REPORT No. 422 # WIND-TUNNEL RESEARCH COMPARING LATERAL CONTROL DEVICES, PARTICULARLY AT HIGH ANGLES OF ATTACK ## II.—SLOTTED AILERONS AND FRISE AILERONS By Fred E. Weick and Richard W. Noves ## SUMMARY Three model wings, two with typical slotted ailerons and one with typical Frise ailerons, have been tested as part of a general investigation on lateral control devices, with particular reference to their effectiveness at high angles of attack, in the 7 by 10 foot wind tunnel of the National Advisory Committee for Aeronautics. Force tests, free-autorotation tests, and forced-rotation tests were made which show the effect of the various ailerons on the general performance of the wing, on the lateral controllability, and on the lateral stability. In general, the slotted and Frise ailerons tested were inferior in rolling control at 20° angle of attack to plain ailerons of the same size. The adverse yawing moments obtained with the slotted and Frise ailerons were, in most cases, slightly smaller than those obtained with plain ailerons of the same size and deflection. However, this improvement was small as compared to the improvement obtainable by the use of suitable differential movements with any of the ailerons, including the plain. ## INTRODUCTION This report is the second of a series giving the results of an investigation in which it is hoped to compare all types of lateral control devices which have been satisfactorily used or which show reasonable promise of being effective. In this program it is planned first to test the various types of ailerons and lateral control devices on rectangular wings of aspect ratio 6. Later the best ones are to be tested on wings of different shape. While these items have previously been tested in isolated cases, it is not possible to get a good comparison between most of them because the individual tests were made under different conditions in different wind tunnels or in isolated flight tests and with various degrees of completeness. In this investigation the various devices are subjected to the same series of wind-tunnel tests which, it is thought, include all the factors directly connected with lateral control and lateral stability that can be satisfactorily handled in a routine manner in a wind tunnel. The tests are designed to show the relative merit of the various control devices in regard to lateral controllability, lateral stability, and general usefulness. They include regular 6-component force tests with the ailerons or other control devices both neutral and deflected various amounts, rotation tests in which the model is rotated about the wind-tunnel axis and the rolling moment measured, and free-rotation tests showing the range and rate of autorotation. The tests are made not only at 0° yaw, but also with an angle of yaw of 20°, which represents the conditions in a fairly severe sideslip. The first report of this series (reference 1) dealt with three different sizes of ordinary ailerons. One of these ailerons was of medium size taken from the average of a number of conventional airplanes, one was extremely short and wide, and the other was extremely long and narrow. All the ailerons were proportioned to give approximately equal controllability at angles of attack below the stall and with equal upand-down deflection. The results were analyzed to show the relative merits of the three sizes of ailerons when set in the above manner and also in accordance with two differential movements, upward movement only, and with the ailerons arranged to float. This report covers similar tests with typical slotted ailerons of two of the above-mentioned sizes (the medium and the short, wide ones) and one typical Frise aileron of the medium size. The long, narrow type was omitted in both these designs as the previous tests with ordinary ailerons indicated that ailerons of this shape would not give satisfactory control at high angles of attack. The results are given for the same five deflection movements as were used with the ordinary ailerons except that the Frise aileron was not tested in the floating condition. Inasmuch as the characteristics of slotted and Frise-type ailerons are somewhat sensitive to the exact shape and axis location, these tests are not necessarily representative of all designs of slotted or Frise ailerons. ## METHODS AND APPARATUS Wind tunnel.—All the present tests were made in the 7 by 10 foot open-jet wind tunnel of the National Advisory Committee for Aeronautics. In this tunnel the model is supported in such a manner that the forces and moments at the quarter-chord point of the mid section of the model are measured directly in coefficient form. For autorotation tests the standard force test tripod is replaced by a special mounting permitting the wing to rotate about the longitudinal wind axis passing through the midspan quarter-chord point. This apparatus is mounted on the balance, and the rolling-moment coefficient may be read directly during forced-rotation tests. A complete description of the above equipment is given in reference 2. Models.—Three wing models, each having a 10-inch chord and a 60-inch span, were tested. Two of these models were equipped with slotted ailerons and the FIGURE 1.—Profiles of slotted and Frise allerons on Clark Y airfoll. (All dimensions are in terms of the wing chord) third one with Frise ailerons, as illustrated in Figure 1. The small slotted ailerons and the Frise type had the same span and chord (measured from the trailing edge to the axis of rotation) as the average-sized plain aileron discussed in reference 1, and the large slotted aileron had the same dimensions as the short, wide, plain aileron of reference 1. The models were constructed of laminated mahogany, except for the slotted ailerons which were built principally of balsa wood. The latter material was necessary in order that these ailerons could be mass balanced about their axis of rotation and consequently be capable of floating at an attitude of zero resultant air force. For the above-mentioned floating condition the slotted ailerons were connected by a torque rod running through the wing. The ailerons were adjustable in angle of pitch relative to this rod, and the rod could be locked to the wing for normal aileron tests. ## TESTS This series of tests was conducted in accordance with the standard procedure and at the dynamic pressure and Reynolds Number employed throughout the present research on lateral control. (See reference 1.) The dynamic pressure was 16.37 pounds per square foot, corresponding to a speed of 80 miles per hour at sea level under standard atmospheric conditions, and the Reynolds Number was 609,000. Aileron movements.—Four types of aileron deflection were used in these tests-equal up-and-down, upward movement only, downward movement only, and floating (except for the Frise type), with various relative angles of deflection between the ailerons. The rolling and yawing moments for the differential arrangements were assumed to be the sum of the moments obtained separately on the up-only and downonly tests at the simultaneous angles of attack given in Table I. This assumption is not rigorously correct owing to the difference in the effect of the ailerons on the span load distribution of the wing when they are deflected separately or together. However, check tests comparing the moments as obtained by either simultaneous or separate deflection show that the error due to this method of computation is small for the cases under discussion. TABLE I SIMULTANEOUS AILERON DISPLACEMENTS WITH ASSUMED DIFFERENTIAL ARRANGEMENTS | Average | lifferential | Extreme o | lifferential | |--|---------------------------------------|--|--| | Upward
displace-
ment | Downward
displace-
ment | Upward
displace-
ment | Downward
displace-
ment | | Degrees
0.0
10.0
20.0
30.0
35.0 | Degrees
0.0
8.5
13.0
15.0 | Degrees
0.0
10.0
20.0
30.0
40.0
50.0 | Degrees
0.0
7.0
12.0
14.0
11.5
7.0 | All the aileron arrangements are illustrated in Figure 2 and are identical with those discussed in relation to the plain ailerons in reference 1. The maximum deflections represent either normal practice or the physical limit to the aileron travel due to interference with the wing. Thus, 25° up and 25° down is the average maximum travel of ordinary-sized plain ailerons having no differential action and 35° up and 15° down is a conventional differential linkage giving approximately the same rolling moment at 10° angle of attack. The more extreme differential, 50° up and 7° down, was also designed to give the same rolling effectiveness at an angle of attack of 10° as the equal up-and-down arrangement of the plain ailerons. The up-only type of deflection is limited in some cases by interference between the aileron and the wing and in other cases by the deflection giving approximately the same rolling moments as the standard, plain ailerons with a deflection of $\pm 25^{\circ}$. Accuracy.—The accuracy of the results presented in this report is the same as that obtained in Part I. (Reference 1.) It is considered satisfactory at all angles of attack except in the burbled region between 20° and 25° when the rolling and yawing moments are relatively unreliable owing to the critical, and often FIGURE 2.—Alleron linkage systems unsymmetrical, condition of the burbled air flow around the wing. Oscillations of floating ailerons.—The wide, short, slotted ailerons show a tendency to oscillate when the wing is at angles of attack between 22° and 25°. This condition, which might give trouble in practice, is not a true flutter but appears to be due to the ailerons following the pattern of irregular, turbulent flow past the wing. ## RESULTS Coefficients.—The force-test results
are given in the form of absolute coefficients of lift and drag and of rolling and yawing moments: $$C_L = \frac{\text{Lift}}{qS}$$ $C_D = \frac{\text{Drag}}{qS}$ $C_{l'} = \frac{\text{Rolling moment}}{qbS}$ $C_{n'} = \frac{\text{Yawing moment}}{qbS}$ where S is the total wing area, b is the wing span, and q is the dynamic pressure. The coefficients as given above are obtained directly from the balance and refer to the wind (or tunnel) axes. In special cases in the discussion where the moments are used with reference to body axes the coefficients are not primed. Thus the symbols for the rolling and yawing moment coefficients about the body axes are C_l and C_n . The results of the forced-rotation tests are given, also about the wind axes, by a coefficient representing the rolling moment due to rolling: $$C_{\lambda} = \frac{\lambda}{qbS}$$ where λ is the rolling moment about the wind axis due to the asymmetric distribution of load along the span when the wing is rolling. This coefficient may be used as a measure of the degree of lateral stability or instability of a wing under various rolling conditions. In the present case it is used to indicate the characteristics of a wing when it is subjected to a rolling velocity equal to the maximum that is normally encountered in controlled flight in very gusty air. This rolling velocity may be expressed in terms of a coefficient, incorporating the span and the air speed at the center section of the wing as follows: $$\frac{p'b}{2V} = 0.05$$ Tables.—The complete results of these tests are presented in Tables II to X, inclusive. Table II covers the following data obtained on the unyawed wing having slotted ailerons of average size (25 per cent of the chord by 40 per cent of the semispan): - 1. C_{L} and C_{D} at zero alleron deflection, both rigid and floating. - 2. C_{i} and C_{n} for each aileron setting, both rigid and floating. - 3. The floating angle of the left alleron relative to the wing (δ_{AP}) . Table III contains the same set of coefficients as those in Table II except that the wing is yawed -20° . Table IV contains the results of the autorotation and torque tests on the above wing. Tables V, VI, and VII are similar to Tables II, III, and IV but cover the results obtained on the wing fitted with short, wide, slotted ailerons (40 per cent of the chord by 30 per cent of the semispan). Tables VIII, IX, and X are also similar to II, III, and IV. In this series the data cover the results obtained on the wing with Frise-type ailerons. ## DISCUSSION IN TERMS OF CRITERIONS Table XI contains a series of criterions that were developed in reference 1 for the purpose of comparing the effect of various ailerons or other lateral control devices on the general performance of an airplane, on its lateral controllability, and on its lateral stability. Values of these criterions are given for the two sizes of slotted ailerons and the Frise-type ailerons of this report, and also for the average-sized plain ailerons previously reported. The latter are an example of normal present-day aileron design and are taken as a standard of comparison throughout the entire investigation. ## GENERAL PERFORMANCE Wing area required for desired landing speed.—If an airplane is equipped with a Clark Y wing having any of the slotted or Frise aileron systems discussed in this report, except the floating arrangements, the wing area required for a given weight and landing speed is essentially the same as that necessary when plain ailerons are used. In the floating condition, the maximum value of C_L is cut down about 10 per cent for average-sized slotted ailerons and 14 per cent for short, wide, slotted ailerons. This reduction requires a corresponding increase in wing area to satisfy the assumed condition of constant minimum speed. Speed range.—The ratio $C_{L_{max}}/C_{D_{min}}$ is a convenient figure of merit for a comparison of the relative speed range obtainable with various wings. On this basis a Clark Y wing with average-sized slotted ailerons shows about the same range as one with plain ailerons. Frise ailerons of normal size or short, wide, slotted ailerons are somewhat worse in this respect than ordinary-sized plain ailerons. If the slotted ailerons of ordinary size are allowed to float, the wing has a somewhat lower speed-range criterion than if they were locked. The short, wide, slotted ailerons arranged to float decrease the speed range very markedly. Rate of climb.—In order to establish a suitable criterion for the effect of the wing and ailerons on the rate of climb of an airplane, the performance curves of a number of types and sizes of airplanes were calculated, and the relation of the maximum rate of climb to the lift and drag curves was studied. This com- parison showed that the L/D at $C_L = 0.70$ gave a consistently reliable figure of merit for this purpose. A comparison of the various slotted and Frise aileron arrangements on the basis of this criterion shows that there is no appreciable difference between them, either locked or floating, except for the wide, short, slotted ailerons arranged to float, which are poor. #### LATERAL CONTROLLABILITY Rolling criterion.—The rolling criterion upon which the control effectiveness of each of the aileron arrangements is judged is a figure of merit that is designed to be proportional to the initial acceleration of the wing tip, following a deflection of the ailerons from neutral, regardless of the air speed or wing-plan form of an airplane. Expressed in coefficient form for a rectangular monoplane wing the criterion becomes $$RC = \frac{C_l}{C_L}$$ where C_l is the rolling-moment coefficient about the body axis due to the ailerons. The numerical value of this expression that has been found to represent satisfactory control conditions is approximately 0.075. A detailed explanation of the derivation of RC and its more general form which is applicable to any wing plan form is given in reference 1. The comparison of the ailerons on the basis of this criterion is given in Table XI at four representative angles of attack; namely, 0°, 10°, 20°, and 30°. The first angle represents the high-speed attitude; $\alpha=10^{\circ}$ represents the highest angle of attack at which entirely satisfactory control with ordinary ailerons can be maintained; $\alpha=20^{\circ}$ represents the condition of greatest instability in rolling and is probably the greatest attainable angle of attack with most present-day airplanes; and finally, $\alpha=30^{\circ}$ is given only for comparison with controls for possible future types of airplanes. At $\alpha=0^{\circ}$ the control produced by any of the aileron arrangements is much more than is necessary. At $\alpha = 10^{\circ}$ and with the ailerons deflected equally up-and-down 25°, the following relations exist: The short, wide, slotted ailerons give slightly higher values of the rolling criterion, RC, than the average-sized plain ailerons; the average-sized slotted ailerons give slightly lower values of RC than the average-sized plain ailerons; the Frise-type ailerons give distinctly lower values. These differences do not represent inherent characteristics of the types of ailerons discussed, because, by the simple expedient of changing slightly the assumed maximum up-and-down deflections, any of these ailerons may be arranged to give the same moment at maximum deflection. For all differential systems, including up-only, the slotted and Frise ailerons give a smaller moment than the standard-sized plain ailerons, by an amount that can not be readily compensated for by increased maximum deflections except, perhaps, in the case of the short, wide ailerons. The slotted ailerons arranged to float give moments that are equal to those of the standard ailerons arranged to float, but in the case of the short, wide design, give moments that are less than those produced by the plain ailerons of the same size. At $\alpha = 20^{\circ}$ the average-sized slotted or Frise ailerons give moments for equal up-and-down deflection that are comparable with the standard, or about 50 per cent of the satisfactory value. The slotted aileron gives, likewise, only about 50 per cent of the satisfactory moment for any differential or for the floating arrangement. Both differential settings and the up-only arrangement of the Frise ailerons give about 75 per cent of the corresponding values of the criterion at 10° angle of attack, but as the controllability at this angle is very low for all these arrangements of the Frise-type aileron the possibility of bringing up the moments to a satisfactory value by increasing the deflection is small. The short, wide, slotted ailerons show the best characteristics at 20° angle of attack of any of the types tested thus far. Equal up-and-down deflection of these ailerons gives an appreciably higher rolling moment than the average-sized plain ailerons rigged this way and a slightly higher moment than the short, wide, plain ailerons. Differential arrangements are consistently better than the equal up-and-down, the extreme differential (50° upward, 7° downward) being the best. With this arrangement the value of R C at $\alpha=20^{\circ}$ is only 15 per cent less than that at $\alpha=10^{\circ}$. However, even this rigging is less satisfactory than the corresponding plain aileron size and setting. At 30° angle of attack all of the plain, slotted, or Frise ailerons are very unsatisfactory when rigged in any arrangement. Lateral control with sideslip.—If a wing is yawed 20° a rolling moment is set up that tends to raise the forward tip with a magnitude that is always greater, at very high angles of attack, than the available rolling moment due to ailerons. The limiting angle of attack at which the ailerons can balance the rolling moment due to 20° yaw represents the greatest angle of attack than can be held in a sideslip. This angle is tabulated for all aileron
arrangements as a criterion of control with sideslip. It is apparent from Table XI that the controllable range in this attitude is about the same for all aileron arrangements tested and in all cases extends to, or slightly above, the angle of maximum lift in the yawed condition. Yawing moment due to ailerons.—The desirable yawing moment due to ailerons differs to some extent with the type of airplane that is being considered. For a highly maneuverable military or acrobatic machine, complete independence of the controls as they affect the turning moments about the various body axes is no doubt a desirable feature. On the other hand, for large transport airplanes or machines to be operated by relatively inexperienced pilots, a favorable yawing moment of proper magnitude would be an appreciable aid to safe flying. Finally, it is obvious that a yawing moment tending to turn the airplane out of its bank is never desirable under any circumstances. Comparing the various aileron arrangements from the standpoint of maximum favorable or maximum unfavorable C_n at the same representative angles of attack as were used in the comparison of R C, it may be seen from Table XI that the plain, slotted, or Frise ailerons when set up-and-down 25° give nothing but unfavorable moments at all angles of attack. Differential settings of the ailerons improve the vawing characteristics of the wing in all cases by decreasing the unfavorable moments and increasing the favorable. This effect increases with the degree of differential motion employed until up-only displacement gives practically no unfavorable moments for any aileron deflection and any angle of attack up to 20°. At angles of attack greater than 20° they give strong favorable moments at large aileron deflections, but at small deflections give small unfavorable moments. The short, wide, slotted aileron in the up-only position is the best design of any tested in this group, but even this arrangement is less desirable than the plain ailerons of the same size and deflections. Except for the above case and the differential arrangements of the short, wide, plain ailerons, the slotted and Frise aileron systems usually showed slightly improved yawing-moment characteristics when compared to plain ailerons of the same size and setting. It should be noted, however, that this improvement is small relative to the improvement obtainable with any of the ailerons by use of suitable differential movements. Like the average-sized plain ailerons arranged to float, slotted ailerons of average size arranged to float show small yawing moments, ranging from slightly unfavorable moments at low angles of attack and high aileron deflections to slightly favorable moments at high angles of attack. The wide, slotted ailerons when allowed to float show almost ideal moments from the standpoint of control as the yawing moments are favorable at all angles of attack, are small at low angles, and are of about the magnitude of normal rudder moments at high angles. ## LATERAL STABILITY Angle of attack above which autorotation is self-starting.—This characteristic was measured by free- rotation tests of the wing with ailerons neutral. The angle at which it started to rotate without any appreciable initial rate of roll marked the theoretical limit to the useful angle-of-attack range in which the wing was laterally stable in smooth air. These tests indicated that the type of alleron or its arrangement had very little influence on the limiting angle for lateral stability. In all cases the limit was reached either at the stall or a degree or so beyond. Stability against rolling caused by gusts.—Test flights have shown that in severe gusts a rolling velocity such that $\frac{p'b}{2V}$ =0.05 is not uncommon. Consequently, the rolling moment of a wing due to rolling at this velocity gives a measure of its stability characteristics in rough air. In the present case the angle at which this rolling moment becomes zero is used as a criterion to indicate the practical upper limit of the useful angle-of-attack range rather than the theoretical limit previously discussed. Under the above-mentioned conditions and with the wing at 0° yaw all the aileron arrangements become unstable at about 1° lower angle of attack than the neutrally stable point for zero rate of rolling. At 20° yaw all the arrangements become unstable at angles of attack from 4° to 7° lower than in the unyawed position. The floating, slotted aileron systems are the best in this respect. The above criterion shows the critical range below which stability is such that any rolling up to the maximum rate likely to be caused by gusty air conditions is damped out, and above which the instability may be weak or intense. The criterion, maximum C_{λ} , indicates the degree of this instability. If the slotted ailerons are arranged to float they reduce instability substantially at both 0° and 20° yaw, but only in about the same proportion that floating plain ailerons accomplish the same result. #### CONTROL FORCE REQUIRED The hinge moments were not measured for the slotted or Frise ailerons, but it is likely that they would have consistently lower values than those for the plain ailerons, owing to the balance area ahead of the axis in each case. ## CONCLUSIONS - 1. None of the ailerons discussed in this report gives satisfactory rolling control above the stall. - 2. In general the slotted or Frise ailerons tested do not give as good control at an angle of attack of 20° in either the yawed or unyawed attitude as the same size of ordinary ailerons. - 3. Equal up-and-down deflection with the plain, the slotted, or the Frise ailerons gives adverse yawing moments at all angles of attack. The magnitude of the adverse moment produced by the Frise ailerons is about half of that produced by either the plain or slotted types. - 4. Any differential movements, including upward deflection only, of slotted or Frise ailerons produce yawing moments that are only a slight, if any, improvement over those produced by the corresponding plain ailerons and settings. - 5. The use of differential aileron settings is much more effective in obtaining desirable yawing moments than the use of either slotted or Frise-type ailerons. - 6. The general performance characteristics of a wing equipped with short, wide, slotted ailerons arranged to float are distinctly below normal and the lateral control available above the stall is not satisfactory. However, this aileron arrangement gives apparently ideal yawing moments at all angles of attack and appreciably reduces the unstable rolling moment due to rolling at both 0° and 20° yaw. LANGLEY MEMORIAL AERONAUTICAL LABORATORY, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, LANGLEY FIELD, VA., February 12, 1932. ## REFERENCES - Weick, Fred E., and Wenzinger, Carl J.: Wind-Tunnel Research Comparing Lateral Control Devices, Particularly at High Angles of Attack. I. Ordinary Ailerons on Rectangular Wings. T. R. No. 419, N. A. C. A., 1932. - Harris, Thomas A.: The 7 by 10 Foot Wind Tunnel of the National Advisory Committee for Aeronautics. T. R. No. 412, N. A. C. A., 1932. TABLE II FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SLOTTED AILERONS 25 PER CENT c BY 40 PER CENT b/2 R. N.=609,000. VELOCITY=80 M.P.H. YAW=0° | a
degrees | | -10 | -5 | -3 | 0 | 5 | 10 | 12 | 14 | 16 | 17 | 18 | 19 | 20 | 22 | 25 | 30 | 40 | 50 | 59 | |--|--------------------|----------------------|----------------------|---------------------|--|----------------------|--|----------------------|--|--|----------------------|--|------------------------|--|--|------------------------
---|---|-----------------|------------------| | | åA
de-
grees | | | | | | | A | ILER | ONS L | OOKE | D—NE | UTRA | L, | | | | | | | | C_{L} C_{D} | 0 | -0.362
.033 | 0.006
.016 | 0.147
.016 | 0.355
.021 | 0.715
.047 | 1.041
.087 | 1. 153
. 106 | 1. 243
. 128 | 1. 282
. 161 | 1. 295
. 179 | 1. 296
. 200 | 1.308
.231 | 1. 294
. 253 | 0.912
.287 | 0.803
.420 | 0.853
.540 | 0.802
.719 | 0. 682
. 879 | 0. 595
1. 020 | | | | | | | | | L | BFT A | LER | 0M DC | WN. | RIGHT | r aile | RON | 0° | | | | | | | C' C | 10
20 | | | | 0.023
002
040 | | 0.022
006 | | 0. 022
007 | 0.019
008 | | 0.015
008 | | 0.002
008 | 0.000
007 | | -0.001
003 | 0,001
-,004 | | | | 52525255 | 30
40 | | | | 006
. 046
012
. 053 | | 013
044
019
048 | | 016
047
022
046 | 016
045
024
045 | | 016
035
025
041 | | 003
015
002
019
002 | 002
013
004
017
002 | | 002
006
005
010
004 | .001
069
001
018
003 | | | | Ĉ', | | | | | 016 | | 024 | | 026 | 028 | | —. 031 | | 02 6 | 021 | | 015 | - 016 | | | | | | | | | | | | RIGH | | 1 | UP. I | | AILER | ON 0° | | | | | | | | 3555555555 | 10
20 | | | | 0.019
.000
.021
.001 | | 0.022
004
.028
002 | | 0.023
006
.031
004 | 0.022
006
.031
006 | | 0.023
007
.033
007 | | 0.018
008
.024
008 | 0.008
007
.018
009 | | 0.003
004
.015
006 | 0.002
004
.010
007 | | | | 50000 | 30
40 | | | | .024
.006
.029
.009 | | .034
.001
.041
.003 | | 037
002
043 | .037
004
.043
001 | | 040
005
046
003 | | . 030
007
. 036
005
. 044 | 022
007
036
003 | | 003
008
001 | .016
008
.013
003 | | | | C'' | 54. 25 | | | | .037 | | .048 | | .050 | .050 | | .053 | | 044
001 | 040
001 | | .006 | .008 | | | | | : | | | _ | | | R | IGHT . | AILEE | ON U | P. LE | FT AU | LERON | DOM | 'N | | | | | | | উউউউউউউউউ
উ | 10
20
30 | | | | 0.041
002
.064
004
.068
006 | | 0.044
009
.068
014
.077
018 | | 0.042
012
.068
018
.082
024 | 0.040
013
.064
020
.081
027 | | 0.037
014
.058
024
.075
030 | | 0.022
015
.034
024
.036
028 | 0.004
013
.016
022
.021
025 | | 0.003
006
016
014
.009
014 | 0.005
008
013
016
017
019 | | | | 000 | 40
50 | | | | - 082
007
094
009 | | 021
096
022 | | .090
026
.094
026 | .090
029
.090
029 | | . 087
034
. 090
034 | | . 048
030
053
032 | 026
026
030
027 | | .006
017
.005
021 | .012
019
.005
021 | | | | | | | ··' | | | · | | A | ILERO | NS FI | COATI | NG—N | EUTR4 | AL ' | | | | | ! | | | CL
CD
SAP | 0 | -0.382
.035
-6 | -0.057
.019
-6 | 0.073
.017
—6 | 0. 267
. 020
—9 | 0.607
.037
—11 | 0.892
.069
—14 | 1.004
.086
—12 | 1. 092
. 104
—14 | 1. 142
. 129
—13 | 1.156
.146
-14 | 1.160
.168
-14 | 1. 168
. 189
—13 | 1.159
.207
—14 | 1.110
.244
15 | 0. 676
. 369
—19 | 0.667
.444
20 | 0.642
.611
-21 | | | | | | _ | | | | | RIC | A TH | LERC | N UP. | LEF | r alli | ERON | DOWN | r | · | | | • | | | CC & ACC C A | 10
20
30 | | | | 0.038
.000
7
.062
003
20 | | 0.037
004
5
.061
009
14 | | 0.038
006
3
.058
010 | 0.035
006
2
.054
011
10 | | 0.036
007
1
.050
012 | | 0.020
007
0
.035
012 | 0. 011
005
5
. 023
010 | | -0.006
.005
-17
004
.006
-15 | 0.003
.004
-20
.002
.005
-17
.008 | | | | C''
BAP
C''
C''
BAP | 40 | | | | 002
28
.081
003
34 | | 013
25
.091
013
31 | | .081
016
24
.095
019 | 017
20
. 092
022 | | .065
018
20
.080
023 | | .048
016
17
.043
019 | .023
014
15
.029
018 | | .006
.006
.006
007
23 | 008
001
009
010
22 | | | TABLE III FORCE TESTS. 10 BY 60 INCH CLARK Y WINGS WITH SLOTTED AILERONS 25 PER CENT c BY 40 PER CENT b/2 R.N.=609,000. VELOCITY=80 M.P.H. YAW= -20° | degrees | | -10 | -5 | -3 | 0 | 5 | 10 | 12 | 14 | 16 | 17 | 18 | 19 | 20 | 22 | 25 | 30 | 40 | 50 | 60 | |---|----------------------------------|--------------------------------|-------------------------------|-----------------------------------|---|-------------------------------------|--|------------------------------------|---|---|-------------------------------------|---|---|---|--|------------------------------------|---|--|------------------------------|------------------------------| | | ð⊿
de-
grees | | | | | | | A | ILER(| ONS L | OOKEI | O—NE | UTRAI | Ն | | | | | | | | Ct
Cp
Ct'
Ca' | | -0.319
.031
001
.003 | 0.001
.018
005
.002 | 0. 129
.017
006
.001 | 0.319
.021
007
.002 | 0. 647
. 042
008
. 002 | 0.942
.080
014
.005 | 1. 043
. 096
016
. 007 | 1. 120
.114
020
. 009 | 1.181
.138
032
.011 | 1.204
.153
043
.014 | 1. 213
. 166
051
. 015 | 1. 226
. 187 | 1. 219
. 222
072
. 018 | 1. 197
. 267
054
. 030 | 1.007
.408
047
.041 | 0.886
.517
095
.052 | 0.800
.676
059
.045 | 0.735
.866
049
.051 | 0.609
1.020
041
053 | | | | | | | | | L | EFT A | ILERO | 00 NO | WN. | RIGHT | AILE | RON |)0 | | | | | | | &&&&&&&&& | 10
20
30
40 | | | | 0.017
002
.032
005
.045
011
.051
016 | | 0.016
004
.031
010
.040
017
.046
024 | | 0. 014
005
. 028
011
. 038
019
. 044
025 | 0.014
005
.024
010
.034
017
.039
023 | | 0.010
004
.018
009
.026
014
.032
020 | | 0.006
004
.012
009
.018
014
.020
019 | 0.007
006
.013
011
.016
017
.019
022 | | 0.003
006
.003
010
.006
015
.007
019 | 0.003
005
.003
010
.003
014
.002
018 | | | | | | | | ···· | | | | RIGH' | r Allı | BRON | UP. I | EFT A | LLER | ON 0° | | | | | | | | উটেউটেউটেউটেউট | 10
20
30
40
54. 25 | | | | 0.019
.000
.026
.033
.030
.007
.033
.009
.041
.014 | | 0.022
004
002
002
009
000
044
002
053
006 | | 0.021
005
.031
005
.041
003
.048
001
.058
.002 | 0.022
006
.034
006
.043
004
.051
003
.062 | | 0. 021
007
. 035
008
. 045
. 006
. 053
004
. 066
003 | | 0.020
007
.036
009
.046
.054
067
003 | 0. 016
011
. 031
015
. 040
. 016
. 046
014
017 | | 0.006
008
.017
016
.028
.017
.034
016
.039
015 | 0.002
004
.008
007
.015
.008
.014
006
.013
005 | | | | 1 | | | | | | | RI | GHT A | ILER | ON UI | LEE | IIA T | ERON | DOM | N | | | | | | | ਠੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰੌਰ | 10
20
30
40
50 | | | | 0.035
002
.058
002
.072
005
.082
008
.087
007 | | 0.037
008
062
002
017
017
001
002
098
025 | | 0. 038
010
. 061
018
. 078
022
. 092
028
. 099
029 | 0.034
010
.060
017
.077
022
.092
027
.103
031 | | 0.033
010
.056
017
.073
021
.090
025
.101
028 | | 0. 027
011
. 051
018
. 066
023
. 081
025
. 092
028 | 0. 023
016
044
026
047
039
043
050
039 | | 0.008
012
.025
026
037
033
045
047
039 | 0.004
008
.011
015
.017
021
.016
023
.013
034 | | | | | | | | | | | | AI | LEROI | NS FL | OATIN | G—NE | UTRA | L | | • | | | | | | CL
CD
Ci'
C'' | | -0.334
.035
.000
.003 | -0.050
.020
002
.002 | 0.067
.018
004
.002
7 | 0.246
.021
004
.002
-8 | 0.546
.036
005
.003
-12 | 0.810
.066
007
.005
15 | 0.905
.080
008
.006
16 | 0.985
.096
013
.008
15 | 1.049
.114
023
.010
-15 | 1.062
.125
030
.011
-18 | 1.087
1.40
036
.012
-19 | 1. 092
. 160
047
. 012
- 18 | 1. 084
. 190
054
. 012
18 | 0.944
.291
051
.021
18 | 0.817
.359
052
.032
19 | 0.778
.465
089
.012
-22 | 0.702
.622
060
.047
28 | | | | | | · · · · · | - | | | • | RI | GHT A | ILER | ON UP | . LEF | T AIL | ERON | DOW | N | <u> </u> | | | | | | ਰਹੇ ਡੈਰਹੇ ਡੈਰਹੇ ਡੈਰਹੇ ਡੈ | 10

20

30

40 | | | | 0.032
.000
6.055
003
21
.068
003
.079
003 | | 0.031
003
4
.052
009
18
.072
013
28
.082
014 | | 0.028
004
2.051
011
188
.070
016
28
.084
018 | 0. 028
005
2 . 048
011
15 .
066
017
28 . 082
020
34 | | 0.023
004
0 .042
009
15 .059
014
2073
017 | | 0.016
002
-2.034
008
13
.049
012
26
.063
015 | 0.021
005
-2.036
012
15
.047
018
24
.050
.028
33 | | 0.016
003
-7
.028
010
87
017
22
.042
022 | 0.004
.002
-18
.005
.002
-15
.013
005
4
.016
014 | | | TABLE IV ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SLOTTED AILERONS 25 PER CENT c BY 40 PER CENT b/2. R. N.=609,000. VELOCITY=80 M. P. H. Ch is given for forced rotation at p'b/2V=0.05. p'b/2V values are for free autorotation. (+) Aiding the rotation. (-) Damping the rotation | | degrees | 0 | 12 | 14 | 16 | 18 | 19 | 20 | 21 | 22 | 24 | 25 | 26 | 27 | 28 | 30 | 31 | 32 | 33 | 35 | 36 | 37 | 40 | |---|--|--------------|---------------|--|---------|---------------|----------|---------------|----------|---------------|--------|----------------|-----------------|--------|----------------|----------------|----------|------------|----------|--------|----------|--------|------------| | | | | · | · | • | | • | | • | | | YAW= | 0°
CDNE | י משט | + | | | | | | | • | · | | | | | | | | | | | | VIDER | UNB 1 | JOURE | · | OTKA | | | , | | | | | | | | (+) Rotation (clockwise) | (C)
p'b
27 | -0.027 | -0.024 | 0.020 | -0, 012 | 0.000
.139 | 0.332 | 0.001
.354 | 0.350 | 0.011
.349 | 0.349 | 0.003
.358 | 0.358 | 0.367 | 0.372 | -0.001
.376 | 0. 372 | 0. 208 | 0. 072 | 0. 054 | 0.052 | 0, 047 | -0.003 | | () Rotation (counterclock-wise) | C) p/b 2V | 019 | —. 017 | 014 | 004 | . 000 | .340 | . 039 | .356 | . 024 | .390 | .007 | .398 | . 894 | .398 | .001 | .157 | . 141 | . 076 | . 067 | . 063 | . 050 | . 000 | | | 21/ | | | | | | | <u> </u> | <u> </u> | LERO | N8 FI | OATII |

 MG—N | EUTRA | \L | · . | |] | <u> </u> | | | | <u> </u> | | | | | | 0. 024 -0. 024 -0. 022 -0. 017 0. 004 0. 004 -0. 004 -0. 007 | (+) Rotation (clockwise) | C)
p'b
2V | 0.025 | -0.024 | -0.024 | -0.022 | 0. 017 | | 0.004 | 0.304 | 0.010
.318 | 0. 291 | 0.004 | 0, 284 | 0. 284 | 0. 300 | -0.001 | | | | | | | -0.007 | | (-) Rotation (counterclock-wise) | $\left\{egin{array}{l} C_{\lambda} \ oldsymbol{p}^{\prime}b \ \overline{2V} \end{array} ight.$ | 017 | 014 | 013 | 006 | 002 | | . 001 | .309 | .021
.313 | .326 | . 012
. 362 | .347 | . 331 | { .347
.087 | 002
} | | | | | | | —. 005
 | | | | | <u> </u> | | | | <u> </u> | 1 | , | <u></u> | Y. | V¤ | 20° | | | <u> </u> | <u> </u> | <u> </u> _ | | ļ | <u> </u> | | <u>!</u> | | | | | | | | | | | A | ILER | DNS L | OOKE | D—NE | UTRA: | Ն | | | | | | | | | | (+) Rotation (clockwise)
(-) Rotation (counterclock- | Ca | -0. 017 | -0.002 | 0.004 | 0.015 | 0. 033 | | 0.055 | | 0.082 | | 0.086 | | ` | | 0. 078 | | | | | | | 0.048 | | wise) | Ch | 024 | 036 | 039 | 048 | -, 069 | | 071 | | 058 | | 087 | | | | —. 07 6 | | | | | | | 054 | | | | | | | | | | | Α | ILERO | NS F | LOATI | NGN | EUTR. | AL | | | | , | | | | | | (+) Rotation (clockwise)
(-) Rotation (counterclock- | Cλ | -0.019 | -0.011 | 0,006 | 0,002 | 0.018 | | 0.034 | | 0.066 | | 0, 072 | | | | 0, 070 | | | | | | | 0.050 | | Wise) | \mathcal{O}_{λ} | 021 | 025 | 027 | 033 | 043 | | 054 | | 0 50 | | 074 | | | | 070 | | | | | | | -0.52 | TABLE V FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SLOTTED AILERONS 40 PER CENT c BY 30 PER CENT b/2. R. N.=609,000. VELOCITY=80 M. P. H. YAW=0° | <u> </u> | Γ | i | ı | <u> </u> | · | ı | | 1 | | 1 | 1 | 1 | | i | Γ. | Ι''' | 1 | 1 | | |---|------------------------------|----------------------|-----------------------|----------------------|---|------------------------|---|----------------------|--|---|------------------------|---|----------------------|---|--|----------------------|--|--|------------------------| | degrees | | -10 | -5 | -3 | 0 | 5 | 10 | 12 | 14 | 16 | 17 | 18 | 19 | 20 | 22 | -25 | 30 | 40 | 50 | | | δ∡
degrees | | | | | | | AILI | ERONS | LOC | KED—I | NEUT | RAL | | | | | | | | $C_L \\ C_D$ | 0 | -0.308
.070 | 0.002
.018 | 0. 144
. 017 | 0.358
.022 | 0.714
.046 | 1.047
.087 | 1. 163
. 109 | 1. 230
. 130 | 1.240
.164 | 1. 222
. 185 | 1. 207
. 205 | 1. 193
. 222 | 1. 165
. 244 | 1.119
.283 | 0.801
.418 | 0.895
.552 | 0.834
.747 | 0.709
.874 | | i | | | | | | | LEF | r Alte | RON | DOWN | r. RIG | HT A | LERO | N 0° | | | | | | | হর্ণহর্ণহর্ণহর্ণ | 10
20
30
40 | | | | 0.020
003
.038
008
.046
015
.050
020 | | 0. 021
006
. 040
015
. 052
025
. 055
033 | | 0.020
008
.035
018
.046
028
.055
039 | 0.015
008
.026
019
.038
029
.047
039 | | 0.012
009
.020
019
.023
026
.027
030 | | 0.009
009
.011
017
.008
022
.004
024 | 0.006
003
.002
012
002
016
007
020 | | -0.001
005
004
009
008
012
011
017 | 0.001
006
.000
011
004
015
009
018 | | | | | | | | | | RIC | A THE | ILERO | ом ОР | . LEF | T AIL | ERON | 0° | | | | , | | | হত্তত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত্ত | 10
20
30
40
53.5 | | | | 0. 019
. 000
. 027
. 005
. 027
. 008
. 034
. 012
. 043
. 019 | | 0. 022
003
. 038
001
. 041
. 002
. 050
. 062
. 012 | | 0.022
005
.040
004
.044
001
.053
.001
.056
.007 | 0. 022
006
. 040
006
. 043
004
. 052
001
. 062
. 004 | | 0. 022
007
. 042
008
. 047
005
. 055
003
. 067
. 001 | | 0.020
003
.041
010
.047
003
.053
005
.065
001 | 0. 014
008
. 036
012
. 043
010
. 047
007
. 056
003 | | 0.001
004
.010
006
.014
005
.014
004
004 | 0.003
003
.008
007
.018
008
.022
006
.016
003 | | | | | | | | | | RIGH | T AIL | ERON | UP. 1 | LEFT . | AILER | 0N D | NWC | | | | | | | হত্তত্ত্ত্তত্ত্তত্ত্ত্ত | 10
20
30
40
50 | | | | 0. 039
002
. 062
004
. 072
007
. 083
007
. 091
007 | | 0. 044
010
. 076
- 016
. 090
022
. 103
027
. 102
023 | | 0.042
012
.074
022
.090
028
.106
036
.101
030 | 0. 036
014
064
025
032
032
037
038
036 | | 0. 034
015
.061
027
.068
031
.082
034
.094
035 | | 0. 029
015
. 052
027
. 055
028
. 058
029
. 067
030 | 0. 020
015
. 038
024
. 042
025
. 031
026
. 027
028 | | 0.001
003
.007
015
.011
019
.006
022
.004
025 | 0.003
009
.003
017
.017
024
.016
028
.007
028 | | | | | | | | ٠, | | | AILEI | RONS | FLOA' | ring- | NEUI | RAL | | | | | | | | C _L
C _D
8 _A P | | -0.350
.075
-5 | -0.088
.024
-10 | 0.045
.023
—11 | 0. 242
. 026
—13 | 0. 568
. 043
—15 | 0.878
.073
—15 | 0.974
.089
—15 | 1.047
.104
-17 | 1.067
.129
-17 | 1. 052
. 145
-17 | 1. 040
. 161
17 | 1.032
.178
-18 | 1.017
.194
18 | 0.963
.227
18 | 0.667
.362
-22 | 0.653.
.440
- 96 | 0.624
.600
-33 | 0. 580
. 765
—39 | | | ľ | | | | | | RIGH | T AILI | ERON | UP. I | EFT A | LLER | 0N D | NW | | | | | | | 6; 6; 8; 8; 6; 6; 8; 8; 6; 6; 8; 8; 6; 6; 6; 8; 8; 6; 6; 6; 8; 8; 6; 6; 6; 8; 8; 8; 6; 6; 6; 8; 8; 8; 8; 8; 8; 8; 8; 8; 8; 8; 8; 8; | 20
30
40 | | | | 0.036
.001
3
.058
.000
16
.071
.002
21
.087
.002 | | 0.037
001
-2.059
003
7
.087
006
17
.108
010 | | 0.034
001
-5.058
004
5.086
011
108
017
• 32 | 0.033
002
-7
.056
004
3
.077
011
13
.101
019 | | 0.035
003
7
.045
006
2
.065
012
13
.079
021 | | 0.025
004
7
.041
006
1
.058
012
10
.063
018
32 | 0. 021
005
10
.033
006
0
.044
012
12
.040
016
016 | | 0.002
.003
-24
.010
.002
-15
.017
003
7
.014
012 | 0.006
.001
-28
.012
003
15
.014
001
015
32 | | [•] Floating allerons were in extreme position, against stop. TABLE VI FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SLOTTED AILERONS 40 PER CENT 6 BY 30 PER CENT b/2. R. N.=609,000. VELOCITY=80 M. P. H. YAW= -20° | | , | | | | | | | ; | | | | | | | | | | | | |---|-------------------------------|-------------------------------------|-------------------------------------|------------------------------------
---|------------------------------------|--|-------------------------------------|--|--|--|---|--|--|--|-------------------------------------|--|--|------------------------------| | degrees | | -10 | - 5 | -3 | 0 | 5 | 10 | 12 | 14 | 16 | 17 | 18 | 19 | 20 | 22 | 25 | 30 | 4 0 | 5 0 | | | δ∡
degrees | | | | | ··· | | AILE | RONS | roor | ED-N | EUTI | RAL | | <u>.</u> | , | • | | | | CL
CD
Cl'
Ca' | 0 | -0.306
.033
002
.002 | -0.004
.018
006
.001 | 0. 132
. 017
007
. 001 | 0.329
.022
008
.001 | 0.647
.041
009
.003 | 0.940
.079
—.013
.006 | 1. 038
. 096
—. 017
. 007 | 1. 105
. 113
023
. 009 | 1. 158
. 136
—. 039
. 012 | 1. 174
. 150
—. 045
. 014 | 1. 178
. 170
—. 051
. 015 | 1. 184
. 190
060
. 016 | 1. 188
. 217
069
. 017 | 0.904
.345
095
.026 | 0.899
.412
101
.038 | 0.894
.513
096
.050 | 0.807
.667
059
.046 | 0.733
.847
049
.048 | | | | | | | | | LEFT | ' AILE | RON | DOWN | . RIG | HT A | LERO | N 0° | | | | | | | & & & & & & & & & & & & & & & & & & & | 10
20
30
40 | | | | 0.017
002
.034
006
.049
014
.066
026 | | 0.016
005
.031
012
.043
021
.062
038 | | 0.014
005
.028
013
.039
022
.047
033 | 0. 014
005
. 027
013
. 035
021
. 042
029 | | 0.011
005
.021
011
.029
018
.033
024 | | 0.009
005
.016
011
.020
017
.022
023 | 0.006
005
.010
011
.013
018
.013
024 | | 0.004
005
.004
010
.003
015
.002
020 | 0.002
006
.002
011
.001
015
003
019 | | | | | | | | | | RIC | A THE | ILERO | N UP. | LEF | T AIL | ERON | 0° | | | | | | | &&&&&&&&&&& | 10
20
30
40
53, 5 | | | | 0.018
.000
.034
.005
.037
.009
.040
.013
.047 | | 0.020
004
.038
003
.050
.001
.056
.004
.067 | | 0.019
005
.040
005
.054
003
.062
.000
.076
.006 | 0.020
006
.041
008
.058
005
.066
002
.081 | | 0.022
007
.042
009
.060
008
.070
005
.087 | | 0.021
008
.042
011
.060
010
.070
007
.087
002 | 0.016
011
.034
019
.051
020
.061
017
.095
011 | | 0.005
010
.022
020
.040
024
.054
025
.063
021 | 0.001
006
.007
011
.017
015
.025
015
.030
013 | | | | | | | | | | RIGH | T AIL | ERON | ŬP. J | LEFT . | AILER | ON D | оми | | | | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 10
20
30
40
50 | | | | 0.035
002
.067
002
.085
005
013
.095
009 | | 0.036
009
.068
014
.093
020
.116
034
.130
044 | | 0.033
011
.067
019
.093
025
.107
033
.121
040 | 0.034
011
.067
020
.094
027
.108
032
.123
037 | | 0.031
011
.064
020
.092
026
.107
030
.121
033 | | 0.028
013
.057
022
.082
027
.095
030
.106
033 | 0.020
017
.043
031
.065
038
.077
042
.083
047 | | 0.008
015
.028
031
.048
042
.050
047
.066
049 | 0.004
012
.009
022
.018
030
.023
035
.026
037 | | | | | | | | | | | AILE | RONS | FLOAT | ring– | NEUI | TAR | | | | | | | | CL
CD
C'
C'
8AF | 0 | -0.318
.036
002
.003
-3 | -0.066
.024
004
.002
-7 | 0.046
.024
004
.002
10 | 0. 214
. 027
005
. 002
-11 | 0.514
.043
006
.003
14 | 0.783
.070
010
.003
-16 | 0.878
.083
011
.006
-17 | 0.946
.097
017
.007
-17 | 0.998
.114
026
.009
20 | 1. 010
. 126
033
. 010
-21 | 1. 012
. 141
042
. 010
21 | 1. 016
. 162
051
. 010
-22 | 1.008
.185
055
.011
-23 | 0.874
.283
077
.012
25 | 0.762
.361
068
.020
-26 | 0.760
.448
071
.031
31 | 0.700
.618
-051
.038
-40 | | | | | | | | | | RIGE | TATL | ERON | UP. | LEFT | AILEF | ON D | own | | | | | - | | Ct' Cn' bap | 10
 | | | | 0.032
.001
.064
001
.20
.080
001
.285
.095
003 | | 0.034
001
-1.065
006
15
.083
009
102
013 | | 0.032
002
003
008
008
013
013
018
018 | 0: 030
002
59
059
079
014
22
.098
020
32 | | 0.026
002
-8
.050
006
10
.071
012
22
.088
017 | | 0.023
002
10
.043
006
012
23
.074
016 | 0.013
009
-112
.028
014
014
014
015
027
027 | | 0.012
.000
-12
.027
007
2
.037
016
19
.043
023 | 0.008
.003
-25
.017
.000
-10
.023
007
6
.024
017 | | [•] Floating allerons were in extreme position, against stop. ## TABLE VII ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SLOTTED AILERONS 40 PER CENT c BY 30 PER CENT b/2. R. N.=609,000. VELOCITY=80 M. P. H. C_{λ} is given for forced rotation at p'b/2V = 0.05. p'b/2V values are for free autorotation. (+) Aiding the rotation. (-) Damping the rotation | | a
degrees | 0 | 12 | 14 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 24 | 25 | 26 | 30 | 35 | 37 | 40 | |--|------------------------------|-------------|--------|---------------|---------|----------|--------------|-----------------|-------------|---------------|--------------|--------|-----------------|----------|--------|-------|--------|--------| | | | | , | | | | A . | 04 3 .11 | | OKET
VW=0° | NFT | TRAL | | | | | | | | (+) Rotation (clock- | [C ₂ | -0.025 | -0.025 | -0.015 | -0.002 | | 0.005 | | 0.029 | | 0.019 | | 0. 001 | | -0.001 | | | -0.002 | | (-) Rotation (counterclockwise) | $ \overline{2}\overline{V} $ | 020 | 018 | 015 | 008 | 0.073 | . 289
001 | 0.296 | .305 | 0.307 | .318 | | .350 | | .363 | 0.074 | 0. 058 | 001 | | terclockwise) | \(\frac{1}{2\box{V}}\) | | | | | <u> </u> | .291 | FPON | .300 | .309 | .325 | UTRA | .347
T. | 0.354 | | | | | | (+) Rotation (clock- | (C) | -0.025 | -0.023 | -0.019 | -0.007 | <u> </u> | -0.001 | | 0.010 | | 0.003 | ,011tA | 0.003 | | -0.003 | | | -0.003 | | (-) Rotation (counterclockwise) | 20
20
C) | 020 | 017 | —. 015 |
011 | | 006 | 0. 161 | .164
003 | 0.164 | . 164
002 | 0.094 | . 105
—. 001 | 0.065 | 006 | | | 001 | | | p'b 2V | | | | | | | .143 | .137 | .W≕-: |
me | | | | | | | | | | | | | | | | A | LERO | | | - | TRAL | | | | | | | | (+) Rotation (clock-
wise)
(-) Rotation (coun- | ca. | -0.016 | 0.001 | 0.010 | 0.025 | | 0.046 | | 0.083 | | 0.082 | | | | 0. 078 | | | 0.050 | | terclockwise) | C). | 026 | | | | | | | | | | | | | | | | | | (+) Rotation (clock- | Ci |
-0. 017 | -0.004 | . 001 | 0.009 | | 0.023 | | 0. 047 | | 0.049 | | 0. 051 | <u>`</u> | 0.054 | | | 0.012 | | () Rotation (counterclockwise) | Cs. | 024 | 031 | 034 | 042 | | 054 | | 055 | | . 058 | } | . 059 | | 060 | | | . 046 | TABLE VIII FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH FRISE AILERONS 25 PER CENT c BY 40 PER CENT b/2 R. N.=609.000. VELOCITY=80 M. P. H. YAW=0° | | | | | 71. | 140 | 09,00 | U. Y. | BLUC | 'ITI | =80 . | м. Р. | д. | YAW | =0- | | | | | • | |--------------------|--|------------------------------|--|---|--
---|---|--|----------------------|---|----------------------|--------------------|--|-------------------------|-------------------------|-------------------------|-------------------------|-----------------
--| | | -10 | -5 | -3 | 0 | 5 | 10 | 12 | 14 | 16 | 17 | 18 | 19 | 20 | 22 | 25 | 30 | 40 | 50 | 60 | | δ₄
de-
grees | | | | | | | | AILE | RONS | LOOK | ED-N | EUTR. | AL | | | | | | | | 0 | -0.308
.059 | 0. 014
. 017 | 0. 158
. 017 | 0.358
.022 | 0.723
.046 | 1.044
.088 | 1. 153
. 109 | 1.240
.129 | 1. 265
. 142 | 1. 278
. 159 | 1, 282
. 175 | 1. 280
1. 95 | 1. 254
. 247 | 1.157
.290 | 0, 792
.416 | 0.855
.537 | 0.803
.723 | 0.697
.868 | 0.580
1.040 | | | | | | | | 1 | LEFT . | AILER | ON DO | own. | RIGH | T AIL | ERON | o° | | | | | | | 10 | | | | 0.020
002
.036 | | 0.014
004
.027 | | 0.012
005
.025 | | 0,009
005
.019 | | | 0.003
005
.020 | -0.003
005
001 | 0,001
004
.001 | 0,001
003 | 0,000
003 | | | | 30 | | | | .044
010 | | .037
016 | | .033
018 | | . 027
018 | | | .002
015 | 010
002
013 | 000
011 | 003
010 | 001
012 | | | | 40
50 | | | | 016
.058 | | 022
.047 | | 023
. 042 | | 023
.034 | | | 020
.006 | 016
007 | 015
002 | 002
015
003 | 014
007 | | | | | | | | 020 | | | RIGE | ٠ | ERON | | LEFT | AILEI | · | -,010 | 018 | 010 | ,010 | | | | 10 | | | | 0.024 | | 0.025 | | 0.023 | | 0.019 | | | 0.018 | 0.005
007 | .0003 | 0.002 | -0.001
002 | | | | 20
30 | | | | .028 | | .032
001 | | .034
004
.038 | | .033
006
.038 | | | .034
008
.038 | 019
009
024 | 004
004 | 004
001 | 007
006
.014 | | | | 40 | | | | .011 | | .042 | | .045 | | . 045
001 | | | 004
004 | - 032
- 006 | .000 | .006 | 014
003 | | | | 60 | | | | .014 | | .007 | | .004 | | .002 | | | 002 1
. 058 1 | 003
. 044 | .002 | .001 | .000 | | | | 80 | | | | .036 | | .063 | | .065
.011 | | .058 | | | .062 | . 053 | .016
.005 | .012 | .004 | | | | | | | | _ | | L | EFT A | MER | OG NO | WN. | RIGHT | AILE | RON T | υъ | | | | | | | 10
20 | | | | 0.045
002
.062 | | 0.040
008
.060 | | 0.036
010
.059 | 0.033
011
.057 | | 0.020
012
.054 | | 0.019
013
.034 | 0.003
014
.021 | 0.005
007
.013 | 0.003
006
.013 | 0.001
007
.009 | | | | 30 | | | | .072
004 | | .076
—.016 | | . 073
—. 019 | —. 017
 | 0.060
022 | 018 | | 023 I | .025
023 | .011
013 | . 012
015 | .017
—.019 | | | | 50 | | | | 005
.094 | | 017
.098 | | 021
. 095 | | 024
.089 | | | 034
.064 | 024
- 037 | 015
. 011 | 016
.007 | 019
.009 | | | | | 10 20 30 40 50 60 80 10 20 30 40 40 40 | 54 de- grees 0 -0.308059 10 | 54 de- grees 0 -0.308 0.014 0 -0.308 0.017 10 | 84 de- grees 0 -0.308 0.014 0.158 0 -0.309 0.017 0.17 10 | 84 degrees 0 -0.308 0.014 0.158 0.358 0 -0.308 0.017 0.158 0.358 0 -0.308 0.014 0.158 0.368 0 -0.020 -0.022 20 -0.36 -0.04 40 -0.54 -0.054 50 -0.020 -0.020 10 -0.024 -0.00 20 -0.024 -0.00 30 -0.024 -0.00 30 -0.024 -0.03 40 -0.03 -0.03 60 -0.03 -0.03 60 -0.03 -0.03 80 -0.02 -0.02 10 -0.04 -0.02 20 -0.02 -0.02 10 -0.04 -0.02 20 -0.02 -0.02 20 -0.02 -0.02 20 -0.02 -0.02 20 -0.02 -0.02 | 54 degrees 0 -0.308 0.014 0.158 0.368 0.723 0.468 10 -0.309 .017 .017 .012 0.468 20 -0.020 .036 .036 .036 .036 .044 .044 .044 .044 .044 .044 .044 .044 .044 .044 .054 .054 .044 . | 54 degrees 0 -0.308 0.014 0.158 0.358 0.722 1.044 .083 10 0.039 0.017 0.017 0.022 0.046 .083 10 0.020 0.014 0.014 0.022 0.044 0.032 30 0.044 0.036 0.010 0.014 0.054 0.045 40 0.054 0.044 0.025 0.044 0.025 50 0.058 0.047 0.024 0.026 10 0.000 0.038 0.032 20 0.024 0.025 0.032 20 0.028 0.032 20 0.028 0.032 20 0.028 0.032 30 0.028 0.032 40 0.032 0.042 0.011 0.044 0.007 000 0.032 0.044 001 0.011 0.040 002 0.032 0.044 | Table Tabl | AILE1 | AILERONS AILERONS Color | SA degrees | AILERONS LOOKED—N. | AILERONS LOOKED—NEUTR. Trees Strees Stre | AILERONS LOOKED—NEUTRAL | AILERONS LOCKED—NEUTRAL | AILERONS LOCKED—NEUTRAL | AILERONS LOCKED—NEUTRAL | Allerons Looked | \$\frac{3}{6}\$ \\ \frac{3}{6}\$ | ## TABLE IX FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH FRISE AILERONS 25 PER CENT c BY 40 PER CENT b/2 R. N.=609,000. VELOCITY=80 M. P. H. YAW=20° | a
degrees | | -10 | -5 | -3 | 0 | 5 | 10 | 12 | 14 | 16 | 17 _ | 18 | 19 | 20 | 22 | 25 | 30 | 40 | 50 | 60 | |---------------------------------------|----------------------------------|-------------------------------|------------------------------|---------------------------------|--|---------------------------------|--|------------------------------|--|---------------------------------|---|---------------------------------|---------------------------------|---|---|---|--|---|---------------------------------|----------------------------------| | | å₄
de-
grees | | | | | · | | | AILER | ons L | OOKE | D—NE | UTRA | L | | | | | | | | C C C C C | 0 | -0.296
.031
002
.002 | 0.004
.018
005
.001 | 0. 135
. 017
007
. 001 | 0. 329
. 020
008
. 002 | 0. 649
. 041
010
. 003 | 0. 937
. 076
015
. 007 | 1.033
.093
018
.009 | 1.110
.111
023
.013 | 1. 138
. 120
028
. 014 | 1. 164
. 131
033
. 016 | 1. 182
. 144
042
. 016 | 1. 193
. 160
052
. 018 | 1. 200
. 204
063
. 022 | 0.980
.353
080
.025 | 0.890
.410
103
.042 | 0.860
.507
088
.051 | 0. 793
. 664
055
. 046 | 0. 734
. 858
048
. 053 | 0. 821
1. 028
044
. 063 | | | | | | • | | | I | EFT A | AILER | ои ро | own. | RIGH' | r AILl | RON | 0° | | | | | | | উটেউটউটউটউট
উট | 10
20
30
40
50 | | | | 0. 015
002
.028
005
.038
009
.045
015
.049
009 | | 0. 011
003
. 023
008
. 032
014
040
021
. 045
026 | | 0. 010
006
.
022
011
. 030
017
. 038
024
. 044
030 | | 0.009
004
.019
028
018
035
035
020 | | | 0.006
004
.014
009
.019
015
.023
019
.025
024 | 0.000
004
.001
008
.000
013
.001
017
.000
020 | -0.003
006
.007
010
.009
019
.010
020
030 | 0.002
004
008
004
012
015
015
019 | 0.003
005
.003
010
.003
013
016
.000
024 | | | | පි ර්පිර්පිර්පිර්පිර්පිර් පීර් | 10
20
30
40
50
60 | | | | 0, 023
.001
.030
.004
.032
.008
.035
.011
.039
.015
.040
.018
.038 | | 0. 024
004
. 036
002
. 043
. 000
. 048
. 003
. 054
. 006
. 060
. 080
. 099
. 083
. 015 | | 0. 024
008
. 038
067
. 046
005
003
. 059
. 000
. 006
. 002
. 071
. 009 | | UP. 0.0240070390080405604002073002073000073 | | | 0. 022 009 039 012 048 010 059 008 076 004 085 003 | 0.017
013
.032
018
.042
018
.050
017
.052
008
.074
006
.086
.003 | 0. 011
022
. 027
019
. 038
020
. 046
020
. 051
019
. 058
017
. 058
010 | 0.000
006
.012
013
.026
015
.033
015
.038
012
012
.042
008 | 0.000
003
.003
006
.013
005
.014
006
.015
002
.017
005
.025 | | | | <u> </u> | 10
20
30
40
50 | | | | 0. 039
002
. 059
001
. 070
003
. 080
004
. 089
005 | | 0. 036
008
059
011
076
015
089
016
099
021 | | 0. 034
011
. 060
017
021
. 090
023
. 104
028 | 0. 033
012
. 061
018 | 0. 078
022
093
025
108
029 | 0. 034
011
. 060
018 | | 0. 030
013
. 055
020
. 071
025
027
027
. 100
029 | 0. 014
017
. 032
027
. 043
031
032
033
. 087
039 | 0.015
017
037
030
050
036
040
044 | 0.003
010
.018
023
.035
032
043
035
.048
037 | 0.002
008
.004
014
.014
020
.016
022
.016
024 | | | ## TABLE X ROTATION TESTS. 10 by 60-INCH CLARK Y WING WITH FRISE AILERONS 25 PER CENT c BY 40 PER CENT b/2 R.N.=609,000. VELOCITY=80 M.P.H. C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05. $\frac{p'b}{2V}$ values are for free rotation. (+) Adding rotation. (-) Damping rotation | | a
degrees | 0 | 12 | 14 | 16 | 18 | 19 | 20 | .22 | 25 | 26 | 27 | 28 | 30 | 40 | |--|--|---------------|--------------|----------------|--------------|---------------|--------|------------------|-----------------|---------------|-------|------------------|-------|------------------|--------------| | | | | | | | AILEI | RONS | YAW= | | EUTR | AL | | | | | | (+) Rotation (clockwise) | { ^{C3} _{p'b} / ^{2V} | -0.024 | -0.021 | —0.019 | -0.011 | 0.002 | 0. 832 | 0.026 | 0. 017
. 377 | 0.003
.336 | | 0.414 | 0.050 | -0.002 | -0.001 | | (-) Rotation (counterclock-wise) | CX 200 | 018 | —. 018
 | 016
 | 009 | . 166 | .332 | .011 | .027
.361 | .010
.402 | 0.442 | { .460
{ .055 | } | .000 | . 000 | | | | | | | | AILE | RONS | YAW= | | ·
VEUTI | RAL | • | | | | | (+) Rotation (clockwise)
(-) Rotation (counterclock-
wise) | ું | -0.014
025 | 0.001
036 | 0.006
—.041 | 0.018
048 | 0. 034
060 | | 0. 055
—. 037 | 0. 087
058 | 0.084
084 | | | | 0. 074
—. 071 | 0.046
053 | TABLE XI CRITERIONS SHOWING RELATIVE MERITS OF AILERONS | | | 25 per | cent c by | 10 per cen | b/2 plain | allerons | 25 per 0 | ent c by 4 | 0 per cent | b/2slotte | d allerons | |--|--|---|--|--|---|---|---|---|--|---|---| | Subject | Criterion | Stand-
ard
25° up,
25°
down | Differ-
ential
No. 1,
35° up,
15° down | Differ-
ential
No. 2,
50° up,
7° down | Up-only, | Float-
ing,
505
differ-
ence | Stand-
ard
25° up,
25°
down | Differ-
ential
No. 1,
35° up,
15° down | Differential
No.2,
50° up,
7° down | Up-only,
54. 25° | Float-
ing,
50°
differ-
ence | | Wing area or minimum speed
Speed range
Rate of climb | $\begin{array}{c} \text{Max. } C_L/\text{min. } C_D \\ L/D \text{ at } C_L=0.70 \end{array} \}^{\delta_A=0^{\circ}}$ | 1.270
79.4
15.9 | 1, 270
79, 4
15, 9 | 1, 270
79, 4
15, 9 | 1. 270
79. 4
15. 9 | 1, 168
77. 8
16. 3 | 1. 308
81. 7
15. 5 | 1.308
81.7
15.5 | 1,308
81.7
15.5 | 1.308
81.7
15.5 | 1. 168
68. 6
15. 5 | | Lateral controllability Lateral control with sideslip | $RC = 0^{\circ}$ $RC = 10^{\circ}$ $RC = 20^{\circ}$ $RC = 30^{\circ}$ R | .204
.076
.038
.017
.20° | . 202
. 074
. 051
. 005
20° | .214
.074
.055
.002
21° | .196
.072
.054
.002
22° | . 243
. 083
. 035
018
19° | .186
.072
.032
.022
.19° | .172
.066
.031
.011
19° | . 146
. 058
. 033
. 007
19° | .105
.044
.032
.006
19° | . 251
. 035
. 039
. 002
. 19° | | Yawing moments due to allerons: (+) Favorable; (-) unfavorable. Lateral stability (54=0°) | $\begin{cases} C_n & \alpha=0^{\circ} \\ C_n & \alpha=10^{\circ} \\ \end{cases}$ $C_n & \alpha=10^{\circ} \\ C_n & \alpha=20^{\circ} \\ \end{cases}$ $C_n & \alpha=30^{\circ} \\ \begin{cases} \alpha \text{ for initial instability in rolling} \\ \alpha \text{ for initial instability at } p^*b/2V=0.05: \\ \text{Yaw}=0^{\circ} \\ \text{Yaw}=20^{\circ} \\ \end{cases}$ $\text{Maximum unstable } C_1 \\ \text{Yaw}=20^{\circ} \\ \text{Yaw}=20^{\circ} \\ \end{cases}$ | {007
{004
{010
{008
19°
18°
11° | +.002
003
+.004
007
008
19°
18°
11°
.048 | + 010
- 002
+ 013
- 001
+ 003
- 006
- 007
19°
18°
11° | +.016
+.018
+.013
003
+.002
b.004
19°
18°
11° | 002
+. 002
+. 002
+. 003
-/. 003
21°
21°
. 016 | 005
003
012
005
18°
17°
13° | + 604
- 001
+ 004
- 002
- 003
- 004
18°
17°
13° | +.011
4.001
+.011
001
+.003
007
004
18°
17°
13° | +. 013
+. 014
+. 014
001
+. 004
002
18°
17°
13° | | | | Yaw=20° | . 093 | . 093 | . 093 | . 093
b/2 slotted | .071 | . 035 | . 085 | . 085
10 per cen | . 085 | . 072 | | Subject | Criterion | Stand-
ard,
25° up,
25°
down | Differ-
ential
No.
1,
35° up,
15° down | | Up-only,
53.5° | Floating, 50° difference | Stand-
ard,
25° up,
25°
down | Differ-
ential
No. 1,
35° up,
15° down | 50° nn. | Up-only,
60° | Float-
ing,
50°
differ-
ence | | Wing area or minimum speed
Speed range | $\left. \begin{array}{l} \text{Maximum } C_L \\ \text{Max. } C_U \text{ min. } C_D \\ L/D \text{ at } C_L = 0.70 \end{array} \right\} \delta_A = 0^\circ$ | 1. 240
72. 9
15. 6 | 1. 240
72. 9
15. 6 | 1, 240
72, 9
15, 6 | 1. 240
72. 9
15. 6 | 1, 067
46. 4
13. 0 | 1, 283
75, 5
15, 9 | 1, 283
75, 5
15, 9 | 1. 283
75. 5
15. 9 | 1. 283
75. 5
15. 9 | | | Lateral controllability | RC α =0°. RC α =10°. RC α =20°. RC α =30°. RC α =30°. RC α =30°. RC α =30°. RC α =40°. RC α =50° yaw. | . 188
. 082
. 052
. 019
. 20° | .166
.072
.055
.019
21° | . 156
. 069
. 058
. 017
. 22° | . 120
. 068
. 053
. 017
22° | . 271
. 083
. 049
. 020
. 19° | .187
.066
.034
.022
20° | . 163
. 058
. 043
. 012
20° | . 140
. 055
. 043
. 004
21° | . 091
. 050
. 043
. 002
21° | | | Yawing moments due to allerons:
(+) Favorable; (-) unfavorable. | C _z α=20° | { | +. 005
002
+. 006
001
+. 002
005
007 | +. 016
001
+. 019
+. 015
004
+. 002
006 | +. 019
+. 022
+. 021
+. 006
-•. 003 | +. 001
+. 008
+. 009
+. 003 | 003
002
007
005 | +. 004
-•. 002
+. 006
+. 005
-•. 004 | +. 012
002
+. 014
003
+. 002
002 | +. 018
+. 019
+. 021
-•. 001
+. 004
-•. 001 | | | Lateral stability (8.4=0°) | $ \begin{cases} \alpha \text{ for initial instability in rolling} \\ \alpha \text{ for initial instability at } p'b/2V=0.05 \text{:} \\ Yaw=20^{\circ} \\ Yaw=20^{\circ} \\ \text{Maximum unstable } C_{\lambda} \text{:} \\ Yaw=20^{\circ} \\ Yaw=20^{\circ} \\ \end{cases} $ | 18°
17°
11°
.031
.083 | 18°
17°
11°
.031
.083 | 18°
17°
11°
.031
.083 | 18°
17°
11°
.031
.083 | 19° 14° . 000 | 19°
18°
11°
.027
.087 | 19°
18°
11°
. 027
. 087 | 19°
18°
11°
.027
.037 | 19°
18°
11°
. 027
. 087 | | [•] to / Where the maximum yawing moment occurred below maximum deflection, the letters indicate the deflection of the up allerons as follows: •=10°, 5=15°, •=20°, 4=25°, •=30°, f=40°.