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APPLICATION OF PRACTICAL HYDRODYNAMICS TO AIRSHIP DESIGN

By Rarea H. UrsoN and W. A. Kuikorr

SUMMARY

The design of a large high-speed airship is primarily
a structural problem, in which the most important
stresses are those due, directly or indirectly, to aero-
dynamic forces on the surface of the hull. "The force
" on any small element of the surface is most conveniently
divided imto two components, respectively tangent and
normal to the surface. The tangent or skin-friction
forces are so small per unit area that they are structurally
almost negligible compared with the normal forces; yet
thetr total integrated resuliant is responsible for almost
the entire drag of the hull, whereas the normal components
of pressure are 8o nearly balanced orer a good hull that
their net resultant is practically zero. The interreaction
of these very substantial forces s, of course, through the
medium of stresses in the hull, and in combination with
fin and inertia forces they are essential not only from a
structural standpoint but also in the consideration of
stability and control. The distribution of velocity and
skin friction can also be indirectly determined from the
normal force distribution. An accurate determination of
the latter and its effects is therefore of the very first
importance.

The pressure on ellipsoidal shapes is presented first in
Part I as a foundation for more generalized formulas.
Although any ellipsoid is susceptible of accurate mathe-
matical treatment, only the case of a prolate spheroid
with circular cross section 18 investigated here because
of its approzimation to airship hulls.

Part IT deals with important adaptations of the ellip-
soidal formulas, and other hydrodynamic relations to any
atrship hull, with particular reference to structural
requirements.

In Part IIT the theoretical results are applied to the
practical computation of airship stability, and relaiions
established which can be eraluated from simple wind-
tunnal tests.

In Part IV the same fundamenials are used in the
determination of viscous forces, leading to an improved
classification of airship drag, and a new outlook on drag
generally.

Examples of practical airship characteristics are em-
ployed throughout.

INTRODUCTION

A determination of pressure distribution in a wind
tunnel usually is tedious, expensive, and inaccurate.
Even full-scale pressure readings have so far failed to
give very consistent results, presumably due to local
interference effects. Enough has been done experi-
mentally, however, to show conclusively that the normal
pressure is substantially unaffected by viscosity and
skin friction except near the stern. The same con-
clusion is also reached from considering the above
mentioned small magnitude of the unit tangential
force. In most of the work the viscosity may there-
fore be ignored; and this is exactly the assumption on
which the study of classical hydrodynamics has been
based. This time-honored science, which for centuries
was not much more than a mathematical toy, has thus
found for itself at last a directly practical outlet in its
increasing aeronautical use, particularly for lighter-
than-air.

The aerodynamic forces on airship hulls have lately
been investigated by different methods based on
hydrodynamical theory of flow. Professor Von Kar-
man (reference 5) has applied the method of sources
and sinks combined with assumed vortices at the stern
to the investigation of pressures on model of airship
Los Angeles. Dr. R. Jones (reference 3) determined
the pressure distribution on & prolate spheroid based on
classical hydrodymamical theories. Dr. M. Munk
(veference 2) by applying the theory of momentums has
derived the resultant moment acting on the airship;
and by assuming 2-dimensional transverse flow, has
approximated the distribution of transverse force
acting on airship hulls. Some of these investigations
have been presented in complicated manner and some,
by disregarding certain factors, lead to erroneous
conclusions.

This paper, submitted at the request of the National
Advisory Committee for Aeronautics, aims to over-
come certain difficulties and to bring the subject gen-
erally up to date. The purpose of the first two parts
is to present in concise shape all the formulas required
for computation of the hydrodynamic forces, so that
they can be easily computed for either straight or
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curvilinear flight. Improved approximations are also
introduced having a high degree of accuracy through-
out the entire range of practical proportions. The
remaining two parts of the report are devoted respec-
tively to stability and skin friction, as functions of the
same hydrodynamic forces.
SYMBOLS USED

P=any point on the surface,
Py=point at zero velocity,

p=density of air (standard =0.00237 slugs),

p=coefficient of viscosity,

V=velocity at point P (feet per second),
Vo=rvelocity of hull relative to air at « (feet per second),

p=pressure at point P (pounds per square foot),

q=Pmax=Dpressure at Pc,=%Vo2 (pounds per square

foot.)
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FI1GURE 1.—Inertia cosfficlents of ellipsoids

Coefficients of additional mass of ellipsoids:
A=' 1 +IC1
(n*—1)®

e——<1> log 1+8 n*n?—1—nlog(n+/n*—1)
where,
3__
e=-eccentricity of e]lipsem@x
n={fineness ratio=a/b,
e=major axis of ellipsoid,
b=minor axis of ellipsoid,
B=1+kF,, and is such quantity matgla+%=l,
0 +1 24(n*+1)—6
C=F i = ap—3iT 1)’
Ry, ks, a.nd k' may be taken from tables of Lamb and
Munk, for 4, B, and C--see Table I and Figure 1,
6=angle the direction of wind makes with axis
(pitched flight),
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y=angle the direction of wind makes with axis
(yawed fllight),
Yo=angle the direction of wind makes with axis
(circular flight)—(at center of volume),
e=angle the tangent at P makes with the major
8X18,
o= angle the tangent at Py makes with the major
axis,
¢=angle of arch between point P and a meridian
perpendicular to the plane of the turning-
circle, or the horizontal meridian (equator)
in case of pitched flight,
z,y=rprofile coordinates of the point P with center
of ellipsoid taken as origin. (Fig. 2), z posi-
tive backward,
r=y=radius of circular cross section at point P,
Vo=Ruw (for curved flight), where w=angular ve-
locity of ellipsoid (radians per second),
R=radius of circle in which center of vol-
ume moves (EB=hull drag in Part IV),

Ja

Axts A-Ais perpendicular
to R and axis of ship

U i)
&
agfd T

F16URE 2.—(eometrical notation

S=cross section area of ellipsoid at point P= 772,
Snex=maximum cross section ares of ellipsoid = 5%,
dS/dz=rate of change of cross section=2 =r tan q,
vol=volume of the hull,
AFr=transverse force per foot of axls,
AFy=longitudinal force per foot of axis,
AM;,=longitudinal moment per foot of axis,
Fy=longitudinal force from bow to any station z,
M=Mz+ Mr=moment about station z of all forces
forward of that point,
M,=total turning moment about center of volume,
Mr=moment about station z of transverse forces
forward of that point,
M =same, of longitudinal forces, : ‘
@ =transverse shear from bow back to any sta-
tion .
See Figure 10 for additional symbols applying to
Part IT1.
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PART 1
HYDRODYNAMIC FORCES ACTING ON A PROLATE SPHEROID

For the fundamentals on which this study is based
it is suggested that the references, particularly ref-
erence 1, be consulted. It is sufficient to state here
that the velocity distribution assumes frictionless,
incompressible, irrotational flow (whether the flight
path is curved or straight), as given by Laplace’s
equation for velocity potential . The pressure at
any point P is then given by the expression:

2 22 ¢

p of 2
where » is the air velocity at P relative to undisturbed
air. This is equivalent to an adaptation of Bernoulli’s

equation:
2 i

p 2 2

where U is the free air velocity of point P (=V, for
a point at radius B from center of turm), or for any
point on the hull in straight flight.

NORMAL PRESSURE DISTRIBUTION

For ourvilinear flight, the most general case (see
reference 3), the pressure at any point can be alge-
braically expressed as:

(ref. 3)

%= cos %"%Bin ¢>2+(%+sin lﬁo)g"‘{ACOS%COSO‘

3 2
+Bsin1//osinasin¢+[2S(C’—1)—C’Sm,]c—o:—:ts——?]

2
—(B sin¢o+§§> cos? ¢ )
(See Pt. ITI for the relation between ¥, and E.)

In case the ellipsoid is moving straight at & certain
angle of pitch 4, B= o,y=0,and the expression reduces

to:
g=1—B’sin’acos’¢— (A cos@cosa+ Bsin fsin asin ¢)?

In case §=0, the expression for pressure at any point
reduces to:

Po1— 42 cos? @ and V”‘”=
q Vo

Point P,, where velocity = 0, and pressure is & maxi-

A ()]

mum (g= 1> will be l'oca,ted where cot ao=§ tan 6.

At the point of minimum pressure where a=g —a
%wl—fﬁ cos? §— B2 sin? 9

_A’cos® §_ . Bsin’ §

= 1 -
sin® ap cos® aq

At point of zero pressure, where V=7V,
3
% gin? (gp—a)=1
when =0, the zero pressure occurs at the point where

;:os a=1
A

The pressure at any point for pitched flight in the
plane of symmetry may also be expressed as:

If we designate the side of ellipsoid turned to the
flow as “windward,” and the pressure at this side
Pw; the side turned away from flow “leeward,” and the
pressure p;; calling the meridian plane between the
gides equatorial and expressing pressure on meridian
plane p,; then in case of pitched flight:

%”él—(A cos ¢ cos 8+ B sin « sin §)? 3
(38'}’

(3b)

%’=1—-(A cos ¢« cos §— B sin « sin 6)?

%=1—-~B2 sin? §— A? cos® a cos?d

If the values of P, P;, and P, are plotted along the
diameter of symmetry they do not lie on a straight line,
except for a very elongated shape. (See fig. 3.)

At the equator the flow is at an angle ¥’ to the
meridian such that,

, Btan 8
tan ¢ TAcos

and the resultant velocity ratio,

2

TT;—O,=-B’ sin® 8+ .42 cos® a cos? 0
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Consider an element on the surface of an ellipsoid of
revolution. The force duse to aerodynamic pressure on
& small arc per foot of axis will be dF'=pr d ¢

This force can be subdivided into three compon-

ents (fig. 2):
(@) Transverse, perpendicular to the axis AA.

dFp=opr sin ¢ d ¢
(0) Longitudinal, parallel to the axis of ellipsoid.
dF,=prtan o d ¢

(¢) Perpendicular to plane of symmetry, parallel to
the axis AA; this component is evidently balanced

by the component on the other side of the hull and is
here disregarded.

ft. from bow

Maximum section
5

63.6.

L 1 1 v ! J
-30 =20 -0 o +.0 +2.0 +30 +40
. Pressure, b./5q. 1.

FiGURE 3.—Hydrodynamic pressure distribution over two cross sections—
ZAO-8 plotied agalnst the diameter of symmetry; 6=10°, g=50m.p. h.

The resultant transverse force per foot of axis on
any section perpendicular to the axis, in case of circular
flight is,

g—zQ—mAFT=2f pr sin ¢dé= q[A_Bd‘Ssm Yo
_ (4
2 [(2A0—2A+sec ) S— AC Sansl| co8% co5 Yo

In case of pitched flight,
B= o,

and,

AFT=Q%%GOSQCI sin 26=QA%Bm'sin2esin2a {4a)

The longitudinal component of pressure produces &
longitudinal force per foot of axis,

COMMITTEE FOR AERONAUTICS
AF, — ~/3
L—2f_fﬂpr tan adé¢.
In case of circular flight this evaluates to:
z, . 3\
AFL='Q{2 cos? z,!/o+2(R+sm yl/o> +<R>

—2 (A cos y, cos a)*—(B sin ¢o+% 0>2—|:B sin ¢, sin &
(6)

+ (208 — CSppx—28) X cos a:r}m' tan «
In case of pitched flight the same expression re-
duces to:
AFp=q{2—2A%cos® 0 cos® «

— B%(14sin? «) sin? 8} #r ten « (6a)
In case of straight flight at §=0,

AFp,=2q (1— A2 cos® &) 7r tan a=p% 6)

The effect of this force, although often disregarded in
the present design of airships will undoubtedly be con-
sidered with increase of speed.

The longitudinal force per foot of axis if integrated
over the length of ellipsoid will give the total longitu-
dinal aerodynamic force to any section. If integrated
over the whole length of the hull it will be equal to:

=20 () (%) sin do

in case of circular flight. In case of pitched flight it
will return to zero at the end.

The totat longitudinal force will reach its maximum
compressive value a short distance behind the how.
At the maximum section it has a slight negative (ten-
sion) value, which in case of straight flight of the ellip-

soid (§=0) is,
n’ <1 9 logn>]

' Fr,=qSnax l:l A
The expression of transverse force if integrated
either graphically or mathematically over the length
- of ellipsoid from the bow to any station « produces the
curve of aerodynamic shear. At the maximum sec-
tion the shear reaches the value:

2 (1 2log n
max o7 —

Q”q P

sin 2¥,—2¢ (vol) k1 cos ¥
R

By integrating the shear curve over the total length
the expression for aerodynamic moment around the
stern due to transverse force can be obtained.
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(Vl(él) kl CcOs lﬁo

2
Mp=q (ka—ky) (vol) ;L%l sin 2¢,— 2ga

The last two expressions for shear and transverse
moment are derived for the case of circular flight;
in case of pitched flight (yo=9), the last terms of these
equations will evidently be equal to zero.

The longitudinal component of pressure, neglected
in some of the recent investigations, produces a reverse
moment, dM,=r sin ¢ dF,=pr® tan a 8in ¢ d ¢=r
tan « dF T

Then the longitudinal moment per foot of axis,

/3
AM,,=2f /2r tan o dFp=—rA Fr tan «

This moment will always have a sign opposite to the
sign of transverse shear. If integrated over the length
of the ellipsoid for either pitched or curved flight, it
produces a total longitudinal moment,

1) .
My=qls— ) (g5 sin. 2 .

Combining this moment with the transverse mo-
ment, the éxpression for total turning moment around
the stern to which the ship is subjected,

M=gq(l;—k) (vol) sin 2 Y—2 gk, (vol) % cos Yo.

If the moment is taken around the center of volume,
the last term disappears, making the total moment for
either circular or pitched flight:

My=q(ks—Fk;) (vol) sin 2 . (M

This agrees with the expression derived by Doctor
Munk in his’ consideration of general flow around air-
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ship hulls. (Reference 2.) In his other work Doctor
Munk has disregarded the effect of longitudinal com-
ponents of pressure and, as will be shown, his expres-
sion for transverse force is needlessly inexact.

The fundamental difference between the circular and
pitched flight in an ideal fluid is that in casé of pitched

-| flight there are no resultant transverse or longitudinal

forces; while in case of circular flight there is a net
transverse force component:

Fr=2q(ks) (vol) 23 %0 ®)
and also & net longitudinal force component:
Fy=2q(k) (vol) Z5%0 ©

The two components have a resultant passing
through the center of flight path curvature, thus
satisfying the total energy conditions.

It will be interesting to note that some of the aero-
dynamic loads may be expressed as functions of
“windward,” ‘“leeward,” and ‘“‘equatorial”’ pressures
which were previously discussed, e. g.,

r
AFp=x ) (Po—m1)
AFy=7 % (Po+pi+2p.)

AMy=T (pi—pa) tan

The above expressions are theoretically correct for
circular as well as pitched flight.
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PART 11
APPROXIMATION OF HYDRODYNAMIC FORCES ON AIRSHIP HULLS

A critical study of the mathematical formulas apply-
ing to true ellipsoids throws considerable light on the
effect of other curves.

It may be observed that all the pressures and inte-
grated forces are functions of the radius of cross section
and the elopes at the particular point, and of general
nondimensional coefficients of additional mass. Fur-
thermore, there is & direct connection between these
characteristics. Thus, for ellipsoids, it may be shown
that
2a

fa cos? a dz

‘We now proceed to apply the expressions derived for
an ellipsoidal shape to any airship hull. Several
methods can be used for this purpose.

Equivalent ellipsoids.—As the bows of many air-
ships approach or are actually sections of ellipsoids

(ZMC-2, R-101), these may be computed as ellipsoids
and & modified curve can then be drawn for the stern
of the ship. This method is recommended by Doctor
Cox (reference 8), and will be discussed with the trans-
verse stern force distribution.

Another method for shapes departing more from the
ellipsoid is to determine the additional mass coefficients
for the complete hull and use them as constants in the
ellipsoidal formulas, determining the actual airship
forces from known characteristics of the airship curve
(radius and slope). For the determination of addi-
tional mass coefficients three simple methods of figuring
equivalent ellipsoids may be used:

A

L
1. Actual n=p

i3
2. By length n‘“\/ﬁ—’r@—oﬁ

3. By diameter n=%12

The truth will usually be best expressed by the
formula which gives the lowest result. Fine pointed
shapes, for example, take the last formula, because the
extreme point of the tail simply adds to the geometrical
length without appreciably affecting the aerodynamic
characteristics. The effective value of # is also de-
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creased by the dissymmetry between the how and
stern profiles, but not as far as would be obtained by
assuming the bow profile at both ends.

A still more general, but still approximate method,
is to fit at any point on the hull profile an ellipsoidal
element, which would reproduce all the hydrodynamic
characteristics at that point. This ellipsoidal element
will, as far as possible, have the same geometric char-
acteristics as the point on the curve, but tentatively,
may be & part of an ellipsoid whose over-all dimensions
do not correspond at all to the hull profile, i. e., its
additional mass coefficients may be entirely different
from the hull shape. The application of these equiv-
alent ellipsoids may be checked by applying the general
hydrodynamic proposition for frictionless, nonviscous
fluid that integration of axial and transverse pressure
components over the surface of any streamline shape
must equal zero for uniform straight motion. This
method will be more particularly applied to the deter-

mination of transverse force to be described later.
The pressure distribution plotted according to this

method is shown on Figure 4, curve 1. This curve was
plotted assuming the equivalent ellipsoid fitted to any
point on the hull to have the following characteristics
relative to the original hull curve:

1. Concentric about longitudinal axis,

2. Maximum diameter equal, (D =25,),

3. Vertical ordinates at the point equal, (r=1,),

4. Product of first and second derivatives of the
curves at the point equal,
which lead to the following relation between the fine-
ness ratio of an equivalent ellipsoid and the charac-
teristics of the point on the hull curve:

DEY=

= (tan « ( 3)

PRESSURE DISTRIBUTION BY SOURCE INTENSITY

For still greater accuracy we must go back to more
fundamental relations. The method of determining a
stream-line form from a predetermined source and sink
line is not new and was used in Naval Architecture and
Airship Design. (References4 and 6.) It was expected
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that the forms of low resistance could be determined
by this method and that these forms would have an
advantage that, knowing the hull profile and the in-
tensity of sources and sinks, the pressure distribution
could be eagily found. In most cases, however, a
predetermined distribution of sources and sinks does
not give a profile curve with any simple mathematical
equation that can be conveniently manipulated.
Therefore, in practice it seems preferable to predeter-
mine the profile curve and find the source distribution
to correspond, though recognizing the greater initial
labor involved.

For determination of the sink and source line shown
on Figure 4, Taylor’s method (reference 6) was used,
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characteristics. The same procedure was then applied
to the actual airship hull,

These equations after being solved for f(Z), repro-
duced the sink and source line corresponding to the
hull shape. Knowing f(Z) values, the horizontal
velocity at the point was determined by the equation,

1 @—2)
V=3 UP o s
then the final velocity at the point,

V-a Vot Vi
CcCosS

This value of the velocity was used in the pressure
equation,

7
x 3
&
5 | Approximate pressure fraom ellipticol elemenits.
§ “ - = constantinertia coefficient.
4 Hydrodynamic = » sources & sirves.
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F1GURE 4,—Comparison of pressure curve derlved from sink and source line (8 & 8) with curve obtained by fitting ellipsolds. §=0°,p=50m.p.h,,
ZMO-8 shape, EH curve with E stern

except that the problem was the reverse one of plot-
ting the curve of source and sink intemsity for a
known body. This was done by means of the equation
(for any one transverse section)'
%
Tos=7) ¢

Vfry=2f f(z)<1+

Where f(2), the source mtenmty, varies as a function
of 2 (here called = to distinguish it from the abscissa of
the section under investigation), and is integrated over
the length of the hull in each case.

Thus & complete series of equations was derived, all
these equations being interconnected by the known
equation of the hull curve.
checked by reproducing a full ellipsoid having known

The method was first -

)

for determination of the pressure at a given point.

Von Karman (reference 5) made an independent
investigation of pressure distribution using a sink and
source line to determine the flow in & longitudinal
plane, and a system of double sources to determine
the flow in a transverse plane. By writing general
expressions for the flow, he determined the values of
the velocity components in both planes, due to each
system of flow separately. Knowing the values of
these velocities, the pressure was determined by

Bernoulli’s equation.
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The pressure distribution curves based on ellipsoidal
formulas for straight flight are plotted in Figure 4 for
the metal-clad ZMC-2 hull: (1) by the method of
fitting ellipsoids to points on the hull; (2) by applying
the mass coefficients of the complete hull to equation
(2); for comparison (8), the actual hydrodynamic
pressure distribution by the method of sources and
ginks is also shown in the same figure.

TRANSYVERSE FORCE IN PITCHED FLIGHT

The main difficulty in applying ellipsoidal elements
lies in the approximation of additional mass coefficients
to fit not only the point where the forces are investi-
gated, but also to fit the complete hull.

In this connection an interesting observation was
made that the product of inertia coefficients A X B for

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

AFT=q%cos’ a sin 20=g¢x r sin 20 sin 2« (10)

The above simple, single formula is all that is neces-
sary for plotting this most important aerodynamic
force with a high degree of accuracy as to general
distribution and magnitude. (Fig.5.) After this force
is plotted it will be found, due to the above approxima-
tion, that the positive force over the bow and negative
force over the stern do not balance exactly. From a
quantitative standpoint this discrepancy is unim-
portant, but if further analysis is required on the
basis of an ideal fluid, it may be desirable to have an
exact balance. This can be easily done, at the same
time making the force curve at the bow a still closer
approximation, by simply moving the whole curve

120 6 = 300
P—
100 x 5 D 250
= L / L Nef fofal hydrodyramic g -
3 / \ berding moment N §
s 80 S P : a 2005
§ / \/ >< ~Aerodynamic shear : Q ) g
= ) X
1500 60— F—>] 5 - S 3 S 150
g / S / 8
Iy ()] l’ \\)/ J S— :E
g 1000 ’§ “0rTs e /)\ ] 2 3008
5 8 i ™, Totallongitudinal force, | 7 X 8
3 508 2 Z A ! S Seo §
E Q / N \ el N\ E E
= Q /\ ‘s \ Y <
E \§ / \\\\ 1,/, ‘ \‘} % E
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F1GURE 5.—Hydrodynamic loads, shears, and moments—ZAMC-8 hull. EH curve with E stern, §=10°, p=5§0 m. p. h. Total longitudinal force computed for §=0°

all usable fineness ratios is practically equal to two,
as is shown in Table 1.

Returning to the ellipsoidal formulas, it will be
noticed that the mass coefficients are represented
exclusively by the factorAz—Bin the expression (4a)
for transverse force per foot of axis. Thus for ellip-
soidal type of flow the point characteristics (. e.,
ordinate and slope) of any sectional element determine
the transverse force almost independently of charac-
teristics elsewhere. We may assume that the same
holds true for a series of gradually varying elements
and hence for the hull curve itself.

It would thus appear that the factorATBcan be

neglected, for most practical purposes, over the
entire range of usable fineness ratios. The general
formula for transverse force in pitched flight may
then be written,

bodily up or down enough to make the positive and
negative areas balance.

The close approximation of the lateral force derived
by the above method to the force measured by wind
tunnel tests can be seen from Figures 6, 7, and 8,
showing the distribution of transverse force on modern
airship hulls.

Von Karman (reference 5), extending his investi-
gation of pressure distribution to determination of
transverse forces has arrived at the following expres-
sion,

AFp=prr(uw, +u,w;).

Where u and w are the velocities due to the longi-
tudinal and transverse motion, respectively, the sub-
letters =z and r refer to the respective longitudinal
and radial components at a point in the plane of sym-
metry.

Applying this expression to ellipsoidal analysis, we
get,
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u,w,+u,w,=% V2 sin 2 asin 26 or,

2 4
approximately,-% sin 2 « sin 2 6 (the same result).

AERODYNAMIC SHEAR IN PITCHED FLIGHT

After the curve of transverse force is plotted, it can
be graphically integrated by means of a planimeter
and the curve derived will represent the aerodynamic
shear @ to any point, in pitched flight. The maximum
shear, at o point where AFr=0, may be approximated
by o similar method to what was used for transverse
force, thus:

Quax=gyB— A Snsx sin 26
'JB—‘A"'-JICQ—IQ

where,

is the mean effective value using apparent mass coeffi-
cients for the entire hull.

LONGITUDINAL MOMENT IN PITCHED FLIGHT (PER
FOOT OF AXIS)

As was mentioned for ellipsoids, the longitudinal
moment-per foot of axis,

AML="—A Frftan [+

Enowing therefore the value of AFy and the geo-
metrical characteristics of the point, the expression

4F; Pra N |
q?ta .05 f\ .
~05 \\ ' 5 \§% 2
=10
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the moment reaching a maximum at this point. (Fig.
5.) The net value of moment curve ordinate at the
stern represents the total hydrodynamic turning
moment on the hull, and must satisfy the equation (7).

M=q (ks—k) (vol) sin 2 ¢
20
.15 i[ﬁ\\
PN

N
ir \
[

FIGURE 6,—Transverse force on model R8-1 (§=9°), I, Transverse force from
wind tunnel tests by Bureau of Standards (Technical Data Files, MoCook Field,

DE27/RS-D). I=AFr=gXioxsin 2 0 cost a (carrected for hydrodynamis
balance) IM=APregX s (kr—k)Xsin 20 Munk's formala (kr—k) =078

TRANSVERSE STERN FORCE

The plotting of hydrodynamic forces, shears, and
moments does not correspond to actual conditions
observed on the airship hull. It will be noticed that
in an idesal fluid no resultant force occurs, and the air-
ship is subjected only to the action of a couple, whose
‘magnitude equals the hydrodynamic moment. Ac-
tually, the area under the distributed transverse force

N
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F1GURE 7.—Trapsverse force on model R-33 (9=10°). I. Transverse force from wind tunnel tests (A. BR. O.; R & M No, 801);
T=AFr=gx 38xein 2 6 cost a; MImAFreg 5 (bi—k) sin 20 Mank’s formula (ki—ku=.924)

for longitudinal moment can be easily plotted. The
longitudinal moment should have a negative sign over
the entire length of hull.

NET AERODYNAMIC MOMENT IN PITCHED FLIGHT

The net moment to any point will be the algebraic
sum or difference of the areas under the shear and
longitudinal moment curves. This assumes tempo-
rarily that the hull is held as a cantilever at the stern,

curve at the stern is considerably smaller than at the
bow, producing a resultant force at the bow in the
direction of inclination of the ship’s axis. (Figs. 6, 7,
and 8.) Superimposed on the hydrodynamic flow at
the stern. there is evidently an airfoil type of flow in
a direction opposite to the ship’s inclination, producing
vortices as is the case with an airplane wing.

Doctor Von Karman (reference 5) has computed the
magnitude of these vortices and has arrived at results .
closely approaching the actual load conditions.
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The following method, somewhat approaching that
recommended by Doctor Cox (reference 8), can be
more conveniently used. In this case it is desirable
to obtain from wind tunnel tests at high Reynolds
Number the resultant force and moment on the bare
airghip hull under conditions similar to those analyzed.
When these values are not available, they can be
approximated from results of tests of airship models
of shapes similar to the one analyzed. The curve of
hydrodynamic transverse force can be then modified
at the stern in such manner that its area would be
reduced by the amount equal to the force determined
in the wind tunnel. The shape of the curve should be
modified to approach the curves of transverse force as
determined in wind tunnels on hulls of similar general
characteristics. This distribution of transverse force

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

conditions. Therefore, the investigation of pitched
flight alone will usually serve as a guide for the deter-
mination of the longitudinal strength of airships, al-
though circular flight should also be at least tentatively
investigated, if there are any doubts as to the
strength in this plane. The relation between B and
¥oin actual flight and their effect on stability is treated

in Part IIT.
CONCLUSION

The investigation of the possibility of applying the
hydrodynamic ellipsoidal formulas to airship hulls
leads to the conclusion that these formulas can be
divided into two groups: (1) Formulas which can be
approximated to permit the determination of flow
characteristics from geometrical properties of the
individual point at which the flow is desired, and (2)
formulas which include the general shape as a whole.

will then approach very closely to the actual condi-

length of model=33.01 inches

tions, and if the forces at the control surfaces and the

inertia or other balancing forces are also considered,

the complete load diagram can be reproduced.
CIRCULAR FLIGHT

For the determination of forces in circular flight, the
exact ellipsoidal expressions should be used, making
approximation for the additional mass coefficients as
outlined above. The distribution of transverse force
over the bow for circular flight of the ZM(O-2 is shown

icure 9. This distribution is plotted for the same
speed, with the angle of yaw at ¢. g. the same as in the
pitched flight investigation. It can easily be observed
that the transverse force is smaller in the case of cir-
cular fligcht than in the corresponding case of pitched
flight. Considering also that the transverse force in
circular flight is balanced by inertia force largely dis-
tributed over the bull, while the force in pitched flight
may be largely balanced by excess of weight concen-
trated at the points of load application, it can clearly
be seen that pitched flight will produce higher shears
and moments than circular flight for otherwise similar

01 17 1 T T T 1 100 — 5 200
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N nel fests(ARC., R &MNo.1169); | ) /] 1 ° S
.04 AF; iransverse force from equa—— 360 o N —pr 33 /20 &
tion AFy.=q nT sin 2at sin 26 3 / (N[l carve e
7o ) 20 / = NP 2§90 3
e -
A B SN AT | A7 K ¥ o
7 \‘: ,4,_>7 8 / / d IR _Aerodynamic ’ A\ g £
— T | S20 L —ghear e AN 1% 40 §
-02 A} o A < / 7| Nef fofol hj/d"/o“y x g
: 3 ° 2 A" dynomic mpment LN b g
py \ § 0 //,./’ L Tm’nswer‘s? for"ce-b’\ Og o, P
. P I —r— A\ . S
\\_// § \\__Lonqm',dini:'/mm e S _1 T N g 5
-05 £ === 1 Iransverse force R=m x| < é
F1aURE 8.—Transverse force on model R-101 (#=10°). Scale of model=one-quarter; FIGURE 9.—Oircular flight. Hydrodynamic loads, shears, and moments—Bow ZM(C-2

(¥=10°, =50 m. p. h., R=600 feot)

The formulas which include only the geometrical
point characteristics, such as the formula for trans-
verse force in pitched flight, leading to the determina-~
tion of shear and bending moment, can be applied to
any airship hull, and for the most part are probably
even more accurate than the results of actual tests.

The formulas for pressure distribution and for longi-
tudinal force in the case of pitched flight, and for all
the aerodynamic forces in case of circular flight, are
dependent on characteristics of the point and also on
the hull shape as a whole. In this case the designer
should be careful in choosing the coefficients of addi-
tional masgs corresponding to the designed hull. If
these are properly applied results very closely ap-
proaching those of true hydrodynamic flow can be
obtained.

In regard to the stern force, it should be noted that
the hull force in the immediate neighborhood of the
fing, particularly between and behind them, is further
modified by the presence of the fing themselves. It is
proposed to deal with this more particularly in a sub-
sequent report on fin design.
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PART III
ATRSHIP STABILITY

The consideration of airship stability in yaw is
based on the principle that any tendency of the air-
ship to yaw from its path may be considered as the
tendency to swing into a circular path deviating from
the original direction. The study of stability in yaw
therefore simplifies itself to & study of the airship in
circular flight and a consideration of the transverse
forces and moments acting on it.

In this connection it should be first noted that for
motion of the airship deviating from the straight path
the angle of attack is no longer fixed but will vary
throughout the length of the airship, reaching the
highest values at the stern. The wind-tunnel tests
give only the moments at a constant angle of attack
throughout the hull; but as the principal stabilizing
forces on the airship act at the stern, the wind tunne
results may be utilized providing proper allowance is
made for the above-mentioned variation of yaw angle
in sctual flight. This may be done by the use of hy-
drodynamic principles.

Consider an airship of mass m=pXvol, traveling
on a circuler path, with angle of yaw =1y, (relative to
undisturbed air); velocity tangential to path=V; and
radius=R (all taken at the center of volume). The
center of gravity is assumed to be coincident with
the center of volume. #%; and %; are additional mass
coefficients of the airship, A and B the total virtual
mass coefficients. (Fig. 10.)

The airship is assumed to be subjected to the fol-
lowing forces:

1. Transverse component of centrifugal force due

2
to the mass of the ship itse1f=-m1¥ 9 cos ¥, distributed

through the hull, with resultant acting at center of
volume.

2. Transverse component of virtual centrifugal
force due to the additional mass of air set in motion

2
around the hu11=7-7%7i k1 cos Y, which appears as aero-
dynamic pressure with resultant applied at center of
volume. This is equivalent to the ellipsoidal equa-
tion (8), but mey also be derived from a more general
consideration of momentum. (Reference 2.)

3. Distributed aerodynamic force which does mnot
produce any resultant force but produces an unbal-

m

Ve .
5 (ks—k) sin 2 y; from

ancing moment, M,=
squation (7).

4. Stern force acting at a distance [ from the center
of gravity, whose magnitude to balance the above

moment should be ﬂ%(kg_kl) gin 2 .

4 (2 }
3 @
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()= casy,
(2)= 2"k, cosy,

mV,< . M,
R ()= Z7(k~k)sin 2y, = 7=
¥, = angle of yaw at c.g.
RO Fadius of turri at c?g.
m = p (vol) = airship mass
Y = yow force measured irr
tunne/
& = yaw moment measured
in funnel
M, = moment due fo distribut—
.ed force(3)
C = distance fo point of zero
o .yaw from c. lg
1 = distance fo point of stern
force gpplication from c.g.-
Y, = true air speed tangential fo
path at e.g. i 1. /sec.
k., k, = oddifforial gpparent mass
factors (1), (2),(3),(4) = frans~
verse forces.

F1GURE 10.—Transverss forces on airship hull in circular flight

Relation between turning radius and angle of yaw.—
As long as the airship is in a condition of steady turn,.
the forces should balance or, from the above,

Y (L) cos Yo="0 (ba—ky) sin 2 go. (11

thus, Utk _(a—h) g, ,

A B-—A.
-7 snd
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from which,
_Q+k) I QR D . 573 Al
BTy s v~ Gk %0~ taB=4) 2
(Yo in degrees).

It may be noticed that the angle of yaw of any one
point on the axis is a linear function of distance along
the axis. Thus as ¥, is the angle of yaw at the c. g.,
let ¢ be the distance forward of c. g. to point where the
local angle of yaw is zero. Then,

3 Al
¢=R sin ¢o=m

If ¢, is the local angle of yaw at the point of applica-
tion of the stern force (I feet behind the ¢. g.),

tan x,l/f=c—-:—l tan ¢o=§t&n 1)

or,

B
¥r= 7% (13)
from which we get as an alternative value of the turn-
ing radius,

p__57.3B

~3B-4) (122)

The above considerations of an airship in a perfect
fluid in a condition of neutral stability are only approxi-

mated in practice, due to the distributed nature of the

tail force, as already noted. In the case of a bare hull
at a fixed angle of pitch or yaw, the distributed hydro-
dynamic force at the stern is reduced while the dis-
tributed force at the bow remains the same. Usually
this difference is termed ‘dynamie lift on bare hull”’ of
the airship. Its real center of action is, of course, for-
ward of thec.g. For the purpose of the above analysis,
however, it is considered not in the sense of a resultant
force at the bow of the airship, but as a force at the
stern acting in & direction to oppose the theoretical
turning moment A, which would otherwise apply in
the analysis of a perfect fluid. This force is the ¥,
force which is measurable in wind-tunnel tests on a
bare hull for a certain angle of yaw y or pitch 6. Its
moment arm about the ¢. g. as measured in the wind
tunnel is,

l Mo,—'N h

S A

B

‘When the fin surfaces are introduced they produce a
foree ¥, and moment Y,l;,, For the purpose of analy-
sis we here assume I,=I,=1 combining ¥, and ¥, into
a single force Y, which is not far from actual results.

An experimental check is found in & comparison of
the radius of turn computed from formula (12) with
that obtained in full scale tests. In the case of the
Los Angeles the computed radii are 4 per cent off from
the experimental, but are closer to the experimental
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values than the results derived by the hydrodynami-
cally inexact formula used in N. A. C. A. Technical
Report No.333. The full scale tests on the C~7 (N. A.
C. A. Technical Report No. 208) are within 2.3 per
cent of the computed figure. A somewhat Jarger dis-
crepancy in the case of the ZM (-2 will be considered
later in connection with the car effect.

Stability criteria.—Comparing actual flicht with the
theoretical, where the forces were in balance, it can be
seen that if the actual force at the stern is larger than
the theoretical stern force opposing the turning move-
ment, the airship will tend to return from the circular
to its original straight path.

‘Whether this condition is fulfilled may now be deter-
mined from a simple static wind-tunnel test, preferably
at high Reynolds Number. The only further assump-
tion involved is that the stern force for a given airship
speed is determined by the angle of yaw af the fins,
regardless of what it is elsewhere. As will be shown
later, this seems to be almost exact for the fin force
proper and usually a fair approximation for the balance
of the stern force. Thus, for stability computation,
the wind-tunnel angle ¥ must now be taken as equiva-
lent to ¥, not to ¥,, because from (13)

A A
Yo=p ¥r=p Y (13a)
Referring back to the condition for neutral stability,
equation (11) for small angles can now be written:

mV,? A=mV,,’A

R IB

of which the first term is the actual centrifugal force,
including that of the additional air mass, and the
second term is the balancing stern force necessary to
bold a constant radius of turn. If ¥ exceeds this force
we have positive stability. Qenerally speaking then,
we may define the degree or criterion of stability as
the ratio of the actual stern force to the balancing

stern force. Then any value greater than unity is
stable. Thus we get stability criterion No. 1:

28.6lYB .
q(vo)A(B—A)y

The same method of reasoning can be also applied
to moments. The moment measured in the tunnel
for a certain angle of yaw will be evidently:

N=M,/-Y,~-Y/l,
The moment due to the stern force alone is evidently,
=Mo,_N=‘thh+Y]lszl (15)

This moment should be larger than the theoretical
moment to have the ship stable, or

(B—A) 5;”—3

S. 0-7“' (14)

3L,/ ~N)>mVyt (B—4) 5 ¥
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Taking the ratio as before, we get stability criterion

No. 2:
28.6 N

gvol (B—A) ¢

A third stability criterion may be based on an exper-
imental determination of the resisting yawing moment
by the use of damping apparatus or a whirling arm.
It seems obvious, however, that additional mechanical
complications of this kind are not justified unless they
serve to reproduce more closely the type of motion
found in actuel flight. For example, the oscillating
type of damping apparatus would seem to be par-
ticularly futile. Though any method by which the
stern force or moment can be plotted against the local
angle of attack at the stern gives a means of approx-
imating the required ratio, the most important test
condition is high Reynolds Number.

The evaluation of a damping test is best expressed
28 o moment Ny arqund the ¢. g. (computed from the
test moment around the actual center used) for a
given transverse component of stern speed v, at the

S. Cy= % (1— (16)

position ! behind the ¢.g. Then %’ corresponds to

(in radians), and we get as stability criterion No. 3:

B Np
5. Co=y <1‘ pVs vol (B—A4) v,)

a7

Tail arm length.—Proper use of the formula for

S. O.y depends on getting the correct value for I.
The fin arm I, may be taken as the distance from the
¢. g. of the ship back to the mean ¢. p. of the fins, the
latter point for any one fin being found as follows:
Find the centroid of the entire fin, including control
surface; draw a line through the centroid, in the plane
of the fin, parallel to the hull meridian at the front
of the fin; from where this line cuts the leading edge,
measure back along the same line one-fourth of its
length from leading edge to trailing edge. For most
models I can be taken as approximately equal to I,
but is more accurately given by the expression:

r_
127 L (g vol B-Ay-N)  (9)
In case this gives a value differing much from /;, the
bare hull force and tail arm, ¥, and I, may be similarly
determined from & test without the fins, and the figures
checked by equation (15). In special cases portions
of the hull force may be considered quite separately
from the fin force, in a similar manner to the car force,
now to be considered.

Effect of car.—It is clear that an additional fin force
at the center of gravity, such as due to a car, will serve
to carry part of the centrifugal force. For a given
angle of yaw it will cause the ship to turn on a smaller
radius, which in turn will produce a larger local angle
at the fins, thus improving the stability. Another,
less precise way, of explaining it is to say that there is
a relative damping moment between the car and the

149900—33——10
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fins which opposes a tendency to turn. The important
thing to note here is that the above two statements
are not of two different effects, but refer to one and
the same effect.

Though the more general case of a plurality of side
forces at different points on the hull may be solved by a
similar method, there seems to be no practical import-
ance in trying to express the result in a single algebraic
formula. Hence, we return to the case of a side force
at the ¢. g. In this case, let Y. be the difference in
transversive force with car on and off, measured at an
angle of ¥ in the tunnel. Then by the principles
already laid down, the actual car force in free flight

will be Y:{I% for an angle of ¢ at the fins. The balance

of forces for equilibrium is:

mV3A Y, , M
B YTy T (19)
where,
Mo=mV02(B—A)57lj§
and, ,
57.3
=
From (19) we get,
$,.28.6Y4 B
Y gvolAy A

which can be substituted in the expression for B. For
& wind tunnel moment V, we have the second stability
requirement as before:

M—N> mV§ (B—4)g¥ (20)
which, expressed as a ratio in terms of y is:
B 28.6 Y~ 28.6 N

8. O'Nl=<.71+ gvol A &bl)[l Tgvol (B—A) vy (21)

Thus, aside from interference effects, the stability is
slightly improved by a fin force at the ¢. g. Even
further forward, there is not likely to be much negative
effect, due to approaching the point of zero yaw. Put
more broadly, it is on the safe side to consider any
distributed load as concentrated at the point of appli-
cation of its resultant.

A word of warning here: measure N with the car (or
cars) on, to be sure of catching any blanketing of the
fins so caused. If Y is the stern force, S. C. ;' is
derived from equation (20) by putting AM—N=Y7 and
substituting for ¥, in terms of .

Pressure and velocity distribution.—Having deter-
mined the free flight connection between y,, ¥ and B
we may substitute either way in equation (1), Part I.
A practical example is plotted in Figure 9. Expressed
in terms of the stern angle y, where z=1[ by means of
equations (12a) and (13a), we have a convenient means
of checking the validity of the assumptions on which
the stability criteria are based.
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The particular question here is whether there is
enough difference, in the hitherto unconsidered flow
pattern, as between turning and simple yaw to make
& serious difference in the resulting stern force for a
given value of y. Taking the extreme condition of a
fin element subjected to the full theoretical flow at the
hull surface, its actual reaction, compared to the free
air value, is increased in the ratio,

V2y’
V¢
where, ¢’ i3 the angle between the streamline and the

meridian at the point in question. But for small
angles (in radians),
‘Il, — Si.ll 11,/ =%
or,
P o VV. VaV.
T?r 'V—
where V, is the meridian component and V, the cir-
cumferential component of V.
Equation (1), by its derivation, consists of four main
terms of which the first two are the component terms

2
%,72 the third is T{,, and the fourth is V:—z For the

position of maximum fin effectiveness ¢ =0; also putting
sin Yo =1y, (radians), cos Y¥p,=1 and subsﬁtutu'ng for R,
Y, and z as above we gef,

F=A(A+0—‘%’>ws o

Referring now to Table I or to Figure 1, it may be
seen that the factor A <A+ C’—A? takes a value of

2.25 for n=1, 2.0 for n= «, and 1.94 for =5, or is
practically equal to 2 for the entire range of usable
fineness ratios.

Applying similar approximations to equation (3b)
for simple yaw (6=1), we get as the factor of increase,

F=AB cos a=~2 cos a=F"’

Therefore, within the range of hydrodynamic condi-
tions, the fin force at small angles is close to a straight

line function of ¢ for either curved flight or simple -

yaw, as originally assumed. The boundary layer and
other modifications of flow, probably of small effect
in relation to the present subject matter, Wﬂl be taken
up in & later report.

Limitation of assumptions.—It should be noted
finally that the assumed straight line variation of the
hull and fin forces with yaw angle is modified for the
hydrodynamic forces when  becomes so large that the
relation,

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

sin 2y =2 sin ¢ =2y

no longer holds within the desired order of accuracy.
And the assumption for the fin force breaks down
entirely at the burble point of the fin airfoils. This is
particularly noticeable for fins of high aspect ratio,
such as used on the ZM (-2, this ship showing a very
definite tendency to “spin’’ in an extreme turn.

Conclusions.—For most purposes, equations (14)
and (16) are recommended, giving greatest credence
to the one giving the lowest value of S. C. and designing
so as to make it at least 1.0 and preferably 1.15.
Serious discrepancies between the two criteria should,
however, bé investigated for effects of distributed force,
interference, and burbling. The angle is preferably
taken as half of the algebraic difference between equal
positive and negative angles, not more than =£10°,
Y and NN being similarly derived. For larger angles,
substitute g—% for % and ((112‘27 Z‘X plotting the values
of S. C. ageinst y.

Stability in pitch may be analyzed in exactly the
same way, the principal difference being the negligible
effect of the cars, and the static righting moment due to
the vertical distance between the center of volume and
the ¢. g. TFor the latter reason there is seldom any

_difficulty about the stability in pitch if that in yaw is

satisfactory.

The ZM(C-2, designed by these methods, indicated a
slightly positive stability at small angles, a result well
substantiated in practice. Examples of unstable air-
ships were the Shenandoah, and the Army AC. There

“is no question about the latter by results from either

wind tunnel or actual flight. The Shenandoak, how-
ever, although admittedly unstable in flight, did not
seem to have as bad a reputation as its low criterion
would indicate. Itsvery long and generally poor shape
gives a distribution of transverse hull force sufficient
to be a substantial factor. But even taking this into
account the criterion is still quite low. Hence, it seems
probable that the results of experience with the airship

. were largely colored by the large radius of turn, and

by the time element contributed by the large moment
of inertia involved in any unstable deflection from the
straight path. In this case the principal danger of an
unstable condition remains in its effect of magnifying
the forces due to a sudden gust. Thus a sound and
careful analysis of stability is of the utmost importance,
particularly in the case of large airships where the
result from a control standpoint is likely to be masked
by elements involved in the size as such.

In any case the establishing of stability is but a
preliminary to the determination of actual forces for
specific conditions of flight.
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PART IV
FRICTIONAL FORCES

Here we determine the approximate distribution and
magnitude of the frictional drag on a large airship hull.
Analysis will proceed on the following assumptions:

1. Turbulent type of boundary layer, of negligible
thickness compared to the hull dimensions.

2. Flow otherwise frictionless and irrotational.

3. Distribution of unit tangential force proportional
to the square of the local air velocity relative to the
surface.

4. Magnitude of the totel integrated force deter-
mined with reference to the mean effective Reynolds
Number of the hull as a whole.

5. Axial motion of an ellipsoidal hull.

Force and energy relations.—Let dRy be the hori-
zontal component of skin friction resistance on & cir-
cular element of surface of axial dimension dz. In the
preliminary analysis we assume that this force varies
exactly as the area, and as the square of the air velocity.
Therefore, we may write, dRy=CpryV? dz, where C is
o coefficient, and p is the density in slugs. From the

%ﬂ/a’—x’, by hydrodynamics,

V2= AV} cos’
_ AV —a")

=

Then, for the entire ellipsoid,

ellipse equation, y=
Eq. (2)

By=2Crp ﬁ “Vide
=20p‘R'A2Vo f ¢ (iF— 1’2)322
s :1;’(1 -

where V, is the speed of the ship (feet per second) and

A is the hydrodynamic relation, Y%—:’E-l +%k. Byin-
tegration between the prescribed limits,

g N+2
(R @

With the proper value of C, to be determined, the
above equation gives the integrated axial force con-

Ro =5 G’pA’Vo’

tributed by the skin friction. That it is not the total
drag due to the skin friction may now be made apper-
ent by energy considerations.

Let dE be the energy per unit time absorbed by the
same circular element of surface, along the meridian
increment ds. Then if dF is the force along ds (inte-
grated around the circle);

dE=VdF=CpryV®—Z

cos « @)
but, '
VA= AV cos® AV —2%) cos o
#—a(1-4
o
—_— S
FIGURE 11
Substituting and integrating as before,
w n+2
E=—0pA Viia? CESYL
But if the totel drag is R, E=V,R,
and,
* +2
R=7 ColdVid 35 ®)
or,

In other words, the skin friction drag B, must be
increased by a ‘‘pressure drag’’ of kR, to get the
total drag B due directly to the viscous forces. This
strongly discredits the opinion sometimes advanced (as
a result of unreliable tests at low Reynolds Number)
that it is possible to get a negative pressure drag. It
also makes the direct viscous drag of airships (and
boats) quite sensitive to changes of form as well as to
changes of surface area and ship speed.

True viscous force.—To get an idea of the mag-
nitude of force involved, ¢ must now be evaluated,
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taking into account the errors already infroduced by
the preliminary assumptions as to the exponents of
the length and velocity. Using the formula of
Diehl (“Engineering Aerodynamics,” and N. A. C. A.
Technical Note No. 102),

O'=Cr=0.0375 (6,350 Vl)‘“‘ﬁ%)lm @)

(for standard sea-level conditions); where L may be
taken as the axial length of the hull, rather than the
meridian length, to allow for the end taper; or,

L=2q

V, 1s the mean effective velocity, which msay be
evaluated as follows:

Referring to equation (3), this may be written in the
form,

R=C 58V} 39
HENEEEEEEEEN o/wvlﬂr
00012 Volve of G i equotion H~a.| ]
\—XODA Vaolus of ¢ based on fold drog meas
ured mn varfable density #
(&'00010 RN~ approx. ?0.8900.000) il
.00008 =
© o
00006

/ 2 3 4 5 6 7 & 9 0
Frneness ratio

F1GURE 12—Varlation of resistance with fineness ratio
in which the surface area,
S=K,abd

K, being a geometrical coefficient varying from 12.0
for n=2 to 11.4 for n=8. From equations (3) and
(3) we then have,

R=CLab K, Vi=Chat m 43 V2 2, (Zif)g
from which,
24% (n+2) Vi -

Ve="F aFir

Substituting in (4),

K0 (4 1)0-15
C=0.0077 a1 4028 no.on( (n+ 2)007 7516 (5)

and from (3),

B=0.00011 427 s s (-t 2%

(for p==0.00238 and K,=11.7)
' 3
In terms of the volume <=-4 L ).

(,n_l_ 1)0.15
100A0.225 V0]_0.05 .no.l76 (n_l_z)o.ws Voo.ls

G:ﬂ
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and,
A2.775 nl.lss (n+2)0-925 7010.017 Vol.35
= 22,000 W T 1% ®)

For practical use this can be simplified to
R = (g volo417 Y18 6")

where Cy is 2 coefficient involving A and n (4 also
depending on n) which is plotted on the attached
chart (fig. 12) for various values of n.

Discussion of results,—An interesting fact about the
curve is that the minimum drag is shown at o fineness
ratio greater than what would cause any great amount
of burbling over a properly shaped hull. Thus the
fineness ratio for minimum drag is apparently deter-
mined mainly by frictional forces alone. A supple-
mentary indication is that practically minimum fric-
tional drag, for a given volume, may be attained with
any fineness ratio between about 3 and 6. But natu-
rally the proper hull curve to prevent burbling becomes
increasingly important for the lower fineness ratios;
and with & ratio much under 4 a considerable amount
of burbling must apparently be reckoned with at the
best. In line with modern boundary layer theory, it
appears further that this burbling at the lower fineness
ratios is indirectly due to the sharp increase of energy
loss from viscous friction, particularly around the
maximum section.

The magnitude of the axial gkin friction component
around any one section, per unit axial length, is given
by,

o 2042yr cos? @)

where C has the value given in equation (5). The
approximation here involved in assuming C constant

over a long hull makes the calculated value of %’ a

little too low at the bow and too high at the stern.
Greater accuracy in respect to the actual force distri-
bution will depend on further research into the detailed
structure and growth of the boundary layer.

Equations (6”) and (7) are in a form which can be
applied to any fair hull shape by estimating the equiva-
lent ellipsoid, discussed in Part IT.

A similar method may be followed in dealing with
other problems involving the boundary layer, includ-
ing cases of inclined and curvilinear flight.

It should be noted that there is still some question
about the exact coefficient and exponent of the Rey-
nolds Number. For smooth surfaces the coefficient
as here used is more likely to be high than low. For
the exponent, Von Karman uses — 0.2 instead of —0.15
(with a coefficient to correspond), but the bulk of the
evidence seems to favor the exponent here used. (See
reference 12.)

Additional light on this point may be had from the
values for various model tests in the variable density
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wind tunnel as plotted in Figure 12. These are on the
basis of Ok in equation (6’), all at a Reynolds Number
of about 2X10°. It will be noted that most of them
fall below the theoretical curve; and most of them also
show less variation with Reynolds Number than pre-
dicted from theory. An offhand conclusion might be
that the exponent and coefficient both need revision.
However, data collected by B. M. Jones (reference 12),
shows_quite clearly that the laminar type of flow is
still often an appreciable element at the Reynolds
Number of 107, but probably would not be so at full
scale values of 10® and over. In other words, these
test results are probably not yet out of the transition
stage, and hence do not quite comply with the first
ngsumption on which this study was based. An experi-
mental check of this supposition might be had from
observing the change due to an artifiical increase of
turbulence in the same tunnel. Lacking evidence to
the contrary, it seems to be another case of the theoreti-
cal result being on the whole more reliable and practical
than the direct experiment; although in this case the
extrapolation of several of the test results leads almost
exactly to the theoretical value for full scale conditions.

In the computation of the parasite drag of outside
parts the proper coefficient and exponent will, of
course, depend on the character of the part in ques-
tion. If the true local velocity V (instead of V) is
used, however, and the result further increased by the

energy factor % much of the additional drag at low

fineness ratios, commonly attributed to interference,
will be found accounted for.

End conditions.—It remains finally to consider the
instructive end conditions presented by the two ex-
tremes of fineness ratio, 0 and .

In the first case of n=0, a circular disk normal to

the flow, it can be shown that Ks=277r and A=%,

while L may be assumed equal to b (the radius).
Substituting the corresponding value of ¢ in equation
(1) gives for the direct skin friction:

Ry= (a finite coefficient) X n®-%¢ p14¥ V1-#=0, This
is not surprising in view of the fact that cos «
is everywhere zero except at the extreme edge. But
as energy is taken from the air, the drag can not be
zero., On the energy basis, therefore, the viscous
drag, here entirely in the form of ‘‘pressure drag,” is,

B=ARy= =

o result involving flow dimensions obviously out of
line with the original assumptions on which it is based,
and hence inapplicable to a practical case,

In the case of n= o, Kzg==*, A=1.0, and by a
similar process,

R=Ry=0.00011ba°% V -8
=0.01 Sq (LV)~01
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which leads back, as it should, to the basic skin fric-
tion formula.
CONCLUSIONS

In conclusion of this part of the report, it is recom-
mended for practical analysis that airship drag be
divided into the following parts:

1. Viscous hull drag, of which the proport.ion%

appears as skin friction proper, the balance as pres-
sure drag.

2. Burbling hull drag, creating an unknown propor-
tion of pressure drag, usuelly positive, and a negative
(relative to Item 1) skin friction drag. This item as a
whole is probably always positive for practical hull
shapes, but vanishingly small for the larger fineness
ratios.

3. Parasite drag of adjacent parts, considered as
acted upon by the actual air flow locally in which
they are placed. (See discussion above.)

4. Interference effect, of the same parasite parts, on
the hull drag (mostly modifying Item 2).

Ttem 1 is obtained for full scale by formula (6%)
(the coefficient and exponents being subject to possible
future refinement); or, for 2 model with unknown
type of flow, by subtracting the axial resultant of the
measured pressure disfribution from the total meas-
ured drag and multiplying the remainder by A.

Item 3 is obtained by wind tunnel test or compu-
tation corrected to speeds obtained by formula or
estimate,

The sum of Items 1 and 2 is obtained from & large
or high-density tunnel, with maximum turbulence in
the air flow. :

The sum of Items 1, 2, 3, and 4 is similarly obtained;
and can also be had from actual flight tests.

If Cr is used as & coefficient of total drag, it has the
following relation to the shape coefficient Cs:

- = . ﬂ 0.85 E 0.15 0.617 185
Drag=Cs ¢ vol Cr vol. TV,

where py and o are the standard density and viscosity,
respectively.

June 1, 1931.
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