and the result further increased by the

energy factor JO much of the additional drag at low

fineness ratios, commonly attributed to interference,
will be found accounted for.

End conditions .—It remains finally to consider the
instructive ond conditions presented by the two ex-
tremes of lineness ratio, O and m.

In the &et case of n= O, a circular disk normal to

the flow, it can be shown that & =~and A=+,

while L may be assumed equal to b (the radius).
Substituting the corresponding wdue of C in equation
(1) gives for the direct skin friction:

~= (a finite coefficient) x no-’” b’s V/~= O. This
is not surprising in view of the fact that cos a
is everywhere zero except at the extreme edge. But
as energy is taken from the air, the dmqgcan not be
zero. On the energy basis, therefore, the viscous
drag, here entirely in the form of “pressure drag,” is,

R= A&= w

a result involving flow dimensions obviously out of
line with the original assumptions on which it is based,
and hence inapplicable to a practicalcase.

In the cas~-of n= w, K;=+, A=
simik process,

R-l&= O.OOO1lbaOfiV&fi
E 0.01 Sg (LV)+”U

1,0, and by a

Whichleads back, w it should, to the basic skin fric-
tion formula.

CONCLUSIONS

In conclusion of this part of the report, it is recom-
mended for practical analyeis that airship drag be
divided into the following parts: .

1. Viscous hull drag, of which the proportion ~

appears as skin friction proper, the balance as pres-
3uredrag.

2. Burbling hull drag, creating an unknown propor-
tion of pressure drag, nsusly positive, and a negative
(relative to Item 1) skin friction drag. This item as a
whole is probably always positive for practical hull
shapes, but vanishingly small for the larger iineness
ratios.

3. Parasii% drag of adjacent parts, considered as
wted upon by the actusJ air flow locally in which
they are placed. (See discussion above.)

4. Intaference effect, of the same parasite parts, on
the hull drag (mostly modifying Item 2).

Item 1 is obtained for full scale by formula (6’)
(the coefhcient and exponents behg subject to possible
future refinement); or, for a model with unknown
type of flow, by subtracting the tial resultant of the
measured pressure distribution from the total meas-
ured drag and multiplying the remainder by A.

Item 3 is obtained by wind tunnel test or compu-
tation corrected to speeds obtained by formula or
estimate.

The sum of Items 1 and 2 is obtained from a large
or high-density tunnel, with maximum turbulence in
the air flow.

The sum of Items 1,2,3, and 4 is similarly obtained;
and can also be had from actual flight tests.

If C. is used as a coefficient of total drag, it has the
following relation to the shape coefficient Cs:

~(i9°w0”’’v010’17v’1MDrag = C* q vol ‘p = C~

where POand ~ are the standard density and viscosity,
respectively.

JumI 1, 1931.
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