REPORT No. 472

WIND-TUNNEL TESTS ON COMBINATIONS OF A WING WITH FIXED AUXILIARY airfoils having various chords and profiles

By Frad E. Weice and Robert Sandmas

SUMMARY

Various auxiliary airfoils having three. different airfoil sections and several different chord lengths were tested in combination with a Clark Y model wing in a sufficient number of relative positions to determine the optimum with regard to certain criterions of aerodynamic performance. The airfoil sections included a symmetrical profle, one of medium camber, and a highly cambered one. The chord sizes of the auxiliary airfoils ranged from 7.5 to $\$ 5$ percent of the chord of the main wing, and the span was equal to that of the main wing. The tests were made in the N.A.C.A. 5 -foot vertical wind tunnel.

It was found that each of the auxiliary airfoil combinations tested, regardless of size or airfoil section, had, when located at its best position, substantially higher values of the maximum lift coefficient and of the ratio $\sigma_{\text {Lmax }}{ }^{2} / C_{L_{m i n}}$ than the main wing alone. The maximum values of the lift coefficient obtained, based on the total area, were very nearly the same with all the auxiliary airfoils tested. The symmetrical airfoils gave lower values of the minimum drag coefficient and higher values of the ratio $C_{L m a x}{ }^{2} / C_{D m 1 n}$ than the cambered auxiliary airfoils. The highest value of the ratio $C_{\text {Lmax }}{ }^{2} / C_{D m+n}$ was obtained with the symmetrical auxiliary having a chord length 14.5 percent of the main wing chord. The positions giving the highest values of this ratio did not vary greatly for the different auxiliary airfoils tested, except for the narrowest ones, which gave higher values in lower positions.

Additional tests, in which the auxiliary airfoits vere supported separately, were made to determine the division of air load between the auxiliary and the main wing for two representative cases. The results showed that the auxiliary airfoil took a relatively large proportion of the total load, particularly in the case of the highly cambered auxiliary at low angles of attack.

INTRODUCTION

In a previous investigation (reference 1) it was found that with an auxiliary airfoil fixed in a certain position abead of the main wing the combination had a sub-
stantially higher value of the maximum lift coefficient (based on total area) and of the speed-range criterion, $C_{\text {Lmax }} / C_{D m t \pi}$, than either of the airfoils alone. These earlier tests were made with a single form of auxiliary airfoil now referred to as the N.A.C.A. 22. The chord was 14.5 percent of the main wing chord, and the profile was highly cambered and of medium thickness. This auxiliary airfoil was tested in a large number of positions near the front of the main wing in order to find the best location.

The tests described in the present report continue the investigation of fixed auxiliary airfoils to include the effect of variations in size and in airfoil section. Four sizes were tested having the original N.A.C.A. 22 section, four having a symmetrical section (N.A.C.A. 0012), and one having the Clark Y section. The lift and drag of the combinations were measured with each of the auxiliary airfoils in a sufficient number of positions ahead of the main wing to determine the optimum location. Pitching moments were then measured with each auxiliary airfoil in one or two of the best positions. Finally, the air force on the auxiliary airfoil was found for two representative combinations.

APPARATUS AND METHODS

Wind tunnel.-The tests were made in the 5 -foot vertical wind tunnel under essentially the same conditions as those of the original portion of the investigation (reference 1). The wind tunnel is described in detail in reference 2. A "reflection plane" and half-span model were used to permit as high a Reynolds Number as possible.

Models.-The main wing was a rectangular Clark Y airfoil, constructed of mahogany, with a 10 -inch chord and a 30 -inch semispan. The auxiliary airfoils, whose semispans were also 30 inches, were constructed of aluminum alloy. The chords of the auxiliary airfoils were varied until the tests indicated that the optimum range had been covered. The original highly cambered section (N.A.C.A. 22) was tested with chords of $7.5,11,14.5$ (check on original in optimum position only), and 25 percent of the main
wing chord. The symmetrical section, which was the next tested, was the N.A.C.A. 0012. This section was tested with chords of $7.5,11,14.5$, and 18 percent of the main wing chord, the 25 percent size having been indicated as definitely too large by the tests with the original N.A.C.A. 22 section. The Clark Y section was tested with the 14.5 percent chord only.
independently of the main wing. The air force on the main wing was measured in the presence of the auxiliary and subtracted from the total force to give the force on the auxiliary alone.

Tests.-The lift and drag over a range of angles of attack were measured with each of the auxiliary airfoils in a sufficient number of positions with respect

ORDINATES OF AUXILIARIES

N.A.O.A. 22		
StatJons, percent chord	Dpper, percent chord	Iower, percent chord
0	288	288
1.25	5. 40	1.09
25	6. 48	. 65
5	8.02	. 28
7.5	9.11	. 08
10	8.96	. 00
15	11.34	.12
20	12.29	. 41
30	18.35	1.48
40 50	13.42	3.08
50	1260	4.8
${ }_{6}^{60}$	11.12	${ }^{5.63}$
70	0.15 8.68	5.79 4.68
${ }_{90}^{80}$	6.69 3.95	4.68 267
95	251	1.32
100	1.13	0.00
L. E. Radias $=2.00$		

N.A.O.A. 0012		
Stations, percent chord	Upper, percen chord	Lower, percent chord
0	0.00	0.00
2.5	262	${ }_{2}{ }_{62}$
5	3.56	3.56
7.5	4.20	4.20
10	4.63	4. 68
15	5.35	5.35
20	5.74	5. 74
30	6. 00	6. 00
40	5.80	6. 80
${ }^{50}$	5.29	5.29
60	4.56	4.56
70	3.68	8.68
80	262	2.62
90	145	1.45
95	. 81	. 81
100	. 13	. 13
L. E. Radias $=1.58$		

OLARK Y		
Stations, percent chord	Upper, percent chord	Lower percent chord
$0{ }^{\text {- }}$	3. 50	3.50
1.25	5.45	1.03
25	Q. 50	1.47
${ }^{5}$	7.80	. 93
7.5	8.85	. 63
10	9.60	. 12
+15	10.69 11.36	.16
30	11.70	0
40	11.40	0
50	10.62	
${ }^{60}$	0.15	0
70	7.35	0
80	6.22	0
90	280	0
-95	1.49	0
100	. 13	0
L. E. Radiusa 1.50		

Fioure 1.-Sections of auxiliary airfolis tested.

All three sections have approximately the same thickness and form except for the camber, which varies through a large range. The cross-sectional views of the various auxiliary airfoils are shown together with a table of ordinates in figure 1. The auxiliary airfoils were supported at each end and at two intermediate positions by metal fittings, as shown in figure 2:
For obtaining the force on the auxiliary airfoil separately, fixtures were made to support the auxiliary
to the main wing to determine the optimum location according to the criterion $C_{L \text { max }}{ }^{2} / \sigma_{D m i n}$, which was used in reference 1. The variations in position were made in the following manner. The angle δ between the chord line of the auxiliary and that of the main wing was changed about an axis through the trailing edge of the auxiliary until the angle giving the highest value of the ratio $C_{L m a z}{ }^{2} / C_{D m i n}$ was determined. This procedure was repeated for various trailing-edge
locations until closed contour charts of the maximum value of the ratio $C_{L \text { max }}{ }^{2} / C_{D m i n}$ obtained at each trailingedge location could be drawn, showing that the position giving the highest value had been determined.

The 14.5 percent N.A.C.A. 22 auxiliary airfoil, which was the one tested in various positions in reference 1, was retested only at the best position, as a check. The results are slightly different from those of the previous tests, which is partly due to a change of the fittings supporting the auxiliary airfoil and partly to the normal experimental error. The new fittings, designed to increase the rigidity of the set-up, crused an interference effect resulting in a reduction of the maximum lift coefficient of about 3 percent (reference 3).

The pitching moments, which were obtained with a slight change in the balance arrangement, were mensured for the best positions of each auxiliary airfoil.

The tests to determine the distribution of load between the auxiliary airfoil and the main wing were made with two representative auxiliary airfoils. One had the highly cambered N.A.C.A. 22 section and the other the symmetrical N.A.C.A. 0012 section, both being 14.5 percent of the main wing chord. Each of the auxiliary airfoils was tested at two different settings of the angle δ. The values of the air loads on the auxiliary airfoils must be considered as approximate, for they were obtained as the difference between two relatively large forces and the accuracy was therefore not high.

RESULTS AND DISCUSSION

The results of the simple lift and drag tests are given in tables I to XX in terms of several critical values, or criterions, of the aerodynamic characteristics. The lift and drag coefficients are based on the area of the main wing plus that of the auxiliary, and for this reason the various combinations must be compared as complete units.

CONTOURS OF PERFORMANCE CRITERIONS

The variations of four of the criterions with changes in the locations of the various auxiliary airfoils are shown by means of contour charts which serve as convenient aids to the selection of the optimum locations (figs. 3 to 10). The values on the contour charts are those obtained with the auxiliary airfoil set at the angles giving the highest value of $C_{L m a x}{ }^{2} / C_{D m i n}$ for each trailing-edge location; where two angles gave the same value within the experimental error, the choice was based on the other criterions. The values for the different angles are given in tables I to IX. The four sets of contours shown on each of the figures are for the following criterions:
a. $C_{L \max }{ }^{2} / C_{D u t n}$, which is the main criterion in selecting the optimum position. This is an arbitrary
criterion which gives equal weight to the maximum lift coefficient and the speed-range ratio $C_{L \max } / C_{D m t n}$.
b. $C_{\text {Lmax }}$.
c. L / D at $C_{L}=0.7$, which is used as a criterion of the effectiveness in climbing flight.
d. I / D at $C_{L \text { max }}$, which gives an indication of the steepest gliding angle obtainable in unstalled flight. An examination of the contour charts shows that no single auxiliary airfoil had the best characteristics on the basis of all the criterions. The variation of the characteristics with size, profile, and location of the

auxiliary is complex and requires that the data be studied in detail in order to select the best auxiliary airfoil to fulfill the requirements of any particular set of operating conditions.

Effect of location.-In general, the location giving the highest value of the ratio $C_{L \max }{ }^{2} / C_{D m t \pi}$ for any of the auxiliary airfoils was not greatly different from that giving the highest value of $C_{\text {Lmax }}$, being in most cases slightly lower and farther forward. The positions giving the highest values of $C_{\text {Lmax }}{ }^{2} / C_{D m 1 x}$ did not vary greatly with airfoil section or with size of auxiliary, except for the smallest size, which required a lower position for both the airfoil sections tested. In fact, for each size

Loct of trallingedge positions for equal values of $C_{L=w_{2}} / C_{D \text { mis }}$ obtained with a 7.5 percent c N.A.C.A. 22auxillary afrfoll set at the optimum angle for each position.

Loci of traling-edge positions for equal values of L / D at $C_{L}=0.7$ obtained with a 7.5 percent CN.A.C.A. 22auxiliary airfoll zet at the optimum angle for each position.

Loci of trallingedge positions for equal values of $C_{z m a s}$ obtalned with a 7.5 percant c N.A.O.A. 22 auriliary airfoil set at the optimum angle for cach position.

Loci of traflingedge positions for equal values of L / D at $C_{\text {mas }}$ obtalned with a 7.5 percentcN.A.C.A. 22 aurillary airfollset at the optimumangle for each position.

Figure 3.

Loci of tralling-edge positions for equal values of $C_{L_{m}} \alpha^{2} / C_{D_{m} \text { in }}$ obtained withan 11.0 percent c N.A.C.A. 22 andilary airion set at the optimum angle for each position.

Locl of tralling edge positions for equal values of $C_{\text {ness }}$ obtalned with an 11.0 per cent e N.A.O.A. aunfliary airfoll set at the optimum angle for each position.

Loci of trailing edge positions for equal values of L / D at $C_{L \text { mas }}$ obtained with an 11.0 percente N.A.C.A. 22 auxiliary airfoll setat theoptimum angle for each position.

Loci of trallingedge positions for equal values of $C_{\text {Lexer }} / C_{D_{m}}$ obtained with a 25,0 percent c N.A.C.A. 22 aurillary alrfoll set at the optimum angle for each posiltion.

Locl of tralling edge positions for equal values of L / D at $C_{L}=0.7$ obtained with a 25.0 percant c N.A.C.A. 22 auxllary airfoll set at the optimum angle for each position.

Locl of trallingedge positions for equal values of CLmar obtained with a 25,0 percent c N.A.O.A. 22 aurliary airfoll set at the optimam angle for each position.

Laci of traling-edge positions for equal values of $I \rho D$ at $C_{L=a}$ obtained with a 25.0 percent c N.A.C.A. 22 aurllary airfoll set at the optimam angle for each position.

Locl of tralling-edge positions for equal values of $C_{L m a}{ }^{2} / C_{D m i n}$ obtained with a 7.6 percent c N.A.C.A. 0012 aurlitary airifll set at the optimom angle for each position.

Loci of trailingedge positions for equal values of $C_{\text {Lemex }}$ obtained with ia 7.5 percent c N.A.O.A. 0012 aurflary airfoll set at the optlmum angle for each position.

Locl of trallingedge positions for equal values of L / D at $C_{L}=0.7$ obtained with a 7.6 percent e N.A.C.A. 0012 aurillary sirfoll set at the optimum angle for each position.

Loci of trallingedge poaltions for equal values of L / D at $C_{L=a s}$ obtained with a 7.5 percent c N.A.O.A. 0012 audilary airfoll set at the optimum angle for each position.

Loci of tralling-edge positions for equal valnes of $C_{L_{x}=r^{2}} / C_{D_{m i n}}$ obtained with an 11.0 percent c N.A.C.A 0012 auxiliary airfoll set at the optimam angle for each postion.

Locl of tralingedge positions for equal values of L / D at $C_{L}=0.7$ obtained with an 11.0 percent c N.A.C.A 0012 aurillary alrifil set at the optimam angle for each position.

Locl of trailingedge positions for equal values of $C_{5 m a}$ obtalned with an 11.0 percent c N.A.O.A 0012 auxfliary airfoll set at the optlmum angle for each position.

Loci of traflingedge postions for equal values of L / D at $C_{L \text { mas }}$ obtalnod with an 11.0 percent c N.A.C.A. 0012 auxillary afrfoil set at the opt!mum angle for each position.

Lod of tralling-edge positions for equal values of $C_{L_{m a}} /{ }^{2} / C_{D_{m i n}}$ obtained with a 14.5 percent c N.A.O.A. 0012 aurlliary afrioll set at the optimum angle for each position.

Loci of trallingedge positions for equal values of L / D at $C_{L}=0.7$ obtained with a 14.5 percent c N.A.C.A. 0012 aurlibary airfoll set at the optimam angle for each position.

Loci of tralling-edge positions for equal values of $C_{L_{\text {mas }}}$ obtained with a 14.5 percent c N.A.C. A 0012 aurllary airfoll set at the optlmum angle for cach position.

Loof of trallingedge positions for equal values of L / D at $C_{\text {mas }}$ obtalned with a 14.5 percent c N.A.C.A. 0012 aurlilary airfoll set at the optlmum angle for each position.

Locl of tralling-edge pasitions for equal values of $C_{\text {Lmar }} / C_{D m i n}$ obtalned with an 18.0 percent e N.A.C.A 0012 auxiliary affoll set at the optimum angle for each position.

Locl of trallingedge positions for equal values of L / D at $C_{L}=0.7$ obtained with an 18,0 percent c N.A.O.A. 0012 auxilary airfoll set at the optimum angle for each position.

Loch of trallingedge positions for equal values of $C_{\text {Lrax }}$ obtained with an 18.0 percent e N.A.C.A. 0012 aurileary airfoll set at the optimum angle for each pasition.

Locl of tralling edge positions for equal values of L / D at $C_{\text {mear }}$ obtained with an 18.0 percent c N.A.C.A. 0012 aurilary atrfoil set at the optimum angle for earh position.

Locl of tralling-edge positions for equal values of $C_{L=a} \alpha^{2} / C_{D m i n}$ obtalned with a 14.5 percent c Clark Y auxiliary airfoll set at the optimum angle for each position.

Locl of trallingedge positions for equal values of $L_{f} D$ at $C_{L}=0.7$ obtained with a 14.5 percent e Clark Y auxllary alrfoll set at the optimum angle for each position.

Loci of trailingedge positions for equal values of Clnes obtained with a 14.5 percent c Clark Y aurilitary airfoll set at the optimum angle for each position.

Loel of trafling-edge positions for equal values of L / D at C_{L} as obtained with a 14.5 percent c Clark Y aurilary airfoll set at the optimum angle for each position.
of auxiliary airfoil except the extreme 7.5 and 25 percent sizes, and for each of the three airfoil sections, a position with the trailing edge 14 percent ahead of the nose and 12 percent above the chord line of the main wing gave a value of $C_{\text {max }}$ within 2 percent and a value of the ratio $C_{\text {Lmax }}{ }^{2} / C_{D \min }$ within 5 percent of the maximum value obtained for the particular auxiliary airfoil at any position. The best angle δ was within 3° of zero for all medium-sized auxiliary airfoils, regardless of section.

In most cases, moving the auxiliary airfoil closer to the main wing than the position giving the highest value of the ratio $C_{\text {Lmax }}{ }^{2} / C_{D m i n}$ gave a slight increase in the value of L / D in the climbing range and at the same time a decrease in the value of L / D near maximum lift, both of which result in an increase in the range of possible gliding angles. Considering this fact, together with the similar condition in regard to the maximum lift coefficient, and also the structural requirements, the optimum position would seem to be somewhat closer to the main wing than the position giving the highest ratio of $C_{L m a x}^{2} / C_{D m i n}$. No rigid general rule can be drawn, however, for the details of each case must be considered separately.
Effect of size.-A comparison of the results for the different sized auxiliary airfoils as given on the contour charts shows that for any one airfoil section there was no great change in the values of the criterions with change in size within the range covered, if the values taken are for each size in its best position. The maximum lift coefficients obtained with the auxiliary airfoils of all sizes and sections, set at the value of δ which gave the highest value of the ratio $C_{\text {Lmar }}{ }^{2} / C_{D m t n}$. Were all within 2 percent (or approximately within the experimental error) of the value 1.64, except for the value with the 25 percent auxiliary airfoil, which was within 4 percent. With the highly cambered N.A.C.A. 22 section the smaller auxiliary airfoils had slightly higher values of the ratio $C_{\text {Lmax }}{ }^{2} / C_{D m i a}$ than the larger ones, but the entire range was only 7 percent. With the symmetrical section the variation of the maximum value of the ratio $C_{L \operatorname{mar}}{ }^{2} / C_{D m i n}$ with size was about twice as great, the highest value being obtained with the medium size and the lowest values with the extreme sizes.
The values of the climb criterion, L / D at $C_{L}=0.7$, were nearly the same for all sizes, but were slightly greater for the smallest size than for the others. The smallest sized auxiliary airfoils, unfortunately, also gave definitely higher values of the criterion of steep glides, L / D at $C_{\text {Lmax, }}$ than the others. The variation among the larger sizes was very small.

Effect of auxiliary airfoil section.-Although the auxiliary airfoils of all sizes and sections gave approximately the same values of the maximum lift coefficient, the minimum drag coefficients were found to be decidedly lower with the auxiliary airfoils of symmetrical section than with the cambered ones, so that higher values
of the ratio $C_{L \text { max }}{ }^{2} / C_{D m i n}$ were obtained with them. The cross plots for the three different sections with the 14.5 percent chord indicated that the highest values of the ratio obtained with each varied consistently with the camber, the value with the symmetrical N.A.C.A. 0012 auxiliary airfoil being 199, that for the Clark Y being 166, and that for the highly cambered N.A.C.A. 22, being 154. The value of 199 obtained with the 14.5 percent symmetrical auxiliary airfoil was the highest found in the investigation.

The values of L / D at $C_{L}=0.7$ were approximately the same for the symmetrical and for the highly cambered sections, but the values of L / D at $C_{L \text { max }}$ were slightly lower with the highly cambered sections.

LIFT, DRAG, AND CENTER-OF-PRESSURE CURVES FOR OPTIMUM POSITIONS

Curves of lift, drag, and conter-of-pressure coefficients against angle of attack are given in figures 11 to 19 for each of the auxiliary airfoils in one or more of the optimum positions, selected mainly on the basis of the ratio $C_{L \max }{ }^{2} / C_{D m i n}$. In addition, values of the pitching-moment coefficients for all the angles of attack measured are given in table X. The values of center-of-pressure positions were computed on the basis of the main wing chord and the values of C_{m} on the basis of the main wing chord and the combined area.

The numerical value of C_{m} at zero lift for the combination with the 14.5 percent Clark Y auxiliary airfoil was found to be 14 percent less than the value for the plain Clark Y wing alone. With the symmetrical auxiliary airfoil having the 11 percent chord the value was the same as for the plain wing, but it became greater if the size of the auxiliary was either increased or decreased from the 11 percent point. The highly cambered N.A.C.A. 22 auxiliary airfoils gave somewhat smaller negative values than the plain Clark Y wing, the values decreasing as the size of the auxiliary was increased. If C_{m} is plotted against C_{L} the curve will not in any case be a straight line, but will have a definite bend in the neighborhood of the 5° augle of attack.
division of air load between main wing and auxiliary ARFOIL

The results of the tests to show the division of the air load betweon the main wing and the two selected auxiliary airfoils are shown in figure 20. The load on the auxiliaries is divided into normal and chord components and these are given in terms of the total lift on the main wing plus the auxiliary. The auxiliary airfoil having the symmetrical section sustained in the neighborhood of one fifth of the total load throughout the entire angle-of-attack range tested. The highly cambered N.A.C.A. 22 auxiliary airfoil sustained about the same portion of the total load at the high lift coefficients, but a higher proportion if the angle of attack was reduced. At $\alpha=0^{\circ}$ the lowest angle of attack which could be obtained with the set-up

(A) Aux. T,E. 16.0 percent ahead of L.E., 4.5 percent above chord, $\delta=5^{\circ}$.
(B) Aux. T.E. 18.3 percent ahead of L.E., 2.5 percent above chord, $\delta \square 219^{\circ}$.
(C) Aux. T.E. 11.1 percent ahead of L.E., 7.4 percent abore chord, $8-10^{\circ}$.

Fioure 11.-Oharacteristice with N.A.C.A. 22, 7.5 percent chord aurliary.

(A) Aux. T.E. 11.5 percent ahead of L.E., 14.0 percent above chord, $\delta=0^{\circ}$.
(B) Aux. T.E. 16.0 percent ahead of L.E., 4.5 percent above chord, $\delta=21 / 2^{\circ}$.

Figure 12-Characteristies with N.A.O.A. 22, 11.0 percent chord aariliary.

(A) Aux. T.E. 16.0 percent ahead of L.E., 14.0 percent above chord, $\delta=0^{\circ}$.
(B) Aux. T.E. 27.5 percent ahead of L.E., 14.0 percent above chord, $\delta=0^{\circ}$.
(C) Aux. T.E. 21.2 percent ahead of L.E., 8.8 percent above chord, $\delta=211^{\circ}$.

(A) Aux. T.E. 19.3 percent ahead of L.E., 2.5 percent below chord, $\delta=0^{\circ}$. (B) Aur. T.E. 19.3 percent ahead of L.E., 2.3 percent below chord, $\delta=2 z_{2}^{\circ}$. Figure 15.-Characteristies with N.A.C.A. 0012, 7.5 percent chord aurflary.

((A) AIT. T.E. 10.0 percent ahead of L.E., 14.0 percent above chord, $\delta=231^{\circ}$.
(B) Aux. T.E. 11.5 percent ahead of L.E., 14.0 percent above chord, $\delta=0^{\circ}$.
(C) Aux. T.E. 11.5 percent ahead of L.E., 14.0 percent above chord, $\delta \square-212^{\circ}$. Figure 17.-Charseteristics with N.A.C.A. $0012,14.5$ percent chord aurilfary.

(A) Aux. T.E. 11.5 percent ahead of L.E., 14.0 percent above chord, $\delta=214^{\circ}$.

Figurs 16.-Oharacteristics with N.A.C.A. 0012, 11.0 percent ohord auxillary.

(A) Aux. T.E. 16.0 percent ahead of L.E., 14.0 percent above chord, $8=0^{\circ}$. Figure 18.-Oharacteristics with N.A.O.A. 0012, 18 percent chord auxillary.
used, approximately half the total load was taken by the N.A.C.A. 22 auxiliary airfoil.

CONCLUSIONS

1. Each of the auxiliary airfoil combinations tested, regardless of size or airfoil section, gave, in the best positions, substantially higher values of $C_{\text {Lmax }}$ and of the ratio $C_{\text {Lmax }}{ }^{2} / C_{D m i n}$ than the main wing alone.
2. The maximum values of C_{L} obtained, based on the total area, were very nearly the same with all the auxiliary airfoils tested.
3. The symmetrical auxiliary airfoils gave lower values of the minimum drag coefficient and higher values of the ratio $C_{\text {Lmax }}{ }^{2} / C_{D m i n}$ than the auxiliary airfoils having other sections, the highest value of the ratio $C_{\text {Lmax }}{ }^{2} / C_{D m i n}$ being obtained with the 14.5 percent symmetrical auxiliary airfoil.
4. The positions giving the highest values of the ratio $C_{\text {Lmar }}{ }^{2} / O_{D_{m i n}}$ did not vary greatly for the auxiliary airfoils of different sizes and sections tested, except for the smallest size, which required a lower position.
5. In most cases within the range of the tests, moving the auxiliary airfoil closer to the main wing than the position giving the highest value of the ratio $\sigma_{\text {Lmax }}{ }^{2} / O_{\text {Dmin }}$ gave a slight increase in the value of L / D in the climbing range and a decrease in the value of L / D near maximum lift, thus giving a dual increase in the range of possible flight angles.
6. The air load on the 14.5 percent symmetrical auxiliary airfoil was about one fifth the total air load on the combination at all angles of attack; the proportional air load on the highly cambered auxiliary airfoil was about the same at the high values of the lift coefficient, but approximately half the total air load at low values of the lift coefficient.

Langley Memorial aeronautical Laboratory,
National Advisory Committee for Aeronautics, Langley Field, Va., June 10, 1939.

REFERENCES

1. Weick, Fred E., and Bamber, Millard J.: Wind-Tunnel Tests of a Clark Y Wing with a Narrow Auxiliary Airfoil in Different Positions. T.R. No. 428, N.A.C.A., 1932.
2. Wenzinger, Carl J., and Harris, Thomas A.: The Vertical Wind Tunnel of the National Advisory Committee for Aeronautics. T.R. No. 387, N.A.C.A., 1931.
3. Weick, Fred E., and Noyes, Richard W.: Wind-Tunnel Research Comparing Lateral Control Devices, Particularly at High Angles of Attack. X. Various Control Devices on a Wing with a Fixed Auxiliary Airfoil. T.N. No. 451, N.A.C.A., 1933.

(A) Aux. T.E. 10.0 percent ahead of L.E., 14.0 percent above chord, $\delta 口 212^{\circ}$.
(B) Aux. T.E. 11.5 percent ahead of L.E., 14.0 percent above chord, $\delta=0^{\circ}$. Figure 19.-Oharacteristics with Clark Y, 14.5 percent chord anrillary.

(A) N.A.O.A. 0012 , T.E. 11.5 percent ahead of L.E., 14.0 percant above chord.
(B) N.A.O.A. 22, T.E. 18.2 percent ahead of L.E., 12.0 percent above chord.

Fioure 20.-Normal and chord components of the force on 14.5 percent chord auxlliary airfolls.

TABLE I.-CHARACTERISTICS AND CRITERIONS FOR AN N.A.C.A. 22, 7.5 PERCENT AUXILIARY WITH A CLARK Y WING

Position of T.E. of autrilary airfoil		δ	$C_{\text {dmin }}$	$C_{\text {Leds }}$	${ }^{\alpha} C_{\text {Les }}$	$\frac{C_{\text {Lmeg }}}{C_{D \text { mia }}}$	$\frac{\left(C_{\left.L_{\text {max }}\right)^{I}}^{C_{\text {Dmin }}}\right.}{}$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & C_{L \bullet 0.7} \end{aligned}$	$\frac{\Delta}{D}{ }_{C \text { for }}$
Ahead	Above								
Percent c 18.0	Percent c 140	$\begin{array}{r} \text { Degrees } \\ 5 \\ 716 \\ 121 / 2 \end{array}$	0.0187 .0185 .0185	(1.458 1.462 1.478	Degrees 21 21 21	78 79 80	114 116 118	11.1 10.0 7.6	4.42 4.27 4.03
11.5	14.0	$23 / 2$ 5 $73 / 2$ 10 $121 / 2$.0188 .0188 .0185 .0106 0198	1.560 1.602 1.602 1.620 1.602	$\begin{aligned} & 24 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	84 85 87 83 81	130 137 139 134 139	10.4 10.4 10.1 8.9 8.8	3.84 3.61 3.64 3.64 3.47 3.37
27.5	14.0	0 $23 / 2$.0184 .0170 .0187	1.400 1.374 1390	20 20 20	76 79 74	107 109 103	10.8 10.8 13.0 11.7	5.19 4.07 4.81
21.2	8.8	0 $23 / 2$ 5 736 10 $121 / 2$.0201 .00185 .0180 .0191 .0201 .0109	1.415 1420 1415 1.510 1.563 1551	23 23 23 22 23 23	70 77 79 79 78 78	100 109 111 119 122 121	12.1 14.0 12.1 10.8 10.0 18.4	3.94 3.88 3.74 4.18 3.74 3.80
16.0	4.5	$21 / 2$ $51 / 2$.0160 .0174 .0168	1.593 1.648 1.605	21 25 24	95 95 98	145° 157 153	12.1 10.9 10.0	4. 62 3.85 3.86 3.85
7.5	9.6	${ }_{5}^{21 / 2}$.0204 .0098 .0204	($\begin{array}{r}1.563 \\ 1.563 \\ \hline \\ \hline\end{array}$	25 28 25	77 79 75	120 123 114	10.0 9.9 9.9	3.45 3.21 3.24
10.7	0.0	0 5 $71 / 3$ $12 / 3$.0185 .0157 .0163 .0168	1.401 1340 1.340 1.323	24 23 23 23	76 88 85 80	108 114 117 106	11.3 11.3 11.3 11.3	3. 80 3.79 3.69 3. 68
19.3	-2.5	-5 0 0 $23 / 2$ 0	.0218 .0177 .0171 .0177	1623 11620 1.615 1.628	23 24 24 24	75 92 94 91 91	121 149 143 145	14.0 11.1 10.6 10.6	4.82 4.33 4.38 4.19
11.1	7.4	0 5 735 10	.0196 .0185 .0182 .0191	1.640 1.618 1.605 1.675	25 25 25 25	84 87 88 88	137 141 142 130	9.7 10.3 9.3 8.9	3. 82 3. 88 3.48 3. 26

TABLE II. CHARACTERISTICS AND CRITERIONS FOR AN N.A.C.A. 22, 11.0 PERCENT AUXILIARY WITH A GLARK Y WING

Position of T.E. of auxiliary afrfon		§	$C_{\text {cmia }}$	Crmer	${ }^{\alpha} C_{L-6,}$	$\frac{C_{\text {Lmas }}}{C_{\text {man }}}$	$\frac{\left(C_{\text {cma }}\right)^{2}}{C_{\text {dmia }}}$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & C_{L}=0.7 \end{aligned}$	$\begin{aligned} & \frac{L}{\bar{D}} \text { for } \\ & C_{L_{\text {mes }}} \end{aligned}$
Ahead	Above								
Percent c 7.50	Percent c 22.5	$\begin{gathered} \text { Degrees } \\ =5 \\ -21 / 2 \\ 0 \end{gathered}$	0.0172 .0161 .0172	1.470 1.480 1.492	$\begin{array}{r} \text { Degrees } \\ 22 \\ \frac{22}{22} \end{array}$	85 98 87	128 138 120	12.5 11.5 10.8	4. 23 4.03 3.94
16.0	18.9	-5 0 0 $23 / 2$ 5	.0203 .0169 .0169 .0185	1.435 1.452 1.465 1.474	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	71 86 87 80 80	102 104 128 117	12.3 12.5 -11.0	4.60 4.27 4.00 3.97
16.0	14.0	-5 0 $21 / 2$ 5	.0801 .0172 .0172 .0183	1.481 1.532 1.571 1.610	$\begin{aligned} & 22 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	74 89 81 98 88	109 108 133 142 142	14.0 13.5 13.7 12.7	4.32 4.14 3.79 3.41
11.5	14.0	-5 0 $23 / 3$ 5	.0209 .0183 .0183 .0191	1.650 1.678 1.660 1.610	$\begin{aligned} & 25 \\ & 26 \\ & 26 \\ & 25 \end{aligned}$	79 92 91 84 84	130 164 161 130	10.9 10.9 10.9 10.9	3. 69 3. 34 3.22 3.20
27.5	14.0	-5 0 0 $21 / 2$ 5	.0211 .0185 .0182 .0185	1.985 1410 14200 1.428	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	66 76 78 77	93 107 111 111	13.5 10.5 10.9 108 10.0	5. 03 4.70 4.44 4.34
21.2	8.8	0 $23 / 2$ 5	.0180 .0182 .0180	1.510 1.558 1. 545	$\begin{aligned} & 21 \\ & 22 \\ & 22 \end{aligned}$	84 88 86	127 134 132	13.7 123 13.2	4.47 4.15 4.89
16.0	4.5	$\begin{aligned} & -5 \\ & 0 \\ & 21 / 2 \\ & 5 \end{aligned}$.0225 .0175 .0167 .0178	1.605 1.580 1.584 1.571	23 23 24 24 24	72 90 90 98 88	115 143 150 138	15.9 8.9 9.0 9.0	4. 34 3.97 3.68 3.68 3.8
7.5	9.6	-5 $-21 / 2$ 0 5	.0215 .0201 .0191 .0209	1.542 1.525 1.480 1.425	25 25 27 25	78 78 78 78 8	111 116 116 97	$\begin{array}{r} 10.1 \\ 0.7 \\ -\quad 13.7 \end{array}$	3. 20 3.27 2.79 2.85 2.86
11.1	7.4	$\begin{gathered} -5 \\ 0 \\ 5 \\ 71 / 2 \end{gathered}$.0225 .0190 .0172 .0175	1.648 1.597 1.558 1.520	25 25 28 25	73 84 91 87	121 134 141 182	12.7 121 120 10.9	3.77 3.77 3.47 3.03 3.07

TABLE III. CHARACTERISTICS AND CRITERIONS FOR AN N.A.C.A. 22, 14.5 PERCENT AUXILIARY WITH A CLARK Y WING

Position of T.E. of auxillary alrfoll		δ	$C_{\text {bmin }}$	Cluas	${ }^{\alpha} \mathrm{CLmax}$	$\frac{C_{L_{\text {max }}}}{C_{D_{m i n}}}$	$\frac{\left(C_{L_{\text {max }}}\right)^{2}}{C_{\text {Dmin }}}$	$\frac{L}{L} \text { for } C_{L}=0.7$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & C_{t=a} \end{aligned}$
Ahead	Above								
Percent c 15.2	Percent c 120	Degrees	0.0177	1. 650	$\begin{array}{r} \text { Degrees } \\ 25 \end{array}$	93	154	8.0	3.66.

TABLE IV. CHARACTERISTICS AND CRITERIONS WITH N.A.C.A. 22, 25 PERCENT AUXILIARY FOR EACH POSITION TESTED

Position of T.E. of aurilary alrfoll		δ	$C_{\text {dmin }}$	$C_{\text {Luas }}$	${ }^{a} C_{\text {Lmat }}$	$\frac{C_{L_{m \in A}}}{C_{D \min }}$	$\frac{\left(C_{L_{\text {m }}}\right)^{2}}{C_{D_{m i}}}$	$\begin{aligned} & \frac{L}{L} \text { for } \\ & \sigma_{L}^{D}=0.7 \end{aligned}$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & C_{L_{\text {Lex }}} \end{aligned}$
Ahead	Above								
Pereente 7.5	Percent c 22.5	$\begin{gathered} \text { Degrecs } \\ =74 / 2 \\ -5 \\ 0 \end{gathered}$	0.0238 .0186 .0163	1.575 1. 604 L 416	Degrees 25 24 21	66 81 87	105 122 124	11.9 113 10.0	3.24 3.12 3.25
12.0	18.9	-5 $-23 / 2$ 0 5	.0209 .0188 .0180 .0180	1.562 1.574 1.550 1.527	24 24 24 24	75 84 88 88 88	117 183 183 130	11.7 123 11.1 9.6	3.85 3.65 3.12 3.19 2.85
16.0	14.0	-5 $-21 / 2$ 0 $21 / 2$ 5	.0207 .0185 .0162 .0178 .0178	1.658 1.620 1.592 1.568 1.610	$\begin{aligned} & 26 \\ & 25 \\ & 25 \\ & 25 \\ & 24 \end{aligned}$	$\begin{aligned} & 80 \\ & 87 \\ & 88 \\ & 88 \\ & 85 \end{aligned}$	153 141 156 138 188	10.4 11.3 10.4 9.5 8.1	3.87 3.370 3.07 3.07 2.88 2.87
11.5	14.0	-5 $-23 / 2$ 0 5	.0208 .0176 .0169 .0169	1.578 1.628 1.470 1.365	25 24 23 21	77 87 87 81	121 133 128 111	13.2 11.5 9.9 8.6	3.21 3.19 3.11 3.05
27.5	14.0	$\begin{aligned} & -5 \\ & 0 \\ & 013 / 2 \\ & 5 \end{aligned}$.0200 .0156 .0179 .0179	1.510 1.488 1.634 1.487	23 22 23 23 23	75 96 86 88	114 144 131 124	10.9 12.1 11.1	3.85 3.81 3.75 3.39 3.3
21.2	8.8	$\begin{gathered} -5 \\ 0 \\ 236 \\ 5 \end{gathered}$.0211 .0181 .0168 .0168	1.603 1.580 1.516 1.480	$\begin{aligned} & 25 \\ & 24 \\ & 23 \\ & 23 \end{aligned}$	78 86 80 98	122 134 137 144	10.8 12.8 12.1 9.0 8.3	3.49 3.44 3.94 3.41 3.08
16.0	4.5	-5 $-23 / 2$ 0 0	.0207 .0169 .0165 .0155	1.516 1.470 1.405 1.281	25 24 23 20	73 87 90 83	112 128 127 106	11.1 10.1 10.3 9.5	3. 43 3.46 3.44 3.45

TABLE V. CHARACTERISTICS AND CRITERIONS FOR AN N.A.C.A. 0012, 7.5 PERCENT AUXILIARY WITH A CLARK• Y WING

Position of T.E. of ausillary airfoll		δ	$C_{\text {dmin }}$	$C_{\text {Lmax }}$	${ }^{\alpha} C_{\text {Lras }}$	$\frac{C_{\text {Lma }}}{C_{\text {din }}}$		$\frac{L}{L_{D}}{ }_{C_{2}=0.7}$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & {\stackrel{C}{C_{m a x}}}^{\text {and }} \end{aligned}$
Ahead	Above								
$\begin{aligned} & \text { Percent } c \\ & 16.0 \end{aligned}$	Percent e 14.0	$\begin{gathered} \text { Degrees } \\ 0 \\ 5 \\ 736 \\ 12 \% \end{gathered}$	0.0163 .0155 .0052 .0169	1402 1.418 1.428 1.434	Degrees $\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	86 91 94 84	121 130 134 120	10.8 11.3 9.2 8.3	4. 83 4. 80 4. 65 4. 35
11.5	14.	0 5 718 10 $123 / 2$.0161 .0168 .0164 .0169 .0180	1.438 1.500 1.520 1.545 1.690	$\begin{aligned} & 21 \\ & 22 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	89 90 98 98 98 88	129 136 141 141 140	8.3 10.6 9.5 8.9 8.4 7.4	4. 67 4.17 4.12 3. 84 3.63
21.3	8.8	$-23 / 2$ 0 $23 / 2$ 5	.0169 .0160 .0152 .0101	1.401 1.353 1.390 1.420	$\begin{aligned} & 20 \\ & 19 \\ & 20 \\ & 20 \end{aligned}$	81 81 91 98 88	114 118 127 125	10.3 11.5 10.6 10.4	4.90 5.47 4.83 4.91
18.0	4.5	0 013 512 713	.0155 .0149 .0152 .0160	1.646 1621 16099 16637	$\begin{aligned} & 24 \\ & 23 \\ & 23 \\ & 24 \end{aligned}$	106 109 108 102	175 178 170 167	10.9 10.4 0.9 9.5	4.35 4.45 4.36 4.07
7.5	9.6	-231 0 5	.0153 .0147 .0158	1.580 1.545 1.582	$\begin{aligned} & 24 \\ & 23 \\ & 25 \end{aligned}$	103 105 100	163 162 168	10.9 10.1 8.9	2.86 3.89 3.35
10.7	0.0	$-23 / 2$ 0 $23 / 2$ 5	.0146 .0138 .0133 .0133	1.475 1.470 1.403 1.407	22 22 22 21	101 106 105 100	149 145 148 149	11.9 10.8 9.6 9.7	4.71 4.50 4.28 4.53
19.3	-25	$-23 / 6$ 0 $23 / 2$ 5	.0158 .0141 .0139 .0144	1.622 1.610 1.610 1600	23 23 23 23	103 114 116 111	166 184 186 178	13.0 11.7 10.9 10.1	4. 88 4.74 4.68 4.57
11.1	7.4	-5 $-21 / 2$ 0 5	.0182 .0172 .0172 .0172	1.660 1.670 1.636 16008	25 25 25 24	91 97 97 98 94	151 168 168 150	11.9 11.5 10.6 10.4	4. 17 3.80 3.67 3.91
20.0	21	0 . .7312	.0160 .0165 .0155	1.540 1.570 1.570	$\begin{aligned} & \frac{22}{22} \\ & \frac{22}{22} \end{aligned}$	98 101 101 101	147 169 159	11.3 100 9.6	4.87 4.68 4.61
18.0	-1.5	$-23 / 2$ 0 $23 / 2$ 5	.0163 .0152 .0152 .0152	1.602 1.590 1.682 1.570	23 23 23 23	188 105 104 103	157 166 166 162	11.9 11.3 10.1 9.9	4.75 4.65 4.64 4.41
18.6	-7.1	$-21 / 2$ 0 $21 / 2$ 5	.0169 .0163 .0163 .0163	1.570 1.571 1.512 1.482	23 23 23 22	93 98 88 98 91	146 162 140 135	12.5 121 10.9 10.6	4.85 4.82 4.61 4.72
21.8	-28	$\begin{gathered} -21 / 2 \\ 0 \\ 023 / 2 \\ 5 \end{gathered}$.0172 .0161 .0168 .0169	1.570 1.573 1.570 1.690	22 22 22 23 23	91 98 98 98	143 1164 146 150	12.3 11.1 10.1 9.5	8.06 4.97 4.86 4.49

TABLE VI. CHARACTERISTICS AND CRITERIONS FOR AN N.A.C.A. 0012, 11.0 PERCENT AUXILIARY WITH A CLARK Y WING

Positions auxilary	T.E. of airtol	δ	$C_{\text {dmin }}$	CLmes	${ }^{a} C_{\text {Laes }}$	$\frac{C_{L_{m a x}}}{C_{D_{m}}}$	$\frac{\left(C_{L=a x}\right)^{2}}{C_{D=I R}}$	$\underset{C_{L}-0.7}{\frac{L}{D} \text { for }}$	$\frac{L}{D} \text { for }$
Ahead	Above								
Percent c 7.5	Percent c 22.5	Degrees ${ }_{\text {- }} \begin{gathered}\text { a } \\ 0 \\ 5\end{gathered}$	0.0153 .0151 .0168	1.400 1.413 1.426	Degrees 20 20 20	91 94 90	128 132 129	12.5 10.1 8.4	4.88 4.67 4.26
16.0	18.9	$\begin{array}{r} 0 \\ 5 \\ 10 \end{array}$.0151 .0163 .0151	($\begin{array}{r}1.392 \\ -1408 \\ 1.395\end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	92 92 92	128 130 129	10.8 8.9 9.1	4.73 4.48 4.42
18.0	14.0	$\begin{aligned} & \frac{0}{31 / 2} \\ & 5 \end{aligned}$.0157 .0148 .0159	1.413 1.410 L 461	$\begin{aligned} & 20 \\ & 21 \\ & 20 \end{aligned}$	90 95 91	127 134 130	10.4 9.7 8.9	4.74 4.47 4.41
11.5	14.0	0 $23 / 2$ 5 10	.0143 .0143 .0143 .0162	1.568 1.656 1.618 1.614	23 25 25 25	110 1116 113 100	172 192 183 161	10.0 9.5 8.8 7.9	3.95 3.58 3.60 3.60 3.22
21.2	8.8	0 5 10 12132	.0156 .0169 .0164 .0164	1.432 1.508 1.631 1.538	20 21 22 22	92 89 89 93 94	132 135 148 144	11.1 9.1 8.1 7.9	4.92 4.82 8.89 3.83
16.0	4.5	0 $21 / 2$ 5 $7 / 6$.0143 .0140 .0136 .0144	1.560 1.562 1.658 1.527	22 22 23 23 23	109 112 114 100	170 174 178 162	11.3 9.3 9.0 8.5	4.48 4.27 4.27 4.00
7.5	9.6	-5 $-51 / 2$ 0 0	.0157 .0154 .0152 .0152	1.546 1.540 1.635 1.468	24 24 24 24	99 100 101 97	162 164 155 145 142	12.5 10.4 9.3 7.8	3.65 $\begin{aligned} & \text { 3.63 } \\ & 3.25 \\ & 3.25 \\ & 3.14\end{aligned}$
11.1	7.4	$\begin{gathered} -5 \\ -21 / 2 \\ 0 \\ 5 \end{gathered}$.0172 .0164 .0156 .0172	1.610 1.698 1.571 1.581	23 23 23 23 24	94 97 101 91	151 156 159 142	11.7 11.7 10.1 8.4	4.25 4.13 3.068 3.48

TABLE VII. CHARACTERISTICS AND CRITERIONS FOR AN N.A.C.A. 0012, 14.5 PERCENT AUXILIARY WITH A CLARK Y WING

Positions of T.E. of auxillary airfoll		δ	$C_{\text {bmin }}$	CLeas	${ }^{\alpha} C_{L \times,}$	$\frac{C_{L \text { max }}}{C_{\text {man }}}$	$\frac{\left(C_{L=a t}\right)^{2}}{C_{\text {D }}}$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & C_{L} \longmapsto 0.7 \end{aligned}$	$\frac{L}{D} \frac{L}{C_{\text {Ler }}}$
Ahead	Above								
Percent c 7.5	Percent c 225	$\begin{gathered} \text { Degrecs } \\ 0 \\ 5 \\ 71 / 2 \end{gathered}$	0.0151 .019 .0159	1.443 1.356 1.575	Degrees 21 24 25 25	96 104 102	138 162 161	10.0 7.8 8.9	4. 23 3.34 3.08
16.0	18.9	-5 $-21 / 2$ 0 $21 / 2$ 5	.0169 .0149 .0141 .0149 .0146	1.390 1.400 1.408 1.443 1.460	20 21 21 21 21	87 94 100 90 97 97	122 182 140 140 139	12.3 12.1 10.6 9.2 8.3	4.90 4.90 4.42 4.27 4.13 4.07
10.0	140	0 $21 / 2$ 5 $73 / 2$.0129 .0129 .0131 .0134	1.301 1. 603 1.603 1.593	22 24 24 24	116 124 122 119	175 109 196 190	11.5 9.2 888 7.9	4. 15 8.67 3.68 3.88
11.5	14.0	$-21 / 3$ 0 5	.0139 .0137 .0137	1.651 1.639 1.613	23 23 28	119 120 118	198 196 190	11.7 11.1 8.1	8.85 8.63 8.28
27.5	14.0	$\begin{aligned} & 0 \\ & 5 \\ & 7 / 1 / 2 \end{aligned}$.0149 .0148 .0164	1.333 1.370 1.434	19 20 21	89 94 87	119 129 125	11.5 8.9 7.9	5. 02 4.32 3.08
21.2	8.8	-5 0 $21 / 2$ 5	.0164 .0149 .0157 .0167	1.408 1.485 1.340 1.534	$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 22 \end{aligned}$	88 100 100 98 92	121 148 151 141	12.5 11.1 98.5 8.5	5.12 4.64 4.17 4.02
16.0	4.5	-5 $-21 / 2$ 0 5	.0159 .0129 .0128 .0128	1.550 1. 537 1.520 1.490	22 22 22 22	97 119 121 118	151 183 184 176	12.5 12.7 10.8 8.3	4.68 4.388 4.15 3.92
7.5	9.6	$-71 / 2$ -5 $-21 / 2$ 0 5	.0159 .0146 .0146 .0162 .0158	1.504 1.513 1.466 1.460 1.400	23 24 23 28 25	94 108 100 100 95 90	142 156 147 137 126	13.0 12. 10.9 10.8 8.8 7.3	3.90 3.61 3.68 3.00 2.79
11.1	7.4	-5 $-21 / 2$ 0 5	.0154 .0142 .0142 .0144	1.605 1.692 1.518 1.4880	24 23 23 23	104 109 107 103	167 167 162 163	12.5 11.9 9.9 8.2	

TABLE VIII. CHARACTERISTICS AND CRITERIONS FOR AN N.A.C.A 0012, 18 PERCENT AUXILTARY WITH CLARK Y WING

Position of T.E. of amollary airfoll		δ	$C_{\text {dmin }}$	$C_{L \underline{L a s}}$	${ }^{\alpha} C_{L}{ }^{\text {a }}$ a	$\frac{C_{\text {cmax }}}{C_{\text {dmin }}}$	$\frac{\left(C_{L=n}\right)}{} C_{\text {min }}$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & C_{L}=0.7 \end{aligned}$	$\frac{L}{D} \text { for }$
Ahead	Abore								
Percent e 7.5	Percent e 22.5	$\begin{gathered} \text { Degrees } \\ 0 \\ 21 / 1 \\ 5 \\ 71 / 2 \end{gathered}$	$\begin{array}{r} 0.0169 \\ .0169 \\ .0169 \\ .0181 \end{array}$	1.473 1.578 1.565 1.531	$\begin{array}{r} \text { Degrees } \\ 22 \\ 25 \\ 25 \\ -24 \end{array}$	93 99 98 98	136 157 154 146	9.5 8.0 7.1 8.5	3.77 3.14 3.009 206
16.0	18.9	$\begin{gathered} 0 \\ 23 / 2 \\ 5 \\ 73 / 2 \\ 10 \\ 121 / 2 \end{gathered}$.0162 .0161 .0181 .0166 .0169 .0174	1.440 1.485 1.488 1.580 1.530 1.552	$\begin{aligned} & 21 \\ & 22 \\ & 22 \\ & 24 \\ & 23 \\ & 24 \end{aligned}$	95 92 92 92 98 89 88	136 136 137 150 139 137	10.8 10.8 8.5 8.2 6.6 6.2 6.1	4.09 3.75 3.75 3.65 3.18 3.87 2.91
16.0	14.0	$\begin{gathered} -2312 \\ 0 \\ 2312 \\ 5 \end{gathered}$.0157 .0155 .0152 .0157	1.560 1.621 1.650 1.575	$\begin{aligned} & 23 \\ & 25 \\ & 23 \\ & 24 \end{aligned}$	99 104 102 100	155 159 158 158	11.7 11.1 8.3 7.8	4.05 3.48 3.69 3.32
11.5	14.0	0 5 516	.0184 .0182 .0164	1.600 1.690 1.580	25 25 28	88 88 98	156 156 156 158	10.4 8.0 7.4	3.33 3.15 3.15 3.01
27.5	14.0	$\begin{aligned} & 0 \\ & 5 \\ & 7 / 2 \end{aligned}$.0156 .0156 .0164	1.337 1.385 1.426	19 20 21	86 89 87	114 125 124. 124	11.3 8.0 7.4	4.82 4.21 3.69
21.2	8.8	$\begin{gathered} -23 / 3 \\ 0 \\ 2315 \\ 5 \end{gathered}$.0168 .0156 .0168 .0178	1470 1.544 1.613 1.510	21 22 22 22	89 99 91 86	130 153 138 130	11.7 113 9.2 7.5	4.51 3.71 3.89 3.83 3.83
16.0	4.5	$\begin{gathered} -235 \\ 0 \\ 23 / 2 \\ 5 \end{gathered}$.0157 .0149 .0142 .0144	1.488 11.488 1.468 1.418	22 23 22 21	95 100 103 109	141 149 152 140	121 11.1 8.8 11.9	4.21 4.02 3.91 3.92

TABLE IX. CHARACTERISTICS AND CRITERIONS FOR A CLARI Y, 14.5 PERCENT AUXILIARY WITH A CLARK Y WING

Postition of T.E. of amsiltary airfoil		б	$C_{\text {Dain }}$	$C_{\text {Leax }}$		$\frac{C_{\text {Lman }}}{C_{\text {main }}}$	$\frac{\left(C_{L_{\text {mal }}}\right)^{2}}{C_{D_{\text {mia }}}}$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & C_{L}=0.7 \end{aligned}$	$\begin{aligned} & \frac{L}{D} \text { for } \\ & C_{\text {Luwas }} \end{aligned}$
Ahead	Above								
Pereent c 7.5	Percent c 22.5	$\begin{gathered} \text { Degrees } \\ 0 \\ 23 / 2 \\ 5 \\ 731 \end{gathered}$	$\begin{gathered} 0.0156 \\ .0164 \\ .0174 \\ .0179 \end{gathered}$	1460 1470 1.571 1.555	$\begin{array}{r} \text { Degrecs } \\ 25 \\ 25 \\ 25 \\ 24 \end{array}$	94 90 90 87	137 132 142 135	11.7 10.1 78.3 6.7	3.06 2.01 2.01 3.05 3.08
16.0	18.8	$\begin{aligned} & 0 \\ & 5 \\ & 73 K \end{aligned}$.0164 .0172 .0182	1.446 1.502 1.532	$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$	88 87 84	128 131 129	11.7 8.0 7.2	4.14 3.65 3.38
18.0	- 14.0	${ }_{.}^{0}{ }_{5}^{01 / 2}$.0159 .0157 .0168	1.612 1.616 1.622	24 24 25	101 103 100	163 168 163	11.7 9.6 8.2	3.73 3.51 3.23
11.5	14.0	$\begin{gathered} -23 / 2 \\ 0 \\ 23 / 2 \\ 5 \end{gathered}$.0178 .0170 .0170 .0165	1.685 11.647 1.631 1.608	28 28 28 28 28	98 97 98 98	158 158 157 157 157	11.7 11.1 0.2 7.6	3.25 3.37 3.21 3.21 2.96
27.5	14.0	$\begin{aligned} & 0 \\ & 5 \\ & 7 / 2 \end{aligned}$.0169 .0172 .0182	1.390 1.43 1.475	$\begin{aligned} & 20 \\ & 21 \\ & 21 \end{aligned}$	82 81 81	114 121 120	11.9 8.4 7.7	1.51 $\begin{array}{l}1.91 \\ 3.99 \\ 3.91\end{array}$
21.2	8.8	0 5 $71 / 2$ 10 $123 / 2$.0182 .0180 .0180 .0178 .0198	1.542 1.578 1.585 1.587 1.536	$\begin{aligned} & 22 \\ & 23 \\ & 23 \\ & 24 \\ & 23 \end{aligned}$	85 88 87 89 79	131 138 136 141 122	11.7 8.5 7.4 609 6.5	4.27 3.71 3.57 3.80 3.30 3.25
16.0	45	$\begin{gathered} -23 / 2 \\ 0 \\ 21 / 1 \\ 5 \end{gathered}$.0177 .0167 .0169 .0159	1.562 11548 1.602 1480	$\begin{aligned} & 23 \\ & 23 \\ & 23 \\ & 22 \end{aligned}$	88 93 94 98	138 144 142 138	12.1 11.5 9.3 7.4	4. 06 3. 81 3. 3. 77
7.5	0.6	-5 $-23 / 2$ 0 5	.0218 .0192 .0192 .0192	1.600 1.470 1.443 1.400	28 26 26 24	69 77 78 78	$\begin{aligned} & 103 \\ & 113 \\ & 108 \\ & 108 \end{aligned}$	11.9 11.3 11.1 6.7	2.99 2.89 2.75 2.84

TABLE X. CHARACTERISTICS OF A CLARK Y WING WITH VARIOUS AUXILIARIES IN THEIR MOST PROMISING POSITIONS

NO AUXILLARY

$\underset{\text { (degrees) }}{\boldsymbol{a}}$	$C L$	C_{D}	$\begin{gathered} C_{m} \\ 0.25 c \text { of } \\ \text { main wing } \end{gathered}$
-4	0.047	0.016	-0.077
-3	- 111	. 015	-. 078
0	.1331	.022	-. 070
10	. 684	. 092	-. 067
13	1. 169	. 127	-. 005
14	1.222	. 140	-. 004
15	1. 200	. 150	-. 004
16	1.295	. 162	-. 004
17	1.333	- 180	-. 0099
18	1.319	. 204	-.078
19 20	1.295 1.275	. 224	-.086
30	. 011	.553	-. 168

N.A.C.A. 22, 7.5 PEROENT AUXILIARY T.E. of auxiliary 0.150 c ahead, 0.045 c above, $8-5^{\circ}$

$\underset{\text { (degrees) }}{\boldsymbol{\alpha}}$	C_{L}	$C D$	$\begin{gathered} C_{m} \\ 0.25 \mathrm{c} \text { of } \\ \mathrm{maln} \text { wing } \end{gathered}$
-6	-0.034	0.020	-0.071
-6	-. 010	. 018	-. 064
-4	. 046	. 018	-. 0509
-3	. 117	. 019	-. 055
0	. 305	. 029	-. 036
10	. 916	. 121	-. 025
20	1.174	. 311	-. 004
23	1. 578	. 381	-. 001
24	1.632	. 405	. 000
25	I. 191	. 444	-. 0058
30 35	. 8878	. 663	=.072
35	. 876	.64	-.088

T.E. of auxillary 0.103 c ahead, 0.025 c below, $8=232^{\circ}$

$\boldsymbol{\alpha}$	CL	$C D$	$\begin{gathered} C_{\mathrm{m}} \\ 0.25 \mathrm{c} \text { or } \\ \text { main wing } \end{gathered}$
Degrees			
-4 -3	0.054	0.017	-0.068 -.061
-2	. 198	.019	-. 0.05
0	. 321	. 024	-. 050
10	. 887	. 106	-. 028
20	1.169	. 288	-. 012
23	1. 685	. 350	-. 010
24	1.618 1450	. 374	-. 018
25	1.118	. 415	-. 040
30	. 093	. 538	-. 080
35	. 870	. 028	-. 096

N.A.OA. 22, 25.0 PERORNT ADXHIARY
T.E. of aurnliary $0.10 c$ ahead, $0.14 c$ above, $\delta=0^{\circ}$

$\underset{\text { (degrees) }}{\boldsymbol{a}}$	CL	C_{D}	$\begin{gathered} C= \\ 0.25 c \text { of } \\ \text { main wing } \end{gathered}$
-5	-0.032	0.024	-0.047
-4	. 001	. 017	-. 033
-3	. 145	. 018	. 015
0	. 363	. 038	. 016
10	1.015	. 129	. 100
20	1.412	. 370	. 165
23	1.521	. 444	. 194
24	1. 555	. 476	. 196
25	1. 590	. 507	. 199
28	1.114	. 535	. 147
30	. 995	. 5882	. 100
35	. 985	. 885	. 089

T.E. of aurdiary $0.212 c$ ahead, 0.088 c above, ${ }_{\delta=21 / 2^{\circ}}$

$\underset{\text { (degrees) }}{\boldsymbol{\alpha}}$	GL	$C D$	$\begin{gathered} C_{m} \\ 0.25 c \text { ol } \\ \text { main wing } \end{gathered}$
-6	-0.061	0.020	-0.051
-5	. 023	. 017	-. 028
-4	. 091	. 017	-. 008
0	. 332	. 028	. 065
10	. 903	. 144	. 126
20	I. 361	. 367	. 183
22	1. 463	. 417	. 205
23	1. 518	. 445	. 213
24	1.064	. 464	. 111
30	. 989	. 505	. 111
35	. 903	-695	. 107

T.E. of auxilary $0.275 c$ ahead, $0.14 c$ above, $\delta=0^{\circ}$

a	C_{L}	C_{D}	$\begin{gathered} C_{m} \\ 0.26 c \text { of } \\ \text { main wing } \end{gathered}$
Degrees			
\square_{-4}^{-6}	-0.009 -.061	0.018 .017	-0.035 -.013
-3	. 145	. 017	. 002
0	. 349	. 028	. 055
10	. 865	. 114	. 164
20	1.397	. 343	. 190
22	1.480	. 391	. 203
23	1.516	. 415	. 207
24	1.111	. 447	. 113
25	1.043	. 474	. 110
30 35	. 8680	. 6898	. 1109

N.A.C.A. $0012,14.5$ PERCENT AUXILIARY
T.E. of auxillary $0.115 e$ ahead, 0.14 c above, $\delta=0^{\circ}$

$\underset{\text { (degrees) }}{\boldsymbol{\alpha}}$	C_{L}	$C D$	$\begin{gathered} C_{\omega} \\ 0.25001 \\ \text { main wing } \end{gathered}$
-5	-0.040	0.017	-0.094
-4		. 018	-. 059
-3	. 100	. 017	. 081
5	. 310	. 082	-. 010
${ }^{5}$. 654	. 06132	-. 013
20	1.468	.338	. 045
23	1.578	.411	. 051
24	1. 630	. 439	. 053
25	1. 660	. 469	. 055
26 27	1.685 1.000	. 495	. 058
30	$\begin{array}{r}1.000 \\ \hline 8\end{array}$. 685	-.025
35	889	. 042	-.030

T.E. of auxilary $0.115 c$ ahead, $0.14 c$ above,

$\stackrel{\boldsymbol{\alpha}}{\text { (degrees) }}$	$C L$	$C D$	$\begin{gathered} C_{E} \\ 0.25 e^{\prime} \\ \text { main wing } \end{gathered}$
-5	-0.039	0.018	-0. 0.07
-4		. 017	-. 0983
-3		. 017	-. 085
0 5		.023	-.054
(10	-655	. 128	-. 001
20	1.461	- 322	. 042
$\stackrel{24}{2}$	1.631	. 429	. 051
25	1.680	. 457	. 049
26	1. 698	- 484	-052
${ }_{3}^{28}$	1.010	. 464	-. 0208
${ }_{35}$.894	. 637	-. 0030

T.E. of aurliary 0.16 c ahead, 0.14 c abore, $\delta=232^{\circ}$

$\boldsymbol{\alpha}$	- C_{L}	CD	$\begin{gathered} C_{m} \\ 0.25 e \text { of } \\ \text { main wing } \end{gathered}$
Degtees			
	-0.023	0.016 .016	-0.090 -.079
-3	. 127	. 017	-. 0605
	335	. 024	-. 033
5	. 680	. 009	-. 011
10	. 960	. 137	. 010
20	1.460	. 335	. 054
23	1. 590	. 410	. 061
$\stackrel{24}{25}$	1.620 1.048	. 442	.063 -.021
30		. 572	-. 021
35	882	. 658	-. 019

TABLE X. CHARACTERISTICS OF A CLARIK Y WING WITH VARIOUS AUXILIARIES IN THEIR MOST PROMISING POSITIONS-Continued
N.A.C.A, 22, 110 PEROENT AUXILIARY
T.E. of auxiliary 0.115c ahead, $0.14 c$ above, $\delta=0^{\circ}$

$\boldsymbol{\alpha}$	C_{L}	CD	
Degrees			
-5	-0.050	0.023	-0.062
-4	. 045	. 019	-. 004
-3	111	. 018	-. 047
-2	. 185	. 019	-. 041
0	. 320	. 025	-. 027
10	. 929	. 133	. 004
20	I. 460	. 331	. 033
25	1.653	. 468	. 036
29	1. 682	. 496	. 035
27	1.072	. 509	-. 0.041
30	. 997	. 564	-. 041
35	. 903	. 655	-. 0.50

T.E. of aurlibry 0.16 c ahead, 0.045 c above, $8=233^{\circ}$

$\boldsymbol{\alpha}$	$C L$	C_{D}	$\begin{gathered} C_{m} \\ 0.25 \mathrm{c} \text { of } \\ \text { maln wing } \end{gathered}$
Deprees			
-6	-0.003	0.023	-0. 075
-5	-. 018	. 017	-. 082
-4	. 018	. 017	-. 052
0	. 327	. 027	-. 024
10	. 900	. 127	. 0000
20	1.438	. 322	. 030
22	1.529	. 374	. 036
23	1.568	. 390	. 037
24	1.391	. 433	. 031
30	. 963	. 559	. 035
35	. 845	. 613	. 043

N.A.O.A. 22, 145 PEROENT 1 UXILLARY
T.E. of aunflary 0.15c ahead, $0.12 c$ above, $\delta=0^{\circ}$

α	C_{L}	C_{D}	C $0.25 c$ of maln wing
Degrees			
-4	0.010	0.024	-0.031
-3	.105	.018	-.050
-2	.182	.019	-.040
0	.325	.023	-.021
10	.942	.124	.026
20	1.450	.356	.063
23	1.582	.407	.073
24	1.610	.434	.076
25	1.650	.465	.079
25	1.050	.468	-.003
23	1.014	.484	-.009
30	.909	.574	-.013
35	.881	.661	-.013

N.A.C.A. 0012, 7.5 PEROENT AUXILLARY
T.E. of anciliary 0.193 c ahead, 0.025 c below, $\delta=0^{\circ}$

α	$C L$	$C D$	$\begin{gathered} C= \\ 0.25 \mathrm{e} \text { of } \\ \text { main wing } \end{gathered}$
Degrees			
	-0.027	0.017	-0.003
-4	. 044	. 018	-. 084
-3	. 112	. 016	-. 083
0	. 325	. 023	-. 068
5	. 633	. 052	-. 042
10	. 920	. 103	-. 040
20	1.498	. 271	-. 034
22	1.577	. 318	-. 027
23	1. 605	. 341	-. 025
24	1.381	. 365	-. 056
25	1.210	. 431	-. 088
30	. 944	. 630	-. 095
35	. 856	. 817	-. 109

T.E. of auxilifary $0.103 c$ ahead, 0.025 c below, $\delta=212^{\circ}$

α	C_{L}	$C D$	$\begin{gathered} C_{m} \\ 0.25 c \text { of } \\ \text { main } w \operatorname{lng} \end{gathered}$
Degrees			
-5	-0.022	0.016	-0.089
-8	. 112	. 016	-. 0078
0	. 324	. 028	-. 0.05
5	628	. 055	-. 041
10	.920	. 106	-. 040
20	1.492	. 284	-. 030
22	1. 692	. 323	-. 028
23	1. 616	. 34	-. 028
24	1.558	. 376	-. 035
25	1. 200	. 425	-. 076
30	. 050	. 534	-. 093
35	. 802	. 615	-. 103

N.A.C.A. 0012, 11.0 PERCENT AUXILLARY
T.E. of aurlliary 0.115c ahesad, $0.14 c$ above, $\delta=212^{\circ}$

$\boldsymbol{\alpha}$	CL	$C D$	$\begin{gathered} C \mathrm{~m} \\ 0.25 \mathrm{c} \text { of } \\ \text { maln wing } \end{gathered}$
Degrees			
-5	-0.020	0.015	-0.079
-4	. 055	. 015	-. 071
-3	120	. 015	-. 061
0	. 331	. 023	-. 042
5	. 654	. 067	-. 028
10	. 983	. 135	-. 008
20	1. 480	. 335	. 023
23	1.694	. 413	. 025
24	1.630	. 438	. 027
25	1. 600	. 468	. 027
28	1.013	. 483	-. 048
30	. 820	. 566	-. 054
35	. 875	. 854	-. 055

N.A.O.A 0012, 18.0 PEROENT AUXILIARY
T.E. of auriliary $0.16 c$ ahead, $0.14 c$ above, $\delta=0^{\circ}$

$\boldsymbol{\alpha}$	$C L$	OD	$\left.\begin{array}{c} C_{m} \\ 0.25 c \text { of } \\ \text { maln wing } \end{array}\right]$
Degrecs			
Degres	-0.040	0.016	-0.108
-4	. 030	. 015	-. 097
-3	. 0033	. 015	-. 096
0	. 312	. 022	-. 013
5	. 670	. 057	. 005
10	. 933	. 134	. 023
20	1. 446	. 333	. 079
23	1. 568	. 406	. 083
24	1. 590	. 439	. 091
25	. 973	. 458	. 000
30	. 910	. 673	. 004
35	. 870	. 659	. 009

OLARK Y, 14.6 PEROENT AUXILIARY
T.E. of aurillary $0.115 c$ ahead, $0.14 c$ abovo, $8=0^{0}$

α	C_{L}	$C D$	
Degrees			
-5	-0.010	0.018	-0.071
-4	. 050	. 017	-. 0002
-3	. 135	. 017	-. 0.051
0	. 357	. 025	-. 024
5	. 705	. 058	. 003
10	. 973	. 141	. 016
20	1.473	. 352	. 0.56
24	1. 619	. 458	. 0003
25	1. 654	. 490	. 004
28	1. 630	. 822	. 004
27	1.042	. 516	-. 014
30	. 967	. 567	-. 018
35	. 898	. 693	-. 010

T.E. of auxfliary 0.16 c ahead, 0.14ε above. $\delta=214^{\circ}$

α	$C L$	C_{D}	C_{m} 0.25 c of maln wing
Degrees			
-5	-0.003	0.017	-0,001
-4	. 0085	. 017	-. 051
-3	. 151	. 018	-. 011
0	. 369	. 027	. -. 012
5	. 690	. 069	. 011
10	. 985	. 146	. 021
20	1.471	. 351	. 0003
23	1.600	. 432	. 072
24	1. 630	. 460	. 073
25	1. 656	. 400	. 074
28	1. 018	. 803	-. 010
30	. 014	. 593	-. 013
35	. 944	. 695	-. 009

