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CRITICAL COMPRESSIVE STRESS FOR FLAT RECTANGULAR PLATES SUPPORTED
ALONG ALL EDGES AND ELASTICALLY RESTRAINED AGAINST
ROTATION ALONG THE UNLOADED EDGES

By Evcenz E. LunpquisT and ErBrInGE Z. STOWELL

SUMMARY

A chart is presented for the values of the coefficient in
the formula for the critical compressive siress at which
buckling may be expected to occur in flat rectangular
plates supported -along all edges and, in addition, elasti-
cally restrained against rotation along the unloaded edges.

The mathematical derivations of the formulas required
in the construction of the chart are given.

INTRODUCTION

In the design of stressed-skin structures for aircraft as
well as in the design of compression members, it is
desirable to know the compressive stress at which
buekling occurs. In practice the structure is usually so
imperfect or so eccentrically loaded that lateral defiec-
tion starts with the beginning of loading. When lateral
deflection starts with the beginning of loading, how-
ever, there is usually a very pronounced increase in
deflection at the eritical compressive stress for which
buckling would have occurred had the structure been
perfectly shaped and centrally loaded. The evaluation
of this critical compressive stress for a flat plate, with
certain conditions of edge support, is discussed in this
paper.

When a flat plate is loaded in compression, the two
loaded edges are either simply supported or restrained in
some manner. If the two unloaded edges are not sup-
ported, the plate is considered to be a column. When
one or both of the unloaded edges are also supported or
restrained in some manner, the critical compressive
stress is greatly increased over that for the plate as a
column. That the compressive stress is increased when
one or both of the edges are supported.or restrained has
been recognized for years. Because of the importance
of the edge conditions, formulas based on the assump-
tion that each edge of the plate is free, simply supported,
or fixed have been employed in design. (See the
summary of these formulas given in reference 1.)

A study of the theory and the more reliable test data
on the buekling of plate elements in stressed-skin struo-
tures and compression members revealed the necessity
for a more careful consideration of the edge condition of
plates than has been previously attempted. Accord-
ingly studies were made of the critical compressive
stress for I-, Z-, channel, and rectangular-tube sections
in which proper consideration was given to the inter-
action between the individusal parts of the cross section.

(See references 2, 3, and 4.) In order to make the re-
sults of the work more generally applicable, studies wers
also made of the basic plate elements that constitute

these sections. Al the basic design charts resulting

from this investigation were made available in 1938.
The combination of the present paper with references
2, 3, 4, and 5 is a more complete presentation of all this
material. _

The basic element treated in this paper is & plate sup-
ported along the four edges, elastically restrained against
rotation along the unloaded edges but with no restraint
against rotation along the loaded edges. The loaded
edges are therefore considered to be simply supported
according to the usuel terminology. This basic element
is representative of the webs of I-, Z-, and channel-
section columns, of the walls of a rectangular tube, and
of the flat skin between the stiffeners of a stressed-skin
structure. The basic element representative of an out-
standing flange with elastic restraint against rotation
along one unloaded edge is treated in reference 5.

The mathematical derivations required for the investi-
gation of the present paper are given in appendixes A
end B. The results of practical use are given in the
body of the paper.

Bernard Rubenstein, formerly of the NACA. staff,
performed all the mathematical derivations required for
appendix B, the presentation of which was adapted to
the purposes of this paper.

EYALUATION OF CRITICAL STRESS

Within the elastic range.—Within the elastic range
in which the effective modulus of elasticity is Young’s
modulus, the eritical compressive stress f., for a thin flat
rectangular plate is expressed as (reference 6, p. 331,
equation (214)): '

fom k=*Ef )
T19(0— BB ’
where

k nondimensional cdefficient that depends upon condi-
- tions of edge restraint and shape of plate
E Young’s modulus
t thickness of plate
g Poisson’s ratio
b width of plate

Beyond the elastic range.—When the plate is stressed
in compression beyond the elastic range, the effective
modulus of elasticity for the plate is less than Young's
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modulus. If a single, over-all effective plate modulus
nE is substituted for Young’s modulus E, the critical
stress, when the material of the plate is loaded beyond
its elastic range, can be obtained from equation (1).
The nondimensional coefficient 5 has a value that lies
between zero and unity and is determined by the stress.
For stresses within the elastic range, s=1. For a
more complete discussion and definition of #, see
reference 2.

i LLL Lttt
42 T LEEET
’) 4”‘%:’- ”"__-“
38 ’%/ 1
AN NI AT 7T
N a8
> U 77
430 Aerin-
& l/:lf‘ : 2
» ¥ 4
N 2
e
ee
9620 30 0 70 00 200 400 700
£/, kips{sq in.

FIGURE 1.—Variation of fo With fu/y for 248-T aluminam alloy of minimum required
properties. (When fe/y<19.6 kips/sq In., #=1 and fe={eufy.}

If 9E is substituted for £ in eéquation (1), the result-
ing equation cannot be-directly solved for f,. If the
equation is divided by 5, however, f../n is given directly
by the geometrical dimensions of the plate, Young’s
modulus E, and Poisson’s ratio g. ' Thus '

Jor  kx*Et
ERelie
For a given material, the relationship between £, and
- for/n tends to be fixed by the compressive stress-strain
curve. This relationship is discussed in reference 2,
where it is shown how probable relationships between
fer a0@ for/n are obtained from the column curve for the
material because column curves are more readily
available than compressive stress-strain curves. The
question is, therefore, what column formula should be
used? Equations (8) and (9) of reference 7 define
column curves that apply when the material just

(2)

satisfies the minimum requirements of Navy Depart-

ment Specification 46A9a for 24S-T aluminum alloy.
The relationships between f., and f./» for this case
are given in references 2, 3, and 4 and in figure 1 of
this paper. :

The 24S-T material delivered under specification
46A9a almost always has properties that are better
than the minimum required properties. The rela-
tionships between f., and f./yp for the average 24S-T
material delivered are given in figure 2. This figure
has been prepared in the manner deseribed in reference
2; the column curves for average 24S-T material as
given in reference 8 were used.

Figures similar to 1 and 2 of this paper may be pre-
pared for any material. The engineer usifig this paper
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must therefore decide whether the computation should
be based on minimum required material properties or
average material properties.

Regardless of whether figure 1 or 2 is used, it is recom-

mended that the n='r—_|:—2-£ curve be used for all

values of restraint against rotation until future experi-
mental data indicate that a different curve should be
used. In figures I and 2 the different equations involv-
ing  merely identify different curves that result from
the relationships indicated. The value of 7 is E/E, the
ratio of the effective column modulus for bending failure
at the stress f,, to Young’s modulus.

EVALUATION OF k

The value of f./4 at which buckling occurs is given
by equation (2), in which all of the quantities are known
except thé value of the coefficient k.

Equal restraints on the side edges of the plate.—
From figure 3 can be obtained the values of k for the
case of equal restraint on each side edge of the plate,
which is a special case of the general solution in ap-
pendix A for any restraint on either side edge of the
plate. In the chart of figure 3, k is plotted against the
ratio of half wave length to the plate width Afb for dif-
ferent values of a parameter ¢, termed the “restraint’

coefficient. (Trayer and Mareh in reference 9 refer
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FIOURE 2,—Variation of fer with fa/y for #48~T aluminum alloy of average properties.
(When fo/s<10.7 KIpy/sq in., y=i and formfofy.}

to e as the “fixity”’ coefficient. In the present paper
restraint coefficient was chosen to avoid confusion with
the fixity coefficient ¢ for columns,)

The restraint coefficient ¢ depends upon ihe relative
stifiness of the plate and the restraining clement along
the side edge of the plate. The simplest coneception of
¢ is obtained when the restraining clement, or stiffener,
is assumed to be replaced by an elastic medium in which
rotation at one point does not influence rotation at
another point. For this fype of restraining medium
along the edge of the plate, within the elastic range

48:b

=T (3)
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beyond the elastic range .
)

E=1]T 4

where

S, stifiness per unit Iength of elastic restraining medium
or moment required to rotate a unit length of

elastic medium through one-fourth radian
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7 coefficient to allow for a decrease in D due to the
application of stresses beyond the elastic range

Inasmuch as 5 is & function of stress, its value for

24S-T material can be obtained from figure 4 or 5,

or average propertles are being used. The values of
71, T, T3, also given in figures 4 and 5, occur in

. o . Ep 7| appendix A.

D flexural rigidity of plate, per unit length I:Tz(T—?)_ P?f S, is zero, e is also zero and the condition of zero
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restraint, or simple support, is obtained. If S is
infinite, ¢ is also infinite and the condition of infinite
restraint or of & fixed edge is obtained. Therefore a
variation of e from zero to infinity will cover all possible
conditions of restraint at the side edge of the plate.

Figure 3 shows that for each value of e there is a
velue of A& for which k is a minimum. Strictly, a
whole number m of half wave lengths A must exist in
the Iengs-h of the plate &. Hence

A_a

T mb
Thus, to read a value of k from figure 3, it is necessary
to substitute m=1, 2, 3, ete. in equation (5) until a
value for 3/b is obtained that gives the smallest value of
k in figure 3. 'This smallest value of % is the one to be
used in equation (1) or (2). This general procedure
will always give the correct value of % for use in equation
(1) or (2) regardless of whether or not S, and hence e,
is & function of the half wave length A.

For the special case in which S,, and hence ¢, is
independent of the half wave length A, the general
procedure described for obtaining a value for £ can
be used to construct a new chart, with the abscissa
Mb replaced by ¢fb. This new chart is given in figure 6.

When S, and hence ¢, varies with X\ or A/}, figure 6
should not be used but the general procedure as applied
to figure 3 should be used to obtain the correct value of
k for equations (1) and (2). )

Unequsal restraints on the side edges of the plate.—
The charts of figures 3 and 6 were drawn on the assump-
tion that equal restraints exist along each side edge of
the plate. If unequal restraints exist along each side
edge, the method for equsl restraints is applied, and
one side restraint is used first and then the other.
The average of the two values of k thus obtained is a
reasonably good approximation of the true velue of k.
This average may be either the arithmetic mean,
(ky+%:) /2, or the geometric mean, y/&%;. The value of
k as given by each of these averages is compared with
the true value of k in table I for a number of special
cases. For all of the cases except the last three in
table I, the values of k; and %; were read at the value of
A/b that gave the minimum k. In the last three cases
the values of &; and k; were read at the same value of
Ao, -
Inspection of table I shows that, when the values of
k; and %, are read near the minimum points of the
curves for ¢ and e, respectively, the arithmetic mean
generally gives smaller errors than the geometric mean
slthough either one could be used without serious

®)
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error in practical problems. On the other hand, if
the values of &, and k; are read af the same value of
Ab, the srithmetic mean gives definitely larger errors.
It is therefore recommended that the geometric mean
be used when the value of M5 is fixed. Either method
may be used when the values of £, and %, are read near
the minimum points. _

When the critical compressive stress for unequal
restraints is found by the method of the geometiic
mean, the error in k, and hence the error in the critical
stress for problems in the elastic range, is less than 3
percent. Beyond the elastic range it is more conserva-
tive to average the two critical compressive stresses
than to average the corresponding values of k& and then
to compute the critical compressive stress.

EVALUATION OF S§; AND «

Before it is possible to determine k& from figure 3
or 6, it is necessary first to evaluate the restraint coeffi-
cient e. The value of S, to be substituted in equation
(3) or (4) will depend upon the characteristics of the
structurel member, or members, that provide the
restraint. In this paper it is assumed that the restraint
is provided by a specially defined elastic restraining
medium. As a result ‘of this assumption, it has been
possible to derive the general chart of figure 3, which
is independent of the structure that provides the
restraint.

The basic property of the elastic restraining medium
is that rotation at one point of the medium does not
afiect rotation at another point of the medium. In
many practicel problems the elastic restraint is pro-
vided by a stiffener, a plate, or some other structure
for which rotation at one point affects rotation at
another  point. Consequently, the evaluation of S,
in any given problem must take into account the effect
of this interaction within the elastic restraining
structure.

The formula for S; to be used in any given problem
will depend upon the type of structural member that
provides the restraint. Because this entire subject of
the restraint supplied to the side edge of & plate has
been rather superficially treated in the literature, it is
being made the subject of several papers by the
NACA, the first of which is reference 10.

LangLEY MEMORIAL AERONAUTICAL LLABORATORY,
NarroNan ApvisorY COMMITTEE FOR AERONAUTICS,
LaneLey FieLp, Va., March 8, 1941.



APPENDIX A
SOLUTION BY DIFFERENTIAL EQUATION

The procedure for obtaining the critical stress of a
plate uniformly compressed along two opposite, simply
supported edges is given in reference 6 (p. 337). In
this method, which was also used by Dunn in reference
11, the critical stress is found by solving the differential
equation expressing the equilibrium of the buckled
plate. Thesame method is applied in the present paper
to the case in which unequal elastic restraints against
rotation are present along the unloaded side edges of
the plate. For generality, the elastic restraint is as-
sumed to arise from en clastic medium distributed along
the unloaded edges; this medium has the basic property

that rotation at one point within it does not influence.

the rotation at any other point.

Figure 7 shows the coordinate system and the plate
dimensions. The differential equatlon for equilibrium
of a plate element is

¢ R
' 4 4 2 V4 4 4 ¢
//b/ //b/ T
2 — 2— L

FiauRE 7.—Rectangnlar plate under edge compression,

ai
ft w D(Tla# +2‘Fnaxsayz+fa a;f) (A 1)
where
J uniformly distributed compressive stress
t thickness of plate
104

w deflection normal to plate
z longitudinal coordinate in direction of applied
stress
D flexural rigidity of plate, per unit length
y transverse coordinate across width of plate
r, 73, and r; coefficients equal to or less than unity
In cquation (A-1) the term f{(d*w/dx®) is concerned
with the external forces on the pIate that cause buckling;

wheresas the term —D(T‘W"I- 2r,—6m+ 137) is con-

cerned with the internal resistance of the plate to
buckling. The terms involving 7, and r; in equation
(A-1) are concerned with the longitudinal and the
transverse bending, respectively; whereas the term in-
volving 7, is concerned principally with the torsional
stiffness. The coefficients 7;, 72, and =; allow for the
change in the magnitude of the various terms as the
plate is stressed beyond the elastic range. In the
elastic range r,=mr=7=1.

The loaded edges are simply supported and are not
displaced in the direction w. Of the gseveral forms of
the general solution of equation (A-1) the following
form was selected as appropriate for this problem:

‘Lf)=(0| cosh a,',—y+02 sinh T+0’ cos -5-
+C, sin %1!) cos 1I;’f(x‘h-%)

where

o \/‘\/f, x+\/k “+(3)(3-2) @y

p= r b\/ mﬂ/k b)(-—-—) (A~4)

1201 — Wb
= VEF (4-5)

Equation (A-2) satisfies the boundary conditions at
the loaded edges and gives real values for both « and 8
near the buckling stress f=f,,.

The values of the coefficients C}, €, (3, and (7, are
to be found from the boundery conditions along the
side edges of the plate. The value of A, the half wave
length of the buckle pattern, is found from the condition
that there must be an integral number of half wave
lengths in the length @ of the plate; thus

a
A= (A-6)

where m=1, 2, 3, ete.
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In the elastic range, where n=ry=r3=1, the values
of a and B are

“ (A—?)

=

=l

The solution given by equation (A-2) was selected
to satisfy the boundary conditions of no deflection and
simple support (no moment) along the loaded edges.
The boundary conditions along the unloaded side edges
have also to be satisfied. The boundary conditions

(A-8)

along the unloaded side edges are:
(w) _ =0 (A-9)
: .
(w), o= (A-10)
335 =4S*(%”) L @
1
Sw

where S; and S, are the respective stifinesses per unit
length of the elastic restraining mediums or the moments
required to rotate a unit length of the medium through
one-fourth radian.

From equations (A-9) and (A-10) are obtained

cosh %
8

€os 3
2

Ci=—0C, (A-13)

sinh %
7 (A-14)
sin 5

From equations (A-11) and (A-12) are obtained

O @+ cosh §+75(asinh 546 cosh § tan §) |

04= —Ug

—0{(0:’-[—3’) sinh 24258 & cosh §—p sinh £ cot g)]

=0 (A-15)

O (o248 cosh §+252a sinh 5+6 cosh F tan £) |

+C{(a’+ﬂ’) smh x %a cosh g—ﬂ sinh % cot g—):l
=0 (A-16)

The buckled form of equlibrium of the plate is
obtained when the determinant formed by the coeffi-
cient of €} and () in equations (A-15) and (A-16)
equals zero. Thus
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([ @+89+e(ateamh g+ 5 tan §)|

I:(a?+ ;3] —{-e-‘-(a coth %—ﬁ cot g)]

+|:(a2+ 89+e« tanh 3+6 ten g)]

I:(ai-[- ) +e1(a; coth %— 8 cot g):|=0 (A-17)
where

q=230 (A-18)

a=2p (A-19)

Equal restraints on the side edges of the plate.—
When ¢=¢=¢, equation (A-17) reduces to

I:a2+5=+e(a tanh 5+ 8 tan g)]
I:a=+ ﬁ=+e(a coth 5—B cot g) :|=0

The symmetrical buckled form of equilibrium is
obtained by setting the first of these factors equsal to
Zero: '

(A-20)

a2+,32+e(a tanh g-{-ﬁ tan g)=0 ‘ (A-21)

This equation is the same as equation (14) of reference
1i. The antisymmetrical buckled form of equilibrium
is obtained by setting the second factor ia equation
(A—20) equal to zero:

2+ ﬁ’+e(a coth %—-B cot g)=0

Of these two buckled forms the symmetrical form
given by equation (A-21) will occur at the lower eritical
stress. Therefore equation (A—21) was used to estab-
lish the exact values of % given in table II.

The condition of both side edges fixed is described
by e=o, for which case equation (A-21) becomes

(A-23)

(A-22)

a tanh g—l-ﬁ tan §=0

It is of interest to compare this equation with the equa-

tion given by Timoshenko in reference 6 (p. 345). In =~

Timoshenko’s equation, the symmetrical and the
antisymmetrical facfors have not been sepa.rated as
they have been in this paper.

The condition of both side edges simply supported
(no restraint) is described by e=0. For this special
case, the problem is to find the smallest value of k70
that will satisfy equation (A—21) when e=0. A con-
venient method for determining this value of % is first
to solve for e

LHE
atanh %+ﬁ tan g

e=—

(A-24)

When Ic=_0, it is observed that o?+8=0 and hence
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¢=0. All values of k greater than zero give a finite,
positive value for a*+4p* as well as for a tanh «f2.
Consequently, the only values of k greater than zero
that can make ¢=0 are those values that render
g tan /2 infinite. The smallest value of 8 that causes
g tan B/2 to be infinite is f==. Therefore the smallest
value of & that gives == is obtained by substituting
B== in equation (A—4) or

b k
ey 2 () (B2
from which the value of & for e=0 is

=l 22 [-(DT(2)-2] @2o

This equation shows that % is a funetion of the half
wave length, \. If the plateislong, \/b will adjust iteelf

a-25)
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so as to cause %k to have its minimum value. This
value of Mb is {@, ‘which gives
- 3 .
kuin=2 (Tz'l' ‘\/E) (A‘27)
In the elastic range in which r,=r;=r;=1, these

equations give Mb=1 and kmin==4.

Unequal restraints on the side edges of the plate.—
When the restraint coefficients ¢, and ¢ at the {wo side
edges of the plate are unequal, equation (A-17) must
be used to establish the value of £ and hence the critical
value of the compressive stress f. This method of
establishing % is long and cumbersome. A much
shorter and more easily applied method is therefore
desirable for practical application. The recommended
short method given in the main part of this paper gives
good approximate values,

+



APPENDIX B
SOLUTION BY ENERGY METHOD FOR EQUAL SIDE RESTRAINTS

Because the exact solution of the differential equation
given in appendix A does not lend itself to a direct
calculation of %, as in the case of the energy method of
solution, an energy solution was made to aid in the
construction of the chart of figure 8. The energy
method gives approximate values for k, the accuracy of
which depends upon how closely the 2ssumed deflection
surface deseribes the true deflection surface.

The energy method as applied to the calculation of
critical compressive stresses is given in reference 6
(p. 827). The plate is stable when (V;+V3)>T and
unstable when (V4 V,)<T where T is the work done
by the compressive forces on the plate, V, is the strain
energy in the plate, and V; is the strain energy in two
elastic restraining mediums at the edges of the plate.
The eritical stress is obtained from the condition of

neutral stability:
T=Vi+V, (B-1)

If w is the deflection normel to the plate at any
point z, ¥ in the plane of the plate shown in figure 7
and Sy=8;=S; (see appendix A), then T, Vi, and V;
are given by the following equations. (See reference 6,
equations (199) and (201) end reference 9, equation

(73).)

3 e @
TN G
oo (@5)- gl e

s (32, Jeerss 339, T

(B—4)

Jn order to evaluate T, V), and V,, it is necessary
to assume & deflected surface w consistent with the
boundary conditions. These conditions specify that

along the two side edges of the plate there be (1) no
deflection and (2) equal restraint against rotation. The
side edges will therefore be subjected to equal and op-
posite edge moments. A plate with no restraining
moments at its edges buckles in the form of a sine
curve across the plate. A beam with equal and oppo-
site end moments deflects into a circular arc. Both
the sine curve and the circular arc satisfy the condition
of zero deflection at the side edges of the plate. Conse-
quently, for the deflection curve across the width of
the plate, & curve given by the sum of & circular are
and a sine curve was selected. In the direction of the
length, the usual sine curve indicated by the solution
of the differential equation is used. Thus the deflec-
tion surface assumed for the plate is, in the coordinate
system of figure 7

w= 4{;;1 yﬂ_i:)+(%+3)cos—'?]cos¥ (B-5)

where A and B are srbitrary deflection amplitudes.
The combination of A and B in equation (B-5) was
selected so that A=0 would represent the condition
of simply supported side edges and B =0, the condition
of fixed side edges. 'The ratio A/B is therefore a meas-
ure of edge restraint and is related to -the restraint
coefficient e through the boundary condition:

R G

Substitution of w as given by equation (B-5) in
equation (B—6) gives

(B-6)

A=§B B-7
where, by definition,
. _ :
= ‘Is;ob (B-8)

Substitution of the value of A as given by expressmn
(B-7) in equation (B-5) gives

=B 75 y’—z’)+<l+§)cosfb-y cos > (B-9)
107
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This new equation for w shows how the shape of the
deflection surface is affected by the restraint coefficient e.
This equationis used in the evaluation of T, V;, and Vi.

Vi= Z;Dx{[moc) +?<b) +6
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Thus
T— B”’“ ’1';*; :5 1+ )+-(1+ )]f (B-10)

Je()E TS

D \e

its critical value f,. From this substitution,

1e=B—r— - (B-12)
258 .
fom k2B . (B-13)
1t is permissible to substitufte these values in rT12(I— )0t
equation (B-1) only when the compressive stress f has | where :
( ) b 21 e\ 4de 2e
50 (rb)’+ +(145) 3+ )[2 1+5)-5 +(15‘)‘

: k= A . (B-14)

e 4e

20 1+2)+2(1+2)

Equation (B-14) was used to calculate the values of
k listed in the columns (a} of table II. With these values
of k& as a guide, a number of correct values of k& were
obtained by satisfying equation (A—21) of appendix A.
In this manner the errors in £ as given by equation
(B-14) were established at isolated points. From this
knowledge of the errors, corrections were made to all
the values of k given in columns (g) of table II. These
corrected values of k, which are recommended, are listed
in the columns () of table II. The recommended
values of & were used in the construction of figures 3
and 6.
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TABLE
EXACT VALUES OF k FOR A PLATE WITH UNEQUAL
ELASTIC RESTRAINTS AT THE UNLOADED EDGES

_75\_ and k for e1 % and kfor ] TTDO Arithmetle Ceometric
. of
4q e from ‘
UR~
ky+ky | Error Error
M | B | Wb} ke et(itm k=—%— | (per- |k=~kik;s | (per-
(A-1T) T | cent) cent)
0 0]1.000)400] 1000|400 400 4.00 a 4.00 Q
0) -5 L000 | 400} .805| 612} 457 4.56 —-22 4. 53 —.88
1] 851 0221434 .808:612]| 474 473 —. a1 471 ~.63
2] 5| .876|4.60} .BOS| S12] 4.86 4.88 ] 4.85 -2
3} 5] 8451481 805 &KI12] 4908 497 .20 4.95 a
41 5| .823|498; .805512] &06 505 1] 5.05 0
5| 5] .&05]&12| 805|612 AI2 5.12 ¢ 512 0
0120]1L000]400}0719]608] 5603 5.03 o 4902 —219
2(20) .8i6 (460! .719]606] 531 533 .38 528 -. 68
5|20] .s05y 412 710606 558 550 . .18 55 —.18
1020 .7285) 560} .710 [ B.08] 588 5.83 [ 5.8 ¢
2120 .719[{ 6001 .710 1 605]| 806 6.06 0 6.06 0
0| o |LOC [400]0.660|698; 542 5.49 1.29] 628 258
3foo| 845[481] 666|698} 582 590 1.38 879 —. 52
1I0f o] 755560} .666 698 625 6.20 .64 6.25 ¢
0| =] 6061643 6685|6068 660 671 .30 60 .15
o] 666608 | 666|608 698 6.98 Q 6.08 ¢
0= }0.65 [470]10.65 |698} 567 5.89 3.88 578 194
0] w100 | 400|100 ;889 574 629 9.58 5.88 208
0] 8)L5% [4069|L50 |890] 6351 6.79 430 6. 46 - 77

}. B-11)

I—COMPARISON OF APPROXIMATE AND
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TABLE IL—VALUES OF £ IN THE BUCKLING FORMULA FOR A LONGITUDINALLY COMPRESSED RECTANGULAR

CRITICAL COMPRESSIVE STRESS FOR FLAT RECTANGULAR PLATES

L1

)

E b AT b1 o6 of of 3 o o A o8 b

(a)

SR%BERYE ERigERSAIRAIREANY
BRYBEREIBIZELARRESIANRARS

~dvdVdddddddorErddduddudcaic

PLATE WITH EQUAL ELASTIC RESTRAINTS ON TWO OPPOSITE SIDE EDGES

G&1L2345078MHMM%M%%&NWM@Wu

s | E354EERIEAIRERNATeRENRAYS ~ | Ba8ags
%LLL&L&&&&ﬁ&&&& ZLZ&&&&¢ =~ %ZZ&&m
3 5 -
| o | B3S3EPRISERRYERas Rk ang < | §8BuLE
-~ Ao S S SR R e R of o od of od et &11&&&
PR EEERLEREL BN ER B PRI o | SREREEE 8
- %&;ﬁtL&&&&i&i&&&&&t7777777 - d&&lz&& g
& « 0
7| o | 2539888853553 NENETTTERE < | SEERRYE &
~ “dvddddsdddddddESdietes NN ~ Sddrmrada =]
= | B8998 RRE YRR UNNY o | SYE8RaYEEE
e d4£LL£L&&55&&&G&&&&&&&ZT?W =~ %&&&&11&&1
3 |
e Rh388aesALIBREtaTINEganaRs ME-LEELEEEE
et Vv VB ddddeddd B S NN bt Vb oo o .
- | B5EERoAgRNEINRESRRILERSASE « | 985838050838
~ &LLLL&&&&&&E&&&&&&&&&&&&&& e %&&&&EZZ&&&&&
5 4
< | BSEBEEIR2gNEREESTHENEATANE 5 | BEBBNSBISERSY
~ WedvdvidudddddddddddddsddEd - Wddkdd b eodododoies
= | BENEEIdENEEL8RESHAEERINgnY « | BB88338588%858
- mli&ii&&di&i&&&&&&&&&&&&tz ~ %L&&&&&izz&&&& .
L] ~
° | . | #achzeesssszssngseasagees: | | o ggegzeanaguees
~ BudewdEssddedddddddesdd g min ~ ke ddd e oicial
< | BABRIYHCRSRESIENYRERS2N8ES < | NS549889%3ER8%8
= %&&&&&&&&&&&&741111177777# 4 %LL&&&&&¢777&&¢10
5- Qm
° | o | R8%892E 8RR 89R8E8 8RS s | §E583s8aNggRtn
~ &&&&&&&&&&&&67777777777777 - evddd s dd S RIS aaa
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« Values obtained from the exact solution of the differentfal equatfon,

& Recommended values.

« Values obtained from the energy method.



