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A THEORY FOR PRIMARY FAILURE OF STRAIGHT CENTRALLY LOADED COLUMNS

By EuQmmE. LUNDQUISTand CLAUDEM. FLIQQ

SUMMARY

A t?woryqf primary failure of straigh4cenirally loaa2d
columns is presetied. It h amumed thui the co.knn.
cross seetion and the lad are constant througkrui the
length.

Primary faikre is d.qfned aa any type of failure in
whizh the cross seciiom are translided, rotaied, or tram+
tied and rotaied but not dtitorted in their own plum.
In the derixution qj the general egudion for the critical
6trtw8jtlw cross sections are amumed to rotate about any
axi3 parallel to the column. When the locaiion of &
ati of rotation varies from zero to injhviiy in every
direction, all combinutiom of translation and rotation of
the column cross 8ecti0nare obtuimd.

For il.lwstraibn,the theory is applied to a column of
I Sec-tiun. The cOnc-1m-ions, however, are genaalized to
include any column tih a cro88 section symmetrk?
about its principal m. It is 8hOlLVtthat, for such
column9, the theori.txfor bending failure and Wi47ting
faikre are 8peoiul ca.wx of this general theory and that
primaqI failure will occur by bending aboui the am%of
minimum moment of inmtiu or by twisting about the
centroid, depending upon which gives the lower criikd
8tre98.

m a column ia attachedto a skin, the greai stiffn488
of the skin in i% oumplane caumathe axis of rotution to
lie in the plune of the 8kin. m tlu column cross
sectionix symmetricalaboui its two primipal w, one oj
which ti normal to the 8ki?4 the axis of rotution d? be
either ai the poiti where the prirwipal axis cro88tx the
skin or ai injintiy in th8plane of th 8kin, dependingupon
which I!OCatiO?L@x tb smder 8tr888.

It is shown how tlw e~ectioe width of 8kin thut may be
con.sidmedto act with tlw column and caqi tlw same
stress as th cobumn aUer8the section prqwrties of tlw
column and how the bending sti$nas of the skin re43ts
twisting of th8 column and raiwa the critical strws.
FinUl.lll)tha effective moduli tlwi apply when the column
is stres8edabove the proport&md limd are diswsed.

An illwxtraiiwproblem in thejirst appendti (A) shows
how the theory for primary faikre may be used to con-
8tructthe column cumejor a 8kin-8ti~en.mpamsl.

Appendix B 8hows how the theory may be applied to
COhMV18 Of Ch38ed8eCti07L For closed 88Ct’iO?lS,however,
tlu large torsional rigiddy precludes anything ti bending
failure. ‘

Appendix C com%irw a derivation of the theoretical
e@ion for the e~eciwe moduk of elasticity when tht
column ix 8tre88edabovethe proportional limit.

INTRODUCTION

In the determination of the compressive strength of
Bheetand stiffener combinations asemployed in stressed-
skin structur& for aircraft, the strength of the stiffener
is a most important factor. When failure occurs by
deflection normal to the skin, the accepted column
curve for the material applies. (See reference 1.)
When failure occurs by deflection of the outstanding
portion of the stifhmer in a direction parallel to the
sheet, however, there is a combined action of bending
and twisting in the stiffener that requires for its solution
a more general theory for primary failure in columns
than has bean available heretofore.

Primay failure, as used in this report, is any type
of column failure in which the cross sections are trans-
lated, rotated, or both trandated and rotated but not
distcrted in their own plcmes (fig. 1). In keeping with
tl+s definition of primary failure, any failure in which
the crow sections are distorted in their own planes but
not translated or rotated is designated “secondary”
or ‘local” failure. (See &. 2.) Consideration is given
herein only to prim&y fa&re;
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Wagner in reference 2 has presented a theory for
torsion-bending failure of open-section columns formed
from thin metal. A part of this theory is sunumuized
in reference 3, which also includes the rwults of tests
made tc substantiate the theory. In his theory,
Wagner ccnsidera the cross sections to rotate about an
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ask which is parallel to the column and which passea
through the center of twist for the section. (See refer-
ence 4, p. 194, art. 41, for location of center of twist.)
When the column is attached to the skin of a streased-
skin structure, the stiffness of the skin in its own plane
and the anchorage of the skin at the sides of the paid
are controlling factors in the location of the axis of
rotation. If the stifEnessof the skin in its own plane
is assumed to be infinite, the axis of rotation is forced
to lie in the plane of the skin. Rotation of the cross
sections about any tmis not lying in the plane of the
skin would require a movement of the skin in its own
plane. Such a movement is prevented by the stiffnes
of the skin in its own plane and the anchorage of the
skin at the sides of the panel. Consequently, for the
solution of the skin-stiffener problem the Wagner
theory must be extended to include rotation of the cress
sections about axea other than the one passing through
the center of twist.

The purpose of this report is to prwent extensions
of the Wagner theory, as given in reference 2, to include
rotation of the cross sections about any axis parallel
to the column. These extensions together with the
V7rqg~ertheory constitute the general theory of primary
failure of straight centra~y loaded cohmms presented
in this report. This theory is applicable to any thin-
wall metal column of uniform section and contains the
Euler theory for bending and the Wagner theory for
twisting as special cases. The application of the general
theory to columns of open section is illustrated by use
of an I section cehunn, both when the column is free
and when it is restrained by the attachment of one
flange to the sliin of a stre.ssxkkin structure. The
application of the theory to a design preblem involving
an open-section column attached to a skin is given in
appendix A. The application of the theory to columns
of closed section is of less practical importance and is
given in appendix B. Appendix C presents the deriva-
tion of the theoretical equation for the effective modulus
of elasticity when the column is stressed beyond the
proportional limit.

THE THEORYOF PRIMARYFAILURE
TEEWAGNZllEQUATION

The critical compressive load for primary failure of
an open~ection column that is both straight and cen-
trally loaded when the axis of retation passes through
the shear center, in this report called “center of twist”,
is given by equation (9) of reference 2, which written
with American notation is

If both sides of this equation are divided by the cross-
sectional area A, the following equation for the critical
stress is obtained:

fmit=y+~ $$ (1)

where
E

E
~=2(l+p)’

P,
IPI

L,
J,

cBT>

is the tension-compression modulus of
elastici@-.

shear modulus of elasticity.

Poisson’s ratio for the matxwial.
polar moment of inertia of the cross seotion

about the axis of retation.
ofiective length of column.
torsion cmstant for the section, The

product QJ in tcrsion problems is
analogous tc the product EI in bending
problems. (See reference 6.)

torsion-bending constant, dependent upon
the location of the axis of rotation and
the dimensions of the cross section. A
complek discussion of how to evaluate
Cm is given iu a later section.

In equation (1) the term $! is thot part of the

critical compressive stress caused by the resistance of

the column to pure twisting. ~e~g~~$k

that part of the critical compressive stress caused by
the resistance of the column to bending. In the deriva-
tion of equation (1) the angular displacement of the
cross section about the axis. of rotation was found to
vary as a half sine wave along the length of the column
in the same way that the lateral displacements in an
Etier column vary as a half sine wave along the length.

Therefore the term ~ is ~~ogow to ~ in the Euler
P

column formula

(2)

where I is the moment of inertia about a centroidal
axis.

In order for a column to fail in the manner shown
in figure 3 (a) the end crow sections must be free to
rotate about the axis of rotation and there must be no
rwhaint of longitudinal displacements at the ends of
the column. Thus, when primary failure occurs in the
manner shown in figure 3 (a), the twist per unit length
is the same at all stations along the length and the
Amm is ssid to be in a ccndition of pure twisting,
Cn a pure twisting failure there are no longitudinal
bending sksses, with the remdt that the second term
of equation (1) i9 zero. The critical stress for a pure

bwisting failure is therefore given by }J~ which is in

~reement with the value given by eq;ation (4a) of
reference 6. In order that the second term of equotion
(1) shall be zero the effective length of the column must
beiniinite (~=co).

In order for a column tc fail in the manner shown
in figure 3 (b) the end cross sections must be held
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against rotation about the axis of rotation but there rotation about the axis of rotation and when buckling
must be no restraint of longitudinal displacements at occurs, them must be complete restraint of longitudinal
tho ends of the column. When primary failure occurs displacements at the ends of the column. Because
in the manner shown in figure 3 (b), the twist per unit the end conditions for the type of primary failure shown
length is variable along the length of the column with in &gure 3 (c) correspond to built-in ends in an Euler
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the result that longitudinal bending stressesare present
in addition to the shearing stressesof twisting. The end
conditions for this case correspond to pin ends in an
Euler column with the result that &=~ in equation (l).

In order for a column to fail in the manner shown in
figure 3 (c) the end cross sections must be held against
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column, &=~ for this case. Similarly, for any degree

of restraint against longitudinal displacements of the
end cross sections the same effective length applies as
for an Euler column with the same condition of end
restraint.
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GENERALIZATION OF WAGNER THEORY

In the paragraph immediately following equation
(2b) on page 6 of reference 2 it is stated, “The longi-
tudinal stresses CMshould not give a resulting bending
moment (since there is no such moment acting on the
member). It may easily be shown that this condition
may be satisfied if and only if the maggtudes rtiand r~
refer to the shear center; that is, when the section twists
about the shear axis, also in the case where longitudinal
8tres9e9 arise.yY These statements are correct when
there is no moment acting on the member. A general
derivation, however, should include a moment acting
on the member.

The Wagner theory is therefore based on the a98ump-
tion that only torque moments are acting on the member
rLtany station z along the cnlumn. From this resum-
ptionit follows that at failure all but the end cross sec-
tions of the column rotate about an axis parallel to
the column and passing through the center of twist of
the section. When it is assumed that both torque
moments and ben~~ moments are acting on the col-
umn at any station z, the combined eifect is 8uch .asto
cause the cross sections to rotate about some other axis
parallel to the column. In thi8 ca9e equation (1) will
give the critical 8tressprovided that C~Tand lP, which
depend upon the location of the axis of rotation, are
properly evaluatid. The Wagner theory, together
with this extension of it, of which the purpose is to in-
clude rotation of the cross sections about any axisparal-
lel to the column, constitutes a more general theory
for primary failure in columns. The development of the
genmal theory is necessary for calculating the column
strength of stiffenem attached to 8ki.n when failure
occurs by deflection of the outstanding portion in a
direction parallel @ the skin.

EVALUATION OF CBT

The torsion-bending constant C&is a section proper-
@ sim.ikwto moment of inertia. Like moment of inertia
it is dependent upon the axis about which the section
proper~ i8 calculai%ii. Waaguerhas 8hown that, in ita
practical evaluation, C’ may be divided into a major
and a minor part, the latter of which may be neglected
for most open sections formed of thin metal. In ref-
erence 3 it k 8hown that the major part can be expressed
by a simple integral involving certain arw swept by
a radius vector. In the evaluation of 6’BT for some
stiifener sections used in aircraft structures, however,
the authors of the present report found it expedient
to use the basic considerations of displacement from
which the simple integral involviqg swept areas was
derived. ● In this procedure certain concepts, not given
in references 2 and 3, were i.ntioduced to clarify the
method of calculating CBTin the general case.

k order to evaluate (&r by the general method, a
portion of the column of length dz is allowed to twist
about the axis of rotation an amount such that one
end crow section is so displaced that it forms an angle
& with respect to the other end cross section. The
longitudinal displacement of any p&.nt on the end cross
section with respect to a reference plane, normal to tho

baxis of rotat.kn, is proportional to ~ the angle of twist

per unit length hereinafter designated 0. The reference
plane is then located 80 that the average longitudinal
displacement of the elemental areas dA of the end sec-
tion from this plane i8 zero; i. e.,

Jc&-i xl.

where D is the longitudinal displacement from the ref-
erence plane of the elemental area M. Physically the
reference plane establishedthe neutral axis of the longi-
tudinal bending 8tres9e3that result when the end cross
8ection is restrained. The general expression for dDT)

which includes both the major and minor parts previ-
ously mentioned, ia (reference 2, equation (6))

CBT=JU’(U “ (4)

where u is the longitudinal displacement, from the ref-
berence plane, of the elemental area d.zlwhen ~=0= 1”

The general method of evaluating OBTdescribed h
the preceding paragraph will now be applied to an I
section column with the axis of rotation located at a
distance r from the centroid in any direction. Wagner
and Pretschner (reference 3) have shown how to com-
pute CB= for an I 8ection when the axia of rotation is
at the center of twist, which is at the centroid for the
I section. When the axis of rotation has some other
location, certain terms must be added to allow for the
shift in the axis of rotation. k thO derivation of (?BT

for any location of the axis of rotation, it is convenient
to resolve the displacement of the one end cross section
(fig. 4 (a)) into two displacements of translation (1 and
2 of fig. 4 (b)) and one displacement of rotation about
the center of twist (3 of fig. 4 (b)). The longitudinal
diqhcenwnis of the diilerent parts of the cross section
caused by the three component displacements of the
cross section (fig. 4 (b)) are then added to obtain the
total longitudinal displacement. In the following tabu-
lations the longitudinal displacements at the center lines
of the web and flanges are given. The algebraic 8ign
of the displacement is positive when a point on the cross
section moves in the positive direction of x and negative
when it moves in the negative direction of z (figs. 6, 6,
End 7). Alao note in the exprcasions for longitudinal

&placement (LD-l, 2, 3, etc.j that ~=d,
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Displacements for rotation about the oenter of twist
(fig, 6),—The longitudinal displacement from the
origg al plane of the end cross section at a distance 8
measured from

B toward A is –8-$

B toward C, @$8

O toward B,
O toward B’,

; >(LD-1)

B’ toward C’, ‘0;8

B’ toward A’, 0~8

Displacements for ‘translatiori normal to the web
. (fig. 6),—The longitudinal displacement from the

c.

2-
B’

b dq h
‘, Center ~

Cenfer 1~ , of f Wisf ~ ~
line O
before
t wisiing.-

J

c’

*0-
-,

P.

Fmum 5.—Df@mrnenta fcu I’Qfatlon
abont the miter of twfst.

Fmuar?—&-Dfe@maments for tramlattm
normal to tb web.

original plane of the end cross section at a &stance 8
measured from

B toward A is –L9Q8
B toward C,

1

OQS
O toward B,
O toward B’,

: (LD-2)

B’ toward C’, OQS
B’ toward A’, –L9Q8

Displacements for translation parallel to the web
(fig. 7),—The longitudinal displacements from the
original plane of the end cross section at a distance
8 measured from

B toward A is OP;

B toward C, 8P;

O toward B, 0p8

O toward B’, –OPS

B’ toward C’, –e~~

B’ toward A’, –8P+

&D-3)

.—.

T

A’ B’ c’
Reference pfone I

FIWJBE 7.—Dl@wamants for traruktkm _ to the vmb.
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Total displacement for rotation about the point P, Q
(figs, 4, 5, 6, and 7),—By addition of the displacemmts
LD-1, LD-2, LD-3, the total longitudinal displacement
from the original plane of the end cross section at a
distance 8 m&& horn

B toward A is –tI[.s(~+Q)-~;]

B toward C, [8(:+Q)+P3
O toward B, 19P8

O toward B’, –OPS

“bw=dc’J-w-’)++
B’ toward A’, [’($-Q)-p:.

(iD-4)

Therefore the longitudinal displacmmnt of the end
cros section with respect to the referance plane at n
distance 8 measured from

B toward A is g–0[8(#+Q)–P~]

B toward C, g+~s~$+’)+p$]

O toward B, $7+t@8

O toward B’, 9–0P8

“towwdc’) 9-[8(+-Q)+P:
(IID-5)

Now g, the distance of the referenm plane from the
original plane of the end cross section, is determined by
the conditions of equation (3). The term tds may be
substituted for dA because the longitudinal displace-
ments vary linearly across the thickness t. of the web
and tbOf the fl~=. Then, if the longitudinal dis-
placement of the center lima OLD-5) is substituted for
D, equation (3) becomes, after-multiplying by A,

horn which
g=” (5)

From the symmetay of the I section, it might have
been foreseen that g=(). The formal proof, however,
has been presented to show the method that would be
necessary for the determination of g for other sections.

FOR AERONAU’ITCS

Wrwner has shown that for sections formed of thin
metal% is convenient to divide C~Tinta a major part
o. and a minor pti c, so that

C,T= c.+ i7T (6)

Jn the major part of C.. the longitudinal displacement
is assumed to be uniform across the thiclmess of the
plata and equal to the value at its center line. For the
major part, dA in equation (4) is therefore written tds.
Hence

C.= Ju%h (7)

Substitution of the longitudinal displacements (ID-6)
for u in equation (7), with 0=1 and g=O, gives for the
I section

from which

“=i’’’’’’+(%+%$)p+%~ ‘8)

The minor part of C~~is in the nature of a correction
to the major part to allow for the variation in longitu-
dinal displacement across the thiclmess of the web or
Eange. When the thiclmess is constant along the web
w flange, the general expression for the minor part is
(reference 2, equation (6b))

JCT=;8%% (9)

h order to evaluate Js%% in this equation, the origin
of 8 must be at the point on the center line of the web

:+1-t- 111—

FIom 8.–Methcd of m~ 8 for evalnotfon of oqnetlon (9).

m flange, extended if necessary, from which a perpen-
dicular may be erected to pass through the axis of
wtation. (See fig. 8.) When the thickness varies with
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s, # should be placed under the titegml sign and equa-
tion (9) evaluated by either an analytical or graphical
method,

As applied to the I section, equation (9) becomes

c.=z~J~~,*+~J~g*

When the thicknesses t,and thare snd as compared
with b and h, respectively, CTwill be very small as com-
pared with C~and maybe neglected in the computation
of UBT. Substitution in equation (6) of the values of
C, and C,, however, as given by equatio~ (S) ~nd (10)
E!’iVes

where IV tmd Iz are the moments of inertia of the cross
section about the principal axes y and z, respectively,
(fig. 4).

CRITICAL STRES9 FOR AN I SECTION COLUMN

In order to show the effect of variation in ~ on the

critical stress for the I section in a later part of this

44

report, it is convenient to write equation (1) in the
following form

(12)

where $ is the critical compressive strew for a pure
twisting failure of the web alone when the
axis of rotation is at one edge of the web,
that is, the critical compressive stressfor a
long outstanding flange simply supported
at its base. (See reference 7, equation
(91).)

2Et~s the critical compressive stress for the web
12L2 ‘ alone acting aa an Euler column.

h’ J
‘“G ~

1

constants that vary with the dimensionsof

12 C~T
the cross section and the location of @e

KBT’~ axis of rotation.

On the assumption that the torsional stiffness QJ of
the I section is equal to the sum of the torsional stiff-
newea of the web and flanges (reference 4, p. 76, art. 20)
the approximate equation for J is

J=;hth3 +;bt: (13)

For any location of the axis of rotation, the value of
I, for the I section is

IP=&h3t, +;h’bt,+;b3t,+ (ht,+2bt,) (P2+~ (14)

Substitution of the values of J and I. given by equa-
tions (13) and (14) in the equation that de6nes K gives
for the I section

(15)

J?orthe same reason that C,. has been divided into a KBT=KB+KT (16)

major part ~. and a minor part CT (see eqUatiOn(6)), Substitution of the VdMS of c. ~d C2. ss given by
KBTwill likewise be divided into a major part KB and a equations (8) and (10) for CBTin the equation that
minor part KT so that deiines KBT, giVSS fol the I section

and

(17)

(18)

DISCUSSION I
Location of the axis of rotation for a free column.—

When the axis of rotation is located at a distance r from

the centroid of a section, the value of ~ in equation (1)

is independent of the direction in which r is measured.

Because ~ iS ~~ogo~ to ~ in the Euler column

formula, it ~eems reasonable to expect fiat, as the axis

of rotation moves around a circle of radius r, }: will
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vary from a maximum at one of the principal axes to a
minimum at the other principal axis. Because 1~ k
independent of the direction in which r is measured, all

the variation in ~ * occur in CBT. It will now be

shown that, for a s~ction symmetrical about each of its
two principal axes, cBTis a mtium or minimum when
the axis of rotation is on the principal axis about which
the moment of inertia is, rwpectiv~y, mfi~ or
minimum.

It follows tim the symmetry of the expressions for
longitudinal displacement and the limits of integration

The first derivative set equal to zero shows that CDTis
either a maximum or minimum when /3=0°, 90°,

f??C~T .
180°, or 270°. When ~=0° or 180°, ~ M negative

provided that IV<I,, in which case p=OO or lSOO
locates the axis of rotation for CDTm=. If IP>I,, then

B=o” or 180° 10~~ the ~ of ro~tion for d’~mti.
Similarly, when f?=900 or 270°, it may be concluded
that C=Ti6 a mfium or minimum when the axis of
rotation is on the principal axis about which the moment
of inertia is, respectively, maxh.uum or minimum.

I I l\ \l \\ I I

2W,000

that CBTfor any section symmetrical about its two prin-
cipal axm will have the form given by equation (11).
From figure 4

P=r cos p
Q=r sdnB

Substitution of these values in equation (11) gives
Cm= (CBr)~nl+-l# ~@@+I# sin’~

The first and second derivatives of CBTwith respect h /3
are, respectively,

When a free column of symmetrical section tvith no
bending restraint at its ends (pin ends) is of such pro-
portions that it develops a primary failure, the A of
rotation will be either at iniinity on one of the principal
axe9 or at the center of twist. J?igure9 illustrates this
fact for a family of I section columns by means of

cm= for critical stress plotti %~t the ratio ~

for different locations of the axis of ratation along each
of the two principal axes. Inspection of figure 9 shows

that, for values of } between O and 1.4, the critical

stress is lowest when the axis of rotation is at infinity
along the principal axis parallel to the web. l?or



A THEORY FOR PRJMARY FAILURE OF STlMlCH3T CEN’ITMLLY LOADED COLDMNS 149

values of ~ between 1.4 and 2.0, the critical stress is

lowest when the ti of rotation is at the center of

twist (centroid, for the I section). For values of #

greater than 2.0, the critical stress is lowest when the
axis of rotntion is at infinity along the principal ti
normal to the web. Had a diEerent set of dimensions
been selected for the family of I section columns in
figure 9, the crossing points A and B would, in general,

have been at different vahms of ~. Regardless of the

dimensions used, however, the lowest critical strew
would always be given by one of the three locations of
the axis of rotation previously mentioned; i. e., at the

(
Qcenter of twist ~=O; ~=0

)
or at infinity on either of

( P~—O; f= w or~=~;the two principal axes ~ — #= O).

In figure 9 the critical stresses are, for the most
part, greater than the yield point for the present
engineering materials having the same value of E as
was assumed in the calculation of the curves. (E=
107pounds per square inch.) This fact does not detract
from the conclusions drawn from figure 9 because, when
a column k stressed above the proportional limit,
equation (1) may be considered to apply with a re-
duced modulus of elasticity thereby giving a reduced
critical stress. The reduced modulus is discussed in a
later section of this report.

It will now be proved that for a free column of I sec-
twn the axis of rotation will be at infinity along the
principal ask parallel to the web provided that

and

d

—
;<’ *

Because the axis of rotation might be at the center of
twist or at idnity on the principal ask normal to the
web (fig. 9), the two following conditions must hold if
the a~- of ‘rotation is to be a; infinity
axis parallel to the web:

(fait) F.~m<(faJP.o
Q-o

on the principfd

.

The first of these conditions will be satisfied if

[ -(31&:=[%Kl:::(.fmif):c:< (jail)

or if

from which

The seccmd condition will be satisiied if

1,<1=
or if

Multiplication of both sides by~b gives

. .
from which

This condition holds as long aa} does not become too

J
8 tblarge. If~is as large as ~, then the following condi.

tion must be satisfied

This latter condition will be fulfilled provided that

3<14.7 (19)

‘a value of ~ much larger than will be found in any I

section column of practical dhnetions. It may there-
fore be concluded that primary failure in a free column
of I section mill occur by bending with the neutral axis
parallel to the web when

(20)

—

dWhen $ is greater than 3 ~ the critical stress for tie

axis of rotation located at the centroid should be
computed and compared with the critical stress for
b~ding about the axis of minimum moment of
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inertia.The smaller of these two values will be the H fl=90° Or 270°
stress at which failure occurs. cBT_Iv

When the witical stress is to be computed for the Iv A
axis of rotation at the centroid, the curves given in
figures 10 and 11may be used to determine the values

Location of the axis of rotation for a oolumn attaohed

of K and ~B in equation (12).
to a skin.-When a column with pin ends is attaohod

Proof that bending failure is a special case of the to the skin of a stressed-skin structure, the stiffness of

theory presented in this report.-When the sxis of the skin in its own plane and the anchorage of the skin

rotation is at infhity, equation (1) reducw to the at the sides of the panel are controlling factors in tho

Etier column formula. In this case, Ip and CIITare location of the rmisof rotation. In this discussion it

bothinfin.ite. Hence@J
is assumed that the skin providw only lateral support

~= Oand it remains to be shown at its point of attachment to the column. Rotation
P

that ~=+.
of the cross sections about any axis not lying in the
plane of the sti would therefore require a movement

48

44

40

3.6

32

28

K
24

20

(!6

L2

.8

4

0
. b/h

lhGUEE10.—VarMfon of Kwith b/hfor dlffaremt valma of tA/f } when tlw exb of rotatfrm k at tlm mntrold of an I Won mhtrnn.

Equations (11) and (14) show that as the axis of
rotation approaches infinity along a radius r the tams
involving both ~ and Q, if ~ and Q both approach
irdin.ity, become very large in comparison with the
remaining terms. Thus, when ~ and Q become infinite,

or

1, A
When y and z are the principal axes of the section,
I. cd t’3+IB sin’ B is the moment of inertia of the
cross section about a line that passes through the
centroid and the axis of rotation. If /3=0° or lSOO

of the skin in its own plane. The stiffness of the sldn
in its own plane and the anchorage of the skin at tho
sides of the panel tend to prevent such a movement
and the axis of rotation is forced to lie in the plane of
the skin.

For a column the cross s@on of which is symmetricrd
about its two principal axes, one of which is normal to
the skin, the.axis of rotation will lie in the plane of the
skin and be either at infini~ or at the point where the
principal mis crosses the skin. This statement is
illustz-atd in iigure 12 in which values of ~.,,, for a
family of I section columns having the same dimen-

sions as those of figure 9 are plotted against ~ for differ-

ent locations of the axis of rotation in the plane of the
skin. For simplicity, the skin is assumed to be at the
center of one flange. Inspection of fi=gure12 shows
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that, for values of ~ between O and 1.90, the critical

stress is lowest when the axis of rotation is at the web.

For values of ~ greater than 1.90, the critical stress is

lowest when the axis of rotation is at infinity in the
plane of the skin.

As in the mse of free columns (fig. 9), the location of
the cross@ point A in figure 12 will depend upon the
particular dimensionsselected for the family of columns.
Regardless of the dimensions used, the lowest critical
stress will always be given by one of the two locations
of the axis of rotation previously mentioned; i. e., in

()
the plane of the skin either at infhity ~=m or at the

()
point where the principal ati creases the shin ~=0 .

Again, as in figure 9, the neces.wwyuse of a reduced
modulus at stresses above the proportional limit does
not invalidate the conclusions drawn from figure 12.

When a column of I section is attached to a skin, it
is not practicable to give a simple criterion by which
the location of the axis of rotation may be determined.
In view of the fact that the axis of rotation will be either
at infinity in the plane of the skin or at the point where
the principal axis crosses the sliin, the critical stress for
these two locations should be computed and the lower
value regarded as the failure stress. When the axis
of rotation is at infinity in the plane of the skin, the
criticnl stress is given by equation (2) with 1=1,. In
order to facilitate the computation of jajt when the
axis of rotation is at the point where the principal axis
crosses the skin, fia-es 13 and 14 have been prepared
from which the values of K and K. may be obtained
for substitution in equation (12).

Effeot of the skin in changing the section properties
of the column,-In the preceding section it was assumed
that the only effect of the skin was to provide lateral
support to the column- Inasmuch as the skin is at-
tached to the column, however, it will also carry a part
of the compression load on the column and the stress
in the skin at its point of attachment will be the ‘same
as that in the column. Usually the stiffener spacing
in terms of the sheet thiclmess is such that the skin
will buclde between stiffeners and onIy a small width
adjacent to each stiilener will be effective. In refer-
ence 1 it is shown that, when failure occurs by bending
of the stiffener normal to the skin (axis of rotation at
infinity in the plane of the skin), the eflective width,
which is dependent upon the colti stress, may be
considered to be a part of the column cross section and
is to be included in the computation of sectionproperties.

When the axis of rotation is at the point where the
principal axis crosse9 the skin, twisting of the stiilener
about this axis will cause a rotation of the skin near the
stifEener. If it is assumed that the eflective width of
skin rotatea with the stiffener, the following increments

must be added to J, Ip, and CBTas evaluated for the
stiffener when the skin ww assumed to provide only
lateral support for the stiflener,

AJ=#Tt: (21)

1
*’=i@ (22)

ACB~=AL?T (23)

In these equations t.isthe tbiclmesa of the skin and U
is the effective width of skin that acts with the stiffener,
carries the same stress as the stiffener, and is assumed
to be continuous across the stiilener and symmetrically
located with respect to the web of the I section. The
evaluation of U is included in the illustrative problem
of appendix A.

Effect of the skin in providing restraint to twisting of
the oolumn.-When a column k attached to a skin and
the axis of rotation is at a point other than infinity in
the plane of the skin, the rotation of the column cross
section at failure is resisted by bending of the skin pro-
vided that the skin is supported by adjacent stiffeners
m other structure. A theoretical analysis of this effect
has been reserved for a future report. Only a brief
3ummary of the subject is given herein.

It maybe stated that the effect of the bending stiff-
ness of the skin in providing reaistc,nceto twisting of
the column attached to the skin is such as to incmam
the critical stress given by equation (1) or (12) by m
~mount

(25)

then

Whered is the stiffener spacing.
K,, a constant depending upon the conditions of

support of the skin at the adjacent stiffener
or other structure.

It will be noted that in equation (26) ~ and ~ have
]een substituted for (7 and E, respectively, in equation
1). The substitution of ~for .E at this time was made
o distinguish between the value of E associated with
mgitudimil stresses in the stiffener and its effectivo
tidth of sheet and the value of E rwsociatedwith bend-
ng of the SHR between stiffeners. The desirability of
Winguishing between these two values of E will be
xplained in a @tar section of this report in which the
valuation of E and ~is discussed.

If the two ends of the stdlener are held against rota-
ion about the axis of rotation aqd the end cross sec-
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tions are free to have longitudinal displacements, ~
cannot exceed the length L. For a skin approaching
zero thickness ~ will be equal to -L. (See fig. 3 (b).)

III general, however, G=: where n Em integral vahms
“L

(n=l, 2,3,4, etc.). Thus, when L=i there will be a

particular value of n for each skin-stiffener combination
that will eause~~i, to be a am. A trial calcula-
tion should be made with n= 1, 2, 3, 4, etc. to deter-
mine which value of n gives the lowest oritical stress.
This critical stress should then be compared with that
for bending in a plane normal to the skin (reftienee 1)
and the lower of these two stressesregarded as the stress
at failure for the stiffener and its effective width of
skin.

No information has thus far been given regarding the
value of K1 to be used-in equation (26). For a stiffener
that has one principal axis normal to the skin and that
is also symmetrical about this principal axis, the value
of K may be taken from the curve given in figure 15
provided that the total comp-on load is equally
divided among several stiffeners of the same dimensions
spacad at equal intervals along the skin. This curve
for K1 w= calculated by the energy method (reference
S, p. 5S4, art. 39) on the following assumptions:

(a) The full width of sldn between stilleners provides
resistance to twisting of the stiffener.

(b) The akin is not under edge comprmsion and is
therefore flat until twisting of the stiffener occurs.

(c) When the stiffener twists, the skin takes the shape
of a circular arc between stiffenem and a sine curve of
half wave length L parallel to the stiffeners.

Because the width of the eiTectiveskin that acts with
the stiffener is small, any error that may remit horn
assumption (a) is likely to be small. Of the three
assumptions, (b) is probably the most qu~tionable.
Under load the skin is always subjected to edge com-
pression and usually buckling of the skin occurs prior
to twisting of the stifkmers. Because G is usually
several times the half wave length that forms when the
skin alone buckles, any buckling of the skin prior to
twisting of the stiffener tends to increase the effective
thickness of the skin and hence the resistance of the
skin to twisting of the stiffener. The increasein strength
caused by the increase in effective thiclmess of the skin
tends to offset any reduction in stmmgthcaused by the
edge compression. The assumptions made under (c)
are the most reasonable that could be made following
(a) and (b) without greatly complicating the mathema~
ics of the problem.

Until the curve for KI given in figure 15 has been
checked by tests, it should be used only as a guide to
design. As such, it will point the direction toward a

ore efficient proportioning of material between skin
and stiffeners. (See appendix A.) b the skin4fkmer

L
combinations that are likely to be used in practice ~

will usually be greater than 3. For these cases it will be
satisfactory to use K =2, the asymptote for the curve
of figure 15.

3wn%l

FIGURE 18.-VafuM of M for use in eqnatlona (25) and (?0).

-[+(w%w’l
Eilective modulus of elasticity.-l?or columns that

fail by bending, the critical stresses depart from the
theoretical values given by the Euler formula at low
values of the slenderness ratio. Consequently, an
empirical straight line or parabolic curve is frequently
drawn on the column chart to give the critical stress
in this range. Likewisel for the general theoqy there
will be a Mar departure of the critical stress from the
theoretical values given in this report and empirical
curves must be found to give the strength for short
lengths.

I?or a column that fails by bending, the reduced
strength at short len=@s is explained by the double-
modu@s theory of column action (reference S, p. 672,
art. 37, and references 9 and 10). This theory follows
briefly: When a straight, centrally loaded column is
stressed above the proportional limit for the material
and deflected, the stress on the concave side increases
according to the tangent modulus E’ for the material
(the slope of the stress-strain curve at the siress con-
cerned) while the stress on the convex side decreases
according to Young’s modulus E for the material. The
critical stress is then given by the Euler formula when
an effective modulus ~ is substituted for E. The
efEectivemodulus is dependent upon the shape of the
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column cross section as well as upon E’ and E and is
given by the following general expression (references 9
and 10):

(27)

where, according to Osgood (reference 9), ‘(I1 is the
moment of inertia about the axis of average stress
[zero bending stxeas,see fig. 16] of the part of the cross-

b—----Width ~

FIOURZ 16.-Stms dIshibutlon for donb?snodtdua th@JrY.

sectional area which suffers an increase of stress at the
instant of failure of the column, 12 is the moment of
inertia about the axis of average strew of the part of
the cross-sectional men which suffers a decrease of
strew at the instant of failure of the column, and I is
the moment of inertia of the total cross-sectional area
of the column about the centroidal axis normal to the
plane of bending. The position of the axis of average
strew is’ defined by the relation E’Sl=E& where S1
rmd S2 are the statical moments about the axis of
average stress, respectively, of the two parts of the
cross-sectional mm just mentioned in connection with
I, and Iz.”

The effective modulus has been evaluatid for a num-
ber of cross sections. I?or a rectangular section (refer-
ence 4, p. 242, equation (161))

from which

(28)

(29)

I?or an I section tith a web of negligible thiclmess and
with bending in the plane of the web (reference 9,
equation (4)Y -

%$%
(30)

~om which

(31)

In the theory for primary failure as herein prwmted
thereis a double-modulus action, similar to the double-
rnodulnsaction in bending, when the column is stressed
~bove the proportional limit for the material. In view
]f the fact that this double-modulus action iEconcerned
mly with longitudinal bending stresses, an effective
modulus ~will be substituted for E in the secend term
]f equations (1) and (12). It is shown theoretically in
ippendix C that this value of ~is

E’CBrl+ECBl.2 ‘
E= (32)

BT

where CBTIis the vahti obtained from equation (4)
when the integration is made over the part of the cross
Jectionthat suffem an increase of strw at the instant of
failure of the column, C~T*is the value obtained from
Bquation(4) when the integration is made over the part
Qfthe croes section that suffers a decrease of stress at
the instant of failure of the column, and Cm is the value
obtained from equation (4) when the integration is
made over the entire cross section as previously out-
lined. In order to locate the potits of average stress
(zero bending”stmss), which deiine the limits of integrat-
ion for CDTIand CBT,,the reference plane must be so
located that

E’iD,dA+EJD&4= O (33)

where D1 and DZ are the longitudinal displacements
used in the evaluation of CBTI~d CBT2,respectively.
Physically, equation (33) mu that the summation of
the forces on the cross section that result from the
longitudinal displacementsis zero.

When the column is strwed above the proportional
limit for the material, the shear modulus G, which is
related to E, must be corrected to correspond to the
reduced modulus ~ for the column. A theoretical
treatment of this problem does not appear to have
been published. Bleich (referenu 11) used for the
effective shear modulus

t7=-@ (34)

where
E

T= —.E (35)

It was reasoned that the percentage reduction in G was
not so great as in E. Because r is always equal to or
less than unity, Bleich selected ~X G as a convenient
expression for the effective slmar modulus,
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After analyzing the results of some 500 teats on angle
columns where failure occurred by twisting, KoIl,-
brunner (reference 12) concluded that the effective
shear modulus was best given by the equation

(36)

As this value of ~ is bssed upon test data, it is recom-
mended that it be used in preference to the value given
by equation (34) to express the reduced shear modulus.
Thus, when the column is @wed above the pro-
portional limit, the value of G given by equation (36)
should be substitukd for (7 in the fiat term of equs-
tiOIIS(1) and (12).

When the axis of rotation is at i.dinity on either of
the principal axes, equation (32) reduces to equation
(27). It can be shown that, when the axis of rotation
is at the centroid of an I section, the value of ~ is the

pletad, it appears that the shift of the axis of rotntion
in the plane of the skin is small, for columns of prm-
tical dimension, and that the values of ~ are near those
given by equations (28) and (30).

In figure 19 it is shown that the values of ~ m given
by equations (28) and (30) are very nearly the samo
as the values for a thin circular ring or a tube. In
view of this fact it appears justidablo for practical
use to assume that ~ for the I section is the same as
~for the thin-wall tube in bending. Dr. W. R. Osgood
of we National Bureau of Standards suggested that
the column curves constructed by the theory of this
report be made consistent with the curves now used
for tubes, which are determined from column tits,
by evaluating ~ according to the following procedure:

1. Assume a series of values for the slenderness
-b.ratio ~.
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same as when the axis of rotation is at infinity on the
principal axis parallel to the web. For these two
locations of the axis of rotation the value of ~ can
conservatively be assumed to be the same as that
given by equation (28) for the bending of a rectangular
cross section. This close agreement is shown in

figure 17 where values of E
~ are plottod against $.

When the sxis of rotation is at inhity on the prin-
cipal axis normal to the web of an I section, the value
of ~ will in all csses lie between that given by equations
(28) and (30), ss shown in figure 18. It will therefore
be conservative to assume that ~ is given by equation
(30) for W case.

When the axis of rotation is at the point where the
principal axis crosses the skin, the considerations of
the double-modulus action result in a lack of symmetry
for the I section. This lack of symmetzy may cause
the critical stress to be a minimum when the sxis of
rotation is slightly shifted in the plane of the skin.
Although a study of this condition has not been com-

2.By means of the accepted column curve for tubes
of the matefisl under consideration, determine the
critical stressjail.

G3. Substitute the assumed values of ; and the

corresponding values of forttin the following equntion
to obtain ~ and plot a curve ofj~t~ against ~:

(37)

4. Correct this value of Z for the cross-sectional
shape being used (figs. 17 to 19), if desired.

In the construction of a column curve for a particular
I section, the followiug procedure should be used:

1. Select the location of the axis of rotation for which
the column curve is to be drawn.

2. Assume a series of values ofjm{’.
3. From the curve of Z! against faf~ previously

derived, tabulate the values of ~ and @that correspond
to the assumed values off~i~.

4. Evaluate J, lP, and ~i3r.
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6. Substitute J, Iv, CBT,the assumed ValUtMof f~ft,
and the corresponding values of ~ and ~ in equation
(1) or (12) rmd solve for the length L.

6. The column curve is obtained by pIotting the
assumed values of~fli~against the computed lengths ~.

l-f the column is attached to a skin, the valuea of
J, 1,, and CB. calculated under 4 should be increased by
the amounts AJ, AI,, ~d ACBTIrespectively. These
values together with the maumed values of f.tt and the
corresponding values of 1? and@ are then substituted in
equation (26), which is solved for the length ~. A
curve is then drawn by plotting the assumed values of
j~i, against the computed values of ~. This curve
will be found to have a minimum point at some par-

ticular value of LO. Because h=~) where n is an in-

tegml value (n= 1, 2, 3, 4, etc.), the strength for my
particular length L is obtained by choosing such a value
of n as will cause the critical stress to be a minimum.
(See appendix A.)

CONCLUSIONS

The following conclusions apply when primary col-
umn failure is defined as any type of failure in which
the crom sections are translated, rotated, or both
translaiwdand rotated but not distorted.

1. When primary failure occurs in a pin-end col-
umn that is straight and centrally loaded, the general
equation for the critical stress is

~J C& ~~
f.rit=~ +~~

In the derivation of this equation it is assumed that
the cross sections rotate about an axis parallel to the
column. The factors IP and f% depend upon the loca-
tion of this ask, which is called the “axis of rotation.”

Tho first term ~ gives the critical strem for a pure

twisting fail~e a{out the axis of rotation. The second
~n UB, #E .M in the nature of a correction for the~r
effect of length caused by longitudinal bending stresses
when the end cross sections are held against rotation.
All possible combinations of translation and rotation
of the column cross section are obtained by letting the
location of the axis .of rotation vary horn zero to
intinity in every direction.

2. The theory for primary failure shows that, for a
free column with a crow section symmetrical about its
two principal axes, the axis of rotation will be at either
of the two following locations depending upon which
location gives the lower strew

(a) The center of twist, which is at the centroid of
the section.

(b) Intinity on the principal axis about which the
moment of inertia is the smaller,
Location (a) gives the condition for twisting failure;
location (b), the condition for bending failure.

3. For a pin-end free column of I seotion symmetrical
about its two principal axes the critical stress will be-a
minimum when the axis of rotation is at infinity on
the principal axis parallel to the web, provided that
the two following conditions are met:

When these conditions are not satisfied, the critical
stress should be computed for the axis of rotation
located at the centroid and compared with the critical
stress for bending about the axis of minimum moment
of inertia. The smaller of these two values will then
be the stress at which failure occurs.

4. When a column is attached to a skin, the great
stiflness of the skin in its own plane causes the axis of
rotation to lie in the plane of the skin. When the
column cross section is symmetrical about its two prin-
cipal axes, one of which is normal to the skin, the axis
of rotation will be at either of the two following loca-
tions depending upon which location gives the smaller
stres9:

(a) The point where the principal axis crosses the
akin.

(b) lh.iinity in the plane of the skin.
Location (a) gives the condition for twisting failure
when the column is attached to a skin; location (b),
the condition for bending normal to the skin.

5. When a column is attached to a skin and the axis
of rotation is at a point other than infinity in the plane
of the skin, the rotation of the cross sections about the
axis’ of rotation is rwistid by the bending stiifness of
the skin. The effect of this restraint is to increase the
CI’itiCfdStr@S3by all ~OUJlt

and the critical stress becomes

Ln this equation n= 1, 2, 3, 4, etc., the number of half
waves that develop in the stii?enerin the length L. A
trial calculation is necessary to determine which value
of n gives the lowest critical stress.. This critical stress
should then be compared with that for bending in a
plane normal to the skin and the lower of these two
dresses regarded as the stress at failure for the stiffener
and its effective width of skin.

6. When the column length is small, there will be a
departure of the critical stresses horn the theoretical
values given by this theory that is similar to the depar-
ture from the Euler values in standard column Curvmu
[t k_because of this fact that the effective moduli E
md @ have been substituted for E and ~, respectively,
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in’certain terms of the equations for the critical stress.
So long as th~ @~ is not stressed above the propor-
tional limit, E and @ are equal to E and G, respectively.
Above the proportional limit the substitutiori of E for E
follows from the double-moduhm theory of bending
where

~=E’GT1+ EC’BT2
BT

For the evaluation of @, the following-empirical expres-
sion is recommended:

7. TVhen the a+ of rotation of a synimetrical I
section column is at the center of twist (centroid) or at
infinity on one of the principal axes, the value of,~ is
very nearly the same as that for a thin-wall tube of the
same material in bending. When the axis of rotation
is at the point where the principal axis crosses the skin,
the considerations of the double-modulus action result

in’ a -lack of symmetry for the 1.section. This laok of
symmetry ‘may catie thecritical stressto be a minimum
when the am of rotation is slightiy shifted in the phum
of the skin. Although a study of this condition has not
been completed, it appears that the shift of the mis of
rotation in the plane of the skin is small for columns of
practical dimensions and that the values of ~ are also
near those for a thhn-wall tube in bending.

8. The value of E varies with the critical stress nncl
should be computed horn the accepted” column curve
for the material by use of the following equation:

()
Ihj

z=j.i,~ ~

If desired, this value of ~ may be corrected for cliffercmt
crow-sectional shapes.

LANGLEY ME~ORIAL AERONAUTICAL LABORATOILY,

NATIONAL ADVISORY COMTTEE FOR AERONAUTICS,

lhNGLEY FIELD, VA.,August 17, 19$6.



APPENDIX A

ILLUSTRATIVE PROBLEM

Problem: To construct the column curve for an I
section column of 24S-T aluminum-alloy material
(E=1o,637,OOO pounds per square inch), with the di-
mensions shown in figure 20, used as a sti.f?ieneron skin

b . Loo”
~

Defail A. t
fb* 0.050” *th -0.050”

T

,Cenfrotd of
Cenfro;d of column.., sfiffener

(Stiffener and ‘., “~’-—
effec five skin) h =l.lw-

---j-~=;
t.= 0.D2F lb =0.050” ,1

I_ —+.J1
IT 1: i I

—d- 4“–
r ---T—’”4---!

See de faiIA -

FWJRE2Q.-A skin-stlfbner mmbbmtlon.

0.025 inch thick. It iE sssumed that the stiileners are
spaced at 4-inch intervals along the skin and that all
stiffeners are equally loaded in compression.

Effective moduli ~ and ~ for 24S-T aluminum alloy,—
It is assumed that the pin-end column strength of 24’%T.
tubes is given by the straight-line equation

+’fmit=WOOO-52v ~ (38)

for values of the slenderness ratio ~ between 9.5 and
P

73. Below ~=9.5 it is asstied that the critical strws

Gis 63,OOOpounds per square inch. Above 7=73 the

stress is assumed to be given by the Euler formula

SP
(39)

The calculations for the effective moduli ~ and ~ are
made as follows, the resultsof which are given in table I:

h1. Assume a seriw of values of ~

2. Cornpute~,,i~ from

~ -f~,,=58,000-527$ for 9.5<$<73

f=i,=$

()

for $>73

T

3. Using the computed values of f~i,, compute ~,
from

(37)

4’.Compute Tfrom
—

T= g E=1O,537,OOO

5.Compute Z from

PI~= ~ ~,@=0.385E=4r057,000

Effeotive width of skin that acts with the columm—
It is sss~ed that the column is attached to the skin
with two hnes of rivets one-half inch apart. The width
of the skin between the rivet lines is therefore 20t,.
The effective width outeiidethe rivet lines is assumed to
be given by the von KLrmfin equation for the effective
width with the coefficient of 1.70, established in ref-
erence 1,

2~,=1.70i,
r f:t

(40)

Professor Joseph S. Newell and Mr. Walter H: Gale in
an unpublished report of aircraft materials research
at the Massachusetts Institute of Technoloaq for 1931-
32 recommend the value of 1.73 for the coefficient in
the von Klrmfin equation.

As the width 20t, between the i%o rivet lines is less
than the smallest value of 2b, given by equation (40)
whenjfli~= 53,OOOpounds per square inch,. all the ma-
terial between the two rivet lines must be considered
as effective and the total eflective width of skin that
acta with the column and carries the same strew as “tie
cdlmn k

~=0.5+2b, (41)
159
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The effective width of skin is calculated as follows,
the results of which are given in table II:

1. Assume a series of values of f=t~. (For con-
venience, use the same values ss given in table I.)

2. Compute 26, by equation (4o).
3. Compute Uby equation (41).

his of rotation at infinity in the plane of the skin
for bending failure.-li the report proper it hss been
shown that, when an I section column is attached to a
skin, the axis of rotation will be either at iuflnity in the
pkme of the skin or at the point where the principal
axis creases the skin. The column curve must there-
fore be drawn for each location to determine which
location giveE the lower critical stress.

When the axis of rotation is at infinity in the plane
of the skin, the critical stress is given by the Euler
formula, equation (2) or (39), with ~ substituted for iZ.

For this case $ equation (2), is calculated about a cen-

troidal axis parallel to the skin considering the effective
area of the skin Z7t,as a part of the column crow section.
The calculations for the construction of the column
curve are mrtdeas follows, the results of which are given
in table III:

1. kmme a seriw of value9 of f.i~. (For conven-
ience use the same values as in table I.)

2. Compute area of effective skin, Ut,. (For U see
tible II.) t,= O.025.

3. Compute total mea of column cross section, from
A= A,,u,+Au

where A,ti~~=area of stiffener= 0.15sq. in.
AU=area of etlective skin=O.025U

4. Compuk the centroid of the column cross section
(including the effective skin) and tabulah the distance
Q, horn the center line of the skin to the centroid,

5. Conlputa the moment of inertia, of the complete
column cross section (area A-), about the centroidal axis
pdel to the skin

=0.004167+0.025+0.15(0.5375—~J2+ Ut@f

6.From table I obtain the values of ~ that cor-
respond to the assumed values of~=i~.

7. Compute the lengths G that corrwpond to the
assumed critical stresses by use of the Euler formula
where ~ has replaced E,

r
1~

~=z Ajmi,
——

In figure 21 the assumed values of jai, are plotted
against the computed vahms of L. For a cohunn with
pin ends, L=Z. Hence figure 21 is the column curve

for the axis of rotdion at infinity in the plane of the
skin (bending failure). This direct calculation for ob-
taining the column curve when failure occurs by bencl-
ing normal to the skin is preferable to the trial and error
procedure recommended in reference 1.

kis of rotation at the intersection of the oenter
lines of the web and skin-twisting failnre,-Tho
calculation for the construction of the column curve
when the axis of rotation ia at the intersection of

55000

50,000

6,0CW

40,000

~ 35,000
-.

$3Q 000
+

$’25,000

g
m 2~oo(7

Igooo

D@oO

WOo

05 /0 15 20 25 30 35

\ .
\

40 45
L engfh, ties

FKWME 21.—TJM ahunn curve for bending faUure of the skin-stMoner comblnotlon
shown fn@uro~. The fuJ30frototIon f3atinJlnftyinthe @3rwoftho3klnt

the center lines of the web and skin are similar to those
for the d of rotation at infinity in the plane of the
sldn. The calculations are made as follows; the results
are given in table IV.

1. bbe a series of values for jflt~, @’or conven-
ience use the same values as in table I.)
2. timpute

3. Compute

AJ from

AJ=: ZJt: (21)

J from

J= J,,U,+AJ
(13)

where J,luy$htb3 +$ btt.3

4. Compute AIPfrom

Al,=; v’%, (22)

5.Compute I, from
~P=&,,+A~7

where

I
P1 Ifff‘~h”t.+;h’btb+; b3ib+[ht~+2bt~l [F+~’l (14)

(In the evaluation of equation (14), note thftt
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(3. Compute AUBT horn

A~BT=AcT=& ~tz (24)

7. Compute C~~from (In the evaluation of equation (6), not.a that P=O

C. T= OBT,tfff-I-A6’BT and Q=o.6376.)
where

cBT,,,~/= CB+ CT (6)
8. From table I obtain the values of ~ and ~ that

correspond to the assumed values of fmt~.

“B=+b3h2’b+P+wp+%@“‘8) 9. Solveequation(261 forL.

‘~:-’aft1’-4~+7[6(15:~:1~I~
2KJZt,3 ,

(42)

6(1–~~(WIp
Evalu@e equation’ (42) using VdUSSof J, Ip, CBT,

~ and E that correspond to the assumed values of
ftiit; ~d

/l=o,3

.E= 10,637,ooo lb. per sq. in.
d=4 in.
t,=o.025 in.

K,=2

In figure 22 the wsumed values of f~i, me pl.tted

against the computed values of ~. From this figure
the column curve for twisting failure is derived in the

following manner. Put ~ equal to ~ and then plot

GWVSSof j.,f~ ~tit L for n=I, 2, 3, 4, e~. The
column curve is then given by the lowest portions of
the several curves and is shown by full lines in figure 23.

Oolumn ourve for primary failure.-It haa been pre-
viously shown that primary failure will occur either by
bending or by twisting, depending upon which type of
failure gives the lower critical stress. The column

05 1015202530354045 50
LO,inches

CI.UTW of figmes 21 md 23 me therefore combmed ~ FIGu’EE~.—mttiX P10tt13d
shown in figure 24 to obtain the column curve for ~b~bti~m~-n. w~~m~~~”f~~-r tatfon f9 at tba fntemeatfon of tbe

mntarlinea oftbaweb andtlmskin.

Length, imhes

FKIWBE 23.-Tim wlumn ourva for twfstfng faauro of me skfn.awfrener mmblnatfon shown fn flgum 23. The axis of rotation is at the fntarsmtfon of the web and W akfn.
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primary failure. It will be noted that, at lengths less
than 27.4 inches, failure occurs by twisting; whereas, at
lengths greater than 27.4 inches, failure occurs by
bending.

Discussion.-In the computed tables for thiE illus-
trative problem it will be noted that some of the factors
are small and might have been neglected. All of the
factors, however, have been included to show their
relative numerical values and the method of evaluation.
The designer may therefore shorten the calculations
here outlined by neglecting the unimportant factors, if
desired.

S,000

50,01w

450m

4,000

-$=’om
$$34000

$25,000
$
b z~ooo

Iqooo

IQOOO

5000

0 5 10 1520253035~45
Length, inches

Fta~ W-TM mlunm mtrre for p
sho#&Kg%?:f ~~-mmbh~~~

b the foregoing calculations for twisting failure
it was assumed thnt Kl= 2 regardless of the value of
L~. This value of El was selected because of the

possible uncertainty in establishing a more definite
value, as discussed in this report. If it had been
desired to use the values of K1 given by the curve of
figure 15 rather than the asymptotic value KI=2,
the calculation of ~ would of necessity have been by

triaI and error because KI varies with $$’.

When a skin-stiener combination is loaded in com-
pression, buckling will first occur in the skin provided

that the stiffener spacing divided by the skin thickness

~ i9 snfliciently large. Because the skin is attached

~ the stiffenem, the buckling of the skin will twist the
stiffeners and form small waves in them, the lengths of
which are the same as those in the skin. In this con-
dition the stiffeners are not ready to buckle of them-
selves but are forced to buckle by the skin. The stiff-
eners’ therefore resist buckling of the skin.

~ow, if the load on the skin-stiffener comb~ation is
increased, the waves in the skin and the corresponding
waves in the stiffeners grow larger. Finally a load is
reached at which the stiffeners buckle of thenumlves.
The type of buckling that occurs in the stiffeners will
be that associated with the low-cd critical stress. On
the assumption that local buckling does not occur, the
stiffeners will either buckle by deflection perpendicular
to the skin in the manner of an ordinary column or
will twist about an axis in the plane of the skin. If
twisting occurs, the skin will resist twisting of the stiff-
eners. The column curves derived by the methods of
this report give the critical stress at which the stiffeners
begin to buckle (bend or twist) of themselves. Bemuse
the stiffeners are the main strength element in a
skin-stiffener combmation, it seems quite proper that
the strength of the combination should be based on
the strength of the stiflenera.

When we stiffeners fail by twisting, jt is quite possi-
ble that tests will show the ultimate load for a akin-
stiffener panel in compression to be greater than the
critical load at which twisting begins. The reason for
this belief is that when the stiffener twists, the material
adjacent to the axis of rotation is not laterally dis-
placed and is therefore capable of further compression.
The ainount by which the ultimate load will exceed
the critical load at which buckling begins is dependent
upon a number of factors the consideration of which is
beyond the scope of this report.

Until the results of extensive tests made especially
to check the theoretical behavior of skin-stiffener
combinations in compression become available, the
designer should cmsematively assume that failure
occurs when the buckling load is reached. The methods
outlined in this report and illustrated in this appendix
may therefore be used to derive column curves for
different ikin-stiffener combinations. By comparison
of the strength-weight ratios the most efficient combi-
nation of akin and stiffeners can be selected.



APPENDIX B

APPLICATION OF THE THEORY FOR PRIMARY FAILURE TO A

COLUMN OF CLOSRD SECYION

Equation (l), which has heretofore been applied to
columns of open section, can also be applied to columns
of closed section provided that all the factors appear-
ing on the right-hand side of the equality sign can be
evaluated. It will be shown how thwe factors can
bo evrduated for a thin-wall column of closed rectangu-
lar section, symmetrical about its two principal axes.
(See fig. 25.)

Fl13uEE25.-A thfn-wall rectan@ar tnh

Evaluation of GJ/IP.—Except for J and C.. all of
the factors that enter into equation (1) are readily
evaluated by standard methods. For the closed section

J+
— (43)

Jt

where A is the area enclosed by the center lines of
tho wall of the rectangular tube.

o%,differential element of the perimeter.
t, wall thiclme9s of d.

For a square tube of constant thicknws equation
(43) becomes

J=b%

Because the square tube is symmetrical about its two
principal axes, the critical stress will be a minimum
when the axis of rotation for the free c.dumn is either
at the c.entroid (center of twist P=O, Q= O) or at
infinity on one of the principal axes. The critical
stress when the axis of rotation is at the centroid will
be greater than that given by the first term of equation
(1) or

GJ 0.385Eb’t 3
tiW,Jzz:>z=T-=x(0.3g5~

#’t

or, if E= 107pounds per square inch,

(fcri,)pGo>W%OOO pounds per square inch
Q-O

As this value of the critical stress is much greater
than the yield-point stress for any engineering material
with E= 107 pounds per square inch, it may be con-
cluded that the large torsional rigidity of a closed
section precludes any type of primary failure ;xcept
bending failure; i. e., axis of rotation at infinity on
one of the principal axes.

E-valuationof C~~.—In order to show that (?”= can
be evaluated for a closed section, the expressionsfor the
longitudinal displacement at the center lines of the wall
of the tube will be derived. In view of the conclusion
in the preceding paragraph, the value of this work will
be more in the possibilities offered in the calculation of
the stressesin monocoque shells, such as airplane ~gs,
fuselages, floats, and hulls than in the solution of the
column problem.

First, the longitudinal displacements caused by the
twisting of the section about its centroid will be deter-
mined (P=O, Q=O in fig. 25). If the tube is assumed
to be slit longitudinally on the z axis at A—A’, the
closed section becomes an open section. Now im~e
a portion of length dx to be twisted an amount dq about
the centroid (canter of twist for the closed section).
The longitudinal displacements of the points on the end
cross section caused by such twisting can then be deter-
mined in the same manner as for an open motion.
These displacements with respect to the original plane
of the end cross section are, at a distance s measured
from

B toward A, –
t

~+;l

C towardB, -0 ~+~[1
11bs

D toward C, – ~

HD toward C’, $

C’ toward B’, 6[1~+:
B’ toward A’,

t
3hb bs-
~+~-

The longitudinal displacement of A (just
slit) is

–e[M]

(ID-6)

above the

168
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and of A’ (just below the slit) is
e[hb]

The longitudinal displacement of A’ with respect to A
is therefore

e[2hb]

In order to transform the open section, slit at A–A’,
into a closed section, equal and opposite shearing forces
F are introduced in the slit to draw A and A’ together-
The magnitude of these shearing forces is determined
by equating the integral of the shear strain in the
section between A and A’ to the longitudinal displam
ment of A’ with respect to A when the section is slit

. J:i$%=’[’~l
which becomes for the section shown in figure 25

from which

B toward A, –e

C toward B, –0

D toward C, –d

D toward C’, t

C’ toward B’, [

B’ toward A’, f

(44)

The longitudinal displacement with respect to the
original plane of the end cross section caused by tho
shearing force F in the slit is at a distance s measured

(LD-7)

Adding of these longitudinal displacements to those of
(LD-6) and substituting the value of F/de from

1’equation (44) gives at a distance s measured from

-1

L

The longitudinal displacements of (LD-8) apply to
the closed section of figure 25 when the portion of
length uh is twisted an amount dp about the centroid.

If the asis of rotation is now shifted from the centroid

to the location defined by P and Q, in figure 25, certain

terms must be added to (LD-8) that are analogous to

the longitmlinal displacements of (LD-2) and ~-3)

for the I section. These longitudinal displacements
caused by translation are, at a distance s measured

from

I(LD-8)

B‘Wind‘4%-8)-:1
[ 2 (:-s)lC toward B, o P~+Q

D ‘W=d c@8+Qa
‘tiwmdc’Jo[-ps+QH‘D-’)
“bw:dB’4-p:+Q($-’)l
“tiwwdA’7‘[-P(H-Q:I,
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.

Addition of the longitudinal displacements given by equations (LD-S) and (LD-9) give at a distance s
measured from

c

D

toward

toward

B,

c,

1Q(:-,)

D toward C’, ,[~-~(;)-ps+$]

C’ toward B’,
[

,+J H+Q(H]~ ~–‘b~+~o4+2~zth ‘b

J

~(LD-1O)

L G~&

Because the rectangular tube of figure 25 is symmeh
rical about its two principal axes the reference plane
coincides with the original plane of the end cross section.
(See derivation of Cjg, for the I section.) Hence,
(IJD-1O) gives the longitudinal displacements with

respect to the referenoe plane. These longitudinal
displacements when substituted for u in equation (7)
with 6=1 give the major part of CBT. The minor p@
of Cm is calculated in the same manner as for an open
section.

.

.
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APPENDIX C

DERIVATION OF THE THEORETICAL VALUE OF THE EFFECITVE

MODULUS E

If C’BT1 k the value obtained from equation (4) when
the i.ntqggationis made over the part of tbe cross eec-
tion that suffers an increase of stress at the instant of
failure of the column, and E’ is the modulus of elasticity
for increasing stress, the work done by the increase ti
compressive stresses is (see equation (3) of reference 2)

;E’C,rl J,=(q”)’&
If C!~=zis the value obtained from equation (4) when
the integration is made over- the part of the cross sec-
tion that suffers a decrease of stress at the instant of
failure of the column, and Ek the modulus of elasticity
for decreas~~ stress, the work done by the decrease in
compressive stressesis

;ECBr2
s

,L(Q”)’&C

The total work done by the longitudinal
stressesis therefore

,

~(E’C’i+T1+-ECmJJ,L(pwc
bending

(n)

IVhen the modulus of elasticity is the same for in-
creas~~ stress as for decreasing stress, as it is in the
elastic ra~~e, the total work done by the longitudinal
bending stressesis

~EC~TJ,L(Q”)2dC (b)

If a modulus ~is substituted for E in this expression,
the total work given by expression (b) can be made to
have any desired value depending upon the value as-
signed to ~. If Z is allowed to have only such values
as will cause the total work given by (b) to equal that
given by (a), it is found that

E’CBT1 + ECBT2vh=
BT

This value of ~ is called the “effective” modulus when
the column is loaded above the proportional limit.

The total work done by the longitudinal bending
stressw when the column is loaded above the propor-
tional limit is therefore given by the expression

@Br J,L(p”)’dx
Thus when the column is loaded above the proportional
limit, ~ should be substituted for E in Wagner’s

166

equation for the critical stress, i. e., equation (1) of this
report.
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EFFECTIVE MODULI ~ AND ~ FOR 24ST ALUMINUMIT .-..
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TABLE II TABLE III
WIDTH O:~L~u&:HAT ACTS WITH THE

CRITICAL STRESS FOR BENDING FAILuRE

h
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.4519
. 4Wa
. 4x12
.4492
. 447!3
. 44e&l
.4467

:%
.441
.429$
.43s4
,4376
.4361
. 432a
.4307
.4291
.4232
.4215
. 41i7
.4143
.4107

TABLE IV.-CRITICAL STRESS ‘OR TWISTING FAILURE
—

fdf

b./sq.h.

6Jg

49: Mul
47, @xl

Wl
4L m
39, CDm
37, m

x%
3L m
29. CuLl
n, 000
m.okl

2E

J

1*.4

‘C6. r
~.a

:Oo&

. ma

.mm

:%%

:%%’.Im4m

%%’
.m453
.00460
. mm
. G+3w3
. cum
.004m

z
lb.&h

E

lb./sq. III. in. in.

22

2;
.5.0
5.9

?.:
a9

10.0
1L2
125
13.9
I&6
17.7
19.2
228
vI


