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GENERAL POTENTIAL THEORY OF ARBITRARY WING SECTIONS 
By T. THEODORSEN and I. E. GABRICK 

SUMMARY 

This report gives an exact treatment of the problem of 
determining the 2-dimensional $ow around 
kng s e c t h  of any shupe. tredment 6 based 
d k c t l y  on the of this problem as advanced by 
Theodorsen i n  N.  A. C. A. Technical Report No. 411. 
The problem condenses into the compact form oj  an inte- 
pal eguation capable of yidding numerical solutions by 
a direct process. 

An attempt been to anolyle and coordinate 
the results o f  earlier studies relating to properties of wing 
sections. The existing approarimate theory of thin wing 
sections and the Joukowsky theory with its numerous 
generalizations are reduced to special cases of the general 
theory of arbitrary sections, permitting a clearer perspec- 
tive of the entire field. The method not only permits the 
determination o f  the velocity at any point of an arbitrary 
s e d h  and the assO&ted l$ and moments, furnishes 
ako a schme for,developing new shapes of preassigned 
aerodynamical properties. m e  t h y  applies also to 
bodies thut are not aijoils,  and is o f  importance in  other 
branches of physics involving potential theory. 

INTRODUCTION 

*he solution of the problem of determining the 
2-dimensiond potential flow of a nomiscous incorn- 
pressible fluid around bodies of arbitrary shape can be 
made to depend on theorem in conformd represen- 
tation stated by Riemann &nost a century ago, 
known as the fundamental theorem of rep- 
resentation. This theorem is to the state- 
merit that it poesible to the 
bounded by a ahpie into the region bounded by 
a cirole in such a way that all equipotential lines and 
stream lines of the fimt region transform respectively 
into those of the circle. ~h~ theorem be stated 
more precisely in the body of this report and its sig- 
nifiCance for wing section theory shown---SufficP it at 
present to state that if the analytic transformation by 
which the one region is transformed conformally into 
the region bounded by the circle is known, the poten- 
tial field of this region is readily obtained in terms of 
the potential field of the circle. 

A number of transformations have bees found by 
means of which it is possible to transform a circle into 

a contour resembling an airfoil shape. It is obviously 
true that such theoretical airfoils possess no particular 
qualities which make them superior to the types of more 
empirical origin. It Was probably primarily because 
of the difficulty encountered in the inverse problem* * the problem Of transforming an into a . 
circle (which we shall denote as the direct process) 
that such artificial types came into existence. The 
2-dimensional theoretical velocity distribution, or what 
is called the pattern, is known Only for some 
special symmetrical bodies and for the particular class 
of Joukowsky airfoils and t.heir extensions, the out- 
standing investigators being Kutta, tJoukowsky, and 
von Mises. Although useful in the development of 
airfoil theory these theoretical airfoils are based solely 
on special transformations employing only a small 
part of the freedom permitted in the general case. 
H0wever1 stiu form the subject of numerous 

iovastigations. 
The direct process has been used in the 

thin with some success. 
theory of bhin wing sections applicable only to the 
mean camber line has been developed by Munk and 
Birnbaum, and extended by others. However, at- 
tempts which have been made to solve the general 
case of an arbitrary airfoil by direct processes have 
resulted in intricate and practically unmanageable 
solutions. Lamb, in his "Hydrod~amics" (reference 
1 . p  7711 r e f e d g  to this problem as dependent upon 
the determination of the complex coefficients of a 
confol'mal transformation, states: "The m c d t y ,  
however, of determining these coefficients so as to 
satisfy given boundary conditions is now so great as 
to render this method of very limited application. 
Indeed, the determination of the inotational motion of 
a liquid subject to given boundary conditions is a 
problem whose exact solution can be effected by direct 
processes in only a very few casess. Most of the cases 
for w k h  we know the solution have been obtained by 
an process; viz, Of trying to fmd a 
value of 4 or # which satisfies [the Laplacian] v24=0 
OT vY=O and given boundary conditions, we take 
some known solution of these differential equations 

1900 bibliography given in reference 9, PP. 24,84, and 583. 
1 Cf. footnote 1. 
8 see Appendix 11 this PB*. 
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and inquire what boundary conditions it can be made I and the equation of continuity is 
to satisfy." 

In a report (reference 2) recently published by the 
National Advisory cornmitt-ee for Aeronautics a gen- 
eral solution employing a direct method was briefly 
given. I t  was shown that the problem could be stated 
in a condensed form as an integral equation and also 
that it was possible to effect the practica1,solution of 
this equation for the case of any given airfoil: P- 
formula giving the velocity at  any point of the surface 

. of an arbitrary airfoil was developed. The first part 
of the present paper includes the essential develop- 
ments of reference 2 and is devoted to a more com- 
plete and precise treatment of the method, in particu- 
lar with respect to the evaluation of the integral 
equation. 

In a later part of this paper, a geometric treatment 
of arbitrary airfoils, coordinating the results of earlier 
investigations, is given. Special airfoil types have 
also been studied on the basis of the general method 
and their relations to arbitrary airfoils have been 
analyzed. The solution of the inverse problem of 
creating airfoils of special types, in particular, types of 
specified aerodynamical properties, is indicated. 

I t  is hoped that this paper will serve as a step 
toward the unification and ultimate simplification of 
the theory of the airfoil. 

TRANSFORMATION OF AN ARBITRARY AIRFOIL INTO 
A CIRCLE 

Statement of the problem.-The problem which this 
report proposes to treat may be formulated as follows. 
Given an arbitrary airfoil4 inclined at a specified angle 
in a nonviscous incompressible fluid and translated 
with uniform velocity V. ' To determine the theoreti- 
cal 2-dimensional velocity and pressure distribution at 
sll points of the surface for all orientations, and to 
investigate the properties of the field of flow surround- 
ing the airfoil. Also, to determine the important 
aerodynamical parameters of the airfoil. Of further 
interest, too, is the problem of finding shapes with 
given aerodynamical properties. 

Principles of the theory of fluid flow.-We shall 
first briefly recall the known basic principles of the 
theory of the irrotational flow of a frictionless incom- 
pressible fluid in two dimensions. A flow is termed 
"2-dimensional" when the motion is the same in all 
planes parallel to a definite one, say xy. In this case 
the linear velocity components u and v of a fluid 
element are functions of x, y, and I only. 

The differential equation of the lines 0f  flow in this 
case is 

v dz-u dy=O 

By an airloil shape, or wing saotion, is roughly meant an elongated smooth shape 
roMded at the leading edge and ending in a 8harp edge at the rear. A11 practical 
airtolls are characterized by a lack of abrupt change of curvature excspt for a rounded 
noae and a small radius of curvature at the tail. 

which shows that the above first equation is an exact 
differential. 

If Q=c is the integral, then 

This function Q is called the stream function, and 
the lines of flow, or streamlines, are given by the equa- 
tion Q= c, where c is in general an arbitrary function 
of time. 

Furthermore, we note that the existence of the 
stream function does not depend on whether the motion 

. is irrotationd or rotational. When rotational its' 

which is twice the mean angular velocity or "rotation" 
of the fluid element. Hence, in irrotational flow the 
stream function has to satisfy 

Then there exists a velocity potential P and we have 

The equation of continuity is now 

Equations (1) show that 

so that the family of curves 

P = constant, Q = constant 

cut orthogonally a t  all their points of intersection. 
For steady flows, that is, flows that do not vary 

with time, the paths of the particles coincide with the 
streamlines so that no fluid pqsses normal to them. 
The Bernoulli formula then holds and the total pres- 
sure head I$ along a streamline is a constant, that is 

where p' is the static pressure, v the velocity, and p 
the density. If we denote the undisturbed velacity 
at  infinity by' V, the quantities p' -p',  by p, snd 
)4 p V2 by q, the Bernoulli formula may be expressed as 
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The solutions of equations (2) and (2'), infinite in 
number, represent all possible types of irrotational 
motion of a nonviscous incompressible fluid in two 
dimensions. For a given problem there are usually 
certain specified boundary conditions to be satisfied 
which may be sufficient to ~IX a unique solution or a 
family of solutions. The problem of an airfoil moving 
uniformly at a fixed angle of incidence in a fluid field 
is identical with that of an airfoil fixed in position and' 
fluid streaming uniformly past it. Our problem is 
then to determine the functions P and Q so that the 
velocity at  each point of the airfoil profile has a direc- 
tion tangential to the surface (that is, the airfoil con- 
tour is itself a streamline).and so that at infinite dis- 
tance from the airfoil the fluid has a constant velocity 
and direction. 

The introduction of the complex variable, z = z + iy, 
simplifies the problem of determining P and Q. Any 
analytic function w(z) of a complex variable z, that is, 
a function of z possessing a unique derivative in a 

each real functions of x and y. Suppose now in the . 
xy complex plane there is traced a simple curve f (2). 
(Fig. 1.) Each value of z along the curve defines a 

w in the w plane and f (z) maps into a curve f (w) 
or F(z). Because of the special properties of analytic 
functions of a complex variable, there exist certain 
special relations between f (z) and F(z). . 

.The outstanding property of functions of a complex 
variable analytic in a region is the existence of a unique 
derivative at  every point of the region. 

dw lim w-w' 
-a-p- - @$r 
dz 232 '  Z-  Z' 

This relation expresses the fact that any small curve 
zz' through the point 2 is transformed into a small 
curve urn' through the point w by a magnification p 

and a rotation y; i. e., in Figure 1 the tangent t will 
coincide in direction with T by a rotation y = 8 - a. 

.S =a+3h 
S = a + P h  
S=u+h 
S - a  

R - a + J h  
R * a + 2 h  

R = a + h  

Y . # ,  

x 

Y 

z P/one 

1) 

ut Plane 

T 

FIGUBE 1.-Conformal proparty of analytic functions FIGURE 2.-Orthogonal network obtained by a conformal transformation 

o / x o 

W" 

region of the complex plane, may be separated into its i 
real and imaginary parts as w(z) = w(z +iy) = P(z, y) 
+iQ(x, y), determining functions P and Q which may 
represent the velocity potential and stream function of 
a possible fluid motion. Thus, analytic functions of a 
complex variable possess the special property that the 
component functions P and Q satisfy the Cauchyl 
Riemann equations (eq. (I)), and each therefore also 
satisfies the equation of Laplace (eq. (2)). Conversely, 
any function P(z, y) + iQ(x, y) for- which P and Q 
satisfy relations (1) and (2) may be written as w(x+ 
iy) = w(z). The essential difCiculty of the problem is 
to find the particular function w(z) which satisfies the 
special boundary-flow conditions mentioned above for 
a specified airfoil. 

The method of conformal representation, a gcomet- 
ric application of the complex variable, is well adapted 
to this problem. The fundamental properties of trans- 
formations of this type may be stated as follows: 
Consider a function of a complex variable z=z+iy, 
say W(Z) andytic in a given region, such that for each 
value of z, W(Z) is uniquely defined. The function 
w(z) may be expressed 8s w=[ f  i q  where 5 and q are 

P 
B o 

This is also true for any other pair of corresponding 
curves through z and w, so that in general, angles 
between corresponding curves are preserved. In par- 
ticular, a curve zz" orthogonal to zz' transforms 
into a curve ww" orthogonal to ww'. 

I t  has been seen that an analytic f i c t i on  f (z) may 
be written P(z,yj+iQ(x, y) where the curves P=con- 
stant and &=constant form an orthogonal system. 
If then f (2) ia transformed conformally into f (w) 
= P(E; q) + iQQ, q) that is into f[w(z)] = F(z) = R(x, y) 
+iS(x, y), the curves P(x, y) =constant, Q(x, y) =con- 
stant map into the orthogonal network of curves 
R(x, y) = constant, S(x, y) =constant. (Fig. 2.) If the 

maggfication - p  is zero a t  a point w, the trans- , -ciz 
formation a t  that point is singular and ceases to be 
conformal. 

We may use the method of conformal transforma- 
tions to find the motion about a complicated boundary 
from that of a sirfipler boundary. Suppose w(z) is a 
function which corresponds to any definite fluid motion 
in the z plane, for instance, to that around a circle. 
Now if a new variable 5 is introduced and z set equal 
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to any analytic function of {, say z=f (l), then w(z) 
becomes wlf({)] or W({) representing a new motion in 
the { plane. This new motion is, as has been seen, 
related to that in the z plane in such a way that the 
streamlines of the a plane are transformed by zrf({) 
into the streamlines of the { plane. Thus, the con- 
tour into which the circle is transformed represents 
the profile around which the motion W(l )  exists. The 
problem of determining the flow around an airfoil is 
now reduced to finding the proper conformal transfor- 

. mation which maps a curve for which the flow is known 
into the airfoil. The existence of such a function was 
first shown by Riemann. 

We shall first formulate the theorem for a simply 
connected region bounded by a closed curve, and 
then show how it is readily applied to the region 
external to the closed curve. The guiding thought 
leading to the theorem is simple. We have seen that 
an analytic function may transform a given closed 
region into another closed region. But suppose we 
are given two separate regions bounded by closed 
curves--does there exist an anslytic transformation 
which transforms one region conformally into the 
other? This question is answered by Riemann's 
theorem as follows: 

Nemann's theorem.-The interior T of any simply 
connected region (whose boundary contains more than 
one point, but we shall be concerned only with regions 
having closed boundaries, the b~undary curve being 
composed of piecewise differentiable curves [Jordan 

- curve], corners at which two tangents exist being per- 
mitted) can be mapped in a one-to-one conformal 
manner on the interior of the unit circle, and the 
analytic function {=f(z) which constunmates this 
transformation becomes unique when a given interior 
point z, of T and a direction through z, are chosen to 
correspond, respectively, to the center of the circle and 
a given direction through it. By this transformation 
the boundary of T is transformed uniquely and con- 
tinuously into the circumference of the unit circle. 

The unit circle in this theorem is, of course, only a 
convenient normalized region. For suppose the re- 
gions TI in the { plane and T2 in the w plane are 
transformed into the unit circle in the z plane by 
{=f(z) and w = F(z), respectively, then TI is trans- 
formed into T2 by {= @(w) ,  obtained by eliminating z 
from the two transformation equations. 

In airfoil theory it is in the region external to a closed 
curve that we are interested. Such a region can be 
readily transformed conformally lnto the region in- 
ternal to a closed curve by an inversion. Thus, let us 
suppose a point z,, to be within a closed curve B whose 

6 A region of the complex plane is simply connected when any closed contour lying 
entirely within the region may be s h m k  to a poi& without pansing out of theregion. 
Cf. reference 3, p. 3fi7, where a p m f  of the theorem based on Green's function is 
given. 

"Attention is here directed to the fact that an analytic function is developable at 
a point in a power series convergent in any circle about the point and entirely 
within the region. 

external region is I', and then choose a constant k 
such that for every point z on the boundary of r, 
I z - zol>k. Then the inversion transformation w = 

will transform every point in the external region 
z-z, 
I' into a point internal to a closed region r' lying 
entirely within B, the boundary B mapping into the 
boundary of I", the region at  infinity into the region 
near z,,. We may now restate Riemann's theorem as 
follows : 

One and only one analytic function { = f (z) exists by 
means of which the region I' external to a given curve 
B in the { plane is transformed conformally into the 
region external to a circle C in the z plane (center at  
z= 0) such that the point z = - goes into the point 

l= m and also %= 1 at infinity. This function can 

be developed in the external region of C in a uniformly 
convergent series with complex coefficients of the form 

by means of which the radius R and also the constant 
m are completely determined. Also, the boundary B 
Elf r is transformed continuously and uniquely into the 
circumference of C. 
' It should be noticed that the transformation (4) is 
a normalized form of a more general series 

and is obtained from it by a finite translation by the 
vector 6 and a rotation and expansion of- the entire 
field depending on the coefficient a-l. The condition 
a-l= 1 is necessary and sufficient for the fields at  
infinity to coincide in magnitude and direction. 

The constants cl of the transformation are functions 
of the shape of the boundary curve alone and our 
problem is, really, to determine the complex coeffi- 
cients defining a given shape. With this in view, we 
proceed first to a convenient intermediate trans- 
formation. 

a2 - 
The transformation { = z' + 7.-This initial trans- 

Z 

formation, although not essential to a purely mathe- 
matical solution, is nevertheless very useful and 
important, as will be seen. I t  represents also the key 
txansformation leading to Joukowsky airfoils, and is 
the basis of nearly all approximate theories. 

Let us define the points in the { plane by { = x  + iy 
using rectangular coordinates (x, y), and the points in 
the z' plane by z' = ~ e + + ~ ~  using polar coordinates 
(ae+, 8).  The constant a may conveniently be con- 
sidered unity and is added to preserve dimensions. 
We have 

a2 
{=zr+-7  

2 ( 5 )  
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and substituting z' = 

we obtain p=2a cosh ($+i8) 

or (=2a cosh $cos 8+2hsinh $ sing 

Since I =x f iy, the coordinates (z, y) are given by 

x=2a cosh ) cos 8 
y=2asinh $sin8 (6) 

If )= 0, then z' =aef8 and l=2a  cos 8. That is, if P 
and P' are corresponding points in the r and z' planes, 
respectively, then as P traverses the x axis from 2a to 
-2a, P' traverses the circle aefe from 8= 0 to 8= 5 
and as P retraces its path to l =2a, P' completes the 
circle. The transformation (5) then may be seen to 
map the entire l plane external to the line 4a uniquely 
into the region external (or internal) to the circle of 
radius a about the origin in the z' plane. 

Let us invert equations (6) and solve for the elliptic 
coordinates ) and 8. (Fig. 3.) We have 

z' Plane 
mawr I.-'l'ransformation by elliptic coordinates 

Y Sinh #=- 

and since cosh 2$ .-sinh 2, = 1 

(&Y-(&@J= 2a cos B 3 

or solving for sin28 (which can not become negative), 

where 

Similarly we obtain 

y y=1 
(b ctsh +Y+(2a sinh ) 

or solving for sinh 2, 

2 sinh2)=-p+ dP2+e) (8) 

We note that the system of radial lines @=constant 
become confocal hyperbolas in the plane. The circles 
#-constant become ellipses in the l plane with major 
axis 2a cosh ) and minor axis 2a sinh ). These orthog- 
onal systems of curves represent the potential lines and 
streamlines in the two planes. The foci of these two 
confocal systems are located at  (f 2a, 0). 

Equation (8) yields two values qf .$ for a given 
point (3, y), and one set of these values refers to t.he 
correspondence of (x, y) to the point (ae*, 8) external to 
a curve and the other set to the correspondence of 
(3, y) to the point (ae-*, - 8) internal to anot-her curve. 
Thus, in F i e  3, for every point external to the 
ellipse El there is a corresponding point external to the 
circIe Cl, and also one internal to 0,'. 

The radius of curvature of the ellipse at  the end of 
sinh or for small values of a, the major axis is p = 2a - cosh $ 

p=2aJ.a. The leading edge is at  

Now if there is given an airfoil in the { plane (fig. 4), 
and it is desired to transform the airfoil profile into a 
curve as nearly circular as possible in the z' plane by 
using only transformation (5), it  is clear that the axes 
of coordinates should be chosen so that the airfoil 
appears as nearly elliptical as possible with respect to 

1 the chosen axes. It was seen that a focus of an 
elongated ellipse very nearly bisects the line joining 

I the end of the major axis and the center of curvature 
of this point; thus, we arrive at a convenient choice of 
origin for the airfoil as the point bisecting the line of 
length 4a, which extends from the point midway be- 
tween the leading edge and the center of curvature of 
the leading edge to a point midway between the 
center of curvature of the trailing edge and the trailing 
edge. This latter point practically coincides with the 
trailing edge. 

The curve B, defined by ae++'@, resulting in the z9 
plane, and the inverse and reflected curve B', defined 
by a e - + - j R ,  are shown superposed on the { plano in 
Figure 4. The convenience and usefrtlness of trans- 

- 
FIGVRE 4.-Transformation of airloil into s nearly circular contour 

formation (5) and the choice of axes of coordinates 
will become. evident after our next transformation. 

Cn 
2 p 

The transformation z' = ze O .-Consider the trans- 
m 

formation zt = zef(') where f (z) = 2 o 5. z" Eachkponential 

term e kreDresents the uniformly convergent series 
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where the coefficients cn =An + iBn are complex num- 
bers. For f (z) convergent at  all points in a region 
external to a certain circle, z' has a unique real abso- 
lute value [zlelf(')I in the region and its imaginary part 
is definitely defined except for integral multiples of 
2lri. When z = m , z' = zeco. The constant co= A. + 
iBo is then the determining factor at infinity, for the 
field at infinity is magnSed by eAo and rotated by the 
angle Bo. It is thus clear that if it is desired that the 
regions a t  infinity be identical, that is, z' = z at  infinity, 
the constant co must be zero. The constanks c, and c2 

also play important rbles, as will be shown later. 
We shall now transform the cIosed curved z' - ae++'O 

into the circle z=ae+o+'* (radius asso, origin at center) 
by means of the generd transformation (reference 2) 

which leaves the fields a t  infinity unaltered, and we 
shall obtain expressions for the constants A,, B,$, and 
#o. The justification of the solution will be assured by 

m 

the actual convergence of 2 5 ,  since if the solution 
1 2 "  

exists it is unique. 
By definition, for 'the correspondence of the bound- 

ary points, we have 

z' = ze +-+o+i(e-q) (10') 

Also 

Consequently 
OD 1 #- #o+i(O-p)=2:(An+iBn)z. 
1  J 

where 2 = ae+o+*l~ 

On writing z=R(cos p+ i  sin p) where R=ae+,,, we 
have 

OD 1 #- #o+i(e- p) =2(A,,+iBn)Tik(~~~np-i sin np) 
1 

Equating the real and imaginary parts of this relation, 
we obtain the two conjugate Fourier expansions: 

" [p A% cos nv+ Bn - sin np ] (11) R" 

O - ~ = : F  cos np-- sin np 
1  An R" ] (12) 

An From equation (l l) ,  the values of the coefficients f~;;, 

B. 
~p and the constant are obtained as follows: 

A,, 12" 
pi- f#c-ncpdv " 0 

%=lF# sin np dp " n 

The evaluation of the infinite number of constants 
as represented by equations (a) and (b) can be made 
to depend upon an important single equation, which 
we shall obtain by eliminating these constants from 
equation (12). 

Substitution of (a) and (b) for the coefficients of 
equation (12) gives 

2 s  
-sin np' f #(p) cos np dy 

0 1 
where #(p) = # and (8 - p)' represents e - p as a func- 
t.ion of p', and where p' is used to distinguish the angle 
kept constant while the integrations are performed. 
The expression may be readily rewritten as 

2 r  
(e- p)' -- 2: f #(p) (sin np cos np' - cos np sin npf)dp " 1  0' 

But 

n cos (2n+ 1) (p 1 9-(0' X sin n(p-p')=-cot -- 
1  2 2 2 sin ' b d  2 

Then 

The first integral is independent of n, while the latter 
one becomes identically zero. 

Then finally, representing 9-8 by a single quantity 
B, viz ( o - - ~ = B = E ( ~ ) ,  we have 

By solving for the coefficients in equation (12) and 
substituting these in equation (11) it may be seen that 
a similar relation to equation (13) holds- for the func- 
tion #(p). - 

1 2" 1 2" #(p') - - f BQ cot q d p +  - f #(p)dp (14) 
2* 0 2=0 - 

Unless otherwise stated, +and 9 will now be used in this restricted sense, i, e., as 
defining the boundary curve itself, and not all points in the r1 plane, 

* The last term is merely the constant A,  which is, as 
has been shown, determined by the ~0nthtion of mag- 
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the ialues u (R, T) on the circumference is given by 

1 2s 9.'-R= d7 
"('*u)wg[ ~ ( ~ 1 ' )  R2+1J-2Rr COB (u-T) 

nification of the z and z' fields at infinity. The 

1 2r corresponding integral-- S €(Q) dp does not appear in 
2 ' r ~  

equation being zero as a necessary 
of the coincidence of directions at infinity and, in 
general, if the region at m t y  is rotated, is % constant 
different from zero. 

Investigation of equation (18)*-This equation is 
of fundamental importance. A discussion of some of 
its properties is therefore of interest. It should be 
&st noted that when the function #(p) is considered 
known, the equation reduces to a definite 
  he function e(p) obtained by this evaluation is the 
"conjugate" function to $(p), so called because of the 
relations existing between the coefficients of the 
Fourier expansions as given by equations (11) and (12). 
For the existence of the integral it is only necessary 
that #(p) be piecewise continuous and differentiable, 
and may even have infinities which must be below 
first order. We shall, however, be interested only in 
continaous single-valued functions having a period 27r, 
of a type which result from continuous c1ose.d curves 
with a proper choice of origin. 

If equation (13) is regarded as a definite integral, it is seen 
to be related to the well-known Poisson integral which solves 
the following boundary-value problem of the circle. (Reference 
3.) Given, say for the z plane a single-valued function u(Rir) 
for points on the oircumference of a circle w=&eh (center at 
origin), then the single-valued continuous potential function 
u(r.ul in the external region %=re* of the circle which assumes 

V 

and similarly for the conjugate function v(r,u) 

integral equation whose process of solution becomes 
more intricate. I t  would be- surprisii, indeed, if 
anything less than a functional or integral equation 
were involved in the solution of the general problem 
stated. The evaluation of the solution of equation (13) 
is readily accomplished by a powerful method of sue- 
cessive appro-ati~n~. I t  will be seen that the 
nearness of the curve ae*@ to a circle is very dgnifi- 
a n t ,  and in practice, for airfoil shapes, one or at most 
two steps in the process is found to be sacient  for 
great 

~h~ quantities # and considered as functions of 
have been denoted by $(p) and ~(p) ,  respectively. 
When these quantities are thought of as functions of 0 
they shall be written as $(B) and a@), respectively. - 

~ h ~ ~ ,  by definition 

and z.. #[p(@)I (15) 
~(0) = & - @ ) I  

p-'='* we have 
e(v) =P-~(P) 
p (e) = a+ z(e) (1 6) 

We are seeking then two functions, #(p) and a(p) ,  
conjugate in the sense that their Fourier series expan- 
sions are given by (11) and (121, such that +[p(e)] = 

$(O) where $(B) is a known single-valued function of 
period 2r. 

Integrating equation (13) by parts, we have 
- 

These may be written as a single equation 

where the value f(z) at a point of the external region z=yrei8 is 
expressed in terms of the known values f(w) along the circum- 
ference w=Reb. In particular, we may note that s t  the 

eb + ecr u-T) 
boundary it&, since i ;-i=;i; = cot &j-, we have 

i 2s  
u(R,u) +iv(R,u) = -- f [u(R,r) +it(R,r)] cot v d ,  

2* 0 

which is a special form of equations (13) and (14). 

The quantity $ is immediately given as a function 
of 0 when a particular closed curve is preassigned, and 
this is our starting point in the direct process of trans- 
forming from airfoil to circle. We desire, then, to find 
the quantity $ as a function of p from equation (13), 
and this equation is no longer a definite integral but an 

8 This iunetion will be called "confnrrnal angular distortion" function, for reasons 
evident latar. 

I The term log sin is real only in the range p= p' to 

(p = 2r+ p', but we may use the interval 0 to 2' for p 
with the understanding that only the real part of the 
logarithm is retained. 

Let us write down the following identity: 
8- 8' p- p' =log - log sin - - 2 2 

(e+z,)-(e+~,)~ s;n ( e + g  - (e+z2)' 
sin 2 2 +log s-el +log (O+~)-(B+Z,) '  

sin - 2 sin 2 

(e+~*) - (e+s*)/ sin a 
0 $...+log ' +... (e + zl-,) - (6 + a-l>' sin 2 

(Of&)- (B+z~)' sin (e-bz) - (Bf2)' 
sin 2 - 2 +.log (e + - (e + ii,-l)J sin 

+log (t?+i&)-(BCg)' 
2 sin 2 

where in the last term we recall that e+a(e) = p(0); andl 
where it may he noted that each denominator is the 
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numerator of the preceding term. The symbols zk 
(k = 1, 2, . . . , n) represent functions of 0, which thus 
far are ~ b i t r a r y . ~  

- Since by equation (15) $(8) =#[p(B)] we have for 
corresponding elements dB and dp 

Then multiplying the left side of equation (17) by 

1 de dp and 6he right side by 5 de and inte- 
?r 

. grating over the period 0 to 2?r we obtain 

1 2r 0-6' d#(e) d,+ 
a[p(et)] = z (0') = ; S log sin 7 -;lij- . . . 

0 d 

(e+a(e)) - (e+a(e))' 
,2?r sin----- 2 dm d0 (18) 

+; l o g 7 +  &) - (8 + 3' dB 0 sin 
2 

where k = 1, 2, . . ., n. 
We now choose the arbitrary functions &(Of) SO that 

z, (el) = o 
and 

1 2?r ~ ( 6 ' )  = ; x log sin (e+%-l)-(e+zk-l)'B(e)de 2 de (19) 
0 

where k = 1, 2, . . . , n. 
Equation (18) may then be written 

z(el)=q,+z,+(&-zl) . . . +(zn-an-,)+(z-&) (20y 
or z(e')=Al+h+ . . . L+A 
where Ak(e') =zk-zk-l and is in fact the kth term of 
equation (18). The last term we denote by A. 

From equation (19) we see that the function sk(@') is 
obtltined by a knowledge of the preceding function 

For convenience in bhe evaluation of these 
functions, say 

1 2r (e+zk) - (8+zk)' d$(~)  de 
Zk+, (8') = ; $ log sin - -- 

0 2 de 

we introduce a new variable pk defined by 
vkP0) =O+zk(B) (k='l, 2, . . ., n) 

Then 

From the definition of pk as 
vt(0) =O+b(B) 

* The symbol (9+cr)' represents #+a*(@) and Is used to denote the .same function 
of 9' that 9+ar(9) Is of 9. The variables 9 and 0' are regarded ns Independent of enc:h 
other. 

we may also define the symbol ek(pk) by 

It is important to note that the symbols zk, ek, s* 
denote the same quantity considered, however, as a 
function of 8, pk, PI-,, respectively. 

The quantities (zk-zk-,_,) in equation (20) rapidly 
approach zero for wide classes of initial curves $(8), 
i. e., $[8(pk)] very nearly equals $[B(pk+l)] for even 
small k's. The process of solution of our problem is 
then one of obtaining successively the functions $(8) ,  
$[e(p1>l, $[e(a)l, . . . . $[e((p,>l where it[8(pn)l and 
ii,[O(cp,)] become more and more "conjugate." The 
process of obtaining the successive conjugates in prac- 
tice is explained in a later paragraph. We first pause 
to state the conditions which the functions pk are sub- 
ject to, necessary for a one-to-one correspondence of 
the boundary points, and for a one-to-one corre- 
spondence of points of the external regions, i. e., the 
conditions which are necessary in order that the 
transformations be conformal. 

In order that the correspondence between boundary 
points of the circle in the z plane and boundary points 
of the contour in the z' plane be one-to-one, i t  is 
necessary that B(p) be a monotonic increasing function 
of its argument. This statement requires a word of 
explanation. We consider only values of the angles 
between 0 and 2r. For a point of the circle boundary, 
that is, for one value of p there can be only one value 
of 8, i. e., @(p) is always single vdued. However, a(@, 
in general, does not need- to be, as for example, by a 
poor choice of origin it may be many valued, a radius 
vector from the origin intersecting the boundary more 
than once; but since we have already postulated that 
#(@) is single valued this case can not occur, and p(0) 
is also single valued. If we decide on a definite direc- 

de 
tion of rotation, then the inequality - 2 0 expresses 

dp - 
the statement that as the radius vector from the origin 
sweeps over the boundary of the circle C, the radius 
vector in the z' plane sweeps over the boundary of B 
and never retraces its path. 

The inequality 

corresponds to 

Also, t.he condition 

corresponds to 
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de do 
Multiplying - by a we get 

do 

This relation is shown in Figure 5 as a rectangular 

hyperbola. We may notice then that the monotonio 
dc 

behavior of o(e) and B(oj requires that - remain on 
d9 

the lower branch lo of the hyperbola, i. e., 
d - < 1  

'"=d9= (22) 

I t  will be seen later that t.he limiting values 

correspond to points of infinite velocity and of zero 
velocity, respectively, arising from sharp corners in the 
original curve. 

The condition for a one-to-one conformal corre- 
spondence between poihts of the external region of the 
circle and of the external region of the contour in the 
z' plane may be given (reference 5, p. 98 and reference 
6, Part 11) as follows: There must be a one-to-one 
boundary point correspondence and the derivative of - 
the analytic function z' = zei: ' given by equation (10) 
must not vanish in the region. That is, writing g(z) 

for 2 5 we have 
1 9  

the integral transcendental function eP(*) does not vanish 
in the entire plane, the condition is equivalent to 

dg (2) z-# - 1 for J zl >R dz 

10 The values of the upper branch of the hyperbola arise when the region internal 
to the curve a8 J+i* is trmsformed into the external region of a circle, hut may also 
there be avoided by de-g r=p+tJ instead of cp-0. 

By equation (10') we have on the boundary of the I circle, g (Ref.) = J. - $,, - C, and 

the f b t  term on the right-hand side being real and the 
last term a pure imaginary. We have already postu- 
lated the condition 

de 
-m l-< 1 - dy7' 

as necessary for a one-to-one boundary point come- 

g(z)d - spondence. Now by writing z = c + i~ and z -- dz -. 

P((,q) + iQ(.$,q), we note that d* gives the boundary do 
values of a harmonic function P ( ~ , T )  and therefore this 
function assumes its maximum and minimum values 
on the boundary of the circle itself. (Reference 3, p. 

223.) Hence d d i t )  can never become - 1 in the 

external region, i. e.,  can never vanish in this dz 
region. 

At each step in the process of obtaining the sucres- 
sive conjugates we desire to maintain a one-to-one 
correspondence between 8 and on, i. e., the functions 
B((pn) and (pn(0) should be monotonic increasing and are 
hence subject to a restriction similar to equation (22), 
viz, 

The process may be summed up as follows: We con- 
sider the function $(e) as known, where $(e) is the 
functional relation between $ and 8 defining a dosed 
curve aeTfie. The conjugate of q(8) with respec$ to e 
is a1 (8). We form the variable pl = 8 + el (8) and also 
the function $[8(ql)]. The conjugate of $[8(01)] with 
respect to o1 is C*~(V~)  which expressed as a function of 
8 is ~ ~ ( 8 ) .  We form the variable p2 = 8 + ~ ( 8 )  and the 
function $[8((pz)]. The conjugate of $[B(%)] is  d * t ( ~ ) ,  

which as a function of 8 is i3(8), etc. The graphical 
criterion for convergence is, of course, reached when 
the function $ [ t ~ ( ~ ) ]  is no longer altered by the 
process. The following figures illustrate the method 
and exhibit vividly the rapidity of convergence. The 
numerical calculations of the various conjugates are 
obtained from formula I of the appendix. 

In Figure 6, the $(e) curve represents a circle re- 
ferred to an origin which bisects a radius (obtained 
from an extremely thick Joukowsky airfoil) (see p. 26) 
and has numerical values approximately five times 
greater than occur for common airfoils. The $(a) ' 

curve is known independently and is represented by 
the dashed curve. The process of going from $(8) to 
J.((P) assuming #(o) as unknown is as follows: The 
function Sl (8) , the conjugate function of iC;(B), is found. 
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The quantity $ is then plotted against the new variable 
n = e+zl(e) (i. e., each point of $(0) is displaced hori- 
zontally a distance 4) and yields the curve $[e(n)]. 
(Likewise, ~ ( 6 )  is plotted against (pl yielding q((pl).) 

is drawn at P'. This process yields the function &(0). 
The quantity $ is now plotted against the new variable 

= e +a(e) (i. e., each point of $(8) is displaced hori- 
zontally a distance 4) giving the function $[O(e)]. 

The function is now determined as the conjugate This curve is shown with small circles and coincides 
function of $[6(ql)]. This function expressed as a 
function of 6 is e*2[q1(B)] =%(8). I t  is plotted as follows: 

with $(P). Further application of the process can 
yield no change in this curve. I t  may be remarked 
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method. In F i e  7 the $(8) curve is shown, and in 
F i e  8 it is reproduced for one octant." The value 
is $(0) =log sec 0. The function $[O(ql)] is shown 
dashed; the function $[B(~)] is shown with small 
crospes; and $ [ t~ (~ ) ]  is s h o ~  with small circle? The 
solution $(p) is represented by the curve with small 
triangles and is obtained independently by the known 
transformation (reference 3, p. 375) which transforms 
the external region of a square into the external region 
of the unit circle, as follows: 

where P(:) denotes a power series. Comparing this 

with equation (lo), we find that $(p) except for the 

constant $o is given as the real part of log 1 + [ <:I 
evaluated for z=&" and that e ( ~ )  is given as the 
negative of the imaginary part. I t  may be observed 
in F i e  8 that the function $[e(*)] very nearly 

FXQWE 8.-Procsss applied to transforming a square into a circle 

equals $(p). The functions e(p) and ~(0) are shown in 
1 

F i e  7 (a); we may note that at  q=x, which corre- 

do 
sponds to a corner of the square, a;;=l or also, 

11 Becansa of the sgmmetrp involved only the interval 0 to i need be used. The 
integral in the appendix can be treated a6 

1 2s  e(v9 =- - s $(c?) cot 9 dv 
2.0 

f -- { $(c?)[cot z(w-&-cot 2(r+d)ldcp 

I t  may be remarked that the rapidity of convergence 
is influenced by certain factors. I t  is noticeably af- 
fected by the initial choice of ~ ( 0 ) .  The choice 
~ ( 0 )  = 0 implies that 9 md q are considered to be very 
nearly equal, i. e., that aee" represents a nearly cir- 
cular curve. The initial transformation given by 
equation (5) and the choice of axes and origin were 
adapted for-the purpose of obtaining a nearly circular 

Frow~ 9.-Translation by the distance OM 

curve for airfoil shapes. If we should be concerned 
with other classes of contours, more appropriate 
initial transformations can be developed. If, how- 
ever, for a curve see" the quantity e = q - 9 has large 
values, either because of a poor initial transformation 
or because of an unfavorable choice of origin, it may 
occur that the choice ~ ( 0 )  =0 will yield a function 

de1 el(*) for which - may exceed unity at some points, do, 
thus violating coiiition (22'). such slopes can be 
replaced by slopes less than unity, the resultingfune- 
tion chosen as ~ ( 0 )  and the process continued as 
before.la Indeed, the closer the choice of the function 
g(0) is to the final solution a(@), the more rapid is the 
convergence. The case of the square illustrates that 
even the relatively poor choice ~(8) = 0 does not appre- 
ciably defer the convergence. 
The translation zl=z+cl.-Let us divert our 

attention momentarily to another transformation 
which will prove useful. We recall that the initial 
transformation (eq. (5)) applied to an airfoil in the S. 
plane gives a curve B in the zJ plane shown schemati- 
cally in Figure 9(a). Equation (10) transforms this 
curve into a circle C $bout the origin 0 as center and 
yields in fact small values of the quantity q- 0. We 
are, however, in a position to introduce a convenient 
transformation, namely, to translate the circle C into 
a most favorable position with respect to the curve B 
(or vice versa). These qualitative remarks admit of a 
mathematical formulation. It is clear that if the 
curve B itself happens to be a circle l3 the vector by 
which the circle C should be translated is exactly the 
distance between centers. I t  is readily shown that 

'1, The tirst step in the process is now to d 0 5 e  cpo=9+~(9) and 6rm the function 
J[U(~)].  he wnjugste function of &[8(c~e)l is e*oW which expressed a function 
of 9 is zl(e), etc.. 

See p. 26. 
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then equation (10) sllould contain no constant term. 
We have 

a 
2 C" 
1 2'' 

(10) 
Z' = ze 

= z ( l - + s + i c ) ' +  .)(l+3+ . ) x 

(I+$+ . . ) etc. 

= z  I+-+-,+. . . . ( 2 : .  1 t10a) 
where 

k l = ~  
el2 k2=~2+- 2 

c 
k a = ~ + + Z ~ l  + L  6 . . . . . . . . . 

I t  is thus apparent that if equation (10) contains no 
first harmonic term, i. e.,.if 

$?T 
el = ~ ~ + i B ~ = - $ # e ~ ~ d ~ =  0, " 0 

the transformation is obt.ained in the so-called normal 
form 

This translation can be effected either by substit.uting 
a new variable zl = z + s, or a new variable zl' = z' - el. 

10 
.05 

If 0 
-. 05 
-. 10 
-. 15 
.20 
. I5 

$. 10 
.05 
0 

.05 
6 0 
-. 05 
.I5 

' lo 
$105 

0 
8 8 6  

FIOWBE 10.- he $(el and 51(e1) curves (for Clark Y airfoii) 

This latter substitution will be more convenient at 
this time. Writing 

zl' = aeS~+f@i, ia,  and z' = ae++ie 

we have 
aeS1+f@~ = ae#+@- ae~+'6 

The variables and el, can be expressed in terms of 
#, 8, 7, and 6. Tn Figure 9(b), P is a point on the B 

.- -- 
1' These constants <*an be obtained in a recnrsion form. See footnote 16, 

curve, i. e., OP = ae*, PQ represents the translation 
vector ~ ~ = a e y + ~ ~ ,  OQ is ae"+fh, and angle PO& is 
denoted by p. Then by the law of cosines 

e"l= e2* + e2r - 2e*e7 cos (8 - 6) (a) 

and by the law of sines 

e r s k  (8-6) sin /A" e*l 

er-* sin (8 - 6) 
or el=o+r=e+tan-' l-eq-* cos (o-6) (b) . , 

In Figure 10 are shown the g(8)- and S(8) curves for the 
Clark Y airfoil (shown in. fig. 4) and the and 
el(B1) curves which result when the origin is moved 
from 0 to M. I t  may be noted that ~ ( 8 ~ )  is indeed 
considerably smaller than i(8). I t  is obtained from 

and the constant #o is given l6 by 

The combined transformations.-It will be useful to 
combine the various transformations into one. We 
obtain from equations (5) and (10). an expression as 
follows: . 

or we can also obtain a power series development in z 

where l6 a, = kn+l f a2h,-l 

The constants k, may be obtained in a convenient 
recursion form as 

The constants h, have the same form as k, but with 
each ci replaced by -c, (and h,,= 1). It will be re- 

a The constant $0 is invarjant to change of origin. (See p. 26.) It should he 
remarked that the translation by the vector cl is only a matter of convenience and 
is esperially useful for very irregular shapes. For a study of the properties of airfoil 
shapes we shall use only the original r ( q )  curve. (Fig. lob).) 

16 BY wuations (5) and (10) we have 

- ;c. 
10 

Thecanstant k. Is tht~s the coefficient of in theexpansion of e and the constant 

-; 5 
h, the coefficient of & in the expansion of c For .the recursion form for kk. 
see Smithsonian Mathematical Formula and Tables of Elliptic Functions, p. 1~0 .  
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called that the values of c, are given by the coefficients 
of the Fourier expansion of +(p) as 

'"-'? #(p)e*dp where R = m k  IF--; 0 

and 

The first few terms of equation (25) are then as 
follows : 

c12 cj3 
c2 + T+ a.2 c3 + cflI + T - cla2 

s=z+c1+ + . 2 2  
+ . . . (25') 

By writlng zl = z+cl, equation (25) is cast into the 
normal form 

The constants b, may be evaluated directly in terms 
~f a, or may be obtained merely by replacing +(p) by 

(p) in the foregoing values for a,. 
The series given by equations (25) and (26) may be 

inverted and z or 2, developed as a power series in {. 
Then 

and. 

The various transformations have been performed 
for the purpose of transforming the flow pattern of a 

FIGURE 11.-Stremlines about circle with zero circulation (shown by the full 
lines) Q= - Vsinh @ sin p=constant 

circle .into the flow pattern of an airfoil. We are thus 
led immediately to the well-known problem of deter- 
mining the most general type of irrotational flow 
around a circle satisfying certain specifled boundary 
conditions. 

The flow about a circle.-The boundary conditions 
to be satisfied are: The circle must be a streamline of 
flow and, at infinity, the velocity must have a given 
magnitude and direction. Let us choose the E axis as 
corresponding to the direction of the velocity a t  

408318 0-41-3' 

infinity. Then the problem stated is equivalent to 
that of an infinite circular cylinder moving parallel to 
the E axis with velocity Vin a fluid a t  rest a t  infinity. 

The general complex flow potential l7 for a circle of 
radius R, and velocity at infinity V parallel to the x 
axis is 

ir z 
W(Z) = - V ( Z + $ ) - ~  log 

where r is a real constant parameter, known as t.he 

r 
FIGURE 12.-Streamlines about circle for V-0 Q=-gt=constant 

circulation. I t  is dekned as along any closed 
curve inclosing the cylinder, v, being the velocity 
along the tangent at each point. 

Writing z =Re@+ 'P and w = P +iQ, equation (29) be- 
comes 

ir 
wa - V cosh(p -t ip) - 21;(p+ ip) (29') 

Q= - V sinh M sin p--I.L 2* ' I  
For the velocity components, we have 

' In Figures 11 and 12 are shown the streamlines for 
the cases r=  0, and V= 0, respectively. The cylinder 
experiences no resultant force in these cases since all 
streamlines are symmetrical with respect to it. 

The stagnation points, that is, points for which u 
dw and v are both zero, are obtained as the roots of a = 0. 

This eauation has two roots. 

and we may distinguish differpqt types of flow accord- 
ing as the &scriminant 16+R2V2- r2 is positive, zero, 
or negative. We recall here that a conformal trans- 
formation w=f(z) ceases to be conformal at points 

where 2 vanishes, and at a stagnation point the Row 

divides and the streamline possesses a singularity. 
17 Reference 4, p. 56 or reference 5, P. 118. The log term must be added bemuse 

the region outside the inhito cylinder (the point at inanity excluded) is doubly 
connected and therefore we must include the possibility of cyclic motion. 
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The different types of flow that result according 

as the parameter r2 $ 161'R'V2 are represented in 

Figure 13. In  the first case (fig. 13 (a)), which will not 
interest us later, the stagnation point occurs as a 
double point in the fluid on the q axis, and all fluid 
within this streamline circulates in closed orbits around 
$he circle, while the rest of the fluid passes downstream. 
In the second case (fig. 13 (b)), the stagnation points 
are together at  S on the circle ~ e ~ v  and in the third 
case (fig. 13 (c)) they are symmetrically located on the 
circle. We have noted then that as I' increases from 
0 to 4rRV the stagnation points move downward on 

the circle ~ e ~ p  from the 5 
axis toward the q axis. 
Upon further increase in 
I' they leave the circle and 
are located on the q axis in 
the fluid. 

Conversely, it is clear 
that the position of the 
stagnation points can de- 
termine the chculation r. 
This fact will be shown to 
be signifjoant for wing- 
section theory. At pres- 

(b) ent, we note that when 
both r and V f  0 a marked 
dissymmetry exists in the 
streamlines with respect to 
the circle. They are sym- 
metrical about the q axis 
but are not symmetrical 
about the 6 axis. Since 
they are closer together on 
the upper side of the circle 
than on the lower side, a 

FIGWE 13.-Streamtines about circle resultant force exids per- 
[fmm Lagally-Handbuoh der Physik pendicular to the motion. 

r ~ d .  W] ~ - = ~ s i n h  r sin r-Q-con- We shall now combine 
stant (a) r*>l&rRJV(b) r l - y k w ~ ,  the transformation (27) 
(c) P < 1&1R*V1 and the flow formula for 

the circle equation (29) and obtain the general complex 
flow potential giving the 2-dimensional irrotational flow 
about an airfoil shape, and indeed, about any closed 
curve for which the Riemann theorem applies. 
The flow around the airfoil.-In Figure 14 are 

given, in a convenient way, the different complex 
planes and transformations used thus far. The com- 
plex flow potential in the z plane for a circle of radius 
R origin at the center has been given as 

permit of a change in the direction of flow at infinity 
by the angle a which will be designated angle of attack 
and defined by the direction of flow at infinity with 
respect to a fixed axis on the body, in this case the 
axis v=O. This flow is obtained simply by writing 
zeia for z in equation (29) and represents a rotation of 

FIGWE 14.-The collected transformations 

the entire flow field about thelcircle by angle a. We 
have 

R2 w ( z ) = - ~ ( z e ~ a + ~ e - i a ) - ~ l o ~ z  (31) 
2r 

where V, the velocity at  idnity,  is in the direction of 
the negative 6 axis. Let us introduee a parameter to 

Since a conformal transformation maps streamlines 
and potential lines into streamlines and potential lines, 
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we may obtain the complex flow potentials in the 
various planes by substitutions. For the flow about 
the circle in the zl plane, z is replaced by zl - cl 

For tohe %ow about the B-curve in the z' plane, z is 
.replaced by z(z') (the inverse of eq. (1Oa)) and for the 
flow about the airfoil in the { plane z is replaced by 
z ( { )  from equation (27) 

R2 i r  W ( { )  = - V[z({)eia+ e ] - log z({) (33) 
z (0 

The flow fields at infinity for a11 these transformations 
have been made to coincide in magnitude and direction. 

At this point attention is directed to two impbrtant 
facts. First, in the previous analysis the original 
closed curve may differ from an airfoil shape. The 
formdas, when convergent, are applicable to any 
closed curve satisfying the general requirements of 
the Riemann theorem. However, the peculiar ease of 
numerical evaluations for streamline shapes is note- 
worthy and significant. The second important fact is 
that the parameter I' which as yet is completely unde- 
termined is readily determined for airfoils and to a 
discussion of this statement tlie next section is devoted. 
It will be seen that airfoils nlay be regarded as fixing 
their own circulation. 

Kutta-Joukowsky method for fixing the circula- 
tion.-All contours used in practice as airfoil profiles 
possess the common property of terminating in either 
a cusp or sharp corner a t  the trailing edge (a point of 
two tangents). Upon transforming the circle into an 

airfoil by { =f (z ) ,  we &all find that - is infinite a t  \:;I 
the trailing edge if the tail is perfectly sharp (or very 
large if the tail is almost sharp). This implies that 

dw d i  
the numerical value of the velocity / ;i; 1 1 = 14 is 

> 6 ,  " 0  

infinite (or extremely large) provided the factor 

is not zero a t  the tail. There is but one value of the 
circulation that avoids infinite velocities or gradients 
of pressure a t  ihe tail and this fact gives a practical 
basis for fixing the circulation. 

The concept of the ideal fluid in irrotat.iona1 poten- 
tial flow implies no dissipation of energy, however large 
the velocity at any point. The circulation being a 
measure of the energy in a fluid is unaltered and inde- 
pendent of time. In  particular, if the circulation is 
zero to begin with, i t  can never be different from zero. 

However, since all real fluids have viscosity, a better 
physical concept of the ideal fluid is to endow the 
fluid with infinitesimal viscosity so that there is then 
no dissipation of energy for finite velocities and pres- 
sure gradients, but for infinite velocities, energy losses 
would result. Moreover, by Bernoulli's principle the 
pressure would become infinitely negative, whereas a 
real fluid can not sustain absolute negative pressures 
and the assumption of incompressibility becomes in- 
valid long before this condition is reached. I t  should 
then be postulated that nowhere in the ideal fluid from 
the physical concept should the velocity become 

idnite. It is clear that the factor (21 must then be 

zero at the trailing edge in order to avoid infinite 
velocities. I t  is then precisely the sharpness of the 
trailing edge which furnishes us the folloding basis for 
fixing the circulation. 

dw I t  will be recalled that the equation &= 0 deter- 

mines two stagnation points symmetrically located on 
the circle, the position of which varies with the value 
of the circulation and conversely the position of a 
stagnation point determines the circulation. In  this 
paper the x axis of the airfoil has been chosen so that 
the negative end (8= n) passes through the trailing 
edge. Prom the calculation of a =  p- 8 (by eq. (13)) 
the value of p corresponding to any value of 8 is deter- 
mined as p = 8 + a, in particular a t  8 = 'R, p = u + 8, where 
8 is the value of e at the tail and for a given airfoil is a 
geometric constant (although nunlerically it varies 
with the choice of axes). This angle 8 is of consid- 
erable signScance and for good reasons is called the 
angle of zero lift. The substance of the foregoing 
discussion indicates that the point z = = - Rei# 
is a stagnation point on the circle. Then for this value 
of 2, we have by equation (32) 

This value of the circulation is then sufficient to 
make the trailing edge a stagnation point for any value 
of a. The airfoil may be considered to equip itself 
with that amount of circulation which enables the 
fluid to flow past the airfoil with a minimum energy 
loss, just as electricity flowing in a flat plate will dis- 
tribute itself so that the heat loss is a minimum. The 
final justification for the Kutta a s s ~ ~ i n ~ t i ~ n  is not only 
its plausibility, but also the comparatively good agree- 
ment with experimental results. Figure 15 (b) shows 
the streamlines around an airfoil for a flow satisfying 
the Kutta condition, and Figures 15 (a) and 15 (c) illus- 
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trate cases for which the circulation is respectively too 
small and too large, the stagnation point being then on 

the upper and lower surfaces, re- - spectively. For these latter cases, a- ('1 the complete flow is determinable 
only if, together with the angle of 

-. attack, the circulation or a stag- - (b) nation point is speci6ed. 
L 
A Velocity at the surface.-The 

flow formulas for the entire field 
e ( c )  are now uniquely determined by 
'C--ZZC substituting the value of r in equa- 
F,cmE Flow with tions (33) and (34). We are, how- 

circulationsmallerthanfor ever, in a ~osition to obtain much 
Kutta condition: (b) flow 
satisfyingguttacondition; simpler and more convenient re- 
(c) ROW with circdation lations for the boundarv curves 
greater than for Kutta 
condition themselves. Indeed, we are chiefly 

interested in the velocitv at the 
surface of the airfoil, which velocity is tangential to 
the surface, since the airfoil contour is a streamline of 
flow. The numerical value of the velocity at the 
surface of the airfoil is 

Then El = e*-*,, 
J1 +(gy 

d€ 
(37) 

By equation (5) 
l+3 

a2 
{= zr+-, and at the boundary z'=ae*+iO, or 

Z 

{ = 2a cosh (9 + i8) 

d ($ + ie) $=2? sinh(++i~)---- 
dz' 

equations (32 and (35) I Then finally 

dw dw dz 
v= Jvz+v;= 1vZ-iuv~ = Id{ - Isl&/ ' IQl' Igl 

We shall evaluate each of these fackors in turn. From 

At the boundary surface z=Reiq, and 

dw 
dz= - Veia(l t e-2i(a+*) - 2iVewiv sin(a + B) 

= 4e-2* (sinh2+ + sin2#) 

and I 8 1 = 2e-* ~s inh '+  + sin%) 

or 
dw - Ve-iq[(ei(a+~) - e-i(a+vl) + 2i sin(a + B)] d z -  - 

= - 2iVe-i~[sin(a + p) + sin(a + @)] 

and 

= Z V [ S ~ ( ~ +  p) +sin(a+ @)I (36) 

In general, for arbitrary r we fipd that 

To evaluate I$/ we start with relation (10) 

At the boundary surface 

2' = ze*-*o-ic where r = p - 8 and z = a e * ~ + i ~  

dw dz dz' 
2)F" - = - l % l  1 d z ~ ' ~ ~ ~ ' ~ ~ ~  

-  sin (a + p) + sin (a +,~)j(l  + $)e h 
- (39) 

J(sinhz+ + Sinz4(1+ (gy) 
In this formula the circulation is given by equation 
(35). In general, for an arbitrary value of r (see 
equation (36'))) the equation retains its form and is 
given by 

For the special case = 0, we get 

Equation (40) is a general result giving the velocity 
at any point of the surface of an arbitrary airfoil sec- 
tion, with arbitrary circulation for any angle of attack 
a. Equation (39) represents the important special 
case in which the circulation is specified by the Kutta 
condition. The various symbols are functions only of 
the coordinates (x, y) of the airfoil boundary and ex- 
pressions for them have already been given. In Tables 
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I and I1 are given numerical results for different air- 
foils, and explanation is there made of the methods of 
calculation and use of the formulas developed. 

We have immediately by equation (3) the value of 
the pressure p at any point of the surface in terms of 
the pressure at  infinity as 

Some theoretical pressure distribution curves are given 
at the end of this report and comparison is there made 
m5th experimental results. These comparisons, it will 
be seen, within a large range of angles of attack, are 
strikingly good.l8 

GENERAL WING-SECTION CHARACTERISTICS 

The remainder of this report will be devoted to a 
, discussion of the parameters of the airfoil shape affect- 

ing aerodynamic properties with a view to determining 
airfoil shapes satiifying preassigned properties. This 
discussion will not only furnish an illuminating sequel 

to the foregoing analysis leading to a number of new 
results, but will also unify much of the existing theory 
of the airfoil. In the next section we shall obtain 
some expressions for the integrated characteristics of 
the airfoil. We start with the expressions for total 
lift and total moment, first developed by Blasius. 

Blasius' formulas.-Let C in Figure 16 represent a 
closed streamline contour in an irrotational fluid field. 
Blasius' formulas give expressions for the total force 
and moment experienced by C in terms of the complex 
velocity potential. They may be obtained in the foI- 
lowing simple manner. We have for the total forces 
in the x and y directions 

19 A paper devoted to more extensive applications to present-day airfoils ia in 
progress. 

The pressure at  any point is 

p = p o - 3 ~ ~  
Then, 

P, - iP, =$ fvz(dy + idx) 
C 

where the bar denotes conjugate complex quantities. 
Since C is a streamline, v,dy - v,dx = 0. Adding the 
quantity 

;pf (v, + iv,) (v,dy - v,dx) = 0 
C 

to the last equation, we get Is. 

The differential of the moment of the resultant 
force about the origin is, 

dMo=p(x dx+ y dy) 
= R. P. of p[x dx-t y dy + i(ydx - xdy)] 
=R. P. of p z Z  

where " R. P. of" denotes the real part of the complex 
quantity. We have from the previous results 

P ( * ~ Z  dz Then dMo = - R. P. of 2 dZ 

and Mo = - R. P. of f ( k y z  dz c dz 

Let us now for completeness apply these formulas to 
the airfoil A in the l plane (fig. 14) to derive the Kutta- 
Joukowsky classical formula for the lift force. By 
equation (32) we have 

ir R2Ve - fa dw= - Veia-- 
dz 2rz + z2 

and by equation (25) 

a an df-l-+L- 
xi- z3 " '  

Then 
dw dw dz -=-.- 
d l  dz d l  

19 Ct Blasius, 8: 2s. f. Math. n. Phys. Bd. 58 S. 93 and Bd. 59 S. 43, 1910. 
Similarly, 

a less convenient relation to use than (42). 
Nota that when the region about Cis regular the value of the internal (42) remains 

unchanged by integrating about any other cnrve enclosing C. 
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and 

where 

r2 A2 = - 2R2VZ+ 2alV2e2'a - 4 ~ z  

Then 

Thdrefore 
P, = pVr sin a 
P, = pvr cos a 1 

and are the components of a force pVI' which is per- 
pendicular to the direction of the stream at infinity. 
Thus the resultant lift force experienced by the a'rfoil is 

L = ~ v ~  (44) 

and writing for the circulation I' the value given by 
equation (35) 

L=4uRpV2 sin (a+@) (45) 

The moment of the resultant lift force about the 
origin r = 0 is obtained as 

=R. P. of -:21i (coefficient of z-l) 

or, Mo is the imaginary part of up(A2+ Alel). After 
putting el = mei6 and al = b1eZf.r we get 

Mo = 2upV2b2 sin 2 (a + 7) + pVr m cos (a + 6) (46) 
The results given by equations (44) and (46) have 

physical significance and are invariant to a transforma- 

It-may be recalled that er-E?+(p)c~*dq 8ud al-a2+$+ea. (Sea eq. (2.59.) 
* 0 

tion of origin as may be readily verified by employing 
equations (26) and (32') and integrating around the Cl 
circle in the zl plane. It is indeed a remarkable fact 
that the total integrated characteristics, lift and loca- 
tion of lift, of the airfoil depend on so few parameters 
of the transformation as to be almost independent of 
the shape of the contour. The parameters R, 8, all 
and s involved in these relations will be discussed in a 
later paragraph. 

We shall obtain an interesting result by taking 
moments about the point { = cl instead of the origin. 
(M in fig. 17.) Bp equation (25) we have, 

and- by equation (43) 

x Axis 
/2a L 
u' 

FI(:UHE 17.-Moment arm from hi onto the lift vector 

This result could have been obtained'directly from 
equation (46) by noticing that pVr in the second term 
is the resultant lift force L and that Lm cos (a+8) 
represents a moment which vanishes at -M for all values 
of a. (In fig. 17 the complex coordinate of M is 
{ = mef6, the arm OH rs 7n cos (a + 6) .) The perpendic- 
ular hM from M onto the resultant lift vector is simply 
obtained from A&= L h M ,  
as 

b2 sin 2 (a + 7) 
'M-ZR sin (a+@) 

The intersection of the resultant lift  vector with the 
chord or axis of the airfoil locates a point which may 
be considered the center of pressure. The amount of 
travel of the center of pressure with chasge in angle 
of attack is an important characteristic of airfoils, 
especially for considerations of stability, and will be 
discussed in a later paragraph. 

21 First obtained by R. von Mises. (Reference 6.) The work of von Ivfiseu forms 
an elegant geometrical study of the airfoil. 



GENERAL POTEN'MAli THEORY OF ARBITRARY WING SECTIONS 21 

The lift force has been found to be proportional to If this moment is to be independent of a, the coeffi- 
sin ( 0+8 )  or writing a+'=@ I dents of sin 20 and cos 20 must vanish. - 

L=4?rpRP sin cq 

where LYI may be t ehed  the absolute angle of attack. 
Similarly writing 0 + y = a 2  

Mx=2?rb2pP sin 2a2 (50) 

With von Mises (reference 6, Pt. 11) we shall denote 
the axes determined by passing linea through M at 
angles ,f3 and y to the x axis as the first and second axes 
of the airfoil, respectively. (Eg. lS) The directions 
of these axes alone are important and these are fixed 
with respect /to a given airfoil. Then the lift L is 
proportional to the sine of the angle of attack with 
respect to the first axis and the moment about M to 

and 
b2 sin 27-RT sin(@+u) 

Hence, 
b2 r = - p d  u=27- 8 

Then if we move the reference point of the moment to 
b2 a point F whose radius vector from M is Re27-5, the 

moment existing at F is for all  angles of attack con- 
stant, and given by 

Mp=2upb2'V2 sin 2 ( 7 -  8) (51) 

WQWE 18.-Illustrating the geometrical properties of an airfoil (axes and lift parabola of the R. A. F. 19 airfoil) 

the sine of twice the angle of attack with respect to 
the second axis. 

From equation (47) we note that the moment at any 
point Q whose radius vector from M is re", is given by 

I t  has thus been shown that with every airfoil pro- 
file there is associated a point F for which the moment 
is independent of the angle of attack. A change in 
lift force resulting from. a change in angle of attack . - 
distributes itself so that its moment about F is zero. Ma = 2apb2V2 sin 2 (a + y) - LT cos (a + u) I From equation (47) it may be noted that at zero lift 

Let us d e t e b ,  whether there exist particular 
values of T and for which Mo is independent of the 
angle of attack a. m t i n g  for L its value by 
equation (45),  

sin2(af y)-4rpRTV2 sin(af ') ''' (a+3 

( i e  e.1 a= -8 )  the airfoil is subject to a moment couple 
which is, in fact, equal to MF. This nmment is often 
termed "diving moment" or "moment for zero lift." 
If Mp is zero, the resultant lift force must p h  through 
F for all angles of attack and we thus have the state- 
ment that the airfoil has a constant center of Dressure. 

And separating this trigonometrically 
Mo=2?rpV2[(b2 cos 27 - Rr cos (p + u)) sin 2a 

+ (b2 sin 27 - RT sin (8 + u)) cos 20  
-RT sin (B- u)] 

if and only if, the moment for zero lift is zero: 
The point F, denoted by von Mises as the focus of 

the airfoil, will be seen to have other interesting prop- 
erties. We note here thnt its construction is very 
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b2 coincident (8 = y) and opens upward when the second simple. I t  lies at a distance from Mon a line making axis is above the first (p< 7). 
angle 2y - 8 with respect to the x axis. From Figure 
18 we see that the angle between this line and the first 
axis is bisected by the second axis. 

The arm hp from F onto the resultant lift vector L 
(hF is designated F T  in Figure 18; note also that FT; 
being perpendicular to L, must be parallel to the direc- 
tion of flow; the line TV is drawn parallel to the first 
axis and therefore angle VTF= a+ B )  is obtained as 

or sekting b2 h=- sin 2(@- y) 2R 
h 

hp= - sin(a + 8) (52) 

But hp is parallel to the direction of a, and the relation 
h =  -hF sin (a+ 8) states then that the projection of 
hp onto the line thr0ug.h F perpendicular to the first 
axis is equal to the constant h (h is designated FV in 
the figure) for all angles of attack. In other words, 
the pedal points T determined by the intersection of 
hp and L for all positions of the lift vector L lie on a 
straight line. (The line is determined by T and V in 
fig. 18.) The parabola is the only curve having the 
property that pedal points of the perpendiculars 
dropped from its focus onto any tangent lie on a 
straight line, that line being the tangent at the vertex. 
This may be shown analytically by noting that the 
equation of L for a coordinate system having F as 
origin and F V  as negative x axis is 

h x sin al+ycos a l=hF= sin (a + 0) 

By differentiating with respect to a, = a +  8 and elim- 
inating a1 we get the equation of the curve which the 
lines L envelop as y2=4h(x+h). From triangle FIGS 
in Figure 18, it may be seen that the distance 

b2 
M F z H  is bisected at S by the line TV; for, since 

W. Miiller 2S introduced a third axis which has some 
interesting properties. Defining the complex coordi- 
nate 3-, as the centroid of the circulation by 

and using equations (25) and (32) one obtains 

lO-cl=%+i~o 
where 

1 b2 
h = 2  siIi (a+ 8) [R sin a+- sin (cu+2y)] R 

1 b2 [R cos a---cos (a+2y)] 
) (53) 

y0=2 sin (a+@) R 

The equation of the lift vector lines referred to the 
ori-oin at M and x axis drawn through M is 

b2 sin (a + y) 
x cos a- y sin a =  2R sin (a + 8) (54) 

and it may be seen that the point (Q, yo) satisfies this 
equation. The centroid of the circulation then lies on 

, the lift vectors. By elimination of a from equation 
(53) one finds as the locus of (Q, yo) 

b2 2q[R cos 8 - ~ c o s  (8- 2y)l + 2y0[R sin p 

which is the equation of a line, the third axis, and 
proves to be a tangent to the lift ptirabola: Geomet- 
rically, it is the perpendicular bisector of the line FF' 
joining the focus to the point of intersection of the 
first axis with the circle. (Fig. 18.) 

The confor~~al centroid of the contour.-It has 
already been seen that the point M has special inter- 
esting properties. The transformation from the air- 
foil to the circle having M as center was expressed in 
the normal form and permitted of a very small ~ ( p )  

b2 curve. (See p. 14.) 1 t  was also shown that. the 
FV= h = a  sin '(7- 8) and FSV=2(8-y)l lhen moment with respect to M is simply pmportiooal to 

b2 
SF= a. I t  has thus been shown that the resultant lift 

vectors envelop, in general, a parabola whose focus is 
at F and whose diirectrix is the first axis. The second 
axis and its perpendicular at M, it may be noted, are 
also tangents to the parabola being, by definition, the 

T resultant lift vectors for a =  - y and a= - - y, respec- 2 
tively. 

If the constant h reduces to zero, the lift vectors 
reduce to a pencil of lines through F. Thus a constant 
center of pressure is given by h = 0 or sin 2 (8 - y) = 0 
which is equivalent to stating that the first and second 
axes coincide. The lift parabola opens downward 
when the first axis is above the second axis (/3>y); it 
reduces to a pencil of lines when the two axes are 

the sine of twice the mgle of attack with respect to 
the second axis. We may note, too, that in the pres- 
entation of this report the coordinate of M, 3- = c,  

R 2?r 
=T f $ei*dp, is a function only of the first harmonic 

= 0 
of the $(p) curve. 

We shall now obtain a sivnificant property of M 
invariant with respect to the transformation from air- 
foil to circle. We start with the evaluation of the 
integral - .  

22 Reference 7, p. 169. Also Zs. fiir Ang. Math. u. Mech. Bd. 3 5. 117, 1923. 
Airfoils having the same Arst, second, and third axes are alike theoretically in 

total lift properties and also in travel of the center of pressure, i. e., they have the 
same lift parsbole. 
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where A is the airfoil contour, ds the differential of ternal to the line 4a in the { plane maps uniquely into 
dz arc along A, and / zl 9 be reeded, is the magni- . - .  

fication factor ?f the transformation { = f (z) mapping 
Moi l  into circle; i. e., each element ds of A when 

c r 1 $1 ds = ;r(~) 1d.l and by equation (25), 

= .f(c,+z+q+$+ . .)id21 

2 r  
= f o ( ~ ~ + R e + + 2 ~ - ~ p +  RZ %e-".+ . .)Rdq 

=21rRcl 

=fix C ~ s = c ~ J I @ ~ ~ s  A d~ 

Then 

the region external to the circle I zl =a. A point Q bf 
the line correswnding to a point p at aeU obtained 
by simply adding the-vectors a(ew+ eqi8) or completing 
the parallelogram OPQP'. 

magdied by - gives dS the differential of arc in the If l 
plane of the circle, i. e., Idzl. Then we have, 

The point M of the airfoil is thus the conformal-cen- 
troid obtained by giving each element of the contour 
a weight equal to the magnification of that element, 
which results when the airfoil. is transformed into a 
circle, the region at  infmity being unaltered. I t  lies 
within any convex region enclosing the airfoil contour.23 

For tj = 0, we have from equation (6) . 
z=2a cosh tj cos 8=2a cos 6 
y-2a sinh #sin 8=0 

ARBITRARY AIRFOILS AND THEIR RELATION TO 
SPECIAL TYPES 

The total lift and moment experienced by the air- 
foil have been seen to depend on but a few parameters 
of the airfoil shape. The resultant lift force is com- 
pletely determined for a particular angle of attack by 
only the radius R and the angle of zero lift B. The 
moment about the origin depends, in additi~n, on the 
complex constants el and al or, what is the same, on 
the position of the conformal centroid M and the focus 
F. The constants cl and al were also shown (see foot- 
note 20) to depend only on the first and second har- 
monics of the e ( ~ )  curve. Before studying these 
parameters for the case of the arbitrary airfoil, it will 
be instructive to begin with special airfoils and treat 
these from the point of view of the "conformal angular 
distortion " [e(~)] curve. 

Flow about the straight line or flat plate.-As a 
h t  approximation to the theory of actual airfoils, 
there is the one which considers the airfoil section to 
be a straight line. I t  has been seen that the line of 
length 4a is obtained by transforming a circle of radius 

aa a, center at the origin, by { = z+- . The region ex- 
Z 

Cf. P. Frank and K. Lowner, Math. Zs. Bd. 3, 9. 78, 1919. Also refere~lce 5, 
p. 146. 

Thea the parameters f ~ r  this case ere R=a ,  B=0, 
al=a9 (i. e., b=a, r=O), and M is at the origin 0. 
Taking the Kutta assumption for determining the 
circulation we have, 

the circulation, I '=4~aVsin a 
the lift, L=4rapV2 sin a 
moment about M, Mx=2&pV2 sin 2a 1 (57) 

Zi2 
position of F is at zp = c1 +B eq2r-fl = a  1 

Since B= 7, we know that the travel of the center of 
pressgre vanishes and that the center of pressure is at  

FIGURE 19. 

For  at  one-fourth the length of the line from the lead- 
ing edge. The complex flow potential for this case is 

a2 . w({) = - V[z${)eia + - eTia 
i r 

Z ( 0  
I + log z(T) (58) 

r where z({) = J(iY + a2 is the inverse of equation 
. . .  

(5). Since #(v)  = e(p) = 0 for this case, equation (39) 
giving the velocity at the surface reduces to 

t== v[&(':a?]for P = 4 ~ a v  sin at 
sin 9 

and by equation (41 ) v = V (Sinst: "1) for r = 0. 

Flow about the elliptic cylinder.-If equation (5) 
is applied to a circle with center at the origin and 
radiil- ae*, the ellipse (fig. 19) 

is obtained in the { plane and the region external to 
this ellipse is mapped uniquely into the region external 
to t.he circle. The same transformation also trans- 
forms this external region into the region internal to 
the inverse circle, radius ae-*. We note that a point 
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Q of the ellipse corresponding to P at aeHW is 
obtained by simply completing the parallelogram 
OPQP' (fig. 19) where P' now terminates on the circle 
ae-+. The parameters are obtained as R=ae+, @=0, 
al =a, M is at  the origin 0. Then, assuming the rear 
stagnation point at the end of the major axis, 

?? =4?rae+V iin a 
L=4?rpae+P sin a! 

Mar=2za2pVa sin 2a 

Since /3 = y, the point F is the center of p w u r e  for all 
angles of attack and is located at zF=ae'+ from 0 or a 
distance ae+ from the leading edge. The quantity 

== c o s h + + ~ i n h + = J ( ~ + ~ ~ + )  
EE' 2a(e++ e-+) 4 cosh + 4 

represents the ratio of the distance of F from the 
1ead.g edge to the major diameter of the ellipse. 

The complex flow potential is identical with that 
given by equation (58) for the flat plate, except that 
the quantity a2 in the numerator of the second term is 
replaced by the constant aae2+. Since +(q) =constant, 
e(q) = O  and equation (39) giving the velocity at each 
point of the surface for a stagnation point at end of 
major axis becomes 

v =  +in (q + or> + sin ale+ 
Jsinh 2+ + sin2(P 

and for zero circulation by equation (41) 

Circular arc sections-It has been shown that 
a2 the transformation t = z f Z  applied to a circle with 

center at z=0 and radius a g i~es  a straight line in the 
plane, and when applied to a circle with center z = 0 

and radius different from a gives an ellipse in the t 
plane. We now show that if it is used to transform a 
circle with center at z=is (s being a real number) and 
radius d m ,  a circular arc results. The coordinates 
of the transform of the circle C in the !: plane are given 
by equation (6) as 

x=2a cosh + cos B 
y=2a cosh + sin B 

A relation between + and B can be readily obtained. 
In right triangle OMD (fig. 20), OM- s, angle OMD- 0, 
and rec8llinZr; that the product of segments of any 
chord through 0 is equal to a2, OD = % (OP - OP1) = - - 

(d'-e-t) =a sinh #. Then s sin B =a  sinh and from a 2 
the equation for y, y = 2s sin%. Eliminating both B and 
+ in equation (6) we get 

the equation of a circle; but since y can have only 
positive values, me are limited to a circular arc. In 
fact, as the point P in Figme 20 moves from A' to A 
on the circle, the point Q traverses the arc Alf A1 and 
as P completes the circuit AA' the arc is traversed in 
the opposite direction. As in the previous cases, we 
note that the point Q corresponding to either P or to 
the inverse and reflected point P' is obtained by- com- 
pleting the parallelogram OPQP'. We may also note 

FIGWE 20.-The circular arc airfoil 

that had the arc AIA1' been preassigned with the 
requirement of transforming it into the circle, the most 
convenient choice of origin of coordinates would be 
the midpoint of the line, length 4a, joining the end 
points. The curve B then resulting from using trans- 
foilnation (5) would be a circle in the z' plane, center 
at  z' =.is, and the theory developed in the report could 
be directly applied to this continuous closed B curve. 

Had another axis and origin been chosen, e. g., as in 
Figure 21, the B curve resulting would have finite 
discontinuities at  A and A', although the arc A1AIf is 
still obtained by completing the parallelogram OPQP'. 

The parameters of the arc AIAlf of chord length 4a, 
and maximum height 2s are then, R =  

S 
@= tan-I-. The focus F may be constructed b y  a 

/ erecting a perpendicular to the chord s t  A' of length s 



GENERAL POTENTIAL THEORY OF ARBIXRAFCY WING SECTIONS 25 

and projecting its extremity on ,%€A'. The center M' 
of the arc also lies on this line. 

The infinite sheet having the circular arc as cross 
section contains as a special case the flat plate, and 
thus permits of a better approximation to the mean 
camber line of actual airfoils. The complex flow poten- 
tial and the formulas for the velocity at the suFface 
for the circular arc are of the same form as those 
given in the next section for the Joukowsky airfoil, 
where also a simple geometric interpretation of the 
parameters r and $ are given. 

Joukowsky airfoils.-If equation (5) is applied to 
a circle with center at z= s, s being a real number, and 
with radius R=a+  s, a symmetrical Joukowsky air- 
foil (or strut form) is obtained. The general Joukow- 
sky airfoil is obtained when the transformation 

aa I= z+; is applied to a circle C passing through the I 
point z= -a apd coqtaining z= a (near the circum- 
ference-usually), and whose center M is not limited to 
either the x or y axes, but may be on a line OM inclined 
to the axes. (Fig. 22.) The parametric equations of 
the shape are as before 

x-2a cosh # cos 0 

y = 2a sinh $ sin 0 1 
Geometrically a point Q of the airfoil is obtained by 
adding the vectors ae#+w and ae-#-" or by completing 
the parallelogram OPQP' as before, but now P' lies on 
another circle B' defined as z=  ae-p-", the inverse 
and reflected circle of B with respect to the circle of 
radius a at the origin (obtained by the transformation 
of reciprocal radii and subsequent reflection in the x 
axis). Thus OP- OP' = aa for all positions of P, and 
OP' is readily constructed. The center MI of the 

- circle B' may be located on the line AM by drawing 
OMl symmetrically to OM with respect to the y axis. 
Let the coordinate of M be z=is+deifl, where d, s, 
and fl are real quantities. The circle of radius a, with 
center Mo at z=is, is transformed into a circular arc 
through ArAll which may be considered the mean 
camber h e  of the airfoil. At the tail the Joukowsky 
airfoil has a cusp and the upper and lower aurfsces 
include a zero angle. The lift parameters are 

8 R = w 3 + d ,  fl=tan-';s q=aa=b*$* or b=a and I 
y = 0. Since y = 0, the second axis has the direction of 
the x axis. The focus F is determined by laying off 

aa 
the segment MF=x on the line MA'. This quantity, l 
it may be noted, is obtained easily by the following 
construction. In triangle MDC', MD = R, MC' asd 
MC are made equal to a, then CF drawn -parallel to 

a2 DC' determines MF=x. The lift parabola may be I 
now determined uniquely since its directrix AM and 
focus Fare known. 

It may be observed that if it is desired to transform 
a preassigned Joukowsky profile into a circle, there 
exists a choice of asis and origin for the airfoil such 
that the inverse of transformation (5) will map the 
airfoil directly into a circle. This axis is very approx- 
imately given by designating the tail as (-2a, 0) and 
the point midway between the leading edge and the , 

center of curvature of the leading edge as (+ 2a, 0) the 
origin then bisecting the line joining these points. 

Frowrr =.-The Jonkowsky airfoil 

The complex potential flow function for the J'ou- 
kowsky airfoil is 

where 

By equation (39) we have for the velocity at the 
surf ace 

. This formula was obtained by transforming the flow 
around Cinto that around B a d  then into that a r o d  
A. Since we know that B is itself a circle for this 
case, we can simply use the latter two transformations 
alone. 
We get 

v =  V[sin (a+9)+& (a+ fl)]e# 
dsinh 2$ + sin20 (62) 

That these formulas are eqyivalent is immediately 
evident since the quantity 

is unity being the ratio of the magnification of each 
I arc element of C to that of B. (See eq. (37).) 
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A very simple geometrical picture of the parameters 
a and $, exists for the cases discussed. In Figure 
23 the value of a or p-0 at  the point P is simply 

From$ 23.-Geometrical representation of e and 3 
lor Joulrowd~y aiifoils 

angle OPM, i. e., the angle subtended at P by the 
origin 0 and the center M. The angle of zero lift is 
the value of a for @= A; i e , ~T.II = /3= OTM. In 
particular, we may note that a = O  a t  S and Sl which 
are on the straight line OM. Consider the triangle 

OMP, where OP-oar, MP-R-a&, g- p, angle 

OPM-s; h o ,  MOX=6, MOP=@-6, OMP=r-  
(p-6). Then by the law of cosines, we have 

0 

2 (- 1)"-1 cos n(p-6) 
1 n P" 

and by the law of sines 

p ship-6) 
sin a= (1 + 2p cos(p-6) + p2)L/' 

sin (p - 6) 
4 4  = tm-I1 : cos(p - 6) 

We see that, as required, the expressions for the "radial 
distortion " $(p) and the " angular distortion " a(p) 
are conjugate Fourier series and may be expressed as 
n single complex quantity 

(- 1)n-1 
($ - h) - ie = 2 - pne-*(v-a) 

1 n 

= - log [ 1 + pe-'(v-"] 

It is evident also that the coefficient for n = 1 or the 
"first harmonic term" is simply pef6 and a translation 
by this quantity brings the circle C into coincidence 
with B as was pointed out on page 13. 

1 2T The constant It, = - f $dp is readily shown to be 
2a 0 

invariant to the choice of origin 0, as long as 0 is 
within B. We have 

1 2s 1 . 2 ~ 1  - f $dp = - f 3 log (1 + 2p cos (p - 6) + p2)e"odp 
2" 0 2 ~ 0  

F~GWBE %.-The Joukoasky airfoil p=0.10, 6-45' 
' 

Figure 24 shows the Joukowsky airfoil defined by 
p=O.10 and 6=45O, and Figure 25 shows the $(0), 
$(p), P(@), and e(p) curves for this airfoil. 

FIGURE %.-The 2(8) and $(B) curves for the airfoil in Figure 24 

Arbitrary sections.--In order to obtain the lift 
parameters of an arbitrary airfoil, a convenient choice 
of coordinate axes is f is t  made as indicated for the 
Jbi~kowsky airfoil and as stated preyiously. (Page 7.) 
The curve resulting from the use of transformation (5) 
will yield an arbitrary curve a++'@ which will, in 
general, differ very little from a circle. The inverse 
and reflected curve a-+-fe will also be almost circular. 
The transition from the curve ae++fe to a circle is 
roached by obtaining the solution a(p) of equation 
(13). The method of obtaining this solution as 
already given converges with extreme rapidity for 
nearly circular curves. 
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BIG- %.-The r(9) and &(@) curves 101 the N. A. C. A. -M6 airfoil 

The geometrical picture is analogous to that given 
for the special cases. In  Figure 26 it may be seen that 
a point Q on the airfoil (N. A. C. A. -M6) corre- 

FIGUEE %.-The N. A. C. A. -M6 airfoil 

spending to P on the B curve (or P' on the B' curve) 
is obtahed by prtrauelogram OPQP'. 
The $(8) and ~ (0 )  curves are shown in Figure 27 for 
this airfoil. The complex velocity potential and the 
expression for velocity at the surface are given respec- 

tively by equations (33) and (39). The lift param- 
eters are 

The method used for arbitrary airfoils is readily 
applied to arbitrary thin arcs or to broken lines such 
as the sections of tail surfaces form approximately. In 
Figure 26 the part of the airfoil boundary above the x 
axis transforms by equation (5) into ,the two discon- 
tinuous arcs shown by full lines, while the lower 
boundary transforms into the arcs shown by dashed 
lines. If the upper boundary surface is alone-given 
(thin airfoil) we may obtain a closed curve ae*+'@ only 
by joining the end points by a chord of length 4a and 
choosing the origin ttt its midpoint.25 The resulting 
curve has two double points for which the first deriva- 
tive is not uniquely defined and, in general, it may be 
seen that infinite velocities correspond to such points. 

~t a point of the F(e) curve corresponding to a 
mathematically sharp corner, there exist two tangents, 

that is, the slope dF(e) is hinitely ~ c o n t ~ n u o u s ~  ~h~ 
de 

a 
and F is at  2 = cl +--' where al is given in equation (25'). R 

The first and second axes for the N. A. C. A. -M6 
airfoil are found to coincide and this airfoil has then a 
constant center of pressure at  F. figures.28 (a) to 
28 (l) give the pressure distribution (along the x -axis) 
for a series of angles of attack as calculated by this 
theory and as obtained by experiment." Table I 
contains the essential numerical data for this airfoil. 

24 The experimental results an, taken from test No. 323 of  the'^. A. C. A. variable 
density wind tunnel. The angle of attack substituted in equation (39) has been 
modlfled srbitrsrily to take account of the effects of flnite span, tunnel-wall inter- 
ference, and viscosity, by choosing it so that the theoretical lift is about 10 Per cant 
more than the cormipondhg experimental velue. The actusl values of the lift 
eo~mcients are given in the flpures. 

curve ~(8)  must have an infinite slope at  such a point 
for according to a theorem in the theory of Fourier 
series, at a point of discontinuity of a F. S., the con- 
jugate F. S. is properly divergent. This manifests 
itself in the velocity-formula equation (39) in the fac- 

tor ( 1 +- 3 which is infinite at  these sharp corners. 

For practical purposes, however, a rounding of the 
sharp edge, however small, considerably alters the slope 

dz(e) at this point. 3- 
Ideal angle of attack.-A thin airfoil, represented 

by a line arc, has both a sharp leading edge and a 
sharp trailing edge. The Kutta assumption for fixing 
the circulation places a stagnation point at the tail for 
all angles of attack. At the leading edge, however, 

Note that T(@+r) - -F(e) for this casa. 
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Experimen fa1 
- o Upper surface x Lower surfme 

flverage R N = 5 x  lob) 

F 

-12 - - 

Per cent chord 

a = - 0'36' 
c; =o 

Percent chord 1 

a = l"35 

R ~ W M  28 a to 0.-Themetid and experimental pressure disMbntion for the M6 airfoil at v&OlM an& of attsck 
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Ljcperimen fa1 
o &per surface x Lower surface 

(Average R. N = 5 x 107 

F 

Theore fical Experimental Theoretical Experimen fa1 
o &per surface o Upper surface 
x Lower surface x Lower surface 

(Average R. N = 5 x 107 (Average R N = 5 x 107 
-30- 

-25 - 

Fr~wrs 28 I to j.-Theoretical and experimental pressure distribution for the Mi3 sirfoil at various angles of attack 



the velocity is infinite at all angles of attack except 
one, namely, that angle for which the other stagnation 
point is at the leading edge. I t  is natural to expect 
that for this angle of attack in actual cases the fric- 
tional losses are at or near a minimum and thus arises 
the concept of "ideal" angle of attack ihtroduced by 
Theodorsen (reference 8) and which has also been 
designated "angle of best streamlining." The defini- 
tion for the ideal angle may be extended to thick 
sirfoils, as that angle for which a stagnation point 
occurs directly at  the foremost paint of the mean 
. camber line. 

The lift at the leading edge vanishes and the change 
from velocity to pressure along the airfoil surface is 
usually more gradual than at  any other angle of attack. 

of this function, one can determine airfoil shapes of 
definite properties. The e(p) function, which we have 
designated conformal angular diktortion function, will 
be seen to determine not only the shape but also to 
give easily all the theoretical aerodynamic character- 
istics of the airfoil. 

, Bn arbitrary e(p) curve is chosen, single valued, of 
da 

period 2r, of zero area, and such that - - S S 1. 

da These limiting values of - are far beyond values 
dv 

yielding airfoil shapes." The #(p) function, except for 
the constant #o, is given by the conjugate of the 
Fourier expansion of r(p) or, what is the same, by 
evaluating equation (14) M a definite integral. The 

Theoretical Exper~men fa/ Theore flcal Experimen fa1 
o Upper surface o Upper surface 
x Lower surface x Lower surface 

- (Average R N  = 5 x  107 (Average R N = 5 x  /Oq 

-4.0 - 

-35 .- 

-30 -. . 

FIaUrt~s 28 k to I.-Theoretical and experimental pressure distribution for the M6 sirfoii at various angles of attack 

The minimum profile drag of airfoils actually occurs 
very close to this angle. At the ideal angle, which we 
denote by a,, the factor [sin (a+ p) +sin (a+ @)I in 
equation (38) is zero not only for 0 = s ore = a*= @ but 
also for 8 = 0 or c = EN. We get 

a,+aN= - (*+a=) or 
(cN + $.TI 

a x =  - - 2 (65) 
CREATION OF FAMILIES OF WING SECTIONS 

The process of transforming a circle into an airfoil is 
inherently less difficult than the inverse process of 
transforming an airfoil into a circle. By a direct appli- 
cation of previous results we can derive a powerful and 
flexible method for the creation of general families of 
airfoils. Instead of assuming that the $(e) curve is 
preassigned (that is, instead of a given airfoil), we 
assume an arbitrary #((p) or a(p) curve as given. 
This is equivalent to assuming as known a boundary- 
value function along a circle and, by the proper choice 

Subject to some general restrictions given in the next paragraph. 

constant #0 is an important arbitrary* parameter 
which permits of changes in the shape and for a certain 
range of values may determine the sharpness of the 
trailing edge. 

We first obtain the variable e as e (p) - p- a (p), so 
that the quantity # considered as a function of e is 
$ (0) = # [p (e)]. The coordinates of the airfoil surface 
are then 

x = 2a cosh 1L cos e 
y =2a sinh # sin 8. 

(6) 

a7 For common airfoils, with a proper choice of origin, 121 <<0'30. 

*a For common airfoils $q is usually between 0.05 and 6.k. The constant h is 
not, however, completely arbitrary. We have seen that the condition given by 
equation (22) is sufacient to yfeld a contour frea from double poiiits in the z' plane. 
We may also s t ab  the criterion that the inverse of equation (5) applied to this 
contour shall yield 8 contour in the t plane free from double points. Consider the 
function F(8) for 8 varying from 0 to s only. The negative of each value of &(8) in 
this range is considered associated with -8. i. e., s d 8 d 2 r .  Designate the function 
thus forrhed from 8=O to 2 s  by &(8)*. Then &(8)* represents e line arc in the r 
plane. i. e.. the uDmr surface of a contour. [See footnote 25.1 Then for the entire 
contour to be bee from double points i t  is n e c k y  that the lower surface should not 
cross the upper, that is, the original &(8) curve for 8 varying from r to Or must not 
cross below &(8)*. 
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The velocity at  the surface is 

v = V  [sin (a+ 9) +sin (a+ p)] e#o 
(39') -,/ (.inh '4 + sin2 8) [(I - %>' + ("$>'I 

and is obtained by using equation (37') instead of (37) 
in deriving (39). The angle of zero lift B is given by 

9 (8)=8+2 (8) for 8 = ~ ,  i. O., p (u)=r+@. 
The following figures and examples will make the 

process clear. We may first note that the most natural 
method of spe.cifying the a (p) function is by a Fourier 
series expansion. In this sense then the elementary 
types of t (9) functions are the individual terms of 
this expansion. 

2901) to 29(t). In particular, the second harmonic 
term may yield S shapes, and by a proper combina- 
tion of h t  and second harmonic terms, i. e., by a 
proper choice of the constants Al, A2, 61, and a2 in the 
relation 

s(p)-A1 sin (p-a1)+A2 sin (29-84 

it is possible to fix the focus F of the lift parabola as 
the center of pressure for all angles of a t t a ~ k . ~  The 
equation 

a(9) = 0.1 sin (9- 60') + 0.05 cos 29 
represents such an airfoil and is shown in Fijgm 29(u). 

The general process will yield infinite vaxieties of 
contours by superposition of sine functions; in fact, if 

- 
FIGUEE 2B.-Airfoils created by varying e(w) 

Consider first the effect of the first harmonic term 
s (9) =A1 sin (9-&), +o=c 

In Figures 29(a) to 29(g) may be seen the shapes 
resulting by displacing S1 successively by intervals of 
15' and keeping the constants A1= 0.10 and +o= 0.10. 
The first harmonic term is of chief influence in deter- 
mining the airfoil shape. The case a (9) = 0.1 sin 
(~-45'),is given detailed in Table 11. (This airfoil 
is remarkably close to the commonly used Clark Y 
airfoil.) The entire calculations are characterized by 
their simplicity and, as may be noted, are completely 
free from the necessity of any graphical evaluations or 
constructions. 

The effect of the second and higher harmonics as 
well as the constant rl, may be observed in Figures 

the process is thought of as a boundary-value problem 
of the circle, it is seen that it is sufficiently general to 
yield every closed curve for which Riemann's theorem 
applies. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., November 4, 193%. 

a Thieisaeeomplished as follows: Weseek to determine the constants AI, Aa, 61, and 

6, so that B=y, where y is obtained from equation (25') as al=b*eldr=a:+$+h and 

we may note that a$a-~t6;~ and S%-ASF~~. These relations are transcenden- 
--  - - -  - 

tal; however, with but a few practice trials, solutions can be obtained at will. Addi- 
tion of higher harmonics will yield further shapes having the same canter of pressure 
Properties if 19 is kept unohanged. 



APPENDIX 

I. EVALUATION OF THE INTEGRAL. 

The function +(p) is of period 2 s  and is considered 
known. (Note that the variables p and p' are re- 
placed by e and e', PI and vl', - and %', etc., in 
equation (21) and that the following formula is 
applicable for all these cases.) 

A 20-point method for evaluating equation (13) as 
a definite integral gives 

where 
u &=value of +(q) at p='pt+ a 

' s 
and the constants a, are as follows: %=-=0.3142; 10 
a1=1.091; a2=0.494; aa=0.313; a4=0.217; a5=0.158; 
aa= 0.115; a,= 0.0884; as= 0.0511; and a,= 0.0251. 

This formula may be derived directly from the 
definition of the definite integral. The 20 intervals1 

u s s 3s  chosen are q -%to P + G ~  P+B to P+-9 etc. 20 

It is only necessary to note that by expanding $(p) in 
a Taylor series around p= q' we get 

where the interval of- s to (a'+ s is small. And, in 
general, 

9 2  + f *(p) cot dp 
P1 

is very nearly 

1 Reference 2. p. 11, gives a 10-point method result. 

32 

-*A log 

where the range n - p, is small and is the average 
value of #(p) in inthis range. The constants a, for the 
20 divisions chosen above are actually 

'f'-(pz sin - 
2, 

P-Pl sin - 2 

Ag an example of the calculation of a(@) we may refer 
to Table I and Figures 26 and 27 for the N. A. C .  A. 
-M6 airfoil. From the $(e) curve (fig. 27) we obtain 

d$ the 20 values of 9 and ;i7i for 20 equal intervals of 0. 

2 n - l ( n = - 9 , . . .  $9) a,=log 

For the airfoil (fig. 26) we get the following values: 

2n+ 1 sin u - 40 

Sins- 40 

(Upper - dT (Lower 9 
#surface) $ dB B surface) $ dB 

0 (nose) 0. 192 0.000 
lk 0.049 -0.002 

9r - 
10 .041 .025 2r (nose) . 192 .000 

r (tail) . 055 . 000 
The value of E at the tail (i. e., the angle of zero lift) 

is, for example, using formula I 
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3 r  The value of c for 8= B, for example, is obtained by 

a cyclic rearrangement. Thus, 

The 20 values obtained in this way form the q(8) 
curve, which for all practical purposes for the airfoil 
considered, is actually identical with the find ~ (8 )  
curve. 

II. NOTES ON THE TRANSFORMATION. 

There exist a number of theorems giving general 
limiting values for the coefficients of the transforma- 
tion equation (4), which are interesting and to some 
extent useful. If {=f(z) transforms the external 
region of the circle C of radius R in the z plane, into 
the external region of a contour A in the plane in a 
one-to-one conformal manner and the origin {=0 lies 
d h i n  the contour A (and f '( m) = 1) then the area S 
inclosed by A is given by the Faber-Bieberbach 
theorem as 

Since all members of the above series term are positive, 
it is observed that the area of C i s  greater than that 
inclosed by any contour A in the { plane (or, at most, 
equal to the area inclosed by A if A is a circle). 

This theorem leads to the following results 

la11 r R2 (a) 
IcllS 2R (b) 

Let us designate the circle of radius R about the 
conformal ~ent~roid M as center as Cl (i. e., the center 
is at  {=el; this circle has been called the " Grund- 
kreis " or "basic " circle by von Mises). Then since 

'$represents the distance of the focus F from M, " ~ 6  

relation (8) states that the focus is always within C,. 
In  fact, a further extension shows that if ro is the radius 
of the largest circle that can be inclosed within A, then 

TO" F is removed from Cl by at least E .  

2 For details of this and IoUowing statements see reference 6, p. 100 and p. 147, ancl 
also reference 6, Part 11. 

From relation (b) may be derived the statement that 
if any circle within A is concentrically doubled in radius 
it is contained entirely within a circle about M as 
center of radius 2R. Also, if we designate by c the 
largest diameter of A (this is usually the 'Cchord" of 
the airfoil) then the following limits can be derived: 

These inequalities lead to interesting limits for the 
lift coefficient. Writing the lift coefficient ii-s 

where by equation (45) the lift force is given by 
L =4rRpVz sin (a+ j3) 

we have 
8lrR 

2 r s i n ( a + j 3 ) ~ C ~ = ~ s i n ( a + ~ ) ~ 4 r s i n ( a + f l )  (II) 

The flat plate is the only case where the lower 
limit is reached, while the upper limit is attained for 
the circular cylinder only. We may observe that a 
curved thin plate has a lift coefficient which exceeds 
2w sin (a+@) by a very small amount. In general, the 
thickness has a much greater effect on the value of 
the lift coefficient than the camber. For common 
airfoils the lift coefficient is but slightly greater than 
the lower limit and is appro-ximately l . lX2r  sin 

' (a+B). 
Another theorem, similar to the Faber-Bieberbach 

area theorem, states that if the equation {=f(z) trans- 
forms the internal region of a circle in the z plane into 
the internal region of a contour B in the { plane in a 
one-to-one conform3 manner and f'(0) = 1 (the origins 
are within the contours) then the area of the circle is 
less than that contained by any contour B. This 
theorem, extended by Bieberbach, has been used in an 
attempt to solve the arbitrary airfoil? The process 
used is one in which the area theorem is a criterion as 
to the direction in which the convergence proceeds. 
Although theoretically sound, the process is, when 
applied, extremely laborious and very slowly con- 
vergent. It can not be said to have yielded cts yet 
really satisfactory results. 

III. LOCATION O f  THE CENTER OF PRESSURE FOR AN 
ARBITRARY AIRFOIL . 

I t  is-of some interest to know the exact location of 
the center of pressuro on the x 6 s  as a function of the 
angle of attack. In Figure 30, 0 is the origin, M the 
conformal centroid,' L the line of action of the lift 
force for angle of attack a. Let us designate the 

3 Miiller, W., Zs. 1. sngew. Math. u. Mech. Bd. 5 9.397,1925. 
Hijhndorf, F., Zs. I. angew. Math. u. Mech. Bd. 6 8.265,1926. 
illso rdeten~t 5, p. 185. 
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intersection of L with the x axis of the airfoil as the tained graphically, of the $ against 0, and e against 
center of pressure P. I e curves, respectively; (12) is given by 

In the right AONM we have, 

O M = ~ = m e ~ = A l + ~ l  

ON=m cos 6=Al 

MN= rn .sin 6 = Bl 

M J  hM 
and in right AJKM, KM=- =- sin a sm a 

Then m=I'y-Bl sin a 

and NP-KNtana=hMseca-Bl tana  

By equation (48) 

Then the distance f r ~ m  the origin to the center of 
pressure P is 

b2 s in2-(a+y)  
+SCOS a sin (a+p> (111) 

/ L i f t  vector 

FIQUBE 30.-Center of pressure location on the z axis 

EXPLANATION OF THE TABLES 

Axis 

where &,=A 7 $ (p) dp and may be obtained giaphi- 
2u 0 

cally or numerically; column (13) gives p= 8 + s. The 
velocity o, for  any angle of attack, is by equation (39) 

v=Vk. [sin ( a+p )+~ in  (a fp) ]  
and the pressure is given by equation (3). The angle 
of zero lift pis the value of e at the tail; i. e., the value 
of E for B=T. 

Table I1 gives numerical data for the inverse process 
to that given in Table I ;  viz, the transformation of a 
circle into an airfoil. (See fig. 29.) The function 
a(cp) =O. l  sin (p-45') and constant #,,=0.10 are 
chosen for this case. Then $(p) = O . l  cos (p-45') 
+ 0.10. I t  may be observed that columns (11) and 
(12) giving the coordinates of the airfoil surface are 
obtained from equations (6) of the report. Column 
(13) is given by 

and the velocity at  the surface is by equation (39') 
v-Vk. [sin (a+p)+sin (cu+/3)] 
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TABLE I 
N. A. C. A.-M6 
UPPER SURFACE 

TABLE I1 
t(~)=O.l sin ( ~ - 4 5 9  krO.10 B=ii(~)=0.0657=-3~ 47' 

UPPER.BURFACE 

I I I I I I I I I I I I I I 
LOWER SURFACE 






