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GENERAL POTENTIAL THEORY OF ARBITRARY WING SECTIONS

By T. TreoporseN and I. E. GARRICK

SUMMARY

This report gives an exact treatment of the problem of
determining the 2-dimensional potential flow around
wing sections of any shape. The treatment is based
directly on the solution of this problem as advanced by
Theodorsen in N. A. C. A. Technical Report No. 411.
The problem condenses into the compact form of an inte-
gral equation capable of yielding numerical solutions by
@ direct process.

An altempt has been made to analyze and coordinate
the results of earlier studies relating to properties of wing
sections. The existing approximate theory of thin wing
sections and the Joukowsky theory with its numerous
generalizations are reduced to special cases of the general
theory of arbitrary sections, permitting a clearer perspec-
tive of the entire field. The method not only permits the
determination of the velocity at any point of an arbitrary
section and the associated lift and moments, but furnishes
also a scheme for,developing new shapes of preassigned
aerodynamical properties. The theory applies also to
bodies that are not airfoils, and is of importance in other
branches of physics involving potential theory.

INTRODUCTION

The solution of the problem of determining the
2-dimensional potential flow of a nonviscous incom-
pressible fluid around bedies of arbitrary shape can be
made to depend on a theorem in conformal represen-
tation stated by Riemann almost a century ago,
known as the fundamental theorem of conformal rep-
resentation. This theorem is equivalent to the state-
ment that it is possible to transform the region
bounded by a simple curve into the region bounded by
a circle in such a way that all equipotential lines and
stream lines of the first region transform respectively
into those of the circle. The theorem will be stated
more precisely in the body of this report and its sig-
nificance for wing section theory shown—suffice it at
present to state that if the analytic transformation by
which the one region is transformed conformally into
the region bounded by the circle is known, the poten-
tial field of this region is readily obtained in terms of
the potential field of the circle.

A number of transformations have been found by
mesans of which it is possible to transform a circle into

a contour resembling an airfoil shape. It is obviously
true that such theoretical airfoils possess no particular
qualities which make them superior to the types of more
empirical origin. It was probably primarily because
of the difficulty encountered in the inverse problem,
viz, the problem of transforming an airfoil info a
circle (which we shall denote as the direct process)
that such artificial types came into existence. The
2-dimensional theoretical velocity distribution, or what
is called the flow pattern, is known only for some
special symmetrical bodies and for the particular class
of Joukowsky airfoils and their extensions, the out-
standing investigators ! being Kutts, Joukowsky, and
von Mises. Although useful in the development of
airfoil theory these theoretical airfoils are based solely
on special transformations employing only & small
part of the freedom permitted in the general case.
However, they still form the subject of numerous
isolated investigations.

The direct process has been used in the theory of
thin airfoils with some success. An approximate
theory of thin wing sections applicable only to the
mean camber line has been developed * by Munk and
Birnbaum, and extended by others. However, at-
tempts * which have been made to solve the general
case of an arbitrary airfoil by direct processes have
resulted in intricate and practically unmanageable
solutions. Lamb, in his “Hydrodynamics’’ (reference
1, p. 77), referring to this problem as dependent upon
the determination of the complex coefficients of a
conformal transformation, states: “The difficulty,
however, of determining these coefficients so as to
satisfly given boundary conditions is now so great as
to render this method of very limited application.
Indeed, the determination of the irrotational motion of
a liquid subject to given boundary conditions is a
problem whose exact solution can be effected by direct
processes in only a very few cases. Most of the cases
for which we know the solution have been obtained by
an inverse process; viz, instead of trying to find a
value of ¢ or ¢ which satisfies [the Laplacian] v?¢=0
or v%=0 and given boundary conditions, we take

.some known solution of these differential equations
- 18ee bibliography given in reference 9, pp. 24, 84, and 583.

2 Ct. footnote 1.
1 See-Appendix II of this paper.
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and inquire what boundary conditions it can be made
to satisfy.”

In a report (reference 2) recently published by the
National Advisory Committee for Aeronautics a gen-
eral solution employing a direct method was briefly
given. It was shown that the problem could be stated
in a condensed form as an integral equation and also
that it was possible to effect the practical solution of
this equation for the case of any given airfoil. A
formula giving the velocity at any point of the surface
of an arbitrary airfoil was developed. The first part
of the present paper includes the essential develop-
ments of reference 2 and is devoted to a more com-
plete and precise treatment of the method, in particu-
lar with respect to the evaluation of the integral
equation.

In a later part of this paper, a geometric treatment
of arbitrary airfoils, coordinating the results of earlier
investigations, is given. Special airfoil types have
also been studied on thé basis of the general method
and their relations to arbitrary airfoils have been
analyzed. The solution of the inverse problem of
creating airfoils of special types, in particular, types of
specified aerodynamical properties, is indicated.

It is hoped that this paper will serve as a step
toward the unification and ultimate simplification of
the theory of the airfoil.

TRANSFORMATION OF AN ARBITRARY ;&_IRFOIL INTO
A CIRCLE

Statement of the problem.—The problem which this
report proposes to treat may be formulated as follows.
Given an arbitrary airfoil* inclined at a specified angle
in a nonviscous incompressible fluid and translated
with uniform velocity V. To determine the theoreti-
cal 2-dimensional velocity and pressure distribution at
all points of the surface for all orientations, and to
investigate the properties of the field of flow surround-
ing the airfoil. Also, to determine the important
aerodynamical parameters of the airfoil. Of further
interest, too, is the problem of finding shapes with

given aerodynamical properties.
Principles of the theory of fluid flow.—We shall

first briefly recall the known basic principles of the
theory of the irrotational flow of a frictionless incom-
pressible fluid in two dimensions. A flow is termed
‘“2-dimensional’” when the motion is the same in all
planes parallel to a definite one, say zy. In this case
the linear velocity components # and » of a fluid
element are functions of x, ¥, and ¢ only.

The differential equation of the lines of flow in this
case is

vde—u dy=0

¢ By aa airfoil shape, or wing section, i3 roughly meant an elongated smooth shape
rounded at the leading edge and ending in a sharp edge at the rear. All practical
airfoils are characterized by a lack of abrupt change of curvature except for a rounded
nose and a small radius of curvature at the tail,

‘is irrotational or rotational.

and the equation of continuity is

bu ov bu _o(—v
2t ¥y T T oy
which shows that the above first equation is an exact
differential.
If @=c is the integral, then

u=—-%—§ and v= ~g§

=0o

This function @ is called the stream function, and
the lines of flow, or streamlines, are given by the equa-
tion Q=c, where ¢ is in general an arbitrary function
of time.

Furthermore, we note that the existence of the
stream function does not depend on whether the motion
When rofational its
vorticity is

which is twice the mean angular velocity or “rotation’’
of the fluid element. Hence, in irrotational flow the
stream function has to satisfy

Q. Q@ _ /
—b—xz——"l‘—a?—o 2%

Then there exists a velocity potential P and we have
(1)

The equatian of continuity is now
*P

P
T

o
Equations (1) show that

=0 (2)

so that the family of curves
P =constant, Q= constant

cut orthogonally at all their points of intersection.
For steady flows, that is, flows that do not vary
with time, the paths of the particles coincide with the
streamlines so that no fluid passes normal to them.
The Bernoulli formula then holds and the total pres-
sure head H along a streamline is a constant, that is

Kov'+p' =H

where p’ is the static pressure, » the velocity, and p
the density. If we denote the undisturbed velocity
at infinity by V, the quantities p’—p’, by p, and
% p V2 by ¢, the Bernoulli formula may be expressed as

113
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The solutions of equations (2) and (2’), infinite in
number, represent all possible types of irrotational
motion of a nonviscous incompressible fluid in two
dimensions. For a given problem there are usually
certain specified boundary conditions to be satisfied
which may be sufficient to fix a unique solution or a
family of solutions. The problem of an airfoil moving
uniformly at a fixed angle of incidence in a fluid field

is identical with that of an airfoil fixed in position and’

fluid streaming uniformly past it. Our problem is
then to determine the functions P and @ so that the
velocity at each point of the airfoil profile has a direc-
tion tangential to the surface (that is, the airfoil con-
tour is itself a streamline).and so that at infinite dis-
tance from the airfoil the fluid has a constant velocity
and direction.

The introduction of the complex variable, z=z-+1y,
simplifies the problem of determining P and @. Any
analytic function w(z) of a complex variable z, that is,
a function of z possessing & unique derivative in a

each real functions of z and . Suppose now in the
zy complex plane there is traced a simple curve f(z)-
(Fig. 1.) Each value of z along the curve defines a
point w in the w plane and f(z) maps into a curve f(w)
or F(z). Because of the special properties of analytic
functions of a complex variable, there exist certain
special relations between f(z) and F(z).

.The outstanding property of functions of a complex
variable analytic in a region is the existence of a unique
derivative at every point of the region.

dw_ bim w—w'_ .,
dz z—2' z2—2'
or
dw = petrdz

This relation expresses the fact that any small curve
22’ through the point z is transformed into a small
curve ww’ through the point w by a magnification p
and a rotation «; i. e., in Figure 1 the tangent ¢ will
coincide in direction with 7' by a rotation y=g8—oa.

z Plarne w Plane
S=a+3h
S=a+h
14 /] Y S=a+h
T S=a
R=a+3h
7 R=a+2h
w R=a+h
R=a
wll w .
B
g x X/ £ (/] o

FiGURE 1.—Conformal property of anslytic functions

region of the complex plane, may be separated into its
real and imaginary parts as w(z)=w(z-+wy)=P(, ¥)
+1iQ¢x, y), determining functions P and @ which may
represent the velocity potential and stream function of
a possible fluid motion. Thus, analytic functions of a
complex variable possess the special property that the
component functions. P and @ satisfy the Cauchy-
Riemann equations (eq. (1)), and each therefore also
satisfies the equation of Laplace (eq. (2)). Conversely,
any function P(z,y)+iQ(z, y)- for" which P and @
satisfy relations (1) and (2) may be written as w(z+
)=w(z). The essential difficulty of the problem is
to find the particular function w(z) which satisfies the
special boundary-flow conditions mentioned above for
a specified airfoil.

The method of conformal representation, a geomet-
ric application of the complex variable, is well adapted
to this problem. The fundamental properties of trans-
formations of this type may be stated as follows:
Consider a function of a complex variable z=2z+1y,
say w(z) analytic in a given region, such that for each
value of z, w(z) is uniquely defined. The function
w(z) may be expressed as w=_£+in where £ and 73 are

FIGURE 2.~~Orthogonal network obtained by a conformal transformation

This is also true for any other pair of corresponding
curves through z and w, so that in general, angles
between corresponding curves are preserved. In par-
ticular, -a curve 2z’ orthogonal to 2z’ transforms
into a curve ww’’ orthogonal to ww’.

It has been seen that an analytic function f(z) may
be written P(x, 1) +Q(x, ¥) where the curves P=con-
stant and Q=constant form an orthogonal system:.
If then f(2) is transformed conformally into f(w)
=P(& 1)+iQ(& n) that is into flw(2)]=F(2)=R(z, y)
+18(z, ¥), the curves P(z, y) = constant, @(z, y)=con-
stant map into the orthogonal network of curves
R(z, y) = constant, S(z, y) =constant. (Fig.2.) . If the

‘ magniﬁcation‘%!—: =p is zero at & point w, the trans-
t

formation at that point is singular and ceases to be
conformal.

We may use the method of conformal transforma-
tions to find the motion about a complicated boundary
from that of a simpler boundary. Suppose w(z) is a
function which corresponds to any definite fluid motion
in the z plane, for instance, to that around a circle.
Now if a new variable { is introduced and z set equal
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- to an‘y analytic function of ¢, say z=7£(¢), then w(z)

becomes w[f({)] or W(¢) representing a new motion in
the ¢ plane. This new motion is, as has been seen,
related to that in the z plane in such a way that the
streamlines of the z plane are transformed by z=#(})
into the streamlines of the { plane. Thus, the con-
tour into which the circle is transformed represents

the profile around which the motion W () exists. The

problem of determining the flow around an airfoil is

now reduced to finding the proper conformal transfor-

. mation which maps a curve for which the flow is known
into the airfoil. The existence of such a function was
first shown by Riemann.

We shall first formulate the theorem for a simply
connected region® bounded by a closed curve, and
then show how it is readily applied to the region
external to the closed curve. The guiding thought
leading to the theorem is simple. We have seen that
an analytic function may transform a given closed
region into another closed region. But suppose we
are given two separate regions bounded by closed
curves—does there exist an analytic transformation
which transforms one region conformally into the
other? This question is answered by Riemann’s
theorem as follows:

Riemann’s theorem.—The interior T of any simply
connected region (whose boundary contains more than
one point, but we shall be concerned only with regions
having closed boundaries, the boundary curve being
composed of piecewise differentiable curves {Jordan
curve], corners at which two tangents exist being per-
mitted) can be mapped in a one-to-one conformal
manner on the interior of the unit circle, and the
" analytic ¢ function {=f(z) which consummates thig
transformation becomes unique when a given interior
point 2, of T and a direction through 2, are chosen to
correspond, respectively, to the center of the circle and
a given direction through it. By this transformation
the boundary of T is transformed uniquely and con-
tinuously into the circumference of the unit cirele.

The unit circle in this theorem is, of course, only a
convenient normalized region. For suppose the re-
gions T; in the { plane and 7; in the w plane are
transformed into the unit circle in the z plane by
t=f(z) and w=F(z), respectively, then 7T} is trans-
formed into T by {=&(w), obtained by eliminating 2z
from the two transformation equations.

. In airfoil theory it is in the region external to a closed
curve that we are interested. Such a region can be
readily transformed conformally mto the region in-
ternal to a closed curve by an inversion. Thus, let us
suppose a point z, to be-within a closed curve B whose

§ A region of the complex plane is simply connected when any closed contour lying
entirely within the region may be shrunk to a point without passing out of the region.
C{. reference 3, p. 367, where a proof of the theorem based on Green’s function is
given.

8 At is here directed to the fact that an analytic function is developable at
a point in a power series convergent in any circle about the point and entirely
within the region.

external region is T', and then choose a constant k
such that for every point z on the boundary of T,
|z—2>k. Then the inversion transformation w=
;—Ic_zo will transform every point in the external region
T into a point internal to a closed region T’ lying
entirely within B, the boundary B mapping into the
boundary of IV, the region at infinity into the region
near z,. We may now restate Riemann’s theorem as
follows: '

One and only one analytic function { =f(2) exists by
means of which the region I' external to a given curve
B in the ¢ plane is transformed conformally into the
region external to a circle C in the z plane (center at
2=0) such that the point z= » goes into the point

¢= = and also d'(fif) =1 at infinity. This function can

be developed in the external region of C in a uniformly
convergent series with complex coefficients of the form
t-m=f@)-m=2+2+3+%+ . .. @
by means of which the radius R and also the constant
m are completely determined. Also, the boundary B
of T is transformed continuously and uniquely into the
circumference of C.
* It should be noticed that the transformation (4) is
a normalized form of & more general series

and is obtained from it by a finite translation by the
vector @ and a rotation and expansion of- the entire
field depending on the coefficient a_;. The condition
a_1=1 is necessary and sufficient for the fields at
infinity to coincide in magnitude and direction.

The constants ¢; of the transformation are functions
of the shape of the boundary curve alone and our -
problem is, really, to determine the complex coeffi-
cients defining a given shape. With this in view, we
proceed first to a convenient intermediate trans-
formation.

2 -
The transformation §=z’+%-—This initial trans-

formation, although not essential to a purely mathe-
matical solution, is nevertheless very useful and
important, as will be seen. It represents also the key
transformation leading to Joukowsky airfoils, and is
the basis of nearly all approximate theories.

Let us define the points in the ¢ plane by =z+1y
using rectangular coordinates (z, y), and the points in
the 2’ plane by z’=ae¥t* using polar coordinates
(ae¥, §). The constant ¢ may conveniently be con-
sidered unity and is added to preserve dimensions.
We have '

@
§=z +2I ()
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and substituting 2’ = ge¥+%

we obtain £=2a cosh (y+16)

or ) ¢£=2a cosh ¢ cos 8+ 2ia sinh ¢ sin §
Since { =z+14y, the coordinates (z, y) are given by

z=2a cosh ¥ cos 0} )
y=2q sinh ¢ sin ¢

If ¢=0, then 2z’ =ae? and ¢=2a cos 8. That is, if P
and P’ are corresponding points in the ¢ and z’ planes,
regpectively, then as P traverses the ¢ axis from 2a to
' —2a, P’ traverses the circle ae” from =0 to §=m,
and as P retraces its path to ¢ =2a, P’ completes the
circle. The transformation (5) then may be seen to
map the entire ¢ plane external to the line 4¢ uniquely
into the region external (or internal) to the circle of
radius ¢ about the origin in the 2’ plane.

Let us invert equations (6) and solve for the e]llptlc
-coordinates ¥ and 6. (Fig. 3.) We have

O

§ Plane z’ Plane
F1aURE 3.—Transformation by elliptic coordinates

] thhm

-T
cosh ¥ "2a cos @

sinh ¢ =

2a sm 0
and since cosh 2y —sinh 3y=1

(res) ~(athars) =
2a cos 8 2asin 6]

or solving for sin’ (which can not become negative),

2 sin? 0=p+\/p2+(%>z (7
(-2

Similarly we obtain

(Za ook ¢>z+<2a =y .p)2=1

or solving for sinh %y
' 2 sinh %Y= —p+ \/p"'+(y> ®

We note that the system of radial lines = constant
become confocal hyperbolas in the ¢ plane. The circles
¥ =constant become ellipses in the ¢ plane with major
axis 2a cosh ¥ and minor axis 2¢ sinhy. These orthog-
onal systems of curves represent the potential lines and
streamlines in the two planes. The foci of these two
confocal systems are located at (& 2a, 0).

408318 0—41——2

where

Equation (8) yields two values of . for a given
point (z, %), and one set of these values refers to the
correspondence of (z, ¥) to the point (ze¥, 8) external to
a curve and the other set to the correspondence of
(z, ¥) to the point (ae~¥,—8) internal to another curve.
Thus, in Figure 3, for every point external to the
ellipse E; there is a corresponding point external to the
circle O}, and also one internsl to C’.

The radius of curvature of the ellipse at the end of
sinh %y
cosh ¢
p=2ay®. The leading edge is at

2a cosh ¢g2a<1 + -‘g—z>-z2a + g-

Now if there is given an airfoil in the ¢ plane (fig. 4),
and it is desired to transform the airfoil profile into a
curve as nearly circular as possible in the 2’ plane by
using only transformation (5), it is clear that the axes
of coordinates should be chosen so that the airfoil
appears as nearly elliptical as possible with respect to
the chosen axes. It was seen that a focus of an
elongated ellipse very nearly bisects the line joining
the end of the major axis and the center of curvature
of this point; thus, we arrive at a convenient choice of
origin for the airfoil as the point bisecting the line of
length 4a, which extends from the point midway be-
tween the leading edge and the center of curvature of
the leading edge to a point midway between the
center of curvature of the trailing edge and the trailing
edge. This latter point practically coincides with the
trailing edge.

The curve B, defined by ae*™™, resulting in the 2
plane, and the inverse and reflected curve B’, defined
by ae~¥-*, are shown superposed on the { plane in
Figure 4. The convenience and usefulness of trans-

the major axis is p=2a or for small valies of i,

FIGURE 4.~Transformation of airfoil into a nearly circular contour

formation (5) and the choice of axes of coordinates
will become evident after our next transformation.

o
0

The transforma.tmn 2 =ze —Consider the trans-

formation 2’ = z¢’® where f(z) = 2 =% Eachexponential
Cn
znrepresents the uniformly convergent series

1+z,,+21( >+ = :—:)m-}-- Ce(9)

term ¢
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where the coefficients ¢,=.A,+ 1B, are complex num-
bers. For f(z) convergent at all points in a region
external to a certain circle, 2’ has a unique real abso-
lute value [z[e®@! in the-region and its imaginary part
is definitely defined except for integral multiples of
27t. When 2= o, z'=2z¢%, The constant ¢y=A,+
- 1B, is then the determining factor at infinity, for the

field at infinity is magnified by e% and rotated by the |

angle B,. It is thus clear that if it is desired that the
regions at infinity be identical, that is, 2’ = z at infinity,
_ the constant ¢, must be zero. The constants c; and ¢,
also play important réles, as will be shown later.

We shall now transform the closed curved” 2’ = ae¥*¥
into the circle z=ae¥*? (radius az#; origin at center)
by means of the general transformation (reference 2)

L -] c’.

b

12" (10)

2 =ze

which leaves the fields at infinity unaltered, and we
shall obtain expressions for the constants A,, B,, and
Yo. The justification of the solution will be assured by
the actual convergence of ?c—z,,"» since if the solution
exists it is unique.

By definition, for the correspondence of the bound-
ary points, we have

o= ze“’""o +i(0—9) (10)
. (A +iB)
Also 2 =z¢
Consequently

V= Yo+i0— @) =Z(As+iB) 5
1
where z2=aqe¥,T%

On writing z=R(cos ¢+1 sin ¢) where R=aqae¥,, we
have
v— ¢.,+i(a—¢)=21:(A,.+iB,.)R%,,(cosn¢—isin ne)

Equating the real and imaginary parts of this relation,
we obtain the two conjugate Fourier expansions:

_=T4, B, .
¥ %——?[ﬁ cosn<p+R—nsmmp] (11
0—«p=§[%cosn<p—%,—’:sinn¢] (12)

From equation (11), the values of the coefficients ‘;,,

1%: and the constant y, are obtained as follows:

~7|'

B Ly conne de ®
21'

s L4 sinne de (b)

7 Unless otherwise stated, ¥ and 0 will now be used in this restricted sense, i, e., as
defining the boundary curve itself, and not all points in the 2’ plane,

1 27
Yomgz ) vle ©

The evaluation of the infinite number of constants
as represented by equations (a) and ¢b) can be made
to depend upon an important single equation, which
we shall obtain by eliminating these constants from
equation (12).

Substitution of (a) and (b) for the coefﬁclents of
equation (12) gives

0—¢)' =

o [
-8

' 2r
cos ne’ S ¥(p) sin ne de
0

2%
—sin ne’ ,({' ¥(p) cos ne d(_p]

where ¥ (o) =y and (6—¢)’ represents 8§ —¢ as a func-
tion of ¢’, and where ¢’ is used to distinguish the angle
kept constant while the integrations are performed.
The expression may be readily rewritten as

o 21"
(0—¢)’=% ? S ¥{p) (sin ne cos ne’ —cos nesin ny’)de

1 o« 2T -
== Z f¢(¢)smn(¢-— ') de
1o
But ,
n 1 o=’ cos (2n+1) §¢_—22_2
Z sin —¢') =z cot - Vi
z nle—¢')=3 5 e
2
Then
0—9) = nimm ./'nﬁ( ) eot £ ¢ 3y

o cos(2n+1) g‘f—;—‘p—)
./'llf(sa) — de
sin [ 2¢

The first integral is independent of n, while the latter
one becomes identically zero.

Then finally, representing ¢ —8 by a single quantity
€, Viz p— 0 =e=e(yp), we have

27 ’
ne 1 p—¢
e(«ﬁ) : 2”6/‘¢(¢) cot ——de (13)

By solving for the coefficients in equation (12) and
substituting these in equation (11) it may be seen that
s similar relation to equation (13) holds for the fune-

tion ¥ (e).

, 1 27 90"'"¢’ 1 21!' d 1
¢(¢)-—-§;b/‘e(¢)cot 3 de+ é;(.)/'xb(‘p) e (14)

- The last term is merely the constant y,, which is, as
' has been shown, determined by the condition of mag-
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mﬁcat.lon of the z and z' fields at mﬁmty The
correspondmg mtegral—- J‘ e(p) de does not appear in

equation (13), being zero as a necessary consequence
of the coincidence of directions at infinity and, in
general, if the region at infinity is rotated, is a constant
different from zero.

Investigation of equation (13).—This equation is
of fundamental importance. A discussion of some of
its properties is therefore of interest. It should be
first noted that when the function ¥(¢) is considered
known, the equation reduces to a definite integral.
The function ® e(p) obtained by this evaluation is the
“conjugate’’ function to ¥(g), so called because of the
relations existing between the coefficients of the
Fourier expansions as given by equations (11) and (12).
For the existence of the integral it is only necessary
that ¥{¢) be piecewise continuous and differentiable,

and may even have infinities which must be below

first order. We shall, however, be interested only in
continuous single-valued functions having a period 27,
of a type which result from continuous closed curves
with a proper choice of origin.

If equation (13) is regarded as a definite integral, it is seen
to be related to the well-known Poisson integral which solves
the following boundary-value problem of the circle. (Reference
8.) Given, say for the z plane a single-valued function u(R,7)
for points on the circumference of a ecircle w= Reér (center af
origin), then the single-valued continuous potential function
u(r,o) in the external region z=rei of the circle which assumes
the values u (R, 7) on the circumference is given by

AR
u(r.a)" -/' 4B\ A= 2Rr cos (e=7) "

and similarly for the con]ugate funetion »(r,s)

73— R2
v(r0)=5- J'D(RT)Rz+rz 2Rr cos (o'—r)

These may be written as a single equation

z+w

z-—-w

w(r,a) +in(re) =f () =5 & f) ZE2

where the value f(z) at a point of the external region z=rei is
expressed in terms of the known values f(w) along the circum-
ference w==Re. In particular, we may note that at the

oo teir (e—1)
g ot =5

boundary itself, since 7 , We have

. i2r . (o—1)
u(R,v)+W(R,v)=='-§;.{)‘ [u(R,7)+i2(R,7)] cot 3 dr,

which is a special form of equations (13) and (14).

The quantity ¢ is immediately given as a function
of § when a particular closed curve is preassigned, and
this is our starting point in the direct process of trans-
forming from airfoil to circle. We desire, then, to find
the quantity ¢ as a function of ¢ from equation (13),
and this equation is no longer a definite integral but an

8 This function will be called “‘conformal angular distortion’ function, for reasons
evident later.

integral equation whose process of solution becomes
more intricate. It would be surprising, indeed, if
snything less than a functional or integral equation
were involved in the solution of the general problem
stated. The evaluation of the solution of equation (13)
is readily accomplished by a powerful method of suc-
cessive aspproximations. It will be seen that the
nearness of the curve ae¥** to a circle is very signifi-
cant, and in practice, for airfoil shapes, one or at most
two steps in the process is found to be sufficient for
great accuracy.

The quantities ¥ and ¢ considered as functions of ¢
have been denoted by ¥(¢) and e(¢), respectively.
When these quantities are thought of as functions of 6
they shall be written as ¢(0) and &(8), respectively.

Then, by definition

v(0) =¢le ()] (15)
and «(0) =do(6)]
Since p—0=¢, we have
0(e) = —e(p)
o(6) =0+ 2(0) } (16)

We are seeking then two functions, ¢(p) and e(g),
conjugate in the sense that their Fourier series expan-
sions are given by (11) and (12), such that ¥[e(d)]=
¥(8) where ¥(0) is a known single-valued function of
period 2=.

Integrating equation (13) by parts, we have

v d‘l’(i’)d

e(so’)==— ./' log sin “—*~ (13)

The term log sin £ i is real only in the range ¢=¢’ to

¢=27r+ ¢, but we may use the interval 0 to 2= for ¢
with the understanding thet only the real part of the
logarithm is retained.

Let us write down the following identity:

_lo sin ¢

2 g )
sm(0+21);(0+€1)' >
=7 T Gra-GTray

2 sm p)

sin(9+€,:)——(0+3,,)’

+eeetlog . (0+&-y) — (0+Ek—1>’+ o
s D)

o—

log sin

in 08 = O-+a)’

+log
sin

an

sin (0+€n) - (0+En>’

. 2
1 - -
+log sin (B+%r) ; (0+2-y)’ +log

g OFD— O+

o OF%)—OF &)

where in the last term we recall that 0+ é0)=¢(0); and
where it may be noted that each denominator is the
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numerator of the preceding term. The symbols &
(k=1, 2, ..., n) represent functions of 9, which thus
far are arbitrary.’

Since by equation (15) ¥(6) =vi¢(8)] we have for
corresponding elements df and de

o) g, 980 4,

Then multiplymg the left side of equation (17) by
1 d‘p(‘p) de¢ and the right side by L dpi (0) dé and inte-

T

. gra.tmg over the period 0 to 27 we obtam

27
1 .
Ao =e(0) = [ log sin L d‘fig") o+ .
2 i OFE = 0+a)
K 2 dy (6)
+— _/' log (0+E,,_x)-— Grey do de+ . ..
2
24 (0+ €(0)) — (6+(6))’
“x 2 d'P (0)
+— J' log e 5 de (18)
in(l)+e,.) - 0+ e
where k=1,2, . . ., n.
We now choose the arbitrary functions &.(6’) so that
%@)=0

and

1 2% .
& (6") == b/' log sin

@+&-)—(0+&-.) d¥(0)
> e de (19)
where k=1,2, . . ., n.

Equation (18) may then be written

W) =f6+a+ (=) ...+ @G &)t (E&) (20)
or W) =MFNF .. M
where M.(0') =€ —¢&-_; and is in faect the k™ term of
equation (18). The last term we denote by .

From equation (19) we see that the function &,(8") is
obtained by a knowledge of the preceding function
&-1(6’). For convenience in the evaluation of these
functions, say

(0:45)— 0+ 3H0)

€k+1(0 )"—' f log sin

we introduce a new variable ¢, defined by
er(6) =0+7%(6) *k=1,2,...mn
Then

Gl )] =o'y

2 ( @1

=1 in (&2~
—T{log sin ==

'y Ao
o) dWike g,
From the definition of ¢, as
ex(0) =0+75(6)
9 The symbol (0-+&)’ represents ¢ +2x(¢’) and is used to denote the same function

of @ that 6+&:(6) isof 8. The variables  and ¢ are regarded as independent of ench
other,

we may also define the symbol e:(¢:) by

0(pr) = o1 — ex(or)

where
&(6) = el (6)]

It is important to note that the symbols &, ¢, &*
denote the same quantity considered, however, as a
function of 9, ¢k, ¢i-1, respectively. .

The quantities (6,—&_;) in equation (20) rapidly
approach zero for wide classes of initial curves ¥(6),
i. e., ¥[0(¢:)] very mnearly equals $[0(¢i.s)] for even
small &’s. The process of solution of our problem is

_then one of obtaining successively the functions ¥(8),

ylo(e)], 0(en)], . - . . ¥[0(es)] where ¢[6(¢,)] and
€,[0(¢,)] become more and more “conjugate.” The
process of obtaining the successive conjugates in prac-
tice is explained in a later paragraph. We first pause
to state the conditions which the functions ¢; are sub-
ject to, necessary for a one-to-one correspondence of
the boundary points, and for a one-to-one corre-
spondence of points of the external regions, i. e., the
conditions which are necessary in order that the -
transformations be conformal.

In order that the correspondence between boundary
points of the circle in the z plane and boundary points
of the contour in the z’ plane be one-to-one, it is
necessary that 6(¢) be a monotonic increasing function
of its argument. This statement requires a word of
explanation. We consider only values of the angles
between 0 and 2x. For a point of the circle boundary,
that is, for one value of ¢ there can be only one value
of 8, 1. e., 8(p) is always single valued. However, ¢(6),
in general, does not need to be, as for example, by a
poor choice of origin it may be many valued, a radius
vector from the origin intersecting the boundary more
than once; but since we have already postulated that
¥(6) is single valued this case can not occur, and ¢(f)
is also single valued. If we decide on a definité direc-

tion of rotation, then the inequality g—i— = 0 expresses

the statement that as the radius vector from the origin
sweeps over the boundary of the circle C, the radius
vector in the 2’ plane sweeps over the boundary of B
and never retraces its path.

The inequality .

. de _ . de(p)
do=17 dp 20
corresponds to
de(e) -4
de =
Also, the condition
‘ d(p de(6) -
a =1t =0
corresponds to
de(6) >—1
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Multiplying —g% by g—;;p- we get

(1-52) (1 35) =1

This relation is shown in Figure 5 as a rectangular

ae
de
T.
1
12
/
} I o+ o - de
T2l flolr 2 a8
-/
[-2

3
FIGURE 5,—The quantity ad—i as a function ofg—;

hyperbola. We may notice then that the monotonic

behavior of ¢(6) and 8(p) requires that d%e; remain on
the lower branch ! of the hyperbola, i. e.,

: (22)
It will be seen later that the limiting values

d:i(:) ’d:i(:) co(i, €., g—;—= oo,g—;= - 1)
correspond to points of infinite velocity and of zero
velocity, respectively, arising from sharp corners in the
original curve.

The condition for a one-to-one conformal corre-
spondence between points of the external region of the
circle and of the external region of the contour in the
2’ plane may be given (reference 5, p. 98 and reference
6, Part II) as follows: There must be a one-to-one
boundary point correspondence and the derivative of

@ Cp

2 —
the analytic function 2’ =ze¢' © given by equation (10)
must not vanish in the region. That is, writing g(2)

forz &
or?zn we have

g_':_ = e”“’<1+2 d%(:)) #0 for |z2| >R or since

the integral transcendental function ¢/> does not vanish
in the entire plane, the condition is equivalent to

z(—igg—)-;é —1 for |2| >R

1¢ The values of the upper. branch of the hyperbola arise when the region internal
to the curve ae ¥+i? is transformed into the external region of a circle, but may also
there be avoided by defining ¢=¢+#¢ instead of p—0.

By equation (10’) we have on the boundary of the
circle, g(Re'?) = ¢ — ¢ —i¢, and

9@) _ p i, A (o) —ie(o)]

dz 1Re* do
_de(o) _ d\#(&o)
“de T de

the first term on the right-hand side being real and the
last term a pure imaginary. We have already postu-
lated the condition

as necessary for a one-to-one boundary point corre-

spondence. Now by writing z=£+14n and 2 PEAAL (Z)d

P(¢3) +iQ(%,%), we note that e(“’)

gives the boundary

values of a harmonic function P(.E,n) and therefore this
function assumes its maximum and minimum values
on the boundary of the circle itself. (Reference 3, p.

z—fl-(——)- can never become —1 in the
, ,

. . z
external region, i. e, &

223.) Hence

can never vanish in this

region.

At each step in the process of obtammu the succes-
sive conjugates we desire to maintain a one-to-one
correspondence between 8 and ¢, i. e., the functions
8(¢r) and ¢;(0) should be monotonic increasing and are
hence subject to a restriction similar to equation (22),
viz,

— o= g—e—"—él (229
Px

The process may be summed up as follows: We con-
sider the function {¥(§) as known, where ¢ () is the
functional relation between ¢ and 6 defining.a closed
curve aev**. The conjugate of ¥(4) with respect to 8
is §(0). We form the variable ¢, =8+ ¢(8) and also
the function ¥[08(¢,)]. The conjugate of ¥[8(ey)] with
respect to ¢ is e*3(¢,) which expressed as a function of
8 is %&(6). We form the variable ¢, =0+ &(6) and the
function ¥[8(¢;)]. The conjugate of ¥l8(e:)] is e*3(w),
which as a function of 9 is &(6), etc. The graphical
criterion for convergence is, of course, reached when
the function ¢[8(¢,)] is no longer altered by the
process. The following figures illustrate the method
and exhibit vividly the rapidity of convergence. The
numerical calculations of the various conjugates are
obtained from formula I of the appendix.

In Figure 6, the ¥(f) curve represents a circle re-
ferred to an origin which bisects a radius (obtained
from an extremely thick Joukowsky airfoil) ¢see p. 26)
and has numerical values approximately five times
greater than occur for common airfoils. The Y(p)
curve is known independently and is represented by
the dashed curve. The process of going from ¢ () to
¥(¢) assuming ¥(¢) as unknown is as follows: The
function &(6), the conjugate function of ¢(6), is found.
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The quantity ¢ is then plotted against the new variable | is drawn at P’. This process yields the function &(8).
e1=0+%(0) (i e., each point of ¥(f) is displaced hori- | The quantity ¥ is now plotted against the new variable
zontally a distance §) and yields the curve ¥[0(¢)]. | ¢a=0-+%(6) (i. e., each point of ¥(§) is displaced hori-
(Likewise, (6) is plotted against ¢, yielding e(e).) | zontally a distance &) giving the function ¥[6(ws)].

(6]
5 i Sy P S S N U
e AN \*{&ﬁ
B Za ae N\
- :” ) \\
o= Y
L \x ’/’
L NN ’d
L \\\ ,/" y
A N T
~, "‘
-5 h N S /1/
1.0 S o
- N e
\\ ‘\~~§ | 03 .
: Nl g‘\ AL
— . N - , v’
- HN | N\ o Hoe] . Ly
5l ) AN » 3 ’:"d v
L . \ -\\\\ ’,I /
E - .4
- \\ \“: / ’ //
[ O AT
0 5 70 1 20 25 G0Lw 25 40 75 50 55 80 2x

Argument (8, ¢, ., @ in radians)
FIGURE 6.~The process of obtaining successive conjugates
The function e*;(¢,) is now determined as the conjugate

function of ¥[0(¢y)]. This function expressed as a
function of 6 is e*[¢:(0)] =&(0). Itisplotted asfollows:

This curve is shown with small circles and coincides
with ¢(p). Further application of the process can
yield no change in this curve. It may be remarked

20
’ . ) . | - -
/0 (a) ZaN & 9}\#(17\\-{~ €lp) AN L7
. 5 f v 7 0 \
K N 3 4 \ l/ N 5 4 '\
I \ 4 N ! \
o
N N ALY
~ 10 ‘\ y N\ L ‘\\ 4 RN ,,’
NN DN N N/
-20
~ .40 Vo) —
'~ ¢ Ry 8
. ()| R o ]\ “,( y ¥(0) ‘,7‘\“ £ S
: . D 4 ) -’ \ \
20 /l / \ \\ I‘I / ‘ \ I”/ \ ‘\\ 7 '/ \ “\
. :' v = - 7 Y 7 Y
/10 i / / \\ ‘\ i I/ // \\\ :" / \\\“. l/ // \“
. l,r / k ,': \ \\ /l 4 \\ V N \\\
2 / \ / y \
0
x
2

r© 3 én
e
FIGURE 7.~Process applied to transforming a square into a circle

At a point P of e*; (¢;) and Q of ¢ (¢;) corresponding to | here that for nearly all airfoils used in practice one
a definite value of ¢, one finds the value of ¢ which | step in the process is sufficient for very accurate results.
corresponds to ¢; by a horizontal line through @ meet- As another example we shall show how a square
ing &(6) in @’; for this value of 6, the quantity ¢ at P | (origin at center) is transformed into a circle by the
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method. In Figure 7 the ¢(8) curve is shown, and in
Figure 8 it is reproduced for one octant.* The value
is ¢(0)=log sec . The function ¥[(¢)] is shown
dashed; the function ¥[0(¢)] is shown with small
crosses; and l[l[ﬂ(gas)] is shown with small circles. The
solution ¥(¢) is represented by the curve with small
triangles and is obtained independently by the known
transformation (reference 3, p. 375) which transforms

the external region of a square into the external regmn .

of the unit circle, as follows:
w(z)=fV;da=z[1+P(1)]

where P( ) denotes & power series. Comparing this
with equation (10), we find that ¥(p) except for the
constant y, is given as the real part of log [1 +PG):|

evaluated for z=e¢', and that e(p) is given as the
negative of the imaginary part. It may be observed
in Figure 8 that the function ¥[#(g;)] very nearly

.35
A7
o3 el i
' 2-¥() /,// r
¥~S . 4 it /
25 7 7o
T
20— Lk
. /' !0[0(?1)]/,
¥ ATy
45 o
. .4 //
4 N
71
10 z
N - /I /
T
.05 > // .
o 4 5 & 7 3.8

Argument (6,9, ., 95,9 in radions) 4
F1GURE 8,—Process applied to transforming a square into a circle

equals ¥(p).
Figure 7 (a); we may note that at ¢=£, which corre-

The functions e{¢) and &6) are shown in

sponds to a corner of the square, §5=1 or also,

de
-

1t Because of the symmetry involved oaly the interval 0 to] need be used. The
integral in the appendix can bs treated as

w‘

(e =— ;, 7 o) oot 2 ap

l'

1
-— f. J vo)leot 2p—g) —cot 2(p+e1dp

It may be remarked that the rapidity of convergence
is influenced by certain factors. It is noticeably af-
fected by the initial choice of &(0). The choice
&(0) =0 implies that 6 and ¢ are considered to be very
nearly equal, i. e., that ae¥+* represents a nearly cir-
cular curve. The initial transformation gwen by
equation (5) and the choice of axes and origin were
adapted for the purpose of obtaining a nearly circular

P=ae?®
Q= ae\’.ffq

(®)

FiGuRe 9.—Translation by the distance OM

curve for airfoil shapes. If we should be concerned
with other classes of contours, more appropriate
initial transformations can be developed. If, how-
ever, for a curve ae¥™* the quantity ¢=¢—8 has large
values, either because of a poor initial transformation
or because of an unfavorable choice of origin, it may
occur that the choice §(6) =0 will yield a function

&(p1) for which %{-‘p‘: may exceed unity at some points,

thus violating condition (22’). Such slopes can be
replaced by slopes less than unity, the resulting func-
tion chosen as () and the process continued as
before.”* Indeed, the closer the choice of the function
%(0) is to the final solution &(6), the more rapid is the
convergence. The case of the square illustrates that
even the relatively poor choice &(6) =0 does not appre-
ciably defer the convergence.

The translation 2z =z+c¢.—Let us divert our
attention momentarily to another transformation
which will prove useful. We recall that the initial
transformation (eq. (5)) applied to an airfoil in the ¢
plane gives a curve B in the 2z’ plane shown schemati-
cally in Figure 9(a). Equation (10) transforms this
curve into a circle C about the origin 0 as center and
yields in fact small values of the quantity ¢—6. We
are, however, in a position to introduce a convenient
transformation, namely, to translate the circle C into
a most favorable position with respect to the curve B
(or vice versa). These qualitative remarks admit of a
mathematical formulation. It is clear that if the
curve B itself happens to be & circle * the vector by
which the circle O should be translated is exactly the
distance between centers. It is readily shown that

"M The first step in the process is now to define ¢s=6+-e(0) and form the function
¥{6(e)]. The conjugate function of #[6(es)] is e*s{ws) Which expressed as a function
of 8 i3 %(6), ete. . .

1 See p. 26.
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A}

then equation (10) should contain no constant term.
We have

o« Cn
z25 (10)

2 =ze '
1 i 1iay )
—z(1+z +2!(Z> + . .)(11-5;4-. : -)x

¢s
(1+za+ .. )etc.

o(1iky ke )
' _.z(1+z+22+ e {10a)
where
Icl—cl
2
’C2=Cg+%‘

o

k3=03+6201+ 6

---------

It is thus apparent that if equation (10) contains no
first harmonic term, i. e., if
27

¢=4;,+iB= gf‘ﬁe‘“’d.(""‘ 0,
0

the transformation is obtained in the so-called normal

form @
2,=21+'Z—+%12+ o o o

1

(23)

This translation can be effected either by substituting
a new variable z; =2+ ¢, or a new variable z;" =2’ —v¢,.

/0 X |
—.05 rl
- 10
- 15
20 k=
15 S L /]
.10 \\;ZJ{ Curve ]
.05 - ]

0
.05
& 0
205 |

. ;g\_ L ¥,(8) Curve A
%.05

0 5

€/8) Curve

)
/

&(6,) Curjve

L0 15 20 25 8%35 40 45 50 55 2n

I

F10URE 10.—The ¥(8) and ¥(6;) curves (for Clark Y airfoil)
This latter substitution will be more convenient at
this time. Writing
2 =aeht® ¢ =qert® and 2’ =qevt®
we have
ae{«ﬂ-iﬁl e ae¢+ta._ ae~/+l8

The variables y,, and 6,, can be expressed in terms of
¥, 0, v, and 6. Tn Figure 9(b), P is a point on the B

M These constants can be obtained in a recursion form. See footnote 186,

curve, i. e., OP=gae¥, PQ represents the translation
vector cr=ae"t®, 0Q is aest®, and angle POQ is
denoted by . Then by the law of cosines

€21 == g2V 4 ¢%r — 2¢¥eY cos (6—3) (a)

and by the law of sines

. ersin (6—))
b= e -
_ - -1 _€r¥sin (9—8)
or 0,=0+4+u=0-+tan T—¢7 cos (=3) (b)

In Figure 10 are shown the ¥(6)-and €(8) curves for the
Clark Y airfoil (shown in. fig. 4) and the ¥,(6;) and
&(6;) curves which result when the origin is moved
from 0 to M. It may be noted that &(6;) is indeed
considerably smaller than e(f). It is obtained from

2 )
(¢—0l),=—217r {llq(ga) cot £ 2‘P de

and the constant ¢, is given * by
1 27|'
h=3- .6' Vi(o)de

The combined transformations.—It will be useful to
combine the various transformations into one. We
obtain from equations (5) and (10) an expression as
follows:

A

¢=2a cosh <log z+ 2 Z{',—) (24)
1

or we can also obtain a power series development in z
- @ 02,0,
f=ea+z+ z+32+23+

Ap= kn+1 + azhn—l

(25)

where 1

The constants k, may be obtained in a convenient
recursion form as

kl =C
2IC2 = klcl + 202
3k3 = k201 + 2k102 -+ 303 *
4’('4 = k301 + 2IC202 + 3k103 + 404

The constants h, have the same form as k, but with
each c¢; replaced by —¢; (and ho=1). It will be re-

1 The constant yo is invarjant to change of origin. (See p. 26.) It should be
remarked that the translation by the vector ¢; is only a matter of convenience and
is especially useful for very irregular shapes. For a study of the properties of airfoil
shapes we shall use only the original e(¢) curve. (Fig. 10(a).)

16 By equations (5) and (10) we have

;Cn

12

en ¢

) »
— €
+2

N'I

@
-3
$=ze 1

;Cn

20
The constant ky is thus the coefficient of :—' in theexpansion of e 1% and the constant

-]
3 ln
za
ha the coefficient of zl—' in the expansion of ¢ 1 For the recursion form for ka

see Smithsonian Mathematical Formul® and Tables of Elliptic Functions, p. 120.
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called that the values of ¢, are given by the coefficients

of the Fourier expansion of ¢(p) as

2
J ¥(e)e™ede where R =aebo
0

8=

Cn_
B
and
1 27r
h=3- .6' ¥(e)de

The first few terms of equation (25) are then as
follows:

o’ o
O 42 @ — a2
§‘=z+cl+02+ 2z+a’+cs+?261:26 av ... (25"

By writing 2, =2z+¢;, equation (25) is cast into the
normal form

b, b
§‘=z,+;j+z—1§+ C (26)

The constants b, may be evaluated directly in terms

of a, or may be obtained merely by repiacing ¥(¢) by

¥1 (@) in the foregoing values for a,.
The series given by equations (25) and (26) may be
inverted and z or z; developed as a power series in {.

Then
a + a6 @+ 206+ a3+ a)’
Z({)=-§‘—'cl—'?1~—a2 ;211_ 101 Q61 T3 T

and

... (27)

b by by+by?

21(5')""?“‘2."'2.‘2 & (28)

The various transformations have been performéd
for the purpose of transforming the flow pattern of a

FIGURE 11.—Streamlines about circle with zero circulation (shown by the full
lines) Q=~V sinh u sin p=constant

circle into the flow pattern of an airfoil. We are thus

led immediately to the well-known problem of deter-

mining the most general type of irrotational flow

around a circle satisfying certain specified boundary

conditions. :

The flow about a circle.—The boundary conditions

to be satisfied are: The circle must be a streamline of

flow and, at infinity, the velocity must have a given

magnitude and direction. Let us choose the { axis as

corresponding to the direction of the velocity at
408318 0—41——3’

infinity. Then the problem stated is equivalent to
that of an infinite circular cylinder moving parallel to
the £ axis with velocity V'in a fluid at rest at infinity.
The general complex flow potentiai 17 for a eircle of
radius R, and velocity at infinity V" parallel to the z
axis is .
w(e) =~ V(+% )~ 5F log 7 (29

where T is a real constant parameter, known as the

2

J

FIGURE 12.—Streamlines about circle for V=0 Q'—-—EI: =constant

circulation. It is defined as 'ffu,ds along any closed
curve inclosing the cylinder, v, being the velocity
along the tangent at each point.

Writing z=Re*** and w=P +i@, equation (29) be-
comes

w=—V cosh(u-+ie) — ox(u+i) (29)
or P=—7V cosh u cos «p+%r:p
=~V sinh usin p—gn
For the velocity components, we have
e ~V<1—Izi:>—%—z (30)

" In Figures 11 and 12 are shown the streamlines for
the cases I'=0, and V=0, respectively. The cylinder
experiences no resultant force in these cases since all
streamlines are symmetrical with respect to it.

The stagnation points, that is, points for which u

and v are both zero, are obtained as the roots of %g =0.

This equation has two roots.
_iT+ {16#@R VP =17
2= 47V
and we may distinguish different types of flow accord-
ing as the discriminant 162°R?V?— I is positive, zero,
or negative. We recall here that a conformal trans-
formation w=f(z) ceases to be conformal at points

where ((11—’;-0 vanishes, and at a stagnation point the flow

divides and the streamline possesses a singularity.

17 Reference 4, p. 56 or reference 5, p. 118. The log term must be added because
the region outside the infinite cylinder (the point at infinity excluded) is doubly
connected and therefore. we must include the possibility of cyclic motion.
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The different types of flow that result according
as the parameter I % 167?R?*V? are represented in

Figure 13. In the first case (fig. 13 (a)), which will not
interest us later, the stagnation point occurs as a
double point in the fluid on the % axis, and all fluid
within this streamline circulates in closed orbits around
the circle, while the rest of the fluid passes downstream.
In the second case (fig. 13 (b)), the stagnation points
are together at S on the circle Re*® and in the third
case (fig. 13 (c)) they are symmetrically located on the
circle. We have noted then that as I' increases from
0 to 4RV the stagnation points move downward on

the circle Re®® from the &
axis toward the 5 axis.
Upon further increase in
I" they leave the circle and
are located on the » axisin
the fluid.

Conversely, it is clear
that the position of the
stagnation points can de-
termine the circulation I
This fact will be shown to
be significant for wing-
section theory. At pres-
(v) ent, we note that when
both T'and V0 a marked
dissymmetry exists in the
streamlines with respect to
the circle. They are sym-
metrical about the 4 axis
but are not symmetrical
about the # axis. Since
they are closer together on
the upper side of the circle
than on the lower side, a

FIGURE 13.—Streamlines about cirecle
[from Lagally--Handbuch der Physik

Bd. VII] =V sinh  sin p—Lou=con-

stant (a) 1> 16x2R? V2 (b) I'=16x1RIV?
(¢) 1< 16x3R2V2

resultant force exists per-
pendicular to the motion.

We shall now combine
the transformation (27)

and the flow formula for
the circle equation (29) and obtain the general complex
flow potential giving the 2-dimensional irrotational flow
about an airfoil shape, and indeed, about any closed
curve for which the Riemann theorem applies.

The flow around the airfoil—In Figure 14 are
given, in a convenient way, the different complex
planes and transformations used thus far. The com-
plex flow potential in the z plane for a circle of radius
R origin at the center has been given as

w(z)=— V(z + %—z)—%log z

where V, the velocity at infinity, is in the direction of
the negative § axis. Let us introduce a parameter to

29)
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permit of a change in the direction of flow at infinity
by the angle « which will be designated angle of attack
and defined by the direction of flow at infinity with
respect to a fixed axis on the body, in this case the
axis ¢=0. This flow is obtained simply by writing
ze*= for z in equation (29) and represents a rotation of

¥ ¢ Plare
/A//_
-2a_—" ol ] 2a
T o
’ ((I 0/,'\
¢ ec,«,.
o,>o;t
o - .
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F16URE 14~The collected transformati
the entire flow field about the circle by angle a. We
have 2 )
P eyl o _da __"'_I‘
w(2) V(ze +-e ) 2ﬂ_log z (31)
dw .
\ ‘CE==’U. w
R? 4T
- ia —— =2 Y _
Ve (1 ¢ ) e (32)

Since a conformal transformation maps streamlines
and potential lines into streamlines and potential lines,
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we may obtain the complex flow potentials in the
various planes by substitutions. For the flow about
the circle in the z; plane, z is replaced by z;—¢

R?e ia
w(z) =— V[(Zl o)e’ +t =) 2,rlog(zx a) (31)
dw _ i Rg%= ir ’
azl - Ve [ (Zl;cl)~?]_2f(zl‘61) (327)

For the flow about the B-curve in the .z’ plane, z is
replaced by z(z’) (the inverse of eq. (102)) and for the
flow about the airfoil in the ¢ plane z is replaced by
z(¢) from equation (27)

W) =~ V@)oot ool ~3E log 2)  (39)
dw R2gtia 33
TV L) weE O

The flow fields at infinity for all these transformations
have been made to coincide in imagnitude and direction.
At this point attention is directed to two important
facts. First, in the previous analysis the original
closed curve may differ from an airfoil shape. The
formulas, when convergent, are applicable to any
closed curve satisfying the general requirements of
the Riemann theorem. However, the peculiar ease of
numerical evaluations for streamline shapes is note-
worthy and significant. The second important fact is
* that the parameter I' which as yet is completely unde-
termined is readily determined for airfoils and to a
discussion of this statement the next section is devoted.
It will be seen that airfoils may be regarded as fixing
their own circulation.

Kutta-Joukowsky method for fixing the circula-
tion.—All contours used in practice as airfoil profiles
possess the common property of terminating in either
a cusp or sharp corner at the trailing edge (& point of
two tangents). Upon transforming the circle into an

airfoil by ¢=£(2), we shall find that‘[g—?‘ is infinite at

the trailing edge if the tail is perfectly sharp (or very
large if the tail is almost sharp). This implies that

the numerical value of the velocity\%'—:l lg—?‘ﬂv[ is

infinite (or extremely large) provided the factor l%’

is not zero at the tail. There is but one value of the
circulation that avoids infinite velocities or gradients
of pressure at the tail and this fact gives a practical
basis for fixing the circulation.

The concept of the ideal fluid in irrotational poten-
tial low implies no dissipation of energy, however large
the velocity at any point. The circulation being a
measure of the energy in a fluid is unaltered and inde-
pendent of time. In particular, if the circulation is
zero to begin with, it can never be different from zero.

However; since all real fluids have viscosity, a better
physical concept of the ideal fluid is to endow the
fluid with infinitesimal viscosity so that there is then
no dissipation of energy for finite velocities and pres-
sure gradients, but for infinite velocities, energy losses
would result. Moreover, by Bernoulli’s principle the
pressure would become infinitely negative, whereas a
real fluid can not sustain absolute negative pressures
and the assumption of mcompresmbﬂlty becomes in-
valid long before this condition is reached. It should
then be postulated that nowhere in the ideal fluid from
the physical concept should the velocity become

infinite. It is clear that the factor }%L:i must then be

zero at the trailing edge in order to avoid infinite
velocities. It is then precisely the sharpness of the
trailing edge which furnishes us the following basis for
fixing the circulation.

It will be recalled that the equatlong = 0 deter-

mines two stagnation points symmetrically located on
the circle, the position of which varies with the value
of the circulation and conversely the position of a
stagnation point détermines the circulation. In this
paper the z axis of the airfoil has been chosen so that
the negative end (f=w) passes through the trailing
edge. From the calculation of e=¢—8 (by eq. (13))
the value of ¢ corresponding to any value of 8 is deter-
mined as ¢ =0+ ¢, in particular at =7, o=+ 8, where
8 is the value of ¢ at the tail and for a given airfoil is a
geometric constant (although numerically it varies
with the choice of axes). This angle 8 is of consid-
erable significance and for good reasons is called the
angle of zero lift. The substance of the foregoing
discussion indicates that the point z=Re’=+# = — B¢
is a stagnation point on the circle. Then for this value
of z, we have by equation (32)

dw_ Ve ,a<l R%‘“"‘ _ar _
dz "~ T 2rz
or I'= —27R VigHath (1 — ¢ 2ath)

Hatp) — p—ilatB)
e €
T

=4xRV sin (a+ B8) (35)

This value of the circulation is then sufficient to

| make the trailing edge a stagnation point for any value

of . The airfoil may be considered to equip itself
with that amount of circulation which enables the
fluid to flow past the airfoil with a minimum energy
loss, just as electricity flowing in a flat plate will dis-
tribute itself so that the heat loss is a minimum. The
final justification for the Kutta assumption is not only
its plausibility, but also the comparatively good agree-
ment with experimental results. Figure 15 (b) shows
the streamlines around an airfoil for a flow satisfying
the Kutta condition, and Figures 15 (a) and 15 (¢) illus-
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trate cases for which the circulation is respectively too
small and too large, the stagnation point being then on
the upper and lower surfaces, re-

—————+ _ spectively. For these latter cases,
—— %, = (@ the complete flow is determinable
T only if, together with the angle of
——————  attack, the circulation or a stag-
&' (b) nation point is specified.
e

Velocity at the surface.—The

- flow formulas for the entire field
are now uniquely determined by
substituting the value of T'in equa-
tions (33) and (34).
ever, in a position to obtain much
simpler and more convenient re-
lations for the boundary curves

FiGURE 15.—(a) Flow with
circulation smaller than for
Kutta condition; (b) flow
satisfying Kutta condition;
(c) flow with circulation
greater than for Kutta
condition

interested in the velocity at the
surface of the airfoil, which velocity is tangential to
the surface, since the airfoil contour is a streamline of
flow. The numerical value of the velocity at the
surface of the airfoil is
dz

dz

v= Vol +v}r=lv,—in|= l—-—,—i—

We shall evaluate each of these factors in turn. From
e-quations (32 and (35)

.___ = — V 1a(1 — —2ia>

At the boundary surface 2= Re', and

g’l_zl)= - Veia(l a e—2i(a+\’0=) — 21 Vet sin(a+ B)

4rRV sin(a+ )
T 2xz

or
g—g = — Ve~te[(elatv) — g~ Hate)) + 27 sin (a + B)]
= —24Ve *[sin(a+ ¢) +sin{a+ )]
and
dw . ) .
5] =2 Vlsin(a+ ) + sin(a+ B (36)
In general, for arbitrary T we find that
,d =2V sin (a+ o) -I- (36"

To evaluate L%S;‘ we start with relation (10)

~ 48

n
2=z’ ¥
At the boundary surface

2" =ze¥" ¥t where e=p— 6 and z=qevotie

%,(1 + zd————(“’d; '5‘))

We are, how- -

themselves. Indeed, we are chiefly '

o ge d) (
9 i} 9
Tz
Then ,g%, =¥ %-\/f_(_-_gjgy (37
1+3;

By equation (5)
2
= z’+g-, and at the boundary 2’ =ae¥*%, or

¢t =2a cosh(y+16)

d¢

= =2a smh(ui/+w)w

=2 ginh (y +16)e—¥+%),

Then l&dz_’ 2=4e‘2'ﬁ (sinh?y cos® + cosh?y sin?4)
=4e~% (sinh?®y + sin?)
d |55 =zev emEr TSI (39)
Then finally
-
Visin(a-+ ) +sm(ac+ 8] (1 + )e%
(39)

\/ (sinh?y + sm26)<1 + (3 ) >

In this formula the circulation is given by equation
(835). In general, for an arbitrary value of I' (see
equation (36’)), the equation retains its form and is
given by

v=— (40)
—J (sinA®y + smzﬂ)(l + ( ) )
For the special case T'=0, we get
Vsm(a—!—ga)(l—!— )e“o
de 1)

\/ (sinh®y + szo)(l + (‘cil‘g >

Equation (40) is a general result giving the velocity
at any point of the surface of an arbitrary airfoil sec-
tion, with arbitrary circulation for any angle of attack
a. Equatlon (39) represents the important special
case in which the circulation is specified by the Kutta
condition. The various symbols are functions only of
the coordinates (z, y) of the airfoil boundary and ex-
pressions for them have already been given. In Tables
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I and II are given numerical results for different air-
foils, and explanation is there made of the methods of
calculation and use of the formulas developed.

We have immediately by equation (3) the value of
the pressure p at any point of the surface in terms of
the pressure at infinity as

P_q_(2Y
ql(V>

Some theoretical pressure distribution curves are given
at the end of this report and comparison is there made
with experimental results. These comparisons, it will
be seen, within a large range of angles of attack, are
strikingly good.®®

GENERAL WING-SECTION CHARACTERISTICS

The remainder of this report will be devoted to a
. discussion of the parameters of the airfoil shape affect-
ing aerodynamic properties with a view to determining
airfoil shapes satisfying preassigned properties. This
discussion will not only furnish an illuminating sequel

%’/’Cﬂo”

r€Gow ; ~
o § flo 88 dy
-1 dax

L

FIGURE 16.

to the foregoing analysis leading to a number of new
results, but will also unify mueh of the existing theory
of the airfoil. In the next section we shall obtain
some expressiens for the integrated characteristics of
the airfoil. We start with the expressions for total
lift and total moment, first developed by Blasius.

Blasius’ formulas.—Let C in Figure 16 represent a
closed streamline contour in an irrotational fluid field.
Blasius’ formulas give expressions for the total force
and moment experienced by C in terms of the complex
velocity potential. They may be obtained in the fol-
lowing simple manner. We have for the total forces
in the z and ¥ directions

=~ fpzd8~ —fpdy
P,= fp,,ds= _/‘pdx
(e} ¢
P,—iP,=~— _é'p(dy+'id:c)

13 A paper devoted to more extensive applications to present-day airfoils is in
pProgress.

The pressure at any point is

P=Do—}pv’

Then,
P,—-iP,,=%,£vz(dy+idx)

dwdw
=2 { dz dz

where the bar denotes conjugate complex quantities.
Since O is a streamline, v.dy—v,dz=0. Adding the
quantity ;

'ip,é' (vy+1v,) (0. dy —v,dx) =0

to the last equation, we get '°,

Pz—iP,,='£2‘—’{(v,——iv,,)2(dx+idy)

f( e de 42)
The differential of the moment of the resultant
force about the origin is,
dMy=p(z dz+y dy)
=R. P. of plz dz+y dy +i(ydz—zdy)]
=R. P.of pzdz
where “R. P. of”” denotes the real part of the complex
quantity. We have from the previous results

. o ip/dw\
d(P,—iP)=—1ip dz='£29(~£> dz
2
Then  dM,=—R. P. of-g(%%)zdz

d 2
and  My=-R. P. of 2S(§2)zdz 43)
Let us now for completeness apply these formulas to
the airfoil A in the ¢ plane (fig. 14) to derive the Kutta-
Joukowsky classical formula for the lift force. By
equation (32) we have

dw . i R*Ve—1ta
dz- Ve! 21rz+ 2*
and by equation (25)
¢ _,_ ou_a
dz ~ 22 2
Then
dow_dw ds
dr dz d¢

— e ie irl g - . ia _1_ .
= —Ve —-2Trz+(R2Ve o, Ve )22+ .

19 Cf. Blasius, H: Zs. {. Math. u. Phys. Bd. 58 S. 93 and Bd. 59 8. 43, 1910.

Similarly, -

1w
Putipm—2s (:,,

a less convenient relation to use than (42).
Note that when the region about C is regular the value of the integral (42) remains
unchanged by integrating about any other curve enclosing C.
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( ) Ao+ A2+

where
Ay= Vigtia
Ay=iVetal
ki
2
2= — 2RV 420, Viea— L
47
Then

P,—iP,= “’f( )dg'

()

= erid)

= —qele pVT

Therefore
P.,=pVTIsin «
=pVT cos &

and are the components of a force pVT which is per-- i

pendicular to the direction of the stream at infinity.
Thus the resultant lift force experienced by the airfoil is

L=pVT (44)

and writing for the circulation T' the value given by
equation (35)
L=4xRpV? sin (a+8) (45)

The moment of the resultant lift force about the
origin ¢ =0 is obtained as

2 .

M,=R. P. of—é’{(g";" ¢dg

~R. P. of—ff(d—w e 4y
-R. P. of——./'(Ao-'-—-+A2+

(cl+z+—+~§+ . )(1—-

=R. P.of— 2m, (coefficient of z71)

)x
)de

=R. P. 0f“§27fi (AQ"'A;C])

or, M, is the imaginary part of =p(Ad,+ Aic;). After

putting ® ¢, = me® and a, = b%*r we get
My=2mpV?%?sin 2(a+v) + pVT m cos (a+8) (46)

The results given by equations (44) and (46) have
physical significance and are invariant to a transforma-

» Jt-may be recalled that c.-— ./‘ Y(p)eirdy and a|=a’+— +c2. (See eq. (25%).)

tion of origin as may be readily verified by employing
equations (26) and (32) and integrating around the C,
circle in the z; plane. It is indeed a remarkable fact
that the total integrated characteristies, lift and loca-
tion of 1ift, of the airfoil depend on so few parameters
of the transformation as to be almost independent of -
the shape of the contour. The parameters B, 8, ai,
and ¢; involved in these relations will be discussed in a
later paragraph.

We shall obtain an interesting result by taking

| moments about the point {=c; instead of the origin.

(M in fig. 17.) By equation (25) we have,

a1+a2+

—e=2z+
§ st

and by equation (43)

My=R. P. of - ”f[d(r c):r(r edg

-R.P. of——./'(Ao+ 4 ) x
) a
(z+%‘+:—§+ .. X —S+. .)dz
=R. P. of —impA,
or
My =2xb%V? sin 2(a+ ) @7)
=
M
= g ;}&#QP ax Axis
~2a (c+0) —5a ,ﬁz
N
o,cf/o

FIGURE 17.—Moment arm from M onto the lift vector

This result could have been obtained "directly from
equation (46) by noticing that pVT in the second term
is the resultant lift force L and that Lm cos (a+8)
represents a moment which vanishes at M for all values
of a. (In fig. 17 the complex coordinate of M is
t=me®, the arm OH is m cos (a+38).) The perpendic-
ular hy from M onto the resultant lift vector is simply
obtained from My, = Lh,,,
as
b% sin 2(a-+v)

b= sm (@t )

(48)
The intersection of the resultant lift vector with the
chord or axis of the airfoil locates a point which may ~
be considered the center of pressure. The amount of
travel of the center of pressure with change in angle
of attack is an important characteristic of airfoils,
especially for considerations of stability, and will be
discussed in a later paragraph.

2 Pirst obtained by R. von Mises. (Reference 6.) The work of von Mises forms
an elegant geometrical study of the airfoil.
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The lift force has been found to be proportional to
sin (a+ f) or writing a+B=a )

L _=41rpRV"" sin oy (49)

where a; may be termed the absolute angle of attack.
Similarly writing a+vy=a, .

MM = 21rb’pV2 Sin 2“3 (50)

With von Mises (veference 6, Pt. II) we shall denote
the axes determined by passing lines through M at
angles 8 and v to the z axis as the first and second axes
of the airfoil, respectively. (Fig. 18.) The directions
of these axes alone are important and these are fixed
with respect to & given airfoil. Then the lift L is
proportional to the sine of the angle of attack with

21

If this moment is to be independent of «, the coeffi-
cients of sin 2« and cos 2o must vanish.

Then
b%cos 2y=Rrcos (B+0)
and
b2 sin 2y=Rr sin(B8+¢)
Hence,

¥ and o=2
s Ean =Ly B
Then if we move the reference point of the moment to
2
a point F whose radius vector from M is %e"”f'ﬁ, the

moment existing at F is for all angles of attack con-
stant, and given by

respect to the first axis and the moment about M to Me=2xpb?V? sin 2(y— B) (61)
)

m 4

$o £ 87 q v Direction

:’ ——————— - l )It Y, ¥ ﬂ’ [=) *'

b = 5., L thra M

& F A2y g-r
- x
B o o

L

FieUurk 18.—Illustrating the geometrical properties of an airfoil (axes and lift parabola of the R. A. F. 19 airfoil)

the sine of twice the angle of attack with respect to
the second axis.

From equation (47) we note that the moment at any
point § whose radius vector from M is re*, is given by

Me=27pb?V?sin 2(a+v) — Lr cos (a+ o)

Let us determi.. whether there exist particular
values of r and ¢ for which Mj is independent of the
angle of attack «. Writing for L its value given by
equation (45),

My=27pb*V?sin 2(a +v)—47pRrV? sin (¢ + B) cos (a+0)
And separating this trigonometrically
Mo=2mpV¥(b® cos 2y— Br cos (B+ ¢)) sin 2a
+ (b? sin 2y—Rr sin (8+0)) cos 2a
~Rrsin (8—o0)]

It has thus been shown that with every airfoil pro-
file there is associated a point F for which the moment
is independent of the angle of attack. A change in
lift force resulting from a change in angle of attack
distributes itself so that its moment about F is zero.

From equation (47) it may be noted that at zero lift
(i. e., = — B) the airfoil is subject to a moment couple
which is, in fact, equal to M. This moment is often
termed ““diving moment” or ““moment for zero lift.”
If Mp is zero, the resultant lift force must pass through
F for all angles of attack and we thus have the state-
ment that the airfoil has a constant center of pressure,
if and only if, the moment for zero lift is zero.

The point F, denoted by von Mises as the focus of
the airfoil, will be seen to have other interesting prop-
erties. We note here that its construction is very
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2
simple. Itlesata distance% from M on a line making

angle 2y~ g8 with respect to the z axis. From Figure
18 we see that the angle between this line and the first
axis is. bisected by the second axis.

The arm hr from F onto the resultant lift vector L
(hr is designated FT in Figure 18; note also that FT5
being perpendicular to L, must be parallel to the direc-
tion of flow; the line TV is drawn parallel to the first
axis and therefore angle VI'F=a+ g) is obtained as

he= My_—bsin2(8—7)

"L~ 2R sin(a+B)
2
h= 2 sin 2(5—7)
h

he= “sin(a+ B) (52)
But Ay is parallel to the direction of «, and the relation
h= —hg sin (a+ B) states then that the projection of
hr onto the line through F perpendicular to the first
axis is equal to the constant A (h is designated FV in
the figure) for al] angles of attack. In other words,
the pedal points T determined by the intersection of
hr and L for all positions of the lift vector L lie on a
straight line. (The line is determined by 7 and V in
fig. 18.) The parabola is the only curve having the
property that pedal points of the perpendiculars
dropped from its focus onto any tangent lie on a
straight line, that line being the tangent at the vertex.
This may be shown analytically by noting that the
equation of L for a coordinate system having F as
origin and FV as negative z axis is

or setting

h
~sin(a+B)
By differentiating with respect to o, =a+ 8 and elim-
inating a; we get the equation of the curve which the
lines L envelop as y*=4h(x+4). From triangle FVS
in Figure 18, it may be seen that the distance
2

MF=% is bisected at S by the line T'V; for, since

T sin o+ cos ay=hp=

2

FV=h=_2p sin2(y~ ) and angle FSV=2(8—v), then

o
SF= 5h
vectors envelop, in general, a parabola whose focus is
at F and whose directrix is the first axis. The second
axis and its perpendicular at M, it may be noted, are

also tangents to the parabola being, by definition, the

It has thus been shown that the resultant lift

resultant lift vectors for a= —v and a=7—;—'y, respec-

tively.

If the constant A reduces to zero, the lift vectors
reduce to a pencil of lines through F. Thus a constant
center of pressure is given by A=0 or sin 2(8—v) =0
which is equivalent to stating that the first and second
axes coincide. The lift parabola opens downward
when the first axis is above the second axis (8>v); it
reduces to a pencil of lines when the two axes are

coincident (8=+) and opens upward when the second
axis is above the first (8<vy). .

W. Miiller # introduced & third axis which has some
interesting properties. Defining the complex coordi-
nate {, as the centroid of the circulation by

o= £ (G

and using equations (25) and (32) one obtains

fo—e1 =%+ %Yo
where
SN S R si +éz— in (a+2v)]
z"_'2sin(a+ﬁ)[ sin a+psin (a+2y
) " (53)

y°=m[R €Os o~ 73 €08 (a+29)]
The equation of the lift vector lines referred to the
origin at M and z axis drawn through M is

b? sin (a+7)
2R sin (a+ B)

and it may be seen that the point (ry, ) satisfies this
equation. The centroid of the circulation then lies on
the lift vectors. By elimination of a from equation
(53) one finds as the locus of (x;, %)

x cos a—y sin a= (54)

2z[R cos B-—%;-cos (B—27)]+ 2y R sin B
(55)
b . 9o\ =R — bt
+psin (B—27)]=R’~p

which is the equation of a line, the third axis, and
proves to be a tangent to the lift parabola.- Geomet-
rically, it is the perpendicular bisector of the line FF’
joining the focus to the point of intersection of the
first axis with the circle. (Fig. 18.)

The conformal centroid of the contour.—It has
already been seen that the point M has special inter-
esting properties. The transformation from the air-
foil to the circle having A as center was expressed in
the normal form and permitted of a very small ()
curve. (See p. 14.) It was also shown that the
moment with respect to A is simply proportional to
the sine of twice the angle of attack with respect to
the second axis. We may note, too, that in the pres-
entation of this report the coordinate of M, {=c¢

27
== J yetedy, is a function only of the first harmonic
0

of the ¢(p) curve.

We shall now obtain a significant property of M
invariant with respect to tbe transformation from air-
foil to circle. We start with the evaluation of the
integral -

dz
S —d—(st

22 Reference 7, p. 169. Also Zs. fiir Ang. Math. u. Mech. Bd. 3 8, 117, 1923.

Adirfoils having the same first, second, and third axes are alike theoretically in
total lift properties and also in travel of the center of pressure, i. e., they have the
same lift parabola,
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where A is the airfoil contoﬁr, ds the differential of
arc along A, a,ndl%?_‘ , as will be recalled, is the magni-

fication factor of the transformation {=j(z) mapping
.girfoil into cirele; i. e., each element ds of 4 when

magnified by |‘%—§i gives dS the differential of arc in the

plane of the circle, i. e., |dz].

it

Then we have,

ds=/t(2) |dz] and by equation (25),

=f cl,+z+%+%+ . .)[dzl

27 a
, = S (a+Reet Boret Botiet . .)Rd<p
=2x R 0 »
Then

e[
d
A (50)

£ |G

The point M of the airfoil is thus the conformal-cen-

troid obtained by giving each element of the contour

a weight equal to the magnification of that element, -

which results when the airfoil is transformed into a
circle, the region at infinity being unaltered. It lies
within any convex region enclosing the airfoil contour.”

ARBITRARY AIRFOILS AND THEIR RELATION TO
SPECIAL TYPES

The total lift and moment experienced by the air-
foil have been seen to depend on but a few parameters
of the airfoil shape. The resultant lift force is com-
pletely determined for a particular angle of attack by
only the radius B and the angle of zero lift 8. The
moment about the origin depends, in addition, on the
complex constants ¢; and @, or, what is the same, on
the position of the conformal centroid M and the focus
F. 'The constants ¢, and a, were also shown (see foot-
note 20) to depend only on the first and second har-
monics of the ¢(¢) curve. Before studying these
parameters for the case of the arbitrary airfoil, it will
be instructive to begin with special airfoils and treat
these from the point of view of the ““conformal angular
distortion”’ [e(¢)] curve.

Flow about the straight line or flat plate.—As a

first approximation to the theory of actual airfoils, |

there is the one which considers the airfoil section to
be a straight line. It has been seen that the line of
length 4a is obtained by transforming a circle of radius

. 2
@, center at the origin, by §‘=z+% + The region ex-

3 Cf. P. Frank and K. Lowner, Math. Zs. Bd. 3, 8. 78, 1919, Also reference 5,
p. 146,

ternal to the line 4a in the { plane maps uniquely into
the region external to the circle [z]=a. A point @ of
the line corresponding to a point P at ae® is obtained
by simply adding the vectors a(e”+¢~*) or completing
the parallelogram OP@P’.

For ¢ =0, we have from equation (6).
z=2a cosh ¢ cos 8=2a cos ¢
y=2¢ sinh ¢ sin §=0

Then the parameters for this case are B= =a, 8=0,
a=a® @. e., b=a, y=0), and M is at the origin O.
Taking the Kutta assumption for determining the
circulation we have,
the circulation, I'=4wxaV sin o
the lift, L=4xapV?sin a
‘moment about M, My =2ra*V?sin 2a

2
=c +é- e =g
'"R

(67)
position of F is at zr

Since =7, we know that the travel of the center of
pressure vanishes and that the center of pressure is at

E" ~2a_| 2

FIGURE 19.

For at one-foﬁrth the length of the line from the lead-
ing edge. The complex flow potential for this case is

w() = — VIz{§)e+ 7= "“]'*' 10g z(f) (58)

(i’)
where z({)= §i\/ (%) +a? is the inverse of equation

(5). Since ¢¥(¢)=e(p)=0 for this case, equation (39)
giving the velocity at the surface reduces to

p=V Sm_('g i a)

sin

for T'=4raV sin o,
2
. sin (<p+ a)
and by equation (41) y=V{——=——) for I'=0.

Flow about the elliptic cylinder.—If equation (5)
is applied to a circle with center at the origin and
radine ge?, the ellipse (fig. 19)

2 ¥
. {2a coshy)?" (2a sinhy)®

is obtained in the { plane and the region external to
this ellipse is mapped uniquely into the region external
to the circle. - The same transformation also trans-
forms this external region into the region internal to
the inverse circle, radius ee~¥. We note that a point
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Q of the ellipse corresponding to P at ae¥*¥ is
obtained by simply completing the parallelogram
OPQP’ (fig. 19) where P’ now terminates on the circle
ae~¥. The parameters are obtained as R=ae¥, §=0,
a,=a3, M is at the origin O. Then, assuming the rear
stagnation point at the end of the major axis,

I'=4raeV sin a
L=4xpae*V*sin o
My =27a*V? sin 2a

Since 8=1, the point F is the center of pressure for all
angles of attack and is located at zz=ae~¥ from O or a
distance ae¥ from the leading edge. The quantity

EF__ aet  cosh y+sinh ¢ 1
EE" " 2a(e?+e %)  4coshy 4 (1+tanhy)

represents the ratio of the distance of F from the
leading edge to the msjor diameter of the ellipse.

The complex flow potential is identical with that
given by equation (58) for the flat plate, except that
the quantity a? in the numerator of the second term is
replaced by the constant a%?**. Since ¥(p) = constant,
e(¢) =0 and equation (39) giving the velocity at each
point of the surface for a stagnation point at end of
major axis becomes

o= V[sin (¢+ @) +sin ale?

/sinh %y +sin’p (59)
and for zero circulation by equation (41)
_ sin(e+ a)e? ,
*=V Ik iy tems (607

Circular arc sections.—It has been shown that
2
the transformation §=z+% applied to a circle with

center at z=0 and radius a gives a straight line in the
¢ plane, and when applied to a circle with center z=0
and radius different from @ gives an ellipse in the ¢
plane. We now show that if it is used to transform a
circle with center at 2=1s (8 being a real number) and
radius 4/a®+ &%, a circular arc results. The coordinates
of the transform of the circle C in the { plane are given
by equation (6) as

z=2a cosh ¢ cos 8

y=2g cosh ¢ sin 6

A relation between ¢ and 6 can be readily obtained.
In right triangle OMD (fig. 20), OM =s, angle OMD =06,
and recalling that the product of segments of any
chord through O is equal to a?, OD=¥% (OP—O0OP;)=

(et —e¥)
3
the equation for y, ¥y =2s sin®.
¢ in equation (6) we get

#+(r+(59)) (59

Eliminating both 6 and

(60)

=g sinh ¢. Then ssin §=g¢ sinh ¥, and from
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the equation of a circle; but since y can have only
positive values, we are limited to a circular arc. In
fact, as the point P in Figure 20 moves from 4’ to 4
on the circle, the point @ traverses the arc 4,” A4; and
as P completes the circuit A4’ the arc is traversed in
the opposite direction. As in the previous cases, we
note that the point @ corresponding to either P or to
the inverse and reflected point P’ is obtained by com-
pleting the parallelogram OPQP’. We may also note -

y B Curve ae¥+¥*

I
< 57 S y/4
Eatp; F Q
- - x
7 ‘ ’
A, a Y a | a /A/ a A,
e of .
. /o
P P>
/
;
;
'
,
,
/
;
/
’
/
'
/
’
/
1
J
/
/
I’
!
/
’
;
1
s
M’

F1aURE 20.—The circular arc airfoil

that had the arc A4, been preassigned with the
requirement of transforming it into the eircle, the most
convenient choice of origin of coordinates would be
the midpoint of the line, length 4a, joining the end
points. The curve B then resulting from using trans-
formation (5) would be a civcle in the 2’ plane, center
at 2’ =1s, and the theory developed in the report could
be directly applied to this continuous closed B curve.

‘F16URE 21.—Discontinuous B curve

Had another axis and origin been chosen, e. g., as in
Figure 21, the B curve resulting would have finite
discontinuities at A and A’, although the arc 4,4, is
still obtained by completing the parallelogram OPQP’.

The parameters of the arc 4,4,’ of chord length 4a,
‘and maximum height 2s are then, R=+a®+4,

“ﬂ-‘—-tan“%- The focus F may be constructed by-

erecting a perpendicular to the chord at A’ of length s
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and projecting its extremity on MA’.
of the arc also lies on this line.
The infinite sheet having the circular arc as cross

The center M’

section contains as a special case the flat plate, and

thus permits of a better approximation to the mean
camber line of actual airfoils. The complex flow poten-
tial and the formulas for the velocity at the surface
for the circular arc are of the same form as those
given in the next section for the Joukowsky airfoil,
where also a simple geometric interpretation of the
parameters ¢ and ¢ are given.

Joukowsky airfoils.—If equation (5) is applied to
a circle with center at z2=s, s being a real number, and
with radius R=a+s, a symmetrical Joukowsky air-
foil (or strut form) is obtained. The general Joukow-

sky airfoil is obtained when. the transformation’

2 -
§‘=z+9— is applied to a circle U passing through the

point z=—a apd containing z=a (near the circum-

ference-usually), and whose center M is not limited to .

either the z or y axes, but may be on a line OM inclined
to the axes. (Fig. 22.) The parametric equations of
the shape are as before

2=2¢ cosh ¢ cos § ©

y=2a sinh ¢ sin §
Geometrically a point @ of the airfoil is obtained by
adding the vectors ae*** and ae~¥~* or by completing
the parallelogram OPQP’ as before, but now P’ lies on
another circle B’ defined as z=ae¥~%, the inverse
and reflected circle of B with respect to the circle of
radius ¢ at the origin (obtained by the transformation
of reciprocal radii and subsequent reflection in the 2
axis). Thus OP-OP’=ga? for all positions of P, and
OF’ is readily constructed. The center M, of the
circle B’ may be located on the line AM by drawing
OM, symmetrically to OM with respect to the y axis.
Let the coordinate of M be z=1is+de®, where d, s,
and g are real quantities. The circle of radius a, with
center M, at z=1s, is transformed into a circular arc
through A.4,’ which may be considered the mean
camber lLine of the airfoil. At the tail the Joukowsky
airfoil has a cusp and the upper and lower surfaces
include a zero angle. The lift parameters are

BR=+d+8+d, ﬁ=ta.n‘1§,, a,=a?=be" or b=a and

¥=0. Since y=0, the second axis has the direction of
the z axis. The focus F is determined by laying off

the segment MF=% R on the line MA4’, This quantity;

it may be noted, is obtained easily by the following

construction. In triangle MDC’, MD=R, MC’ and

MQC are made equal to a, then CF drawn parallel to
2

D(C’ determines M. =%- The lift parabola may be

now determined uniquely since its directrix AM and
focus F are known. .

It may be observed that if it is desired to transform
a preassigned Joukowsky profile into a circle, there
exists a choice of axis and origin for the airfoil such
that the inverse of transformation (5) will map the
airfoil directly into a circle. This axis is very approx-
imately given by designating the tail as (—2a, 0) and
the point midway between the leading edge and the
center of curvature of the leading edge as (+2a, 0) the
origin then bisecting the line joining these points.

F1aUuRE 22.~The Joukowsky airfoil

The complex potential flow function for the Jou-
kowsky airfoil is

'w’(f)—~V[y(§)e‘“+ B |+ ilogs )

where
=5 e
g(@®) —2¢\/(%> +a*—m

By equation (39) we have for the velocity at the
surface

(61)

V[sin(a+¢)+sin(a+ﬁ)](1+g——§ oo

\/'(sinh 2y +sin2o)(1 +(%‘§ >’>

This formula was obtained by transforming the flow

‘around C'into that around B and then into that around

A. Since we know that B is itself a circle for this
case, we can simply use the latter two transformations
alone.
We get
_VIsin (a+¢) +sin (a+B)] e
+/sinh 2+ sin?

(62)

That these formulas are equivalent is immediately
evident since the quantity

g%‘ﬁ(l.{.g"_é -

\/”(do)

is unity being the ratio of the magnification of each
arc element of O to that of B. (See eq. (37).)
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A very simple geometrical picture of the parameters
¢ and ¢, exists for the cases discussed. In Figure
23 the value of ¢ or ¢—0 at the point P is simply

FicURE 23.—Geometrical representation of ¢ and ¢
for Joukowsky airfoils

angle OPM, i. .e., the angle subtended at P by the
origin O and the center M. The angle of zero lift is
the value of ¢ for =m; i e, exan=p=0TM. In
particular, we may note that e=0 at S and S; which
. are on the straight line OM. Consider the triangle

OMP, where OP=ae¢¥, MP=R=ue’, %2"’ angle
OPM=¢; also, MOX=§, MOP=0-5, OMP=x—

(¢—8). Then by the law of cosines, we have
=¥ =1 +2p cos(p—38) + p?
or '
- 1
¥—¥o=5 log (1-+2p cos(p—3) +¢?) (63).
= > (. 1yn-1 COS n{e—38) ,
2 (=)t —— ¢
and by the law of sines
S p sin(p—3)
S €= ¥ 2pcos(p—3) + p)
or
1oy psin(e—3)
«(0) = b st —)
-3 (— 1)n—lin__”(_“’:§pn (64)
1 n

We see that, as required, the expressions for the ‘“radial
distortion” ¥(yp) and the “angular distortion” e(o)
are conjugate Fourier series and may be expressed as
a single complex quanrtity

(¥ vo) —ie=2 I rgmicemn

= —log [1+ pe~¢]

It is evident also that the coefficient for n=1 or the
‘“first harmonic term’’ is simply pe®® and a translation

by this quantity brings the circle C into coincidence’

with B as was pointed out on page 13.
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The constant y,= él; S ¥de is readily shown to be
0 N

invariant to the choice of origin O, as long as O is
within B. We have

1279

./' Yde=5- S 5 log (1+2p cos (p—28) +pP)ethde
0

2 —-
=5 ”(wv( ores Mo 28 a)p")dwwo

FIGURE 24.—The Joukowsky airfoil p=0.10, §=45°

Figure 24 shows the Joukowsky airfoil defined by
p=0.10 and §=45° and Figure 25 shows the ¢(b),
¥(g), @), and e(p) curves for this airfoil.

&r T
€(6)- £(yp)
A o \%
oA \.\
_ 7 - |
-/ P =]
e ==
0 P(6)-1 741 ¥ () -
S Py
-1
o Fd n T 3rm 2n
z 2

FIGURE 25.—The &(6) and ¥(8) curves for the airfoil in Figure 24

Arbitrary sections.~-In order to obtain the lift
parameters of an arbitrary airfoil, a convenient choice
of coordinate axes is first made as indicated for the
Joukowsky airfoil and as stated previously. (Page 7.)
The curve resulting from the use of transformation (5)
will yield an arbitrary curve ae***# which will, in
general, differ very little from a circle. The inverse
and reflected curve ae~¥~* will also be almost circular.
The transition from the curve ae*** to a circle is
reached by obta.mmg the solution e(¢) of equation
(13). The method" of obtaining this solution as
already given converges with extreme rapidity for
nearly circular curves.
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The geometrical picture is analogous to that given
for the special cases. In Figure 26 it may be seen that
a point @ on the airfoil (N. A. C. A. ~M6) corre-

:;,;é‘

FIGURE 26.~The N. A. C. A. —MB8 airfoil

sponding to P on the B curve (or P’ on the B’ curve)
" is obtained by constructing parallelogram OPQP’.
The ¢(0) and e(8) curves are shown in Figure 27 for
this airfoil. The complex velocity potential and the
expression for velocity at the surface are given respec-

o7

The method used for arbitrary airfoils is readily
applied to arbitrary thin arcs or to broken lines such
as the sections of tail surfaces form approximately. In

| Figure 26 the part of the airfoil boundary above the z

axis transforms by equation (5) into ‘the two discon-
tinuous arcs shown by full lines, while the lower
boundary transforms into the arcs shown by dashed
lines. If the upper boundary surface is alone given
(thin airfoil) we may obtain a closed curve ae¥+* only
by joining the end points by a chord of length 4a and
choosing the origin &t its midpoint.* The resulting
curve has two double points for which the first deriva-
tive is not uniquely defined and, in general, it may be
seen that infinite velocities correspond to such points.

At a point of the ¢(d) curve corresponding to a
mathematically sharp corner, there exist two tangents,

that is, the slope d'ﬁg) is finitely discontinuous. The

d

£ //‘V \\\
€(8) Cur-ve-~
, P (6) Curve- ™ | |
~ ‘\
‘4\

.y

2 :

e — m—

—
7 N~ - /,
- B(6) Curve
y NG ¥(9) |
1/

0 5 T 1.5 R 25 3 & 35 4 45 5 5.5 6 on

Nose Tail Lower surface Nose

Upper surface
9

FIGURE 27.~The #(8) and ¥(8) curves for the N. A. C. A. —MS airfoil

tively by equations (33) and (39).
eters are '

The lLift param-

. ®
R=ae%,B=¢emqg (at0=x),Mis atz=¢,= 1—: .(/)' Y(p)etede

and Fisat z=¢, +% where @, is given in equation (25).

The first and second axes for the N. A. C. A. -M6
airfoil are found to coincide and this airfoil has then a
constant center of pressure at F. Figures28 (a) to
28 (1) give the pressure distribution (along the z axis)
for a series of angles of attack as calculated by this
theory and as obtained by experiment.” Table I
contains the essential numerical data for this airfoil.

3 The experimental results are taken from test No. 323 of the N. A. C. A, variable-
deusity wind tunnel. The angle of attack « substituted in equation (39) has been
modified arbitrarily to take account of the effects of finite span, tunnel-wall inter-
ference, and viscosity, by choosing it so that the theoretical lift is about 10 per cent
more than the corresponding experi 1 value. The actual values of the lift
coefficients are given in the figures.

curve #6) must have an infinite slope at such a point
for according to a theorem in the theory of Fourier
series, at a point of discontinuity of a F. S., the con-
jugate F. S. is properly divergent. This manifests
itself in the velocity-formula equation (39) in the fac-

tor (1 -I-%;) which is infinite at these sharp corners.

| For practical purposes, however, a rounding of the

sharp edge, however small, considerably alters the slope
d—éd(—g) at this point.

Ideal angle of attack.—A thin airfoil, represented
by a line arc, has both a sharp leading edge and a
sharp trailing edge. The Kutta assumption for fixing
the circulation places a stagnation point at the tail for
all angles of attack. At the leading edge, however,

25 Note that ¥(0+») = —g(6) for this case.
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FIGURES 28 { to j.—Theoretical and experimental pressure distribution for the MBS airfoil at various angles of attack
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the velocity is-infinite at all angles of attack except
one, namely, that angle for which the other stagnation
point is at the leading edge. It is natural to expect
that for this angle of attack in actual cases the fric-
tional losses are at or near a minimum and thus arises
the concept of “ideal”” angle of attack introduced by
. Theodorsen (reference 8) and which has also been
designated ‘“angle of best streamlining.”” The defini-
tion for the ideal anglé may be extended to thick
airfoils, as that angle for which a stagnation point
occurs directly at the foremost point of the mean
‘camber line.
The lift at the leadmg edge vanishes and the cha.nge
- from velocity to pressure along the airfoil surface is

usually more gradual than at any other angle of attack.
Theoretical Experimental
o Upper surface
x Lower surface
_ (Average A N =5 x 105}

vd

¢, =105
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.of this function, one can determine airfoil shapes of
definite properties. The e(p) function, which we have
designated conformal angular distortion function, will
be seen to determine not only the shape but also to
give easily all the theoretical aerodynamic character-
istics of the airfoil.

An arbitrary () curve is chosen, single valued, of

-period 2w, of zero area, and such that — « = g—— =1

These limiting values of %:; are far beyond values

yielding airfoil shapes.¥ The ¥(p) function, except for

the constant ¥y, is given by the conjugate of the

Fourier expansion of e(¢) or, what is the same, by

evaluating equation (14) as a definite integral. The
Experimental

O Upper surface

x Lower surface
_ [Average R.N.=5x /0%

Theoretical

(1)

W Percent cd
50

o[ T

a =/8°
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Fiaures 28 k to L—-Theoretical and experimental pressure distribution: for the M6 airfoil at various angles of attack

The minimum profile drag of airfoils actually occurs
very close to this angle. At the ideal angle, which we
denote by oy, the factor [sin (a+¢)+sin (a+8)] in
equation (38) is zero not only for =1 ore=er=8 but

also for =0 or e=¢y. We get
ar+ey=—{ar+er) or
ar=— (GN;_ eCl') (65)

CREATION OF FAMILIES OF WING SECTIONS

The process of transforming a circle into an airfoil is
inherently less difficult than the inverse process of
transforming an airfoil into a circle. By a direct appli-
cation of previous results we can derive a powerful and
flexible method for the creation of general families of
airfoils. Instead of assuming that the ¢(8) curve is
preassigned (that is, instead of a given airfoil), ‘
assume an arbitrary ¥(e) or e(¢) curve® as given.
This is equivalent to assuming as known a boundary-
value function slong a circle and, by the proper choice

% Subject to some general restrictions given in the next paragraph.

constant Y, is an important arbitrary # parameter
which permits of changes in the shape and for a certain
range of values may determine the sharpness of the
trailing edge.

We first obtain the variable 6 as 8 (¢) =¢—¢ (¢), 50
that the quantity ¢ considered as a function of 6 is
¥ (@) =v[p (0] The coordinates of the airfoil surface
are then

z=2a cosh ¢ cos 8
. . (6)
9 =2a sinh ¢ sin 4.

1 For common airfoils, with a proper choice of origin, !g—;l <<0.30.

# For common airfoils ¥y is usually between 0.05 and 0.15. The constant ¥y is
not, however, completely arbitrary. We have seen that the condition given by
equation (22) is sufficient to yield a contour free from double poifits in the 2’ plane.
We may also state the criterion that the inverse of equation (5) applied to this
contour shall yield a contour in the { plane free {from double points. Consider the
function ¢(8) for 8 varying from 0 to » only. The negative of each value of ¥(8) in
this range is considered associated with —8. i. e., x<0Z2r. Designate the function
thus formed from #=0 to 2x by §(§)*. Then ¢(8)* represents a line arc in the ¢
plane, i. e., the upper surface of & contour. [See footnote 25.] Then for the entire
contour to be free from double points it is necessary that the lower surface should not
cross the upper, that is, the originat V(0 curve for @ varying {from » to 2» must not
cross below ¥(6)*.
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The velocity at the surface is
[sin (a+ ) +sin (a+ ;3)] evo

,\/(smh %+ sin? 6) [(1 ( >]

and is obtained by using equation (37 ) instead of (37)
in deriving (39). The angle of zero lift g is given by
e@=0+e@) foro=m,i. 6., o (x)=7+p.

The following figures and examples will make the
process clear. We may first note that the most natural
method of specifying the ¢ () function is by a Fourier
series expansion. In this sense then the elementary
types of e(p) functions are the individual terms of
this expansion.

39

31
29(h) to 29(t). In particular, the second harmonic
term may yield S shapes, and by a proper combina-
tion of first and second harmonic terms, i. e., by a
proper choice of the constants 4;, A, §;, and &, in the

relation
e(p) =A; sin (¢—8;) +A; sin (20—8&)

it is possible to fix the focus F of the lift parabola as
the center of pressure for all angles of attack.” The
equation
e(¢) =0.1 sin (p—60°) +0.05 cos 2¢
represents such an airfoil and is shown in Figure 29(u).
The general process will yield infinite varieties of
contours by superposition of sine functions; in fact, if

%0159/ sing ;{,"2200? sin(p~457 e{;o/==0/ sin 3p
(@) — (©) N R
e{ﬂ;{;/ sinfp-/59 ‘{,,2200 {9 Sinfp—-457) %5012(3/ sinf3p-457)
N . N —_—
_ — '
;Cp_j;c;/ sinfp-309 ei;aZSOI é sinfp-459 '%51/5(3/ sinf3p-90°)
(C) i \ (J) i (V_\ i /\
f —> : — =
€(@)=0.1 sinfp-45¢9)

?¢}=0,/5 sinfp~459

€(p)=0.075 sin(4p)
r)

&%
>Q
~

efp)=0.! sinfp~60°9 e‘fw};(/l/ sinlyp

Yea). i \Kl’

lo~0.15 Y6=0.075
k) } 1 P

-

€(9)=0.075 sin(4p~45°)
loo%s

—— 2

- —p— N
&(p)=0./ sinfp-75°9 €(9)=0.] sinfSp~459 . e(qoj 0 075 sinf4p-90%

Ypo=0./ Yo=0./ .

0! e~ m (1

efp)=0./ sinfg-90°) €lp)=0./ sinf2p~-907
{,¢=}o./ o Yo=0./

(n)

e{p}BO ! sinfp~-609-.05 sinf2e-907)

—_5°

SN—

FIGURE 29.—Airfoils created by varying e(y)

Consider first the effect of the first harmonic term
e(p) =4, sin (¢—8), Yo=c

In Figures 29(a) to 29(g) may be seen the shapes
resulting by displacing 3; successively by intervals of
15° and keeping the constants 4,=0.10 and ¢,=0.10.
The first harmonic term is of chief influence in deter-
mining the airfoil shape. The case e(¢)=0.1 sin
(¢—45°)_is given detailed in Table II. (This airfoil
is remarkably close to the commonly used Clark Y
airfoil.) The entire calculations are characterized by
their simplicity and, as may be noted, are completely
free from the necessity of any graphical evaluations or
constructions.

The effect of the second and higher harmonics as
well as the constant ¢, may be observed in Figures

the process is thought of as a boundary-value problem
of the circle, it is seen that it is sufficiently general to
yield every closed curve for which Riemann’s theorem
applies.

LaneLEY MEMORIAL AERONAUTICAL LABORATORY,
Narionar ApvisorY COMMITTEE FOR AERONAUTICS,
Lanerey FieLp, V., November 4, 1932.

2 Thisisaccomplished as follows: Weseek to determine the constants Ay, As, 5;, and
2
82 50 that 8=y, whete ~ is obtained from equation (25') as m=b’eﬂvaa’+c——-+ca and

we may note that = A;¢¢% and L Aseits. These relations are transcenden-

acv al 273

tal; however, with but a few practice trials, solutions can be obtained at will. Addi-
tion of higher harmonics will yield further shapes having the same center of pressure
properties if 8 is kept unchanged.



APPENDIX

I. EVALUATION OF THE INTEGRAL.

)= —3, ./‘ V) cot 252 do (13)

1 PR 4
_1 in £2€
T

2

7|'
d'flff) log de (13

0

The function ¢({p) is of period 2« and is considered
known. (Note that the variables ¢ and ¢’ are re-
placed by ¢ and 6, ¢ and ¢, ¢ and ¢/, ete., in
equation (21) and that the following formula is
applicable for all these cases.)

A 20-point method for evaluating equation (13) as
a definite integral gives

(o))~ l[aod‘“‘”wl(wl—w_l) +aa (Y Yos)

S +a9(¢,—¢-,)],;,, 4]
where
Y =value of ¥(p) at p=¢'+ = 10
Yn=value of ¥(p) at o=¢ L 10
(n=1,—1,2, -2, .9, —9).

!
and the constants a, are as follows: ao=1=0.3142-

a,=1.091; a,=0.494; a;=0.313; a,=0.217; a;=0.158;

a;=0.115; a;= 0.0884, a3=0.0511; and @,=0.0251.
This formula may be defived directly from the
definition of the definite integral. The 20 intervals

chosen are ¢ “é% to ¢+§%: ¢+2—76 to ¢+%r ete.

It is only necessary to note that by expanding ¢ (¢) in
a Taylor series around ¢= ¢’ we get
¢ +s
B S Vi) oot £ 20| 310 (@]
o —s
where the interval ¢’ —s to ¢’ +s is small. And, in
general,

.f ¥(p) cot £2L " de
1
is very nearly

— 4 log

1 Reference 2, p. 11, gives a 10-point method result.
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where the range ¢,— ¢ is small and ¢, is the average
value of ¥(¢) in this range. The constants a, for the
20 divisions chosen above are actuslly

2n+1
40

sin 2n—1
™40

gin

a,=log .. +9)

As an example of the calculation of &(6) we may refer
to Table I and Figures 26 and 27 for the N. A. C. A.
—MB6 airfoil. From the ¥(8) curve (fig. 27) we obtain

the 20 values of ¢ and dy for 20 equal intervals of 6.

For the sairfoil (fig. 26) we get the following values:

(Upper de (Lower S )
O surface) ¢ de o surface) ¥ de
0 (nose) 0.192  0.000 B o049 —0.002
s 185 .027 L 057 050
2 192 .000 B 071 .030
%’ 189 —.030 % .077 .01l
. 174 —. 064 1%’ .079  .000
%’; 146 —.095 -11%1' .082  .016
b 110 —. 114 1—17—0-” 090 .039
;’—(’; 077 —.086 %’5 .11 L0901
b 052 —. 066 M 150 .154
%g .041  .025 2r (nose) .192  .000
 (tail) .055 000

The value of ¢ at the tail (i. e., the angle of zero lift)
is, for example, using formula I

1] =«
e=—= [iﬁ X0

+1.091(.049—.041)
+.494(.057 — .052)
+.313(.071—.077)
+.217(.077—.110)
+.158(.079 —.146)
+.115(.082—.174)
+.0884(.090—.189)
+.0511(.111—.192)
+.0251(.150—.185)] =.0105
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The value of e for 0—%’—(): for example, is obtained by

a cyclic rearrangement. Thus,

.030)

e=—1 (

+1.091(.174 —.192)
+.494(.146 — .185)
+.313(.110—.192)
+.217(.077 —.150)
+.158(.052—.111)
+.115(.041 — .090)
+.0884(.055— .082)
+.0511(.049 — .079)
+.0251(.057 — .077)] = .0347

The 20 values obtained in this way form the #(6)
curve, which for all practical purposes for the airfoil
considered, is actually identical with the final ()
curve. '

II. NOTES ON THE TRANSFORMATION.
t=f@)=c+2z+ ‘+? e 4"

There exist a number of theorems giving general
limiting values for the coefficients of the transforma-
tion equation (4), which are interesting and to some
extent useful. If ¢=f(2) transforms the external
region of the circle C of radius B in the z plane, into

the external region of & contour A in the { plane in &

one-to-one conformal manner and the origin ¢=0 lies
within the contour 4 (and f'(o)=1) then the area S
inelosed by A is given by the Faber-Bleberbach

theorem as 2
o]

S= R21r-- 2 lan

| B+

Since all members of the above series term are positive,
it is observed that the area of (' is greater than that
inclosed by any contour A in the { plane (or, at most,
equal to the area inclosed by A4 if A is a circle).

This theorem leads to the following results

la,l < R? (a)
e = 2R (b)

Let us designate the circle of radius R about the
conformal centroid M as center as C; (i. e., the center
. is at {=g¢;; this circle has been called the “Grund-
kreis” or ‘““basic” circle by von Mises). Then since
lQR‘— represents the distance of the focus F from M, uie
relation (a) states that the focus is always within Cy.
In fact, a further extension shows that if 7, is the radius
of the largest circle that can be inclosed within A, then

2
F is removed from O, by at least%-

2 For details of this and following statements see reference §, p. 100 and p. 147, and
also reference 6, Part LI,

From relation (b) may be derived the statement that
if any circle within A is concentrically doubled in radius
it is contained entirely within a circle about M as
center of radius 2R. Also, if we designate by ¢ the
largest diameter of A (this is usually the “chord” of
the airfoil) then the following limits can be derived:

Rizc

R= %c

These inequalities lead to interesting limits for the
lift coefficient. Writing the lift coefficient as
L
Cu= %oV?
where by equation (45) the lift force is given by
L=4xRpV?sin (a+B)

~

we have
2rsin (at+ §)S C=22 sin (a-+ )3 drsin (a+§) (D)

The flat plate is the only case where the lower . -

limit is reached, while the upper limit is attained for
the circular cylinder only. We may observe that a
curved thin plate has a lift coefficient which exceeds
2z sin (a+ 8) by a very small amount. In general, the
thickness has a much greater effect on the value of
the lift coefficient than the camber. For common
airfoils the lift coefficient is but slightly greater than
the lower limit and is approximately 1.1X2x sin

" (a+B).

Another theorem, similar to the Faber-Bieberbach
area theorem, states that if the equation {=f(2) trans-
forms the internal region of a circle in the z plane into
the internal region of a contour B in the ¢ plane in a
one-to-ene conformal manner and f/(0) =1 (the origins
are within the contours) then the aresa of the circle is
less than that contained by any contour B. This
theorem, extended by Bieberbach, has been used in an
attempt to solve the arbitrary airfoil® The process
used is one in which the area theorem is a criterion as
to the direction in which the convergence proceeds.
Although theoretically sound, the process is, when
applied, extremely laborious and very slowly con-
vergent. It can not be said to have yielded as yet
really satisfactory results.

III. LOCATION OF THE CENTER OF PRESSURE FOR AN
ARBITRARY AIRFOIL - ’

Tt is-of some interest to know the exact location of
the center of pressure on the z axis as a function of the
angle of attack. In Figure 30, O is the origin, M the
conformal centroid, L the line of action of the lift
force for angle of attack «. Let us designate the

3 Miiller, W., Zs. {. angew. Math, u. Mech. Bd. 5 8. 397, 1925.
Hohndort, F., Zs. 1. angew. Math. u. Mech. Bd. 8 5. 265, 1926.
Also reference 5, p. 185.
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intersection of L with the z axis of the airfoil as the
center of pressure P,

In the right AONM we have,
OM=c¢,=me®=A,+1B,
ON=m cos =4,
MN=msin §=B,
MJ _lu_;_
sin ¢ sin a

o

sin «

and in right AJKM, KM=+

Then KN-=

1

NP=KN tan a=hy sec a—B, tan «
By equation (48)

and

My_ ¥ sin2 (a+1)

L 2R sin (a+p)
Then the distance from the origin to the center of
pressure P ig

OP=0ON+NP=A;—B, tan a
b sin 2 (a+49)

hu=

2R cos a sin (a+B) (11D
Lift vector
M .
mn -~
/ 7 Ax’
0 ¥ " 7 x Axis

F1gure 30.—Center of pressure location on the r axis
EXPLANATION OF THE 'I;ABLES

Table I gives the essential data for the transforma-
tion of the N. A. C. A. -M§6 airfoil (shown ‘in fig. 26)
into a circle, and yields readily the complete theoretical
aerodynamical chgracteristics. Columns (1) and (2)
define the airfoil surface in per cent chord; (3) and (4)
are the coordinates after choosing a convenient origin
(p. 7); (5) and (6) are obtained from equations (7)
and (8) of the report; (9) is the evaluation of equation
(13) (see Appendix); (10) and (11) are the slopes, ob-

tained graphically, of the ¥ against 6, and e against
8 curves, respectively; (12) is given by

(1 +§_§ e

\/ (sinh 2¢+sm29)(1 +( d;f) )

where tﬁo——— J' ¥ (¢) de and may be obtained graphi-

cally or numenca]ly, column (13) nges ¢=06+e The

velocity v, for any angle of attack, is by equation (39)
v="Vk [sin (a+¢) -J-Sin (a+B8)]

and the pressure is given by equation (3). The angle

of zero lift 8 is the value of e at the tail; i. e., the value

of ¢ for =,

Table II gives numerical data for the inveirse process
to that given in Table I; viz, the transformation of a
circle into an airfoil. (See fig. 29.) The function
e(p) =0.1 sin (¢—45°) and constant ¥,=0.10 are
chosen for this case. Then ¥(g)=0.1 cos (¢—45°)
+0.10. It may be observed that columns (11) and
(12) giving the coordinates of the airfoil surface are
obtained from equations (6) of the report. Column
(13) is given by

T (R

and the velocity at the surface is by equation (39')
v=Vk [sin {(a+¢) +sin (a+ )]
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TABLE I

N. A. C. A—Mé
UPPER SURFACE

35

t!gin dyg dg -
Per cant | 9 In pa z v sin® | siohw | o0 v . 4 T k pmle
[ ] r
0 0 2037 | 0000 | 0000 | 0.0373 000 | 0.192 | «0.0457 | 0000 | 0.085 | 6.280 -3 37
1% 1.07 1.986 { .0796 | .0465 | .0341 217 | .18t —~.0276 | —.010 080 | 4249 10 52
250 2.81 1038 | .1135 | .0pal | .03a2 313 | 184 —. 0205 . 009 .80 | 3.368 16 4 -
5.0 €03 183 | .163 187 .a35¢ 47 | sy —. 0098 L022 1080 | 2,557 4
7.5 4,94 L7344 | .20 275 - 0363 551 | 189 —. 0015 L0z (080 | 2163 31 31
10 5.71 L6 | . .357 . 0373 640 | 102 - 0063 .020 J085 | Lo 37 3
. 15 6,82 .43 | .216 507 ~0375 92 | 108 0188 | —.009 L0985 | 1.680 48 27
20 7.55 1229 | .305 .836 - 0366 9B | 1190 L0310 | —.081 2100 | 1498 54 38
30 8.2 .825 | 332 .835 L0330 | 1153 | .181 L0540 | 066 J107 | L3 6 11
4 8.05 420 | .32 ~957 o276 | lasl | .i66 o717 | —.085 088 | 1,220 82 7
50 7.28 J017 ) 293 | 1ooo w0215 | 157 ] (148 0856 | —.100 .080 | 1.188 9% 55
60 603 | —387 | .2u4 . 963 cose | L7es | .12 0032 | —.100 w025 | 1.152 108 25
70 4.58 { —.791 | .185 “845 co100 | Lets | 100 0020 | —100 | —.020 | L1687 118 28
80 3.06 | —1.195 | .12¢ L6045 10058 | 2200 | .077 (0828 | —.088 { —.056 | 1.302 31 19
%0 1.55 | —L599 | .063 .363 20027 | 2495 | o2 L0817 | —.067 | —~.085 | 1.687 146 30
9% 88 | —~1.801 | .036 “191 L0016 | 2,690 | .040 J0410 | —.035 | —.080 [ 2340 156 28
100 .28 | ~2008 | .000 - 000 20030 | 3142 | .05 . 0105 J000 | 027 | 19.83 180 36
LOWER SURFACE
0 0 2087 { 0.000 | 0.000 { 0.0373 | 6.283 | 0182 | ~0.0457 | 0.000 | 0.085 | 6.280 -2 37
L% 1.76 1.988 | —.071 L0425 | L0207 | 6075 | .172 —. 0781 .133 120 | 4615 | —16 2L
2.50 2.20 1,936 | —. 080 0844 1 .02 | 598 | .152 —. 0850 -160 050 | 3.525 | -21 43
5.0 273 1835 | —.110 173 ~0176 .855 | .132 ~. 0882 2133 | —010 { 2510 | —29 35
7.5 3.03 L | -az . 259 0144 | 5749 | 120 ~. 0850 (109 | —.0a5 | 2025 | 35 28
10 3.24 1633 | —131 | .32 w0125 | 5650 | .12 —. 0811 080 | —o057 | L7es | —40 2
15 347 1.431 | — 140 L404 . 5.505 { . —.0723 069 | —067 | 1.488 | —d8 44
2 3.62 1.220 | — 148 L1626 o085 | 5371 | .oe2 —. 0837 057 | —067 | 1.307 | —55 B¢
30 3.79 .825 | — 153 .831 0070 | 5138 | o084 —. 0516 025 | —os2 | 1156 | —68 30
40 3.90 421 | —158 . 956 L0065 | 4.924 | 081 —. 0421 L008 | +-.036 | 1.0p8 | —80 17
50 3.94 017 | —.158 | Looo (0063 | 4712 | 079 —. 0350 000 | —029 | 1081 | —91 59
80 3.82 | 387 | —15¢ 963 o062 | 4.518 | .0785 | —.0310 010 | —013 | 1120 | -102 53
70 3.48 -, 791 -, 141 845 . 0058 . 307 .078 —. 0300 . 019 . 000 1.211 ~114 55
80 2.83 ~1.195 -, 114 N . 0050 4.074 .071 -, 0295 .038 -, 011 1.370 ~128 14
% 177 | ~Lse9 | — o2 »363 L0035 | 3.788 | .00 —~. 0235 04 | —040 | 1768 | —r1td 16
95 108 | ~L801 | — 044 .191 0025 | 3594 | . ~. 0140 2020 | —o067 | 2368 | —154 50
100 28 | ~2.008 | .000 ~000 0030 | 3.142 | 1085 .0105 000 | —027 | 19.83 | —179 24
TABLE II
(@) =0.1 Sin (p~45°) Yo=0.10 B=d(x)=0,0057=3° 47"
UPPER-SURFACE
® ] a av
€ ¥ ce b4 cosh ¢ | sinky cos 8 sin g z ¥ k
Degrees| Radians Radians | Degrees de dé 2 2
~ ~ a7
o] o000 —0.0007{ o0.0707 43 | owor| oowr| oowr| 1oue| o.1715 0.9975 0.0708 1.0121 0.0121 6.3941
5 L0873 | - 0643 .1518 g41f .1768] .0768 0643 | Loi56| .1775 . 9885 .1510 1.0039 . 0268 5.1215
10 1745 | —.0574 . 2319 1317| .1819{ .0819 0574 | 1.0166{ .1898 .9733 2208 - 9895 .0420 40060
15 2618 | — 0500 .3118 i752) .1e8| .oses| . LOIT5 ) L1877 ~9518 +3068 <9685 . 0576 3.3602
20 3491 | —.0423 L3014 2226 1908 0006 . 1.0182 [ .1918 .9243 L3818 L9411 L0732 28421
25 14363 | —.0342 . 4705 2657] 1940 .0040 20342 | 10189 | .195 L8014 14532 ~9082 <0885 2. 4704
30 5236 | —.0259 -5495 3120| .1966| .0086 (0250 | L0194 .ie79 .8528 »5 .8603 11084 2.1802
35 L6109 | —.0I74 <6283 360 .1985 | L0085 0174 lo198| .19008 - 8000 L5878 L8250 117 1.9746
45 L7854 0000 L7854 450 c2000 -1000] o000 1.0200( .2m3 7071 L7071 73 1423 . 6689
55 - 9599 L0174 L9425 54 0 J1085{ .0885| —.0174| 1.0008| .1 L5878 - 8090 <5004 .1616 14709
0] 127 L0423 | 11794 6735| .1908]| .0008| ‘—.0423] lowsz| .1918 .3813 L0244 .3882 1773 1. 2859
80| 1.3963 (0574 | 1338 7643 .1819| .0819| -—.0574| 1.0168) .1828 . 2298" L9733 . 2336 m 12133
9%0{ 15708 0707 | 15001 8557| .1707| .0707| —.0707) LOM6| .I715 .0706 9975 L0716 1 L7
100 1.7453 0819 |  1.6834 9518 | .1674{ .0574{ ~—~.0819| LOI24] .1581| —. 0924 9957 |  —.0035 1574 1.1586
10| 19199 J0%06 ]| 1.8293 10440 | 1423 0423 —.0908| L0101 .1428| —. 2557 9668 |  —.2583 L1381 1.1758
1351 21817 0085 | 20832 Nne2| 174| .o17a| =—.0985| 1.0069{ .1177] ~—. 4004 8715 |  —. 4038 .1026 L2797
135 23562 1000 | 22562 12916] .1000| .0000| =—.1000) 1.o0os0] 1002} —.6329 maz|  — 6361 ~0778 1.4088
150 2618 0066 | 2.5214 14428 | o741 | —. 029 | ~.0086| 1.0028( .0742{ —.8138 Js12 | —. 8161 .0431 1.8306
160 | 27925 L0006 | 27019 154 48 0577 | —. 0423 ] —.0006| 1.0017| .0577] —.9048 L4258 | —l9063 . 0246 2. 4584
170 29671 o819 | 2.8852 16519 | .0426] —.0574| -—.0819| 10009 | . ~. 9673 2538 |  —. 9682 .0108 4,049
180 3.1416 L0707 | 3.0708 1557 .08 — o7 ~.0707 | 1.0004| .0203] —.9075 Jo708 )  —.9979 10021 | 13,4411
LOWER SURFACE
o| o.000f{ —o0.077{ ¢om07 43 | o07| o007 L0707 1o0u46] 0.1715 0.9975 0.0708 1.0121 0.0121 6.3941
—~5{ —.0873| —.0788| =—.0107 —037| .1643] .0643 o766 | 10135 .1650 . —. 0108 101341 —. 0018 7.1236
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-8 -1 —.0819 | ~1.3144| ~7519] . .0428 ] —~.0574 (0819 | 1.0009| .0428 258 —. 9873 2537 | —.0412 1.0763
—90| ~15708| —.0707| ~1.5000| ~—8557( .0293| - 0707 L0707 10004 .0203 -0 . 9975 L07 — 0292 1.0322
-100 | —17 —.0574 | —1.68 —9643]| .0181 | ~, 0819 .o574) vTonoz| omsi| —.170| ~—.ge81| ~—.1170| —.0180 1.0210
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~-170 | ~2.9671 c0574 | —3.0245| —17318] 081 ~.0819 | ~—.0574| I. -0181 —9032 | —1167) —993¢| —.0021 8. 6641
—~180 | —3.1418 L0707 ~3.2123] —184 3 0203 | ~.0707) -—.0707] 1 .029 —.9975 | 4008 —.9970( 0021 13.4411
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