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A THEORETICAL STUDY OF LATERAL STABILITY WITH AN AUTOMATIC PILOT

By FREDERICK H. IMLAY

SUMMARY

The injbuence of automatic operation of the aileron and
rwdder controls on the lateral stability of an airplane is
discussed. The control de.ilections are assumed to be
proportional to the deviations and to the rates of deviation
oj the airplane from steao?y-$ight conditions. The e$ects
oj changes in the types of deviation governing control ap-
plication are considered.

For one simple method oj control in which the aileron
de$ection is proportional to the angle oj bank and the
rudder de$ection is proportional to the angle of yaw, the
e~ect oj lag in control application is studied and regions
oj stability with and without lag are given. For the simple
control writlLlag, curves are included that “show the vari-
ations in {he roots of the stability equation with changes in
the amount of control applied.

It is concluded that, although the simple control pro-
vides a satisfactory means of varying most oj the lateral-
stability characteristics, the stability in azimuth will a~
ways be poor for such a control. Modification oj the
simple control by de$ecting the ailerons in proportion to
the angle oj yaw appears to ofier a promising method of
improving the azimuth stability.

INTRODUCTION

The automatic control of aircraft has long been of
interest and, as a result, considerable literature exists
on the subject. Much of the published work, however,
is cofined to descriptions of devices proposed or em-
ployed to overcome the mechanical problems en-
countered in various specific types of automatic pilot.
Theoretical treatments of the application of automatic
control to aircraft have mainly consisted of general
discussions of the differential equations of motion for
the controlled airplane. Relatively few writers have
presented data to show the influence of definite types of
automatic control on the characteristics of speciilc air-
planes. Such an investigation for longitudinal motion
was made at New York University and the resnlts are
presented in reference 1. =

In the present study, the influence of various methods
of automatic control on the lateral stability of an air-
plane has been analytically determined. For the pur-
poses of the investigation, a hypothetical airplane of

werage physical form was considered. The Theoretical
treatment employed is based primarily on well-known
methods and assumptions used in studies of lateral
stability. An outline of the general method of theo-
retical treatment used is given in the appendix to-
gether with definitions of the symbols involved.

AIRPLANE USED AS BASIS OF CALCULATIONS

Physical characteristics.-The airplane chosen as a
basis of computations is the hypothetical average air-
plane discussed in reference 2. The characteristics,
including the control characteristics, are similar to
those of the Fairchild 22. As the properties assigned
to the airplane are based on the average for many con-
ventional airplanes, it should be possible to apply the
general conclusions reached to all conventional designs.

The forces and the moments acting on a given air-
plane as a result of known linear and angular velocities
of the airplane relative to the air can be determined
from the nondimensional stability derivatives of the
airplane, which are fixed by its physical form. For
the study of automatic control, it has been found con-
venient to make use of similar nondimensional control
derivatives, expressing the forces and the moments
acting on the airplane as a resuIt of control deflections.
Values of the stability and the control derivatives for
the average airplane are given in tables I and II for
various flight conditions; these values are usefnl in
comparing the characteristics of the airplane treated
in this investigation with those of other airplane de-
signs. The value 0.35 for the lift coefficient CL is
assumed to represent the condition of cruising flight;
1.0,the gliding condition; and 1.8,low-speed flight
with flaps down. Table II also contains values of the
velocity V along the flight path and values of the time-
convereion factor r(=m/pSV).

TABLE I

STABILITY DERIVATIVES FOR THE AVERAGE
AIRPLANE
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TABLE II

CONTROL DERIVATIVES AND VALUES OF V AND .
FOR THE AVERAGE AIRPLANE
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. — — — —
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–. 0347 2.09 .475

1:8
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J.n addition to the data contained in tables I and IL
the following physical characteristics were assumed
for the average airplane:
Wing span, b.--------------------------._-____feet-- 32.0
Whg area, S----------------------------square feet-. 171
Wing loading, WJS-_---___-poundsds per square foot__ 9.36
Ratio of wing span to radius of gyration about X, b/kx-- 6.47
Ratio of wing span to radius of gyration about Z, bjkz-- 5.47
Relativ~density factor, p(=m/PSb) ------------------- 3.82

Inherent-stability characteristics.-In studies of sta-
bility, only the inherent stability of an airplane is
usually determined, that is, the stability with the con-
trol surfaces iixed in their neutral positions. When
the question of automatic control is considered, the
matter of inherent stability is still of interest inas-
much as the character of the motion with the controls
fixed forms a useful basis for comparing the effective-
ness of various control methods.

As is indicated in the appendix, the lateral-stability
characteristics can be determined from the roots of a
stability equation of the form

aX5+bX4+ck3+dk2 +ek+j=0 (1)

When the control surfaces are iixed, the coeflkients
a to t are functions only of the stability derivatives,
the lift coefficient, and the density factor p. (See
equation (12) of the appendix.) The inherent-
Stalility roots for the average airplane with controls
fixed are given in table III.

TABLE III
INHERENT-STABILITY ROOTS FOR THE AVERAGE

AIRPLANE

E- ‘-~’~~~~ -o; +

The pair of conjugate complex roots A,.* in table III
represents an oscillatory component of the motion
usually called the lateral, or Dutch roll, oscillation.
The airplane used in the calculations has characteristics
generally considered satisfactory for this mode. The
real root A3shows the damping of rolling motion. The
pilot is ordinarily unaware of this rolling component of
the motion following a disturbance of the airplane be-
cause the mode is so highly damped. The root h4indi-
cates the degree of spiral stability present. At cruising
speeds the average airplane has ahnost neutral spiral
stability; and, at lower speeds, it becomes definitely

unstable spirally. For most airplanes, stability of this
mode is either very poor or lacking. The root & defines
the stability in azimuth, that is, the tendency to follow
a given compass course. The uncontrolled airplane
always has neutral stability in this mode, as indicated
by the zero value for the root X5.

STABILITY WITH CONTROL

When automatic control is introduced, the A1.zlateral
oscillation is retained but the spiral-stability root h4
may be real or combined with X3 or with h6 to form
either of two distinct types of oscillation, depending on
the control assumptions. For control conditions such
that the X,.4 or the 14.boscillation is present, it should
be noted that the oscillation will exist in addition to
the x,.2 oscillation. For some flight conditions, the
XI.2oscillation and the added A~.4or X4.6oscillation may
have very similar characteristics as regards period and
damping, so that distinguishing between them in flight
becomes difficuk.

The criterion used in judging the desirability of any
of the methods of automatic control subsequently dis-
cussed was the extent to which it improved the stability
characteristics of the average airplane. The factors
governing control deflection in the types of control
considered axe given in table IV. --

TABLE IV

DESCRIPTION OF AUTOMATIC CONTROLS

Type of control

Displacement and
rate-of-displace-
ment.

Cross+eoupIed----

SirnpIe _______

Aileron detlectlon propor-
tional ta-

Dis lacement in bank; dia-
?p aeement in azimut~

~ideslipp~g velocit~ roll-
mq veloc]ty; yawing ve-
Ioclty.

Dis Iaeement in bank: dia-
/’P aeement in azimuth.

Displacement in bank.. -...,

Rudder deflection propor.
tiorml to-

Dis laccment In honk; dis-
/’p acement in azimuth;

sidesli ping veloclty; roU-
fing vc ocitfi ymvlng ve-

‘j%%%’WJ%W!y

Attention was chiefly confined to the simple control
for which the effect on the stability characteristics was
determined of varying the amount of control deflection
resulting from a unit change in the quantity governing
deflection. The effect of lag in control application was
itlso investigated.

Questions of mechanical di.fiiculty in obtaining the ‘
various methods of control have been given but little
consideration. Only systems dependent for their
operation on displacements or rates of displacement
have been treated because past experience with auto-
matic control has demonstrated that such displace-
ments and rates of displacement can be detected with
relatively simple mechanisms. (See reference 3.)
Although the control @elections might also be made to
depend on the accelerations in roll, yaw, and sideslip,
no such methods of control were considered in the
present study because preliminary investigation in-
dicated that they would be of little assistance in improv-
ing the character of the motion of the airplane.
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Displacement and rate-of-displacement controL-
The most general type of control treated in the present
investigation is the type for which both the aileron and
the rudder deflections me varied for any deviation in
the angle of bank or in the angle of yaw or for any
change in the velocities in rolling, yawing, or side-
slipping. (See table IV.) From a study oi the
characteristics of this type of control, it was found that
the total damping of the motion of an airplane, indicated
by the sum of the damping coefficients, can be increased
over that provided by the inherent stability of the
airplane only if the aileron deflection is a function of
the rolling or the yawing velocities or if the rudder
deflection is a function of the yawing or the sideslipping
velocities. No detailed characteristics of this type of
control were determined because the extensive calcula-
tions involved were considered to be unjustified owing
to the impracticability of such a complicated control.

Cross-coupled control,-study of the preceding type
of control indicated that, by means of suitable control
operation, the total damping of the motion can be
increased over that available as a consequence of the
inherent stability of an airplane. Because of the very
large inherent damping in roll, however, it appeared
desirable to investigate the possibility of using a rela-
tively simple type of control that would distribute the
inherent damping of the airplane more uniformly among
all the components of motion.

The assumption that both the aileron and the rudder
deflections were functions of both the angle of bank and
the angle of yaw made it possible to solve the stability
equation for the special case of equal real root,s, thus
assuring that the motions after a disturbance of the
airplane would contain no oscillatory components and
that all modes would be equally damped. This method
of control is called the cross-coupled control. (See
table IV.) Coupling to provide deflections of the same
control surface for two difl’erent types of deviation of the
airplane can be easily accomplished, as demonstrated by
the Smith automatic control (reference 4) for which
deflection of the rudder occurs for deviations in either
the angle of yaw or the angle of bank.

The five equal roots of the stability equation had the
value h= — 1.06 when the numerical data for the average
airphme at CL= 0.35 were used; and the control gearings,
which express the amount of control deflection applied
for a unit deviation of the airplane in bank or yaw, had
the values:

=-0.731. a4

g;=–o.954

as,
%=–0”356

~’—l.ll6at– I
The control gearings that enabled the cross-coupled

control to provide equal damping of all modes of the

motion at CL= 0.35caused instability when used at
higher lift coefficients. It is felt that, as a minimum
requirement, any fully satisfactory method of auto-
matic contol should result in stable motion of the air-
plane at all flying speeds; further study of the cross-
coupled control as a means of obtaining uniform distri-
bution of damping was therefore abandoned and
attention was directed to more simplified forms of
control.

Simple coqtroL-In a method of control that has
been successfully used for the Sperry automatic pilot,
the aileron deflection & is proportional to the angle of
bank and the rudder deflection &is proportional to the
angle of yaw. For such a control, which is called the
simple control (see table IV), the ‘reduced number of
variables involved made feasible more extensive
calculations than were made for the two previously dis-
cussed methods of control. The range of the control
gearings ha.lh~ and M,ja+ that would provide stability
for all flight speeds was determined; and, subsequently,
the stability characteristics were studied as the control
gearings were varied within the stable range, instead of
solving for values of the control gearings that would give
certain preassigned stability characteristics to the air-
plane. It was impossible to solve for the case of equal
roots because the conditions for equal roots lead to a
greater number of equations than there are variables.

From reference 5, it can be shown that the conditions
which must be met if the motion is to be stable are: a,
b, d, and f shall be positive, and

(be–afl>O

(be–ad) (de–cm – (be–af12>0 I
(3)

where the quantities a to f are the coefficients of the
stability equation (equation (l)). The coefficients of
equation (1) are functions of the stability derivatives,
the control derivatives, the lift coe5cient, the density
factor, and the control ge@ngs. The form of the
coefficients can be obtained from equations (16)of the
appendix by assuming M=/h$ and Zk5,JZk$in the equa-
tions to be zero. Thus, upon substitution of the
numerical data for the average airplane, the coefficierits,
and hence the expressions of equation (3), can be
converted to functions of the control gearings h6a/hd
and &$Jh#.

The vanishing of either of the expressions of equation
(3) or of any of the coefficients a., b, d, or f of equation
(1) indicates that some mode of the motion of the air-
plane will become neutrally stable. If the various ex-
pressions are set equal to zero and are solved for pairs
of values of h&/h@ and i36Jh#, boundaries for neutral
stability can be defined. (See fig. 1.) Throughout
the flight range, the axis i3&/?)4=0 (from the condition
~=0) and the line representing

(Zw–ad) (de–cfi – @e-aj)2=0

were found to be the only conditions influencing the
region of stability; the other expressions define lines
that lie outside the region thus bounded. Because
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the boundaries of the stable region include most of the
quadrant formed by the negative control-gearing axes,
it appears that almost any negative values for the con-
trol gearings will lead to stable motion of the airplane.
As is indicated in figure 1, the stable region is slightly
more restricted at low speeds because the position of the
second boundary varies with lift coeilicient.

If pairs of values of the control gearings MJh4 and
?h3,Jh#, represented by points lying within the stable
region for CL= 1.8,are chosen, the motion of the air-
plane will be stable throughout the flight range. It is
diflicult, however, to judge the degree of stability at
any given point within the region, especisdly as the re-
gion is unbounded on two sides. In order to furnish

zW-k7. =“0.35I ‘Sfab/e reaion I I I I I

o -.2 -6
z

‘iferon gearing’ w
FIGURE I.—Region of stabflity for simple control operating without Isg.

more detailed information on the character of the mo-
tion, the roots of the stability equation were determined
at selected points in the region.

For typical installations of the simple type of auto-
matic control, the control gearings will probably have
values of the order of —1.0.Representative cross sec-
tions of the trends in stability characteristics were
therefore obtained by studying the changes in the roots
when the rudder gearing was held constant at — 1.0
and the aileron gearing was varied from zero to pro-
gressively more negative values and, next, when the
aileron gearing was tied at — 1.0 and the rudder gear-
ing was made increasingly negative. From this study
of the stability roots, the boundary of the stable region
representing the condition

(Z4c-ad) (de-cfl– (be–af12=0

was found to be the locus of the values of the control
gearings for which the k oscillation is neutrally stable.
The axis &$,/h$=O defines conditions for which the &
mode, that is, the motion in azimuth, will be neutrally
stable. The study also indicated that, for the simple
control, the aileron gearing is essential for stability
only if the airplane is inherently spirally unstable.

The rudder gearing is required for stability because of
the neutral stability in azimuth for the uncontrolled
airplane.

For cruising con&tions (OL=O.35), most of the im-
portant changes in the character of the motion were
found to occur as the control gearings vary between
zero and — 1.0. As the trends in the stability roots,
with the exception of the damping of the x1.2and the
xS.4oscillations, are much the same as those discussed
later for the simple control with lag, further discussion
of the roots will be deferred until the next section of the
paper.

Simple control with lag.—The operation of any actual
automatic control involves lag of various sorts due to
inertia of its component parts, lost motion, etc. With
a human pilot, lag in control is also introduced because
of the pilot’s inability to respond instantly to stimulus.
The leg characteristics in any given case will be de-
pendent upon the nature of the phenomenon causing the
lag. For example, the lag produced by the dead region
(the region that must necessarily exist near the neutral
position for the components of the automatic pilot in
order that control will not be applied when the airplane
is on course) will delay application of the control until
the deviation of the aircraft has reached a certain value,
regardless of the rate of deviation. On the other hand,
lag due to inertia is independent of the amount of
deviation.

The mathematical methods employed in treating the
various types of lag lead, in many cases, to very labor-
ious calculations. The type of lag, however, for which
the control deflection at a given instant is assumed to
be always proportional to the deviation existing a fixed
time e previous to the given instant can be readily
treated if the time lag c is of the order of 0~1 second or
less. The use of such a type of fixed time lag furnishes
a satisfactory approximation of the effect of other types
of lag, such as that caused by inertia, if the lag is small
compared with the short-period oscillations of the
airplane. “

For sinusoidal motions of the airplane, operation of
the controls with a fixed time lag is equivalent to out-of-
phase application of the controls. As the period of
such motions becomes shorter, a small time lag becomes
of increasing importance as a cause of instability be-
cause the control tends to aid rather than to resist the
deviations of the airplane.

The coefficients of equation (1) for the case of lag
were obtained as functions of the control gearings
h&/&$ and &3Jhx in the same manner as for the simple
control without kg. In order to simplify the calcula-
tions, it was assumed that the lag was the same for both
the aileron and the rudder controls and had a value of
9.1 second. This value of the time lag was chosen as
being undoubtedly the minimum amount that will be
present with manual operation of the controls and as
probably approximating the lag of usual installations
for automatic control.
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More precise treatment of lag is contingent upon more
detailed knowledge of the response characteristics of
types of automatic pilots now available if the lag
assumptions made are to be representative of actual
operating conditions. Inasmuch as little information
appears to be available concerning the response char-
acteristics of even the most widely used types of auto-
matic pilots, the determination of the behavior of typi-
cal installations is recommended as part of the future
study of automatic control.

I?or the simple control with lag, the total damping
of the motion depends on the magnitude of the control
gearings and the amount of lag, in contrast to the case of
the simple control without lag where no change in the
total damping of the airplane is involved. The siams
and the magnitudes of the terms involved are such that
any lag will always reduce the total damping present.
(See equation (23) of the appendix.)

The criterions for stabiMy are the same as for the
simple control without lag. By means of these criterions,
the boundaries for neutral stability were obtained as
indicated in figure 2 by a method analogous to that
usecl for the simple control with no lag.

Comparison of the stable region shown in figure 2
with the stable region for the same control without lag
(see fig. 1) shows that the introduction of lag limits the
range of negative values of the control gearings for
which the motion will be stable. The two boundaries
present for the case of no lag also appear for the case
with lag; two additional boundaries, however, appear
when lag is involved, resulting in a completely closed
stable region. Except for a portion of the boundary
representing the condition

(be–ad) (de–cfl– (6e–fz_j)2=0 “

the stable region is a minimum for I@h-speed flight
conditions. In order to define the region for which the
motion will be stable throughout the range of lift
coefficients investigated, part of the boundary for the
condition (bc—rui!) (de—cj)— (be—af12=0 at CZ=l.8 was
included in figure 2.

The types of instability existing at the various bound-
aries of the stable region in figure 2were determined by
a study of the roots of the stability equation for control
gearings represented by points on the boundaries. The
boundary in figure 2 that is nearly parallel to the axis
M@4=0 defines values of control gearings for which
the X4.6 oscillation will be neutrally stable and the
boundary on the axis i3&/bX=O defies neutral stability
in azimuth. These two boundaries are the ones that
exist for no kg. Of the two remaining boundaries, the
one that lies in the vicinity of the line b6Jb@= —4.7
represents neutral stability of the X3.4oscillation and the
other gives conditions for neutral stability of the XI.2
oscillation.

For values of the control gearings lying within the
stable region for CL= 0.35, the influence of systematic

changes in control gearing on the roots of the stability
equation was determined and is shown in figures 3 to 6,
where the magnitudes of the real or the imaginary parts
of the roots are given. A tendency toward instability
for any mode is indicated by a decrease in magnitude
of the real part, the mode becoming neutrally stable
when the real part becomes zero. The period of the
mcillatory modes grows longer as the magnitude of the
imaginary part decreases, becoming infinite when the
imaginary part is zero.

In order to facilitate conversion of the stability
characteristics, expressed by the real and the imaginary
parts of the roots, to the form involving the period and

o -2 - -4 -6
r%.

Aileron gearing, ~

~1.WJRE 2.—Region of stability for simple control operatffg w’itb O.1-reccmd kg.

the time to damp to one-half amplitude in seconds in
cases where such a procedure might be desirable, the
following data may be useful. For the airplane treated
in the calculations, a value of LO for the real part of the
roots plotted in figures 3 to 6 is equivalent to a time to
damp to one-half amplitude of 0.56 second; and a value
of 1.0 for the imaginary part of the roots corresponds to
an oscillation with a period of 5.1 seconds. The time in
seconds varies inversely with the magnitude of the real
and the imaginary parts of the roots for other values.

Figure 3 shows the effect of applying aileron control
alone. When the aileron gearing is zero, the roots are
those for the uncontrolled airplane. As the aileron
gearing is made increasingly negative, the A1.zoscilla-
tion is relatively unaffected except that the damping
of this mode is slightly improved for aileron gearings
in the neighborhood of — 1.0. The root & which is
undesirably large for the uncontrolled airplane, rapidly
decreases as small amounts of aileron gearing are
introduced. The practically neutral inherent spiral
stability of the uncontrolled airplane is replaced by
considerable damping of this mode, as indicated by the
changes in the root X4. When the aileron gearing is
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about —0.6, the damping of the two aperiodic modes
& and & becomes equal and they combine to form the
h~., oscillation. l?urther increase in the magnitude of
the aileron gearing causes a rapid decrease in period
and damping of the lS.A oscillation; this mode finally
becomes unstable when the aileron gearing is about
—4.5. The neutral stability in azimuth of the uncon-
trolled airplane is unaffected by the introduction of any
amount of aileron control alone, as indicated by the
absence of the 15 root in figure 3.

Figure 4 indicates the results of using rudder control
alone. From the figure it is evident that the rudder
control has a less complex effect on the character of
the motion than the aileron control. The most
important effect is the decrease in period and damping
of the x1.2 oscillation as the rudder gearing is made
more negative; instability of this mode finally residts
when the rudder gearing is approximately —3.7. The
damping-in-roll root k, is unaffected by the value of
the rudder gearing. When the rudder gearing is zero
(representing the uncontrolled airplane), the root ?V is
very small and the root X5 is zero. When the rudder
gearing has any finite negative value, however, these
two roots combine to form the A.4.Soscillation, which
has a very long period and practically zero damping.
Thus the use of rudder control, when the aileron gear-
ing is small or absent and when the inherent spiral
stability is poor, will lead to a slow hunting of the air-
plane in its attempt to keep on a given compass course.

When the aileron and the rudder controls are used in
combination, the separate influence of each control is
still much the same as when the particular control is
used alone. Comparison of figure 5 with figure 3 shows
that the introduction of a fixed value of rudder gear-
ing decreases the damping and the period of the x1.2
mode for all values of the aileron gearing. The roots
k and k, are now also coupled to form an oscillation for
small values of the aileron gearing and, at larger values
of aileron gearing, the root & appears as a poorly
damped subsidence. These effects may all be classi-
fied as influences of the added rudder control on the
characteristics of the motion rather than as a modi&
cation of the influence of the aileron control due to the
presence of the rudder, because the same modifications
of the motions occur when rudder control alone is added
to the uncontrolled airplane. Apparently the only in-
fluence that the rudder control has on the manner in
which the aileron control affects the motions is that it
somewhat increases the value of aileron gearing for
which the damping of the x1.2oscillation is a maximum.
In figure 2, combinations of aileron and rudder ge~-
inge for maximum damping of this mode are indicated
by a dashed line.

Figure 6 shows the result of varying the rudder gear-
ing in conjunction with a fixed value of aileron gearing.
The iniluence of the rudder control on the xI.Zoscillation
is the same as it was with no aileron control present, the
oscillation iinally becoming unstable owing to the re-

duction in damping accompanying any increase in rud-

(
der gearing. The aileron gearing assumed ~~= – 1.0

)
causes the roots ASand AAto couple as a well-damped
oscillation with a period of approximately 2.47 seconds.
Except for a slight increase in damping, this mode is
practically unaffected by an increase in the rudder gear-
ing. Because of the coupling of the ASand the h~roots
brought about by the aileron control, the & root now
appears as a separate subsidence instead of being cou-
pled in the h~.soscillation, as was the case for rudder
control alone. The damping of the aperiodic compo-
nent of motion represented by X5 (which mainly affects
the azimuth stability) slowly increases as the rudder
geaxing is made more negative but never becomes of
satisfactory magnitude:

Comparison of the changes in the roots of the sta-
bility equation brought about by vm.iations in the
control gearings used for the simple control indicates
that the infiuence of the controls on the character of
the motion is, in a general way, the same whether or
not lag in the operation of the controls is assumed.
The x,.2 oscillation is always present and is mainly
affected by the rudder control. As the rudder gearing
is made more negative, the period of the oscillation
steadily decreases; if there is no lag, the damping only
slightly decreases. With the introduction of lag, how-
ever, instability of this mode will occur as the rudder
gearing is increased in magnitude. The onset of
instability is hastened as a result of the shortening of
the period of the X1.z oscillation with increase in the
rudder gearing. For shorkperiod oscillations, a small
amoimt of lag will result in serious out-of-phase appli-
cation of the control. Even if the period of the Al.2
oscillation did not decrease so that the phase shift
remained small, the energy supplied to the oscillation
still would be sufficient to cause instability for rudder
gearings of large magnitude.

The coupling of the remaining roots AS,AA,and X6of
the stability equation depends on the magnitude of
the aileron and the rudder gearings used. For small
gearings (below about – 1.0),the roots are chiefly
dependent on the value of the aileron gearing and me
apparently little affected by small amounts of lag,
such as the lag assumed in the calculations. For
aileron gearings more negative than about — 0.6, the
roots AS and A.4are coupled as the AS.4oscillation and
the XSroot appears as an aperiodic mode. The charac-
ter of the xs.1 oscillation depends almost entirely on
the value of the aileron gearing. Increase in the mag-
nitude of the aileron gearing causes a rapid decrease
in the period of the X3.4oscillation and, if there is no
lag, a very slight increase in damping. If lag is
?resent, however, the damping of this mode decreases
with increase in aileron gearing and the oscillation
i.nally becomes unstable for large aileron gearings in
ihe same manner that large rudder gearings cause
notability of the X1.2oscillation when lag is present.
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Aileron gearing, ~

FIGUEE 3.—Variation of roots with aiIeron gearing for simple control operating with
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For combinations of aileron and rudder gearings for
which & exists -as a real root, the-damping of the
mode slowly decreases with increase in aileron gearing
at about the same rate that the damping increases with
increase in rudder gearing. The variation of the root
with changes in the control gearings appeaxs to be
unaffected by lag.

Improvement of the stability in azimuth.-Study of
the simple control indicates that, although most of
the characteristics of the motion of an airplane can be
varied at will with this method of control by proper
choice of values for the control gearings, the stability
in azimuth will be poor for all usable control-gearing
values, as is shown by the poor damping of the i5 or
?W5mode. The magnitude of the constant term in the
stability equation gives an indication of the stability
in azimuth. From the evaluation of this term for the
displacement and the rate of displacement control (see
equations (14) of the appendix), the stability in azi-
muth can apparently be increased over its value for
the simple control only if the ailerons are operated in
proportion to the angle of yaw or sideslip or if the
rudder is operated in proportion to the angle of bank
or sideslip in conjunction with ailerons operated in
proportion to the angle of yaw.

From a consideration of the magnitude of the terms
involved, operating the ailerons in proportion to the
angle of yaw was concluded to be the most prom-sing
method of improving the poor stability in azimuth that
results from use of the simple control. As a prelimi-
nary study of the effectiveness of this method of improv-
ing the skability in azimuth, the roots of the stability
equation were determined on the assumption that the

, simple control was augmented by the gearing @/b~.
The value — 1.0 was assigned to all three control gear-
ings. The stability and the control derivatives used
were those for the average airplane at 6’L=0.35, the
azimuth stability having been found poorer at this lift
coef%cient than at C!= 1.0 or 1.8. The roots are given
in table V, where they may be compared with the roots
for a simple control for which b&/b@ and MJb@ have
the value —1.0and the gearing M@+ is absent.

TABLE V

ROOTS OF THE STABILITY EQUATION FOR THE
srhmuz CONTROL WITH AND wITHOUT aaalay
GEARIA’G AT CL=0.35. NO LAG IN CONTROL
OPERATION

Comparison of the roots for the two methods of
control shows a marked improvement of the stability
in azimuth (increase in magnitude of X5)upon the addi-
tion of the ZNJ34 gearing, although the characteristics
of the other modes have not been materially altered.

The roots given in table V are for one random selection
“of values for the control gearings and, consequently,
they are unlikely to represent the maximum improve-
ment in the characteristics of the airplane motion that
can be obtained by adding the M@+ gearing to the
simple control. The values assumed for the control
gearings in calculating the roots for the modified simple
control were found to result in stable motion through-
out the flight range.

A study of the factors involved indicates that the
improvement of the damping in azimuth by adding the
M@+ gearing to the simple control is contingent
upon satisfactory inherent lateral weathercock stability
of the airplane. If n, has a reasonably large positive
value (of the order of that possessed by the airplane
considered in these calculations), the b&/b@ gearing
can be very effective in improving the azimuth stability.

CONCLUSIONS

1.For the simple control, where the aileron deflec-
tion is proportional to the angle of bank and the rudder
deflection is proportional to the angle of yaw, aileron
gearing is essential for stability only if the airplane
is inherently spirally unstable. The rudder control
is required if the inherent neutral stability in azimuth
of the airplane is to be remedied. The amount of
aileron control used has a greater influence on the result-
ing character of the lateral motion than does the amount
of rudder control used.

2. Although the simple control can provide stability
throughout the fright range for all modes of the lateral
motion of an airplane, relatively poor stability in
azimuth will result from use of this type of control,
Inasmuch as the other stability characteristics can be
varied through a wide range by means of the simple
control, a more complex method of control seems to be
justified only if it improves the stability in azimuth.

3. Modification of the simple control, by provision
for the operation of the aileron control in proportion
to the angle of yaw, appears to offer a desirable method
Df improving the poor stability in azimuth resulting
From the use of the simple control.

4. With the simple control, the presence of a small
remount of lag should have a negligible effect if the
control gearings are of normal magnitude. Lag
becomes objectionable as the magnitudes of the control
gearings are increased, the max@um values of the
~earings that can be used without instability being
governed by the amount of lag. Little improvement
in the character of the motion is obtained, however,
by the use of large control gearings.

LAiVGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., March 4, 1940.



APPENDIX

METHOD OF THEORETICAL TREATMENT

In theoretical studies of stability, ithas been found
convenient to make use of reference axes tied relative
to the structure of the airplane and so orientated that,
in steady flight, the X, or longitudinal, axis is directed
along the flight path and the Y axis is directed hori-

FIGUBE 7.—Positive senses of axes and motions.

zontally along the span to the right. The Z axis is
perpendicular to the X and the Y axes and directed
downward in normal level flight so that the three axes
form a right-hand system. Forces directed along the
axes are also designated by the symbols X, Y, and Z
and moments about the axes by L, M, and iV, respec-
tively. Changes in orientation of the reference axes
from the initial position, due to small disturbances of

the airplane from steady flight, are defined by the
angles 0, 0, and Y in pitch, bank, and yaw, respectively.
The initial orientation of the reference axes is assumed
to be such that the initial angle of bank and angle of
yaw are zero. The orientation of the reference axes
relative to the instantaneous flight path is fixed by the
angles a and& The motion of the airplane is expressed
by means of the linear velocity V of its center of gravity
and the angular velocity $1about its center of gravity.
The axial components of V are u, v, and w and the axial
components of !J are p, g, and T. Posithw senses of
these various quantities are shown in figure 7. In

addition to the preceding symbols, the equations of

motion include: the mass m of the airplane; the wing

span b; the wing area L’S;the radii of gyration kx and
kz about the X and Z axes, respectively; the acceler-
ation due to gravity g; and the density of air p.

When the assumptions customarily employed in
studies of lateral stability (reference 6) are used and it
is assumed that, in addition to the aerodynamic and
the inertia forces and moments acting because of the
inherent-stability characteristics of the airplane, dis-
turbing forces and moments which are functions of
time [Y(t), L(t), and N(t)] are involved, the equations
of lateral motion of an airplane can be written

mrV+m$=v ~y+@n9+ Y(t)
\

mkx2~=v~+p&~+r~+L(t) ) (4)

mlcz2$=v~N+p!#+r ~N+iV(t)

The influence of the controls on the motion of an
airplane can be studied by choosing suitable forms for
the functions Y(t), L(t), and N(t). Assume

where tic(t)and ii,(t)express the aileron and the rudder

deflections, respectively, as functions of time. The
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aileron deflection & is positive when the right aileron
is up and is the sum of the up and the down deflections
of the two ailerons, expressed in radians. The rudder
deflection 6,, also expressed in radians, is positive when
the trailing edge of the rudder is deflected to the right.
Normally the side force due to aileron deflection and
the rolling moment due to rudder deflection are small;
equations (5) will therefore be simplified by neglecting
the terms involving bY/b& and bL@&. If the simpli-
fied forms of Y(t), L(t), and iV(t) in equations (5) are
substituted k equations (4), the resulting equation for
controlled lateral motion can be expressed iu a simplified
nondimensional form by the use of the equalities

P=%

d+
‘=x

and the substitutions

d
D=z

mT.—
psv
m

‘=~b

P=;

mg=~Pv28cL

::=;pvs~

act
~—~pvsbw etc.

aC’) etc~L=~pVi3b2— .
ap 4 +:

~:=;pv’s~
r r

!#=~pV’iSb~, etc.
u

O.=%”
;pvw

c.=~
;PV2S

LC,=r

7jPv’m

C.=+

~Pv~fi

where

Equations (4) then become

()
–B(?/o-@-4J g –*(–7D)–@Jz’)=o

– B(plo)–@(l,TD–Tm’) – YW.D) –L&AJ1’)=o

– fuwo)–W@) – *(WD- “~z)–
#4[n6a6&)+na,~(z’)]= o

where

I acy
yo=~ ~

~_l b’ act
V 2kx2w

~=1 b’ acl——
p 4kx2&

2V

(6)

# b2 acl
‘ 4 kx’ rb

%

1 b’ acn.——
‘o= 2 k=’ ap

1 b’ acn
“=x k~ rb

aw

Factors y,, lD, etc., appearing in equntions (6) are the
nondimensional stability derivatives of the airplane.
The nondimensional factors Yd,, la., etc., expressing the

forces and the moments acting on the airplane as a
result of control deflections, will be called control
derivatives. The time unit t has been replaced by the
nondimensional time unit T, where T=~/T, so that

d
‘D=w

The control deflections are now expressed as
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functions of nondimensional time, using

8a(t)=6&)

d,(t) =3(T)

In investigations of the influence of automatic con-
trol, the control-deflection functions 6X(T) and 6JT) are

conveniently defined in terms of certain of the devia-
tions of the airplane from steady-flight conditions. If
these definitions are used, equations (6) become a set of
three simultaneous equations involving three independ-
ent variables: namely, the angle of sideslip & the
angle of bank 4, and the angular deviation in azimuth 4.

The solutions of equations (6), expressing any one of
the variables & 4, or i as a function of time, are of
the form

& f#J,or #=c,eh’~+c2eX”+. . .+c,eX’T+S(T) (7)

where the X’s involved are the five roots of an equation
obtained by writing the coefficients of equations (6) as
a determinant, substituting Ii= r~, and expanding to
the form

ahK+bh4+cX3+dh2 +ex+f=0 (8)

(See reference 7.)
In equation (7), the constants c1 to CSmerely deter-

mine the relative importance of tiny particular compo-
nent of the motion in 13,~, or t. For a given airplane,
the values of c1 to CSare dependent on the particular
degree of freedom in question, the method of control
assumed, and the nature of the disturbance from steady-
flight conditions. The term L’S(T)in equation (7) is the
so-called steady-state solution and represents condi-
tions after the exponential components of the motion
have died out. For the cases considered in this report,
S(T) is zero or a constant.

I?rom the foregoing discussion, obviously only the
roots of equation (8) are of interest in studying the
stability of the motion, i. e., the tendency of the motion
to decrease with time. Hence, equation (8) is fre-
quently called the stability equation. The coefficients
a to j of the stability equation are functions of the
stability derivatives and of the factors involved in
expressing the control-deflection functions &(T) and
L&(!f’) in terms of the deviations ~, O, and–# of the
airplane from steady flight. For a given airplane and a
particular method of control operation, the coeffi-
cients, and hence the roots, of the stability equation
are the same for all the solutions in & 4, or i given by
equation (7).

The roots of equation (8) can be either real or com-
plex. Inasmuch as the coefficients a to y, however, are
always real, complex roots can occur only as conjugate
pairs and at least one root of the equation must always
be either real or zero.

If A, B, and Care constants and if subscripts are used
to identify the various roots of equation (8), for every
pair of conjugate complex roots such as

it can be shown that the components ‘of motion in
equation (7) involving the complex pair of roots can
be expressed as an oscillation such that

clexlT+c~eA’T=KeAT cos (BT+Q (lo)

where ,K and g are two new constants replacing ~
and c’. The amplitude of the oscillation defined by
equation (10) diminishes one-half every — 0.6937/A
second, and the period of the oscillation is 2m-/B
seconds.

For every real root of equation (8) such as

A3=C (11)

an aperiodic component of the motion detied by equa-

tion (7) is present that loses one-half its amplitude

every — 0.693r/O second.

Note that the expressions giving the time required

to damp to one-half amplitude lead to negative values

of time if A or C is positive. Hence, if any of the real
roots or the real part of any of the complex roots of the
stability equation is positive, the motion of the airplane
will be unstable.

As previously mentioned, the method of applying
control to the airplane depends on the form assumed for
the functions >(T) and L(T) in equations (6). If
these functions are assumed to be zero, equations (6)
will defie the motion of the airplane for the case where
the controls are fixed in their neutral positions. The
coefficients of equation (8) become, for fixed controls,

~-= 1

~o=–?/.-(L+d

co= (lpnr—l,nJ +y.(1.+n,) +wh

d,= –y.(l,n,–l,n,) +N~%-lpnJ-p$#

eo=pQ(lon,_l,nol
2

fo=o

(12)

The subscripts given the coefficients are used to dis-
tinguish the values of the coefficients for the case of
no control from the values to be given later for various
methods of automatic control. Examination of equa-
tions (6) shows that no restoring force or moment pro-
portional to 4 occurs unless it is furnished by a control
operated so that its deflection is proportional to #;
hence, in equation (8), the vanishing of the coefficient
~o signifies that the airplane with fied controls has
neutral stability in azimuth.

A general form for the deflection functions is ob-
tained by assuming that the control deflections are
directly proportional to the displacements in bank and
azimuth and also to the rolling, the yawing, and the
sideslipping velocities of the airplane. The deflection
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functions may then be expressed in nondimensional
terms as

[13)

The quantities NJ313, MJdj etc., expressing the amount
of control deflection for a given deviation or rate of
deviation of the airplane from steady-flight conditions,
will be called control gearings.

If the deflection functions of equations (6) are as-
sumed to be in the form given by equations (13),the
coefficients of equation (8) become functions of the
stability and the control derivatives and the control
gearings. The expressions for the tit two and the
fh.ml coefficients are

:14)

where G and bo are the coefficients for no control given
by equations (12). Expressions for the other coeffi-
cients of equation (8) are omitted because of their
length.

From the theory of equations, for equation (8) b/ais

known to equal the negative sum of all the roots of the
equation or, in other words, to equal the total damping
involved in any motion of the system represented by
equations (6).

For the assumption that both the aileron-control and
the rudder-control deflections are functions of both the
angle of bank and the angle of yaw, the deflection
functions have the form

(16)

where G to f. are the coe5cients for no control given by
equations (12).

If the five roots of equation (8) are equal and have
the value A, it is known from the theory of equations
that the coefficients of equation (8) can be expressed in
terms of A as

a= 1
b=–5x
c= 10A*

1

:= T--:ON (17)

fx – A’

Thus, if the control deflections are assumed to have the
~orm given by equations (15),five equations can be

~ormed from equations (16) and (17) to determine the

values of the four control gearings ZM=jbdl ZV@#,

&$J?@, and M,lb+ and the value of X

TREATMENT OF LAG

The mathematical representation of lag in control

application of the type in which the amount of control

ipplied at a given instant is assumed to be proportional

to the amount of deviation existing at a iixed time e
previous to the given instant can be readily represented
by use of Taylor’s expansion to express f (t–e) in
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terms of f(t)

j(t–e)=j(t)–ej’(t)+. . .+ ~j”(t)+. . . (18)

Using D=:, D2=$2, etc., equation (18)can be written

‘ j (t–e)=e-’Dj(t) (19)

The lag can be exqmessed in nondimensional time units

by using h=~D thus:

j(t–e) =e ‘:’ f(t)

or, ifj(t) is also expressed in nondimensional time units,

(20)

If a type of automatic control is assumed for which
the aileron deflection is proportional to the angle of
brink and the rudder control is proportional to the
angle of yaw, the deflection functions can be obtained
from equations (15)by assuming the control gearings
M@O and M,/W to be zero. When a lag of cl seconds
is introduced into the operation of the aileron control
and a similar lag of ~ seconds is introduced into the
operation of the rudder control, the deflection functions
become

I?or small amounts of lag, it was found that the
exponential in equations (21) could be evaluated with

sufficient accuracy by using the fist three” terms of the

power series expansions for the exponential. The de-

flection functions then become

For the deflection functions defined by equations (22), .
the expressions for the first two coe5cients of equation

(8) become (neglecting terms containing as a factor
products of the lag beyond the second degree)

where % and b. are given by equations (12).The coeffi-
cients given in equations (23) are of particular interest
because they are indicative of the total damping of the
motion. Expressions for the other coefficients of
equation (8) are omitted because of their length.
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