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A THEORY FOR PRIMARY FAILURE OF STRAIGHT CENTRALLY LOADED COLUMNS

By Eveene E. LunpquisT and Craupe M. Frige

SUMMARY

A theory of primary failure of straight centrally loaded
columns is presented. It 18 assumed that the column
cross section and the load are constant throughout the
length.

Primary failure is defined as any type of failure in
which the cross sections are translated, rotated, or trans-
lated and rotated but not distorted in their own planes.
In the derivation of the general egquation for the critical
stress, the cross sections are assumed to rotate about any
azis parallel to the column. When the location of the
axis of rofation varies from zero fo infinily in every
direction, all combinations of translation and rotation of
the column cross section are obtained.

For illustration, the theory is applied to a column of
I section. The conclusions, however, are generalized fto
include any column with a cross section symmetrical
about its principal azes. It 8 shown that, for such
columns, the theories for bending failure and tunsting
failure are 8pecial cases of this general theory and that
primary failure will occur by bending about the axis of
minimum moment of inertia or by twisting about the
ceniroid, depending upon which gives the lower critical
slress.

When a column is attached to a skin, the great stiffness
of the skin in its own plane causes the axis of rotation to
lie in the plane of the skin. When the column cross
section is symmetrical about its two principal azes, one of
which i8 normal to the skin, the azis of rotation will be
either at the point where the principal axis crosses the
skin or at infinity in the plane of the skin, depending upon
which location gives the smaller stress.

It i3 shown how the effective width of skin that may be
considered to act with the column and carry the same
siress as the column alters the section properties of the
column and how the bending stiffness of the skin resists
twisting of the column and raises the critical stress.
Finally, the effective moduli that apply when the column
18 siressed above the proportional limit are discussed.

An illustrative problem in the first appendiz (A) shows
how the theory for primary failure may be used to con-
struct the column curve for a skin-stiffener panel.

Appendiz B shows how the theory may be applied to
columns of closed section. For closed sections, however,
the large torsional rigidity precludes anything bui bending
failure.

Appendiz C contains a derivation of the theoretical
equation for the effective modulus of elasticity when the
column 18 stressed above the proportional limit.

INTRODUCTION

In the determination of the compressive strength of
sheet and stiffener combinations as employed in stressed-
sgkin structures for aircraft, the strength of the stiffener
is & most important factor. When failure occurs by
deflection normal to the skin, the accepted column
curve for the material applies. (See reference 1.)
When failure oceurs by deflection of the outstanding
portion of the stiffener in a direction parallel to the
sheet, however, there is & combined action of bending
and twisting in the stiffener that requires for its solution

. & more general theory for primary failure in columns

than has been available heretofore.

Primary failure, as used in this report, is any type
of column failure in which the cross sections are trans-
lated, rotated, or both translated and rotated but not
distorted in their own planes (fig. 1). In keeping with
this definition of primary failure, any failure in which
the cross sections are distorted in their own planes but
not translated or rotated is designated ‘‘secondary’’
or “local” failure. (See fig. 2.) Consideration is given
herein only to primary failure.

(2
FIGURE 1.—Primary failore.
(a) Translated. (b) Translated and rotated.

F16URE 2.—S8econdary, or local, faflure.

Wagner in reference 2 has presented a theory for
torsion-bending failure of open-section columns formed
from thin metal. A part of this theory is summarized
in reference 3, which also includes the results of tests
made to substantiate the theory. In his theory,
Wagner considers the cross sections to rotate about en
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axis which is parallel to the column and which passes
through the center of twist for the section. (See refer-
ence 4, p. 194, art. 41, for location of center of twist.)
When the column is attached to the skin of a stressed-
skin structure, the stiffness of the skin in its own plane
and the anchorage of the skin at the sides of the pahel
are controlling factors in the location of the axis of
rotation. If the stiffness of the skin in its own plane
is assumed to be infinite, the axis of rotation is forced
to lie in the plane of the skin. Rotation of the cross
sections about any axis not lying in the plane of the
skin would require 8 movement of the skin in its own
plane. Such a movement is prevented by the stiffness
of the skin in its own plane and the anchorage of the
skin at the sides of the panel. Consequently, for the
solution of the skin-stiffener problem the Wagner
theory must be extended to include rotation of the cross
sections about axes other than the one passing through
the center of twist.

The purpose of this report is to present extensions

of the Wagner theory, as given in reference 2, to include’

rotation of the cross sections about any axis parallel
to the column. These extensions together with the
Wagner theory constitute the general theory of primary
failure of straight centrally loaded columns presented
in this report. This theory is applicable to any thin-
wall metal column of uniform section and contains the
Euler theory for bending and the Wagner theory for
twisting as special cases. The application of the general
theory to columns of open section is illustrated by use
of an I section column, both when the column is free
and when it is restrained by the attachment of one
flange to the skin of a stressed-skin structure. The
application of the theory to & design problem involving
an open-section column attached to a skin is given in
appendix A. The application of the theory to columns
of closed section is of less practical importance and is
given in appendix B. Appendix C presents the deriva-
tion of the theoretical equation for the effective modulus
of elasticity when the column is stressed beyond the
proportional limit.
THE THEORY OF PRIMARY FAILURE
THE WAGNER EQUATION

The critical compressive load for primary failure of
an open-section column that is both straight and cen-
trally loaded when the axis of rotation passes through
the shear center, in this report called “center of twist”’,
is given by equation (9) of reference 2, which written
with American notation is

P,,,=}—1;(GJ+§E Csr)

If both sides of this equation are divided by the cross-
sectional ares A, the following equation for the critical
stress is obtained:

GJ , Csr o°E

fcriz=7‘:+ Iv I‘;{'

®
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where
is the tension-compression modulus of
elasticity.

G=2—-(lﬁ"_”); shear modulus of elasticity.

i, Poisson’s ratio for the material.

I, polar moment of inertia of the cross section
ebout the axis of rotation.

Ly, efiective length of column.

J, torsion constant for the section. The
product @J in torsion problems is
analogous to the product EI in bending:
problems. (See reference 5.)

Csr, torsion-bending constant, dependent upon

the location of the axis of rotation and
the dimensions of the cross section. A
complete discussion of how to evaluate
Opr1is given in a later section.

In equation (1) ths term %—7 is that part of the
4

critical compressive stress caused by the resistance of

. . Cpp w20,
the column to pure twisting. Thetermfﬁ is

that part of the critical compressive stress caused by
the resistance of the column to bending. In the deriva-
tion. of equation (1) the angular displacement of the
cross section about the axis of rotation was found to
vary as s half sine wave along the length of the column
in the same way that the lateral displacements in an
Euler column vary as a half sine wave along the length.

Therefore the term -C%Z is analogous to ﬁ- in the Euler
P

column formula
I =K
fwit=z Z2

where I is the moment of inertia about a centroidal
axis.

In order for a column to fail in the manner shown
in figure 3 (2) the end cross sections must be free to
rotate about the axis of rotation and there must be no
restraint of longitudinal displacements at the ends of
the column. Thus, when primary failure occurs in the
manner shown in figure 3 (a), the twist per unit length
is the same at all stations along the length and the
column is said to be in a condition of pure twisting.
In 2 pure twisting failure there are no longitudinal
bending stresses, with the result that the second term
of equation (1) is zero. The critical stress for a pure

@)

twisting failure is therefore given by %’Z: which is in
. 14

agreement with the value given by equation (4a) of
reference 6. In order that the second term of equation
(1) shall be zero the effective length of the column must
be infinite (Ly=).

In order for a column to fail in the manner shown
in figure 3 (b) the end cross sections must be held
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against rotation about the axis of rotation but there | rotation about the axis of rotation and when buckling
must be no restraint of longitudinal displacements at | occurs, there must be complete restraint of longitudinal
the ends of the column. When primary failure occurs | displacements at the ends of the column. Because
in the manner shown in figure 3 (b), the twist per unit | the end conditions for the type of primary failure shown
length is variable along the length of the column with | in figure 3 (¢) correspond to built-in ends in an Euler
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FIGURE 3.—End conditions for different eflective lengths, Lo.

the result that longitudinal bending stresses are present
in addition to the shearing stresses of twisting. The end
conditions for this case correspond to pin ends in an | of restraint against longitudinal displacements of the
Euler column with the result that Ly=L in equation (1). | end cross sections the same effective length applies as

In order for a column to fail in the manner shown in | for an Ruler column with the same condition of end
figure 3 (c) the end cross sections must be held against | restraint.

column, L0=£—.' for this case. Similarly, for any degree
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GENERALIZATION OF WAGNER THEORY

In the paragraph immediately following equation
(2b) on page 6 of reference 2 it is stated, “The longi-
tudinal stresses o4, should not give a resulting bending
moment (since there is no such moment acting on the
member). It may easily be shown that this condition
may be satisfied if and only if the magnitudes r, and 7,
refer to the shear center; that is, when the section twists
about the shear axis, also in the case where longitudinal
stresses arise.”” These statements are correct when
there is no moment acting on the member. A general
derivation, however, should include a moment acting
on the member.

The Wagner theory is therefore based on the assump-
tion that only torque moments are acting on the member
at any station z along the column. From this assump-
tion it follows that at failure all but the end cross sec-
tions of the column rotate about an axis parallel to
the column and passing through the center of twist of
the section. When it is assumed that both torque
moments and bending moments are acting on the col-
umn at any station z, the combined effect is such as to
cause the cross sections to rotate about some other axis
parallel to the column. In this case equation (1) will
give the critical stress provided that Cpr and I,, which
depend upon the location of the axis of rotation, are
properly evaluated. The Wagner theory, together
with this extension of it, of which the purpose is to in-
clude rotation of the cross sections about any axis paral-
lel to the column, constitutes a more general theory
for primary failurein columns. The development of the
general theory is necessary for calculating the column
strength of stiffeners attached to skin when failure
occurs by deflection of the outstanding portion in a
direction parallel to the skin.

EVALUATION OF Car

The torsion-bending constant Cpyris a section proper-
ty similar to moment of inertia. Like moment of inertia
1t is dependent upon the axis about which the section
property is calculated. Wagner has shown that, in its
practical evaluation, Cpr may be divided into & major
and a minor part, the latter of which may be neglected
for most open sections formed of thin metal. In ref-
erence 3 it is shown that the major part can be expressed
by a simple integral involving certain areas swept by
a radius vector. In the evaluation of Cpr for some
stiffener sections used in aircraft structures, however,
the authors of the present report found it expedient
to use the basic considerations of displacement from
which the simple integral involving swept areas was
derived. " In this procedure certain concepts, not given
in references 2 and 3, were introduced to clarify the
method of calculating Cpr In the general case.
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In order to evaluate Cpr by the general method, a
portion of the column of length dz is allowed to twist
about the axis of rotation an amount such that one
end cross section is so displaced that it forms an angle
de with respect to the other end cross section. The
longitudinal displacement of any point on the end cross
section with respect to a reference plane, normal to the

axis of rotatisn, is proportional to %: the angle of twist

per unit length hereinafter designated 8. The reference
plane is then located so that the average longitudinal
displacement of the elemental areas dA of the end sec-
tion from this plane is zero; i. e.,

JSDdA_ S DA
JdA 4

where D is the longitudinal displacement from the ref-
erence plane of the elemental area dA. Physically the
reference plane establishes the neutral axis of the longi-
tudinal bending stresses that result when the end cross
section is restrained. The general expression for Upr,
which includes both the major and minor parts previ-
ously mentioned, is (reference 2, equation (6))

OBT= f’u’d.A ) (4)

where u is the longitudinal displacement, from the ref-
de

erence plane, of the elemental area d4 when 0=

The general method of evaluating Osr described in
the preceding paragraph will now be applied to an I
section column with the axis of rotation located at a
distance r from the centroid in any direction. Wagner
and Pretschner (reference 3) have shown how to com-
pute Cpsy for an I section when the axis of rotation is
at the center of twist, which is at the centroid for the
I section. When the axis of rotation has some other
location, certain terms must be added to allow for the
shift in the axis of rotation. In the derivation of Cpr
for any location of the axis of rotation, it is convenient
to resolve the displacement of the one end cross section
(fig. 4 (a)) into two displacements of translation (1 and
2 of fig. 4 (b)) and one displacement of rotation about
the center of twist (3 of fig. 4 (b)). The longitudinal
displacements of the different parts of the cross section
caused by the three component displacements of the
cross section (fig. 4 (b)) are then added to obtain the
total longitudinal displacement. In the following tabu-
lations the longitudinal displacements at the center lines
of the web and flanges are given. The algebraic sign
of the displacement is positive when a point on the cross
section moves in the positive direction of = and negative
when it moves in the negative direction of z (figs. 5, 6,
and 7). Also note in the expressions for longitudinal

displacement (LD-1, 2, 3, etc.) that %=0.

0 (3)
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FIGURE 4.—DIsplacement of ons end cross section with respect to the other when
rotated about the point P, Q.

Displacements for rotation about the center of twist
(ig. b6).—The Ilongitudinal displacement from the
original plane of the end cross section at a distance 8
mensured from

B toward A is —0%3

B toward C, 0,%8

O toward B, 0 _
O toward B/, 0 (LD-1)
B’ toward C’, —Bgs

B’ toward A, B—gs

Displacements for translation mormal to the web
. (ig. 6).—The longitudinal displacement from the
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FicurEe 8.—Displacements for rotation Fi1GURE _8.—DIisplacements for translation
about the center of twist. normal to the web.

original plane of the end cross section at a distance s
measured from
B toward A is —6Qs

B toward C, 6Qs
O toward B, 0
Otoward B/,  o[TD2)
B’ toward C’, 6Qs

B’ toward A/, —6Qs
Displacements for translation parallel to the web
(8g. 7)—The longitudinal displacements from the
original plane of the end cross section at a distance
8 measured from

B toward Ais  0P%
B toward G, 0Py
O toward B, 6Ps
O toward B, —ops (LD-3)
B’ toward C/, —BPg
B’ toward A/, —BP-;-L
{Sfaﬁon dﬁ: S )‘cz.,.‘l:+t.i.‘r~Y 3 o
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FIGURE 7.—Displacoments for translation parallsl to the web.
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Total displacement for rotation about the point P, Q
(figs. 4, b, 6, and 7).—By addition of the displacements
LD-1, LD-2, LD-3, the total longitudinal displacement
from the original plane of the end cross section at a
distance ¢ measured from

B toward A is —4 o(3+@)—P4 |

B toward C, a[s< +Q)+P——
O toward B, 6Ps :
O toward B/, —06Ps (LD-4)

B’ toward C/, ——H[ Q>+P—

B’ toward A’ B[ > 2]

Therefore the longitudinal displacement of the end
cross section with respect to the reference plane at a
distance s measured from

B toward A is g—0|:8< +Q> P;L—
B toward C, g+0[8(§+Q>+P§
O toward B, ¢-}6Ps -
O toward B, g—6Ps

B’ toward ¢V, g—{s(%—Q)—l—P—g
B’ toward A’ g+e[s(g—Q>—P1‘

Now g, the distance of the reference plane from the
original plane of the end cross section, is determined by
the conditions of equation (3). The term ids may be
substituted for dA because the longitudinal displace-
ments vary linearly across the thickness £, of the web
and ¥, of the flanges. Then, if the longitudinal dis-
placement of the center lines (.ID-5) is substituted for
D, equation (3) becomes, after multiplying by A,

o= e [l (1) -]
+flord s(3ra)rrf]fua
+ [Flo+opdnas
+ [Flo—opduas
ESRC Q)+P-]
+f o+ o(3-€)—75 [Juco
g=0 (5)
From the symmetry of the I section, it might have
been foreseen that g=0. The formal proof, however,

has been presented to show the method that would be
necessary for the determination of g for other sections.

(LD-5)

from which
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Wagner has shown that for sections formed of thin
metal it is convenient to divide Cpr into & major part
Cz and a minor part Cr so that

C’BT=OB+ Or (6)
In the major part of Cpr the longitudinal displacement
is assumed to be uniform across the thickness of the

plate and equal to the value at its center line. For the
major part, dA in equation (4) is therefore written tds.

Hence
Cp=Su*ds )

Substitution of the longitudinal displacements (LD-5)
for % in equation (7), with §=1 and g=0, gives for the

I section )
Cp= f[8<g+Q>~P—g] tyds
+ [ TorayreiTua
+. : [Psltds
+,  pypds
+ f’[s 2—Q)+Pf s
+[Te g_Q)_Pg]’tbds
from which

2

The minor part of Csr is in the nature of a correction
to the major part to allow for the variation in longitu-~
dinal displacement across the thickness of the web or
flange. When the thickness is constant along the web
or flange, the general expression for the minor part is
(reference 2, equation (6b))

f #ds ©

In order to evaluate szds in this equation, the origin
of 8 must be at the point on the center line of the web

I

T i ]

A

2 |

I

el -

i —riﬁd_*ﬂ
lagt— o1,
b—P—}

Axis of rotation -
F1ouRE 8.—Alethod of measuring & for evaluation of equation (9).

or flange, extended if necessary, from which a perpen-
dicular may be erected to pass through the axis of
rotation. (See fig. 8.) When the thickness varies with
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8, 1* should be placed under the integral sign and equa-
tion (9) evaluated by either an analytical or graphical
method.

As applied to the I section, equation (9) becomes

o Pty 1, otk
Cr= 21?2 s”ds +19 82d8
P Q—-2

2
from which
b tb hat,,

When the thicknesses £, and tb are small as compared
with b and &, respectively, Cr will be very small as com-
pared with Og and may be neglected in the computation
of Cpr. Substitution in equation (8) of the values of
Cp and Cr, however, as given by equations (8) and (10)
gives

bta bts’ s _l_ht,,

Bl B
24 +

(2 _l_h3t,, b 1)
+(Gp+i e

OBT= (OBT) P:-o"i‘Isz‘i'Ian1
Q=0

OE T=

(11)

where I, and I, are the moments of inertia of the cross
section about the principal axes y and 2, respectively,

(fig. 4).

CRITICAL STRESS FOR AN I SECTION COLUMN
... . b
In order to show the effect of variation in 7 o0 the

critical stress for the I section in & later part of this

4+Sﬁ<
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report, it is convenient to write equation (1) in the
following form

ForumE GG+ Ko 200

(12)
where GZ, is the critical compressive stress for a pure
tmstmg failure of the web alone when the
axis of rotation is at one edge of the web,
that is, the critical compressive stress for a
long outstanding flange simply supported

at its base. (See reference 7, equation
(91).)
= Bt the critical compressive stress for the web
12L2° alone acting as an Euler column.

h?
K =3 jr constants that vary with the dimensions of
) the cross section and the location of the
12 OBT
axis of rotation.

BT

On the assumption that the torsionsal stiffness GJ of
the I section is equal to the sum of the torsional stiff-
nesses of the web and flanges (reference 4, p. 76, art. 20)

the approximate equation for oJ is
T=ghtyd+ bt (13)

For any location of the axis of rotation, the value of
L, for the I section is

L= Bty -+t g (R 25 (P @)

Substitution of the values of J and I, given by equa-
tions (13) and (14) in the equation that defines K gives
for the I section

b/t\

(14)

R EH O HIGRUI

Tor the same reason that Cpr has been divided into a
major part Uz and a minor part Cr (see equation (6)),
Kpr will likewise be divided into a major part Kp and a

minor part Kr so that
b\’ P
o(2) +12(7 8l

b0

(15)

Kpr=Kp+Kr (18)
Substitution of the values of Cs and Cr as given by
equations (8) and (10) for Cpr in the equation that
defines Ky, gives for the I section

SEREE O R () "
and
o LA -
o e[ @) el ] () + ()]
DISCUSSION is independent of the direction in which r is measured.
Location of the axis of rotation for a free column.— | Because OI is analogous to Z in the Euler column

When the axis of rotaticn is located at a distance » from

the centroid of & section, the value of (;—J in equation (1)
P

formula, it seems reasonable to expect that, as the axis

of rotation moves around a circle of radius r, T will
b
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vary from & maximum at one of the principal axes to a
minimum at the other principal axis. Because I, is
independent of the direction in which r is measured, all

the variation in Cor It will now be

L
shown that, for a section symmetrical about each of its
two principal axes, Cpris & maximum or minimum when
the axis of rotation is on the principal axis about which
the moment of inertia is, respectively, maximum or
It follows from the symmetry of the expressions for

will oceur in Cpe.

longitudinal displacement and the limits of integration
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The first derivative set equal to zero shows that Cpr is
either & maximum or minimum when pg=0° 90°,

180°, or 270°. When 8=0° or 180°, %C‘;—Bf
provided that I,<{I,, in which case B=0° or 180°
locates the axis of rotation for Csr,,,. If I,>1I,, then
B=0° or 180° locates the axis of rotation for Cpr,,,.
Similarly, when 8=90° or 270°, it may be concluded
that Cpr i8 & maximum or minimum when the axis of
rotation is on the principal axis about which the moment
of inertia is, respectively, maximum or minimum.
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FIGURE 0.— Varlation of the critical stress with /b for different locations of the axis of rotation along the principal axes of an I ssction column with pin ends. Curves
drawn for b=2 Inches, {3=¢3=0.1 inch, length=17.1 Inches, and E=107 pounds per square inch.

that Opr for any section symmetrical about its two prin-
cipal axe3 will have the form given by equation (11).

From figure 4
P=rcos B

@Q=rsin B
Substitution of these values in equation (11) gives
BT (OBT)JQ:OO‘FIJ" 00325‘['1:-"‘2 sin’g

The first and second derivatives of Cpr with respect to g
are, respectively,
2Csr =r2([,—1I,) sin 2
'EB—'— y—1;) sin 28
d20£T
ag

=2r2(I,—1,) cos 28

‘When & free column of symmetrical section with no
bending restraint at its ends (pin ends) is of such pro-
portions that it develops a primary failure, the axis of
rotation will be either at infinity on one of the principal
axes or at the center of twist. Figure 9 illustrates this
fact for a family of I section columns by means of

curves for critical stress plotted against the ratio %

for different locations of the axis of ratation along each
of the two principal axes. Inspection of figure 9 shows

that, for values of % between 0 and 1.4, the critical

stress is lowest when the axis of rotation is at infinity
along the principal axis parallel to the web. For
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values of % between 1.4 and 2.0, the critical stress is
lowest when the axis of rotation is at the center of
twist (centroid, for the I section).

greater than 2.0, the critical stress is lowest when the
axis of rotation is at infinity along the prineipal axis
normal to the web. Had a different set of dimensions
been selected for the family of I section columns in
figure 9, the crossing points A and B would, in general,

For values of%

have been at different values of % Regardless of the

dimensions used, however, the lowest critical stress
would always be given by one of the three locations of
the axis of rotation previously mentioned; i. e., at the

center of twist <§=0; %= 0) or at infinity on either of

inci P_,.Q_ P_..Q_
the two principal axes (E_O’ F= 0T = 7’:_0).

In figure 9 the critical sfresses are, for the most
part, greater than the yield point for the present
engineering materials having the same value of E as
was agsumed in the calculation of the curves. (F=
107 pounds per square inch.) This fact does not detract
from the conclusions drawn from figure 9 because, when
o column is stressed above the proportional limit,
equation (1) may be considered to apply with a re-
duced modulus of elasticity thereby giving a reduced
critical stress. The reduced modulus is discussed in a
later section of this report.

It will now be proved that for a free column of I sec-
tion the axis of rotation will be at infinity along the
principal axis parallel to the web provided that

and
b_sft,
<V
Because the axis of rotation might be at the center of
twist or at infinity on the principal axis normal to the
web (fig. 9), the two following conditions must hold if

the axis of rotation is to be at infinity on the principal
axis parallel to the web:

(fcru) P-0< (fwtt)Pno

Q=0

(fertd) o <{Fert) Pam
Qmo Q=0

The first of these conditions will be satisﬁed if
0
Godeeo < | God=(52) Jomo=| F=55

Quo

P-O
Q=0
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or if
I, ©*E Csr #°
AIE<|T 7
_r < [OBT
1 1
Ebst, ﬁhfb"tb
1
Biyk2bty S5l S E,
from which
3 [t
h< "
The second condition will be satisfied if
1,<1,
or if

1 1 1
'gbstb<ﬁh3th+§hzbtb
Multiplication of both sides by - gives
]
bY _ thy ob
2(7) < top

b 314,
'h‘< 2t+3h

This condition holds as long as -7; does not become too

from which

large. If%is as large as
tion must be satisfied

i<iEEE

This latter condition will be fulfilled provided that

3
7?: then the following condi-

ﬁ'<14.7 (19)

a value of = much larger than will be found in any I

section column of practical dimensions. It may there-
fore be concluded that primary failure in a free column
of I section will occur by bending with the neutral axis
parallel to the web when

b_ [t
<V -
When-gis greater than 3\/ :—" the critical stress for the
b

axis of rotation located at the centroid should be
computed and compared with the critical stress for
bending about the axis of minimum moment of

(20)
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inertia. The smaller of these two values will be the
stress at which failure occurs.

When the critical stress is to be computed for the
axis of rotation at the centroid, the curves given in
figures 10 and 11 may be used to determine the values
of K and Kj in equation (12).

Proof that bending failure is a special case of the
theory presented in this report.—When the axis of
rotation is at infinity, equation (1) reduces to the
Euler column formula. In this case, I, and Csr are

both infinite. Hence %—]=0 and it remains to be shown
- -4
GBT I
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If 8=90° or 270°
Onr_1,
I, A
Location of the axis of rotation for a column attached
to & skin.—When a column with pin ends is attached
to the skin of a stressed-skin structure, the stiffness of
the skin in its own plane and the anchorage of the skin
at the sides of the panel are controlling factors in the
location of the axis of rotation. In this discussion it
is assumed that the skin provides only lateral support
at its point of attachment to the column. Rotation
of the cross sections about any axis not lying in the

t = . .
tha I, A plane of the skin would therefore require & movement
4.8 /‘r + ~1 f-'é.-s-_h_
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F16URE 10.—Variation of K with &/h for different values of £1/fs when the axis of rotation i3 at the centrold of an I ssction column.

Equations (11) and (14) show that as the axis of
rotation approaches infinity along a radius r the terms
involving both P and @, if P and @ both approach
infinity, become very large in comparison with the
remaining terms. Thus, when P and Q become infinite,

UBI’ I:P2+I17Q2
I, A(P+@)

Cpr__ I, cos® B+1, sin® 8
I, A

When y and z are the principal axes of the section,
I, cos® B-}+1I, sin® 8 is the moment of inertia of the
cross section about a line that passes through the
centroid and the axis of rotation. If §=0° or 180°

or

of the skin in its own plane. The stiffness of the skin
in its own plane and the anchorage of the skin at the
sides of the panel tend to prevent such a movement
and the axis of rotation is forced to lie in the plane of
the gkin. .

For a column the cross section of which is symmetrical
about its two principal axes, one of which is normal to
the skin, the.axis of rotation will lie in the plane of the
skin and be either at infinity or at the point where the
principal axis crosses the skin. This statement is
illustrated in figure 12 in which values of f.. for a
family of I section columns having the same dimen-

sions as those of figure 9 are plotted against % for differ-

ent locations of the axis of rotation in the plane of the
gkin. For simplicity, the skin is assumed to be at the
center of one flange. Inspection of figure 12 shows
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that, for values of % between 0 and 1.90, the critical
stress is lowest when the axis of rotation is at the web.
For values of % greater than 1.90, the critical stress is

lowest when the axis of rotation is at infinity in the
plane of the skin.

As in the case of free columns (fig. 9), the location of
the crossing point A in figure 12 will depend upon the
particular dimensions selected for the family of columns.
Regardless of the dimensions used, the lowest critical
stress will always be given by one of the two locations
of the axis of rotation previously mentioned; i. e., In

the plane of the skin either at infinity %=m> or at the

point where the principal axis crosses the skin <%=0)‘

Again, as in figure 9, the necessary use of a reduced
modulus at stresses above the proportional limit does
not invelidate the conclusions drawn from figure 12.

When a column of I section is attached to a skin, it
is not practicable to give a simple criterion by which
the location of the axis of rotation may be determined.
In view of the fact that the axis of rotation will be either
at infinity in the plane of the skin or at the point where
the principal axis crosses the skin, the critical stress for
these two locations should be computed and the lower
value regarded as the failure stress. When the axis
of rotation is at infinity in the plane of the skin, the
critical stress is given by equation (2) with I=1,. In
order to facilitate the computation of f, when the
axis of rotation is at the point where the principal axis
crosses the skin, figures 13 and 14 have been prepared
from which the values of X and Ky may be obtained
for substitution in equation (12).

Effect of the skin in changing the section properties
of the column,—In the preceding section it was assumed
that the only effect of the skin was to provide lateral
support to the column. Inasmuch as the skin is at-
tached to the column, however, it will also carry a part
of the compression load on the column and the stress
in the skin at its point of attachment will be the same
as that in the column. Usually the stiffener spacing
in terms of the sheet thickness is such that the skin
will buckle between stiffeners and only a small width
adjacent to each stiffener will be effective. In refer-
ence 1 it is shown that, when failure occurs by bending
of the stiffener normal to the skin (axis of rotation at
infinity in the plane of the skin), the effective width,
which is dependent upon the column stress, may be
considered to be a part of the column cross section and
is to be included in the computation of section properties.

When the axis of rotation is at the point where the
principal axis crosses the skin, twisting of the stiffener
about this axis will cause a rotation of the skin near the
stiffener. If it is assumed that the effective width of
skin rotates with the stiffener, the following increments
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must be added to J, I,, and Czr as evaluated for the
stiffener when the skin was assumed to provide only
lateral support for the stiffener,

M:%Utﬁ 21
1
AI,,=EU“t, (22)
AOBT=AOT (23)
where
ACr=337 U4 (24)

In these equations f, is the thickness of the skin and U
is the effective width of skin that acts with the stiffener,
carries the same stress as the stiffener, and is assumed
to be continuous across the stiffener and symmetrically
located with respect to the web of the I section. The
evaluation of U is included in the illustrative problem
of appendix A.

Effect of the skin in providing restraint to twisting of
the column,—When a column is attached to a skin and
the axis of rotation is at & point other than infinity in
the plane of the skin, the rotation of the column cross
section at failure is resisted by bending of the skin pro-
vided that the skin is supported by adjacent stiffeners
or other structure. A theoretical analysis of this effect
has been reserved for a future report. Only a brief
summary of the subject is given herein.

It may be stated that the effect of the bending stiff-
ness of the skin in providing resistance to twisting of
the column attached to the skin is such as to increase
the critical stress given by equation (1) or (12) by an
amount

_ K&} L :
Af"“_.ﬁ_(l—:yz)d_[p ] (‘45>

then _
@S, Cor PE, KE} L# 26)

Jeus=T 4T, I3 Yoa~w)dl, =

where d is the stiffener spacing.
K, a constant depending upon the conditions of
support of the skin at the adjacent stiffener
or other structure.

It will be noted that in equation (26) & and Z have
been substituted for @ and E, respectively, in equation
(1). The substitution of Z for E at this time was made
to distinguish between the value of E associated with
longitudinal stresses in the stiffener and its effective
width of sheet and the value of E associated with bend-
ing of the skin between stiffeners. The desirability of
distinguishing between these two values of I will be
explained in & later section of this report in which the
evaluation of E and @ is discussed.

If the two ends of the stiffener are held against rota-
tion about the axis of rotation and the end cross sec-
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tions are free to have longitudinal displacements, I,
cannot exceed the length L. For a skin approaching
zero thickmess L, will be equal to L. (See fig. 3 (b).)

In general, however, L0=;,—Ib' where 7 has integral values
(n=1, 2, 3, 4, etc.). Thus, when LD=‘7I—;L there will be a

particular value of n for each skin-stiffener combination
that will cause frs, to be a minimum. A trial calcula-
tion should be made with n=1, 2, 3, 4, etc. to deter-
mine which value of n gives the lowest critical stress.
This critical stress should then be compared with that
for bending in & plane normal to the skin (reference 1)
and the lower of these two stresses regarded as the stress
at failure for the stiffener and its effective width of
skin,

No information has thus far been given regarding the
value of K; to be used in equation (26). For a stiffener
that has one principal axis normal to the skin and that
is also symmetrical about this principal axis, the value
of K; may be taken from the curve given in figure 15
provided that the total compression load is equally
divided smong several stiffeners of the same dimensions
gpaced at equal intervals along the skin. This curve
for K; weas calculated by the energy method (reference
8, p. 584, art. 39) on the following assumptions:

(a) The full width of skin between stiffeners provides
resistance to twisting of the stiffener.

(b) The skin is not under edge compression and is
therefore flat until twisting of the stiffener occurs.

(c) When the stiffener twists, the skin takes the shape
of o circular arc betiween stiffeners and a sine curve of
half wave length L, parallel to the stiffeners.

Because the width of the effective skin that acts with
the stiffener is small, any error that may result from
assumption (a) is likely to be small. Of the three
assumptions, (b) is probably the most questionable.
Under load the skin is always subjected to edge com-
pression and usually buckling of the skin occurs prior
to twisting of the stiffeners. Because L, is usually
several times the half wave length that forms when the
gkin alone buckles, any buckling of the skin prior to
twisting of the stiffener tends to increase the effective
thickness of the skin and hence the resistance of the
skin to twisting of the stiffener. The increase in strength
caused by the increase in effective thickmess of the skin
tends to offset any reduction in strength caused by the
edge compression. The assumptions made under (c)
are the most reasonable that could be made following
(2) and (b) without greatly complicating the mathemat-
ics of the problem.

Until the curve for K, given in figure 15 has been
checked by tests, it should be used only as a guide to
design. As such, it will point the direction toward a

ore efficient proportioning of material between skin
and stiffeners. (See appendix A.) In the skin-stiffener
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combinations that are likely to be used in practice %"

will usually be greater than 3. For these cases it will be
satisfactory to use K;=2, the asymptote for the curve
of figure 15.

7

;
, I
I
0 2 4 & & 1a ” =]

F1GURE 15.—Values of K for use in equations (28) and (20).
=[5 (5) +5(2) ]

Effective modulus of elasticity.—For columns that
fail by bending, the critical stresses depart from the
theoretical values given by the Euler formula at low
values of the slenderness ratio. Consequently, an
empirical straight line or parabolic curve is frequently
drawn on the column chart to give the critical stress
in this range. Likewise, for the general theory there
will be a similar departure of the critical stress from the
theoretical values given in this report and empirical
curves must be found to give the strength for short
lengths.

For & column that fails by bending, the reduced
strength at short lengths is explained by the double-
modulus theory of column action (reference 8, p. 572,
art. 37, and references 9 and 10). This theory follows
briefly: When a straight, centrally loaded column is
stressed above the proportional limit for the material
and deflected, the stress on the concave side increases
according to the tangent modulus E’ for the material
(the slope of the stress-strain curve at the stress con-
cerned) while the stress on the convex side decreases
according to Young’s modulus E for the material. The
critical stress is then given by the Euler formula when
an effective modulus E is substituted for E. The
effective modulus is dependent upon the shape of the
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column cross section as well as upon E’ and E and is
given by the following general expression (references 9

and 10):
_E'L+ElL
I
where, according to Osgood (veference 9), “I; is the

moment of inertia about the axis of average stress
[zero bending stress, see fig. 16] of the part of the cross-
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Fraurz 16,—8tress distribution for double-modulus theory.

sectional area which suffers an increase of stress at the
instant of fajlure of the column, I, is the moment of
inertia about the axis of average stress of the part of
the cross-sectional area which suffers & decrease of
stress at the instant of failure of the column, and I is
the moment of inertia of the total cross-sectional area
of the column about the centroidal axis normal to the
plane of bending. The position of the axis of average
stress is defined by the relation E’S;=ES, where S,
and S; are the statical moments about the axis of
average stress, respectively, of the two parts of the
cross-sectional area just mentioned in connection with
Il and Ig.”

The effective modulus has been evaluated for 2 num-
ber of cross sections. For a rectangular section (refer-
once 4, p. 242, equation (161))

— 4EE’

E=qE Ry )
from which
IE[
— 4 T
G (29)

%_ A
- EI 2
(1—!—\/]—57—)
For an I section with a web of negligible thickness and
with bending in the plane of the web (reference 9,
equation (4))
o 2EE’

ETE (©0)
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from which\

7

Az
1+(z)
In the theory for primary failure as herein presented

there is & double-modulus action, similar to the double-

modulus action in bending, when the column is stressed
above the proportional limit for the material. In view
of the fact that this double-modulus action is concerned
only with longitudinal bending stresses, an effective
modulus E will be substituted for E in the second term
of equations (1) and (12). It is shown theoretically in

B1)

&

appendix C that this value of E'is
T E'Cyri+ECsr, (32)
CBT .

where Cpr, is the value obtained from equation (4)
when the integration is made over the part of the cross
section that suffers an increase of stress at the instant of
failure of the column, Cpr, is the value obtained from
equation (4) when the integration is made over the part
of the cross section that suffers a decrease of stress at
the instant of failure of the column, and Crris the value
obtained from equation (4) when the integration is
made over the entire cross section as previously out-
lined. In order to locate the points of average stress
(zero bending stress), which define the limits of integra-
tion for Cpr, and Csr,, the reference plane must be so

located that )
E' fDidASE fDdA=0 (33)

where D, and D, are the longitudinal displacements
used in the evaluation of Cpr, and Cpr,, respectively.
Physically, equation (33) means that the summation of
the forces on the cross section that result from the
longitudinal displacements is zero.

When the column is stressed above the proportional
limit for the material, the shear modulus @, which is
related to E, must be corrected to correspond to the
reduced modulus E for the column. A theoretical
treatment of this problem does not appear to have
been published. Bleich (reference 11) used for the
effective shear modulus

G=+7G (34)
where
E
=5 (35)

It was reasoned that the percentage reduction in @ was
not so great as in E. Because 7 is always equal to or
less than unity, Bleich selected +/+ @ as a convenient
expressjon for the effective shear modulus,
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After analyzing the results of some 500 tests on angle
columns where failure occurred by twisting, Koll-
brunner (reference 12) concluded that the effective
shear modulus was best given by the equation

As this value of G is based upon test data, it is recom-
mended that it be used in preference to the value given
by equation (34) to express the reduced shear modulus.
Thus, when the column is stressed above the pro-
portional limit, the value of @ given by equation (36)
should be substituted for & in the first term of equa-
tions (1) and (12).

When the axis of rotation is at infinity on either of
the principal axes, equation (32) reduces to equation

(36)
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pleted, it appears that the shift of the axis of rotation
in the plane of the skin is small, for columns of prac-
tical dimension, and that the values of E are near those
given by equa.tlons (28) and (30).

In figure 19 it is shown that the values of E as given
by equations (28) and (30) are very nearly the samo
as the values for a thin circular ring or a tube. In
view' of this fact it appears justifiable for practical
use to assume that E for the I section is the same as
E for the thin-wall tube in bending. Dr. W. R. Osgood
of the National Bureau of Standards suggested that
the column curves constructed by the theory of this
report be made consistent with the curves now used
for tubes, which are determined from column tests,
by evaluating E according to the following procedure:

1. Assume a series of values for the slenderness

(27). It can be shown that, when the axis of rotation G L,
is at the centroid of an I section, the value of E is the | 7*"°%
1.0 L~
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normal to the web.

rotatinn is at the centroid or at infinity on
the prinecipal axis parailel to the web.

same as when the axis of rotation is at infinity on the
principal axis parallel to the web. For these two
locations of the axis of rotation the value of E can
conservatively be assumed to be the same as that
given by equation (28) for the bending of a rectangular
cross section. This close agreement is shown in

figure 17 where values of % are plotted against %

When the axis of rotation is at infinity on the prin-
cipal axis normal to the web of an I section, the value
of K will in all cases lie between that given by equations
(28) and (30), as shown in figure 18. It will therefore
be conservative to assume that E is given by equation
(30) for this case.

When the axis of rotation is at the point where the
principal axis crosses the skin, the considerations of
the double-modulus action result in a lack of symmetry
for the I section. This lack of symmetry may cause
the critical stress to be a minimum when the axis of
rotation is slightly shifted in the plane of the skin.

2. By means of the accepted column curve for tubes
of the material under consideration, determine the
critical stress feru.

3. Substitute the assumed values of L?" and the

corresponding values of f.« in the following equation
to obtain E and plot a curve of .y against £

e

4. Correct this value of £ for the cross-sectional
shape being used (figs. 17 to 19), if desired.

In the construction of a column curve for a particular
I section, the following procedure should be used:

1. Select the location of the axis of rotation for which
the column curve is to be drawn.

2. Assume s series of values of f.s.

3. From the curve of E against f. previously
derived, tabulate the values of Z and @ that correspond
to the assumed vealues of fer.

37)

Although & study of this condition has not been com-

4. Evaluate J, I, and Czr.
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5. Substitute J, I,, Cpr, the assumed values of fery,
and the corresponding values of E and @ in equation
(1) or (12) and solve for the length L.

6. The column curve is obtained by plotting the
assumed values of f,;, against the computed lengths L.

1f the column is attached to s skin, the values of
J, 1,, and Cpy calculated under 4 should be increased by
the amounts AJ, Al,, and ACsy, respectively. These
values together with the assumed values of ., and the
corresponding values of & and @ are then substituted in
equation (26), which is solved for the length L,, A
curve is then drawn by plotting the assumed values of
forus 0gainst the computed values of L,. This curve
will be found to have a minimum point at some par-

ticular value of L,. Because LD=%: where 7 is an in-

tegral value (n=1, 2, 3, 4, etc.), the strength for any
particular length L is obtained by choosing such a value
of n as will cause the critical stress to be & minimum.
(See appendix A.)

CONCLUSIONS

The following conclusions apply when primary col- .

umn failure is defined as any type of failure in which
the cross sections are translated, rotated, or both
translated and rotated but not distorted.

1. When primary failure occurs in a pin-end col-
umn that is straight and centrally loaded, the general
equation for the critical stress is

@J | Cor ©°E
fcrﬂ— +I _LT

In the derivation of this equation it is assumed that
the cross sections rotate about an axis parallel to the
column. The factors I, and Csr depend upon the loca-
tion of this axis, which is called the ‘‘axis of rotation.”

The first term -?’;‘-7 gives the critical stress for a pure
?

twisting failure about the axis of rotation. The second
term %!)E-ZzL—DQE—IS in the nature of a correction for the
effect of length caused by longitudinal bending stresses
when the end cross sections are held against rotation.
All possible combinations of translation and rotation
of the column cross section are obtained by letting the
location of the axis .of rotation vary from zero to
infinity in every direction.

2. The theory for primary failure shows that, for a
free column with & cross section symmetrical about its
two principal axes, the axis of rotation will be at either
of the two following locations depending upon which
location gives the lower stress:

(2) The center of twist, which is at the centroid of
the section.

(b) Infinity on the principal axis about which the
moment of inertia is the smaller.

Location (a) gives the condition for twisting failure;
location (b), the condition for bending failure.
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3. ¥or a pin-end free column of I section symmetrical
about its two principal axes the critical stress will be a
minimum when the axis of rotation is at infinity on
the prineipal axis parallel to the web, provided that
the two following conditions are met:

147
%

b3,
z<w/t:b

When these conditions are not satisfied, the critical
stress should be computed for the axis of rotation
located at the centroid and compared with the critical
stress for bending about the axis of minimum moment
of inertia. The smaller of these two values will then
be the stress at which failure occurs.

4. When a column is attached to a skin, the great
stiffness of the skin in its own plane causes the axis of
rotation to lie in the plane of the skin. When the
column cross section is symmetrical about its two prin-
cipal axes, one of which is normal to the skin, the axis
of rotation will be at either of the two following loca-
tions depending upon which location gives the smaller
stress:

(a) The point where the principal axis crosses the
gkin.

(b) Infinity in the plane of the skin.

Location (a) gives the condition for twisting failure
when the column is attached to a skin; location (b),
the condition for bending normal to the skin.

5. When & column is attached to a skin and the axis
of rotation is at a point other than infinity in the plane
of the skin, the rotation of the cross sections about the
axis of rotation is resisted by the bending stiffness of
the skin. The effect of this restraint is to increase the
critical stress by an amount

Af K Et; I?
=5, ni

and the critical stress becomes

GJ OBT n ‘B"E KlEts L?
Jas=T, T, ~I* To—dl, &

In this equation n=1, 2, 3, 4, etc., the number of half
waves that develop in the stiffener in the length L. A
trial calculation is necessary to determine which value
of n gives the lowest critical stress. This critical stress
should then be compered with that for bending in a
plane normal to the skin and the lower of these two
stresses regarded as the stress at failure for the stiffener
and its effective width of skin.

6. When the column length is small, there will be a
departure of the critical stresses from the theoretical
values given by this theory that is similar to the depar-
ture from the Euler velues in standard column curves.
It is because of this fact that the effective moduli &
and @ have been substituted for E and @, respectively,

and
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in'certain terms of the equations for the critical stress.
So long as the column is not stressed above the propor-
tional limit, E and @ are equal to E and @, respectively.
Above the proportional limit the substitution of E for E
follows from the double-modulus theory of bending

where
—. E'Car;+ECsr,
E = 0
BT

For the evaluation of @, the following empirical expres-
sion is recommended:

_\/’1'.

5 G

G="
where ' .
_E.
T |
7. When the axis of rotation of a symmetrical I

section column is at the center of twist (centroid) or at
infinity on one of the principal axes, the value of .E is

very nearly the same as that for a thin-wall tube of the |-

same material in bending. When the axis of rotation
is at the point where the principal axis crosses the skin,
the considerations of the double-modulus action result
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in'a lack of symmetry for the I.section. This lack of
symmetry may cause the critical stress to be a minimum
when the axis of rotation is slightly shifted in the plane
of the skin. Although a study of this condition has not
been completed, it appears that the shift of the axis of
rotation in the plane of the skin is small for columns of
practical dimensions and that the values of £ are also
near those for a thin-wall tube in bending.

8. The value of E varies with the critical stress and
should be computed from the accepted-column curve
for the material by use of the following equation:

B (%)

'If desired, this value of & may be corrected for different

cross-sectional shapes.

LaneLey MEMORIAL AFRONAUTICAL L/ABORATORY,
NarroNaL Apvisory COMMITTEE FOR ABRONAUTICS,
Laxcuey Frewp, Va., August 17, 1936.



APPENDIX A

ILLUSTRATIVE PROBLEM

Problem: To construct the column curve for an I
gection column of 24S-T aluminum-alloy material
(£=10,637,000 pounds per square inch), with the di-
mensions shown in figure 20, used as a stiffener on skin

l-:——-b /00—1

Detlail A.
4,0 050~ =0.050"
Cen/rcud of
Cenltroid of column.. || .~ sliffener
(Sf))‘r/ffe;ner c;(nd R - _—T he 00"
effective skin) _Th:r
1,=0.025" {, =0.050" 0 272

d- 47—

d=4"'-—-=|

See delail A~

F1aURE 20.—A skin-stiflener combination.

0.025 inch thick. It is assumed that the stiffeners are
spaced at 4-inch intervals along the skin and that all
stiffeners are equally loaded in compression.

Effective moduli E and G for 24S-T aluminum alloy.—

It is assumed that the pin-end column strength of 245-T'

tubes is given by the straight-line equation

f,,,,=58,000—527% (38)

for values of the slenderness ratio % between 9.5 and

73. Below ’%=9.5 it is assumed that the critical stress

is 53,000 pounds per square inch. Above %:73 the
stress is assumed to be given by the Euler formula

fau=jf§2
)

The calculations for the effective moduli Z and @ are
made as follows, the results of which are given in table I:

Ly

1. Assume a series of values of ~

(39)

38548—38——12

2. Compute fry, from
: _](crit=58,000--—-f'>27'—-1‘-;O for 9.5<L70<73
E A
fﬂil=(E)—2 fOI' %>73
p
3. Using the computed values of feru;, compute E,

from e

4. Compute r from

(37)

T=%, E=10,537,000

5. Compute @ from

'é=|:f+,)ﬂa, G=0.385E—4,057,000

Effective width of skin that acts with the column.—
It is assumed that the column is attached to the skin
with two lines of rivets one-half inch apart. The width
of the skin between the rivet lines is therefore 20%,.

"The effective width outside the rivet lines is assumed to

be given by the von Kérmén equation for the effective
width with the coefficient of 1.70, established in ref-

erence 1,
2b,=1.701,
erm

Professor Joseph S. Newell and Mr. Walter H. Gale in
an unpublished report of aircraft materials research
at the Massachusetts Institute of Technology for 1931-
32 recommend the value of 1.73 for the coefficient in
the von K4rmAn equation.

As the width 20¢, between the two rivet hnes is less
than the smallest value of 25, given by equation (40)
when f.;;,= 53,000 pounds per square inch, all the ma-
terial between the two rivet lines must be considered
as effective and the total effective width of skin that
acts with the column and carries the same stress as the
column is

(40)

U=0.5+25, 1)
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The effective width of skin is calculated as follows,
the results of which are given in table II:

1. Assume a series of values of f,; (For con-
venience, use the same values as given in table 1.)

2. Compute 25, by equation (40).

3. Compute U by equation (41).

Axis of rotation at infinity in the plane of the skin
for bending failure.—In the report proper it has been
shown that, when an I section column is attached to a
skin, the axis of rotation will be either at infinity in the
plane of the skin or at the point where the principal
axis crosses the gkin. The column curve must there-
fore be drawn for each location to determine which
location gives the lower critical stress.

When the axis of rotation is at infinity in the plane
of the skin, the critical stress is given by the Euler
formula, equation (2) or (39), with E substituted for E.

For this case jI{’ equation (2), is calculated about a cen-

troidal axis parallel to the skin considering the effective
area of the skin Ui, as a part of the column cross section.
The calculations for the construction of the column
curve are made as follows, the results of which are given
in table IIT:

1. Assume a series of values of feq.
lence use the same values as in table I.)

2. Compute area of effective skin, Ut,.
table IT.) ¢,=0.025.

3. Compute total ares of column cross section, from
A=A+ Ay

where 4, ,=area of stiffener=0.15 sq. in.
Agp=area of effective skin=0.0256 U

4, Compute the centroid of the column cross section
(including the effective skin) and tabulate the distance
@, from the center line of the skin to the centroid,

(For conven-

(For U see

h tb+i: -
A"if "+—'—
0= 2A 2 ) _ Ay Eg.5375) Ses fig. 20)

5. Compute the moment of inertia, of the complete
column cross section (area A), about the centroidal axis
parallel to the skin

2
I g5tttk 20t bt il | 5+ 25— g T+ T2

=0.0041674-0.025+0.15 (0.5375—@,)*-+ Ut,Q:®

6. From table I obtain the values of E that cor-
respond to the assumed values of fg,.

7. Compute the lengths I, that correspond to the
assumed critical stresses by use of the Euler formula

where E has replaced E,

[TE
Ly== AFr

In figure 21 the assumed values of f.i are plotted
against the computed values of L,. For a column with
pin ends, Ly=L. Hence figure 21 is the column curve

REPORT NO. 582—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

for the axis of rotation at infinity in the plane of the
skin (bending failure). This direct calculation for ob-
taining the column curve when failure occurs by bend-
ing normal to the skin is preferable to the trial and error
procedure recommended in reference 1.

Axis of rotation at the intersection of the center
lines of the web and skin—twisting failure.—The
calculation for the construction of the column curve
when the axis of rotation is at the intersection of

55,000

50,000 \\

45,000

40,000

. 35,000
. N
30,000

) 25,000 At
5,01 AN

i)

b./sq.i

Siress

20,000

15,000

10,000

5000

/5 20 25 30 35 40 45
Lenglh, inches

F1aURE 21.—Ths column curve for bending faflure of the skin-stiffoner combination
shown in figure 20. The axis of rotation 1s at infinity in the plane of the skin,

0 5 /0

the center lines of the web and skin are similar to those
for the axis of rotation at infinity in the plane of the
skin. The calculations are made as follows; the results
are given in table IV.
1. Assume a series of values for fure.
ience use the same values as in table I.)
2. Compute AJ from

(For conven-

AT=2 Tt (1)
3. Compute  from
=i+ AJ
where J.w,=%hth3+§btb3 (13)
4. Compute AT, from
AL=35 T, 22)

5. Compute I, from
L=1,,, 1AL
where

Ly =5 -H5 Wbt Bt it +250] [P Q1] (19)
(In the evaluation of equation (14), note that

P=0 and Q=Z2”-+‘—°’;—“=0.5375.>
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6. Compute ACsr from 0%, B bt
BT i —_1— . b+ h bP2+12Q2 (10)
ACpr=ACr=137 U3, (24)
7. Compute Cpr from (In the evaluation of equation (8), note that P=0
OB'I':OBT“gf'l'AOBT and Q=05375.)
where o —0,10. © 8. From table I obtain the values of E and @ that
BTanr™ B 7 correspond to the assumed values of f.rs.
— i T Ea e B @)
B 94" R 9. Solve equation (26) for Lu
K, Et,
\/ E _fcru x E‘_fcm:r 4 _—l 6(1 u’)dﬂ"] (42)
(l—pfidar”I
Evaluate equa.tlon (42) using values of J, I,, Opr, 55000
@, and E that correspond to the assumed values of ’
ferse; and 03 50,000(—; A
p=0.
\ /
E=10,5637,000 Ib. per sq. in. 45,000 \ //
d=4 in. 40,000 va
t,=0.025 in. N 7
K= 35,000 4
§ N 4
In figure 22 the assumed values of f,i are plotted 330 000 N =
against the computed values of Ly. From this figure | & 25,000 N A
the column curve for twisting failure is derived in the § ‘
following manner. Put I, equal to % and then plot | 20000
curves of feri é.gainst L for n=1, 2, 3, 4, etc. The 15,000
column curve is then given by the lowest portions of
the several curves and is shown by full lines in figure 23. 16,000
Column curve for primary failure.—It has been pre- 5000
viously shown that primary failure will occur either by '
bending or by twisting, depending upon which type of o E I P 25 30 35 a0 45 50

failure gives the lower criticel stress. The column
curves of figures 21 and 23 are therefore combined as
ghown in figure 24 to obtain the column curve for

L,, inches

t Lo for twisting faflure of the skin-stiffener
axis of rotation {3 at the intersection of the

F1GURE 22.—Critical stress plotted
combination shown in figure 20.
conter lines of the web and the skin.

55,000

50,000

7

45,000

40,000

8
8

N/

$

\

S §

\i
¥
[
IRY

hy

Slress, b./sq.in.

§
S

15,000

16000

5000

o 5 0

5 20 25 30 35 40 45 50 55 60 65 70 75 680 65 90 95

Length, inches
FIQURE 23.—The column curve for twisting faflure of the skin-stiffener combination shown in figure 20. ‘The axis of rotation is at the intersection of the web and the skin,
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primary failure. It will be noted that, at lengths less
than 27.4 inches, failure occurs by twisting; whereas, at
lengths greater than 27.4 inches, failure occurs by
bending.

Discussion.—In the computed tables for this illus-
trative problem it will be noted that some of the factors
are small and might have been neglected. All of the
factors, however, have been included to show their
relative numerical values and the method of evaluation.
The designer may therefore shorten the calculations
here outlined by neglecting the unimportant factors, if
desired.

55,000~
50,000 =
\ il
45,000 NEA
40,000 S
N\

. 35,000 )
.g- \ N
» \

30,000 .
< NEEAWEE:
o - o 3
225000717 ting foilure’? N
3 I

20,006 Bending foilurey [\

15,000

<]

10,000 =

5000

0 5 W 15 20 25 30 35 40 45

Length, inches
F1QURE 24.—~The column curve for failure of the skin-stiffener combination
sho% 2.

In the foregoing calculations for twisting failure
it was assumed that K;=2 regardless of the value of
%- This value of K; was selected because of the
possible uncertainty in establishing a more definite
value, as discussed in this report. If it had been
desired to use the values of K; given by the curve of
figure 15 rather than the asymptotic value K;=2,
the calculation of L, would of necessity have been by
trial and error because K, varies with %

‘When a skin-stiffener combination is loaded in com-
pression, buckling will first oceur in the skin provided
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that the stiffener spacing divided by the skin thickness
é—i is sufficiently large. Because the skin is attached

to the stiffeners, the buckling of the skin will twist the
stiffeners and form small waves in them, the lengths of
which are the same as those in the skin. In this con-
dition the stiffeners are not ready to buckle of them-
selves but are forced to buckle by the skin. The stifI-
eners therefore resist buckling of the skin.

Now, if the load on the skin-stiffener combination is
increased, the waves in the skin and the corresponding
waves in the stiffeners grow larger. Finally a load is
reached at which the stiffeners buckle of themselves.
The type of buckling that occurs in the stiffeners will
be that associated with the lowest critical stress. On
the assumption that local buckling does not occur, the
stiffeners will either buckle by deflection perpendicular
to the skin in the manner of an ordinary column or
will twist about an axis in the plane of the skin. If
twisting occurs, the skin will resist twisting of the stiff-
eners. The column curves derived by the methods of
this report give the critical stress at which the stiffeners
begin to buckle (bend or twist) of themselves. Beocause
the stiffeners are the main strength element in a
gkin-stiffener combination, it seems quite proper that
the strength of the combination should be based on
the strength of the stiffeners. _

‘When the stiffeners fail by twisting, it is quite possi-
ble that tests will show the ultimate load for a skin-
stiffener panel in compression to be greater than the
critical load at which twisting begins. The reason for
tbis belief is that when the stiffener twists, the material
adjacent to the axis of rotation is not laterally dis-
placed and is therefore capable of further compression.
The amount by which the ultimate load will exceed
the critical load at which buckling begins is dependent
upon a number of factors the consideration of which is
beyond the scope of this report.

Until the results of extensive tests made especially
to check the theoretical behavior of skin-stiffener
combinations in compression become available, the
designer should conservatively assume that failure
occurs when the buckling load is reached. The methods
outlined in this report and illustrated in this appendix
may therefore be used to derive column curves for
different skin-stiffener combinations. By comparison
of the strength-weight ratios the most efficient combi-
nation of skin and stiffeners can be selected.



APPENDIX B

APPLICATION OF THE THEORY FOR PRIMARY FAILURE TO A
COLUMN OF CLOSED SECTION

Equation (1), which has heretofore been applied to
columns of open section, can also be applied to columns
of closed section provided that all the factors appear-
ing on the right-hand side of the equality sign can be
evaluated. It will be shown how these factors can
be evaluated for & thin-wall column of closed rectangu-
lar section, symmetrical about its two principal axes.
(See fig. 25.)

5 5
B 2 _ z_ } [
II1 'tt
al “o-
A
zIA‘ I
7 S
2
1 : VI
B T c
y

Axis of rofation
FI1GURE 25.—A thin-wall rectangular tube.

Evaluation of GJ/I,—Except for J and Cpr 2ll of
the factors that enfer into equation (1) are readily
evaluated by standard methods. For the closed section

4_A2
I=Ta (43)
t
where A is the area enclosed by the center lines of
the wall of the rectangular tube.
ds, differential element of the perimeter.
t, wall thickness of ds.
For a square tube of constant thickness equation
(43) becomes
J=b%

Because the square tube is symmetrical about its two
principal axes, the critical stress will be a minimum
when the axis of rotation for the free column is either
at the centroid (center of twist P=0, @=0) or at
infinity on one of the principal axes. The eritical
stress when the axis of rotation is at the centroid will
be greater than that given by the first term of equation
(1) or

@J _0.385Eb%
0, Jp=>T" —Tat———(o 385E)

Q=0
3

or, if E=10" pounds per square inch,
f,,)

g 0>2,885,000 pounds per square inch

As this va.lue of the critical stress is much greater
than the yield-point stress for any engineering material
with E=10" pounds per square inch, it may be con-
cluded that the large torsional rigidity of a closed
gection precludes any type of primary failure except
bending failure; i. e., axig of rotation at infinity on
one of the principal axes.

Evaluation of Cpy.—In order to show that Csr can
be evaluated for a closed section, the expressions for the
longitudinal displacement at the center lines of the wall
of the tube will be derived. In view of the conclusion
in the preceding paragraph, the value of this work will
be more in the possibilities offered in the calculation of
the stresses in monocoque shells, such as airplane wings,
fuselages, floats, and hulls than in the solution of the
column problem.

First, the longitudinal displacements caused by the
twisting of the section about its centroid will be deter-
mined (P=0, @=0 in fig. 25). If the tube is assumed
to be slit longitudinally on the 2z axis at A—A’, the
closed section becomes an open section. Now imagine
a portion of length dz to be twisted an amount de about
the centroid (center of twist for the closed section).
The longitudinal displacements of the points on the end
cross section caused by such twisting can then be deter-
mined in the same manner as for an open section.
These displacements with respect to the original plane
of the end cross section are, at a distance s measured

from
3hb | bs

B toward A, -—+ 5
C toward B, I:hb hs]
D toward C, — :I
(LD—6)
D toward CV, ]
C’ toward B/, 6[@4—]—“3]
B’ toward A’, e[ih_”+ ]

The longitudinal displacement of A (]ust. above the
slit) is
—8[hb]
168
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and of A’ (just below the slit) is
6[hb]
The longitudinal displacement of A’ with respect to A
is therefore
8[2h5)
In order to transform the open section, slit at A—A’,
into a closed section, equal and opposite shearing forces
F are introduced in the slit to draw A and A’ together.
The magnitude of these shearing forces is determined
by equating the integral of the shear strain in the
section between A and A’ to the longitudinal displace-
ment of A’ with respect to A when the section is slit
A Fds__
A mgz—_a['?hb]

which becomes for the section shown in figure 25

it
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The longitudinal displacement with respect to the
original plane of the end cross section caused by the
shearing force F' in the slit is at & distance s measured

from
B toward A, £ ;tl,:_'_fl:_’_th
C toward B, %‘ %?]f_"?ﬂ
D toward C, F@I:t,,:]
D toward ¢, Ji %r_t‘,.] o
o tovard B, ~ Z A1 k1]
B’ toward A’, —df: (’1; ; tI: b+‘h]J

from which ; e e .
- ” Adding of these longitudinal displacements to those of
d:c h 3 @4) | @D—6) and substituting the value of F/dz from
T+t_ equation (44) gives at a distance s measured from
[3kb_ bs_ “hb ( s> w
B toward A, —0 4: 2 h b 2tb tb 7%
tr.
hb +hs hb +s>
C toward B, —¢ 2 b\2t,
17 +t
L. B ]
_&—5( )
D toward C, —¢ Iy
= (LD-8)
D toward ¢/, ¢ 5<tn>i|
_ in ty
" hb +hs Rb [k L s>
C'toward B, 6| 47 2 7i b\2¢,
n t,,
| 3hb bs 8
B’ toward A’, 0| 4 T3 _7:@ ‘z?,;+z;+a)
5 b
The longitudinal displacements of (LLD-8) apply to h Qb
B to 3
the closed section of figure 25 when the portion of ward 4, 0 P 8>
length dx is twisted an amount de about the centroid. C toward B, 6 Pg-I-Q( )]
If the axis of rotation is now shifted from the centroid =
to the location defined by P and @, in figure 25, certain D toward C, 0| Ps+ Q§] (LD-9)
terms m}lst ‘.be. adt.ied to (LLD-8) that are analogous to D toward C’, 8 ~_ Pat Q b
the longitudinal displacements of (LD-2) and (I.D-3) .
for the I section. These longitudinal displacements C’ toward B’, 6| — P +Q >:l
caused by translation are, at a distance s measured B toward A’, 6| — P(—Il’—-s>-—- __:l
from | 2 2
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Addition of the longitudinal displacements given by equations (LD-8) and (ILD-9) give at a distance s

measured from
3hb , bs RD

|79 1)

o b, s N\ Qb
B toward A, —0[—4_+7—ﬁ+2 E+t_b+t_h)—P<§_s>+—2_]

Thb ks b [k

Ph
C toward B, — ol T3~ R b\2t,.Tt,,> Q “—s>]

t,, A

:bs >P _ Qb
D toward C, —6{ 2 & Bt,,

t,, N

D toward C’, @ '2_ h b<th) P+Qb

tu

t;, tb
F3hb bs

b Qb
B toward A, 6| 4 T2 _I_g(ﬁt_,,"'t'b 7))~ T __3> }
[7)

Because the rectangular tube of figure 25 is symmet-
rical about its two principal axes the reference plane
coincides with the original plane of the end cross section.
(See derivation of Csr for the I section.) Hence,
(LD-10) gives the longitudinal displacements with

hb hs hb h s\ Ph, /b
C’ toward B, ¢ 4+2 h 52t,,+t_b —7+Q 5_8>

] (LD-10)

h

respect to the reference plane. These longitudinal
displacements when substituted for « in equation (7)
with 6=1 give the major part of Cgr. The minor part
of Cpr is calculated in the same manner as for an open
section.



APPENDIX C

DERIVATION OF THE THEORETICAL VALUE OF THE EFFECTIVE
MODULUS £

If Cpy, is the value obtained from equation (4) when
the integration is made over the part of the cross sec-
tion that suffers an increase of stress at the instant of
failure of the column, and E’ is the modulus of elasticity
for increasing stress, the work done by the increase in
compressive stresses is (see equation (3) of reference 2)

LB o, [ (0™
9 Ble; (?’)dx

If Cpr, is the value obtained from equation (4) when
the integration is made over: the part of the cross sec-
tion that suffers a decrease of stress at the instant of
failure of the column, and Eis the modulus of elasticity
for decreasing stress, the work done by the decrease in
compressive stresses is

280 [ (o)
2 BTQJ; (59 )

The total work dome by the longitudinal bending
stresses is therefore

1 '4 ; L ”\2
S Cor+ B, [ (0" ®

When the modulus of elasticity is the same for in-
creasing stress as for decreasing stress, as it is in the
elastic range, the total work done by the longitudinal
bending stresses is

35Csz | (s (b)

If a modulus E'is substituted for E in this expression,
the total work given by expression (b) can be made to
have any desired value depending upon the value as-
signed to £ If E is allowed to have only such values
as will cause the total work given by (b) to equal that
given by (a), it is found that

77 B Cory+ i,

EBT

This value of E is called the “effective” modulus when
the column is loaded above the proportional limit.

The total work done by the longitudinal bending
stresses when the column is loaded above the propor-
tional limit is therefore given by the expression

SECh: [ (o"Yida
2 BTJ; €]

Thus when the column is loaded above the proportional
limit, £ should be substituted for £ in Wagner’s
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equation for the critical stress, i. e., equation (1) of this

report.
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TABLE I
EFFECTIVE MODULI E AND G FOR 24ST ALUMINUM
ALLOY

é Jerts E - .‘.+_‘/; 7

o lb.fsq. In. | IbJsq. In. 2 1bfsq. fn.
9.49 | 53,000 433,600 | o.0489 | 0.1301 527, 600
13.28 | 51,000 011,300 | .0s65 | .1003 771,000
17.08 | 40,000 1,453,000 | 1370 | 2382 966, 400
20.87 | 47,000 2074000 | -1968 | 3203 | 1,200,000
2067 | 45000 27,000 | -2633 | 3as3 | 1,575,000
246 | 43000 3,620,000 | .3349 | .4863 | 1,853,000
3225 | 41,000 432,000 | .4108 | .s2si | 2132000
36,05 | 39,000 5135000 | 4874 | ssor | 2300000
39.85 | 37,000 5,053,000 | .650 | .8588 | 2,671,000
364 | 25000 6,754,000 | .8400 | 7208 | 2,024,000
T4 ) 3000 7,525,000 | .71 | .7798 | 3163000
5123 | 31,000 824,000 | .7823 | &334 | 3,381,000
550 | 20,000 8,808,000 | .8444 | 8817 | 3 677,000
5382 | 27,000 9,485,000 | .8082 | 0230 | @ 744,000
80,72 | 26,000 9,713,000 | .9216 | .9107 | 817,000
6262 | 25000 9,033,000 | .0128 | .0568 | 3,881,000
66.41 | 2000 | 1027000 | 974 | [esis | 3082000
7021 | 21,000 | 10,480,000 | .9954 | .0985 | 4,013,000
700 | 10,520 | 10,637,000 | 1.0000 | 10000 | 4,087,000
7500 | 18,460 | 10,537,000 | L0000 | 1.0000 | 4,057.000
80.00 | 1620 | 10,637,000 | 10000 | 10000 | 4,057,000
8500 | 14,350 | 10,537,000 | 10000 | 1.0000 | 4,057,000
o0, 00 12, 840 10, 537, 000 1. 0000 1. 0000 4,067, 000
95.00 | 1L520 | 10,537,000 | 1.0000 | 1.0000 | 4,057,000
100.00 | 10,400 | 10,537,000 | 10000 | 1.0000 | 4,057,000




167

A THEORY FOR PRIMARY FAILURE OF BTRAIGHT CENTRALLY LOADED COLUMNS

TABLE IITI

CRITICAL STRESS FOR BENDING FAILURE

inches

N583835RURERIRERRRBEE28]
¢a79nmumumnnummmmuuawamum

1b.fsq. in.

8838832228258 888888888
T
Nl TS SN ST STTSSSSS

P

in4
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8q. in.

Ut

Joriz

Ib/sq. in. | sq.In.

8832525555585588852R9388
HEdddignidIdNgdddgggdd g

TABLE IT
EFFECTIVE WIDTH OF SKIN THAT ACTS WITH THE

COLUMN

mmmmmmmmmmmmmmmmmmwmmwmmw

Ll Ll Ee T eI I PP PR e

25,

inches inches

Jerta

Ib/5q. in.

888888828222888238093838¢S
R E RS R E R B

TABLE IV.—CRITICAL STRESS FOR TWISTING FAILURE

A-HOOPOOIONNRWLINNW
za&&a&m&ahz&ammmm

v

in.

4194059256538773m

Helgdeddddgnsdang

1b./sq. In,

£8288828828388888
gEgErayRadaTad gy

LZZ.&A_.&.&.&.I,&S.Q.Q.B.M

1b.fsq. In.

£§988288288383888
SRERspdgsddgaEsAd

el edefofedod efededobod

*Car

in.s

ACar

insg

I

in+

al,

fa.t

Ins¢

Jeris

Ib./zq. in.

88888888888888388
mnmummmmnmnunnmmn

*C3=0.00449: Cr=0.000006.



