
t

J_. ;- _< 1

• ,'/"h-;;," ';'_'!7' ._._..._.e!- .: _,_._ REPRODUCED BY " _:k_rV':_Vs,._-7: _'_ :'_'__ .!7/

:+.,, _:...: ._,.,,.._,._+. NFORMATION SERVICE __ ,_,.':+",_:::,_'.....'_-,,,,-_"<_<'_"_-'<_._,'m "_' , ,_ ........ .......... _ . " -_

https://ntrs.nasa.gov/search.jsp?R=19930091970 2020-06-17T03:24:16+00:00Z





/q,qe __- TP,- ?_3

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

REPORT No. 903

THEORETICAL AND EXPERIMENTAL DATA FOR A

NUMBER OF NACA 6A-SERIES AIRFOIL SECTIONS

By LAURENCE K. LOFTIN, Jr.

Langley Memorial Aeronautical Laboratory

Langley Field, Va.

]

1948

I_PRoDUCED BY ......

NATIONAL TECHNICAL
INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE

SPRINGFIELD, VA. 22161

I



National Advisory Committee for Aeronautics

Headquarters, 172_ F Street NW, Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study

of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased to 17 by act approved

May 25, 1948. (Public Law 549, 80th Congress). The members are appointed by the President, and serve as

such without compensation.

JEROME C. HUNSAKER, SC. D., Cambridge, Mass., Chairman

ALEXANDER WETMORE, Sc D., Secretary, Smithsonian Institution, Vice Chairntan

HON. JOHN R. ALISON, Assistant Secretary of Commerce.

DETLEV W. BRONK, PH.D., President, Johns Hopkins University.

KARL T. COMFTON, PH.D. Chairman, Research and Development

Board, National Military Establishment.

EDWARD U. CONDON, PH.D., Director, National Bureau of

Standards.

JAMES H. DOOLITTLE, SC. D., Vice President, Shell Union Oil

Corp.

R. M, HAZEN, B. S., Director of Engineering, Allison Division,

General Motors Corp.

WILLIAM LITTLEWOOD, M. E., Vice President, Engineering,

American Airlines, Inc.

THEODORE C. LONNQUEST, Rear Admiral, United States Navy,

Assistant Chief for Research and Development, Bureau of

Aeronautics.

EDWARD M. PO'_VERS, Major General, United States Air Force,

Assistant Chief of Air Staff-4.

JOHN D. PRICE, Vice Admiral, United States Navy, Deputy

Chief of Naval Operations (Air).

ARTHUR E. RAYMOND, M. S., Vice President, Engineering,

Douglas Aircraft Co., Inc.

FRANCIS W. REICHELDERFER, SC. D., Chief, United States

Weather Bureau.

HON. DELOS W. RENTZEL, Administrator of Civil Aeronautics,

Department of Commerce.

HOYT S. VANDENBERG, General, Chief of Staff, United States Air

Force.

THSODORE P. WRIGHT, SC. D., Vice President for Research,

Cornell University.

HUGH L. DRYDEN, PH.D., Director of Aeronautical Research

JOHN W. CROWLEY, JR., B. S., Associate Director of Aeronautical Research

JOHN F. VICTORY, LL.M., Executive Secretary

E. H. CHAMBERLIN, Executive O_cer

HENRY J. E. REID, Eng. D., Director, Langley Aeronautical Laboratory, Langley Field, Va.

SMITH J. DEFRANCE, B. S., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.

EDWARD R. SHARP, SC. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

AERODYNAMICS OPERATING PROBLEMS

POWER PLANTS FOR AIRCRAFT INDUSTRY CONSULTING

AIRCRAFT CONSTRUCTION

Coordination of Research Needs of Military and Civil Aviation

Preparation of Research Programs

Allocation of Problems

Prevenlion of Duplication

Consideration of Inventions

LANGLEY AERONAUTICAL LABORATORY,

Langley Field, Va.

LEwis FIAGHT PROPUI,SION LABORATORY,

Cleveland L;.port, Cleveland, Ohio

AMES AERONAUTICAL LABORATORY,

Moffett Field, Calif.

Conduct, under unified control, for all agencies, of scientific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE,

Washington, D. C.

Collection, classification, compilation, and dissemination of scientific and technical information on aeronautics

%



//

REPORT No. 903

THEORETICAL AND EXPERIMENTAL DATA FOR A NUMBER OF NACA 6A-SERIES AIRFOII

SECTIONS

By LAURENCE K. LOFTIN, Jr.

SUMMARY

The NACA 6A-series airfoil sections were designed to

eliminate the trailing-edge cusp which is characteristic of the
NACA 6-series sections. Theoretical data are presented for
NACA 6A-series basic thickness .forms having the position of

minimum pressure at 30, _0, and 50 percent chord and with
thickness ratios varying .from 6 percent to 15 percent. Also

presented are data for a mean line designed to maintain straight
sides on the cambered sections.

The experimental results of a two-dimensional wind-tunnel
investigation of the aerodynamic characteristics of five NACA

6_A-series airfoil sections and two NACA 63A-series airfoil
sections are presented. An analysis of these results, which
were obtained at Reynolds numbers of 3X106, 6X108, and

9 X 108, indicates that the section minimum-drag and maximum-
lift characteristics of comparable NACA 6-series and 6A-series

airfoil sections are essentially the same. The quarter-chord
pitching-moment coey_cients and angles of zero lift of NACA
6A-series airfoil sections are slightly more negative than those

of corresponding NACA 6-series airfoil sections. The posi-
tion of the aerodynamic center and the lift-curve slope of smooth
NA CA 6A-series airfoil sections appear to be essentially inde-

pendent of airfoil thickness ratio in contrast to the trends
shown by NACA 6-series sections. The addition of standard
leading-edge roughness causes the lift-curve slope of the newer
sections to decrease with increasing airfoil thickness ratio.

INTRODUCTION

Much interest is being shown in airfoil sections having
smM1 thickness ratios because of their high critical Mach
numbers. The NACA 6-series airfoil sections of small thick-

ness have relatively high critical Mach numbers but have

the disadvantage of being very thin near the trailing edge,

particularly when the sections considered have the position
of minimum pressure well forward on the basic thickness
form. The thin trailing-edge portions lead to difficulties in

structural design and fabrication. In order to overcome
these difficulties, the trailing-edge cusp has been removed
from a number of NACA 6-series basic thickness forms and
the sides of the airfoil sections made straight from approxi-

mately 80 percent chord to the trailing edge. These new
sections are designated NACA 6A-series airfoil sections. A
special mean line, designated the a=0.8 (modified) mean

line, has also been designed to maintain straight sides on th,
cambered sections.

This paper presents theoretical pressure-distribution dat_
and ordinates for NACA 6A-series basic thickness form

covering a range of thickness ratios extending from 6 to 1.
percent and a range of positions of minimum pressure extend

ing from 30 percent to 50 percent chord.
The aerodynamic characteristics of seven NACA 6A-serie

airfoil sections as determined in the Langley two-dimensiona

low-turbulence pressure tunnel are also presented. Thes

data are analyzed and compared with similar data fo
NACA 6-series airfoil sectiohs of comparable thickness an,

design lift coefficient.

COEFFICIENTS AND SYMBOLS

cd section drag coefficient

c_m_ minimum section drag coefficient

c_ section lift coefficient

cz_ design section lift coefficient

cz_a_ maximum section lift coefficient

cm_, section pitching-moment coefficient about aerody_¢ami
center

c_/4 section pitching-moment coefficient about quarte_

chord point
a0 section angle of attack
a, section angle of attack corresponding to design lil

coefficient
dc_
_/-ao section lift-curve slope

V free-stream velocity

v local velocity
hv increment of local velocity

Av_ increment of local velocity caused by additional type (
load distribution

Pn resultant pressure coefficient; difference between loc:
upper-surface and lower-surface pressure coefficien

R Reynolds number
c airfoil chord length
x distance along chord from leadin, g edge

y distance perpendicular to chord

y_ mean:line ordinate
a mean-line designation; fraction of chord from leadir

edge over which design load is uniform
_b airfoil design parameter (reference 1)

1



2 REPORT NO. 903--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

THEORETICAL CHARACTERISTICS OF AIRFOILS

Designation.--The system used for designating the new
airfoil sections is the same as that employed for the NACA
6-series sections (reference 1) except that the capital letter

"A" is substituted for the dash which appears between .the
digit denoting the position of minimum pressure and that

denoting the ideal lift coefficient. For example, the NACA
641-212 becomes the NACA 64_A212 when the cusp is
removed from the trailing edge. In the absence of any

further modification of the designation, the cambered airfoils
are to be considered as having the a----0.8 (modified) mean line.

Basic thickness forms.--The theoretical methods by which
the basic thickness forms of the NACA 6-series family of

airfoil sections were derived in order to have pressure dis-
tributions of a specified type are described in reference 1.

Removing the trailing-edge cusp was accomplished by in-

creasing the value of the airfoil design parameter ¢ (reference 1)

corresponding to the rear portion of the airfoil until the

airfoil ordinates formed a straight line from approximately

80 percent chord to the trailing edge. Once the final form

of the ¢ curves was established, the new pressure distribu-

tions corresponding to the modified thickness forms were
calculated by the usual methods as described in reference t.

A comparison of the theoretical pressure distributions of an
NACA 64_-012 airfoil section and an NACA 64_A012 airfoil

section (fig. 1) indicates that removing the trailing-edge
cusp has little effect upon the velocities around the section.
A slight reduction of the peak negative pressure and flatter

pressure gradient over the forward and rearward portions
of the airfoil section seem to be the principal effects. The
theoretical calculations also indicate the presence ot a

trailing-edge stagnation point caused by the finite trailing-
edge angle of the NACA 6A-series sections. This stagnation

point is, of course, never realized experimentally.
Ordinates and theoretical pressure-distribution data for

NACA 6A-series basic thickness forms having the position
of minimum pressure at 30, 40, and 50 percent chord are

presented in figure 2 for airfoil thickness ratios of 6, 8, 10, 12,
and 15 percent. If intermediate thickness ratios involving

a change in thickness of not more than 1 to 2 percent are
desired, the ordinates of the basic thickness forms may be

scaled linearly without seriously altering the gradients of
the theoretical pressure distribution.

/.4-

/.2

/.0

*2 .8

0
0

NACA 64,A012
...... /VACA 641-0/2

.--.....

.4

.£

.I .2 o3 .4 .5 .6 .7 .8
Chordw/se posiffon, x/c

FIG[_ItE l.--Comparison of theoretical pressure distribution at zero lift of the NACA 641-012 and the NACA t)41A012airfoil sections.
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Mean line.--In order that the addition of camber not

change the pressure gradients over the basic thickness form,
a mean line should be used which causes uniform load to be

carried from the leading edge to a point at least as far back

as the position of minimum pressure on the basic thickness
form. The usual practice is to camber NACA 6-series air-
foil sections with the a= 1.0 type of mean line because this

mean line appears to be best for high maximum lift coeffi-
cients and, contrary to theoretical predictions, does not
cause excessive quarter-chord pitching-moment coefficients.

The a----1.0 type mean line was not considered desirable,
however, for the NACA 6A-series basic thickness forms be-
cause the surfaces of the cambered airfoil sections would be

curved near the trailing edge. The type of mean line best

suited for maintaining straight sMes on these newer sections
would he one that is straight from 80 percent chord to the

trailing edge. Such a camber line could be obtained by
modifying an a=0.7 mean line. Consideration of the effect
of mean-line loading upon the maximum lift coefficient

indicated, however, that a mean line having a uniform load
distribution as far back along the chord as possible was
desirable. It was found that the a----0.8 type mean line
could be made straight from approximately 85 percent

chord to the trailing edge without causing a sharp break in
the mean line and with very little curvature between the 80-

percent- and 85-percent-chord stations. The aerodynamic
advantages of using this mean line in preference to one

having uniform load to 70 percent chord were considered to
he more important than the slight cflrvature existing in the
modified a=0.8 mean line. For this reason, all cambered

NACA 6A-series ah'foil sections have employed the a=0.8

(modified) mean line.
The ordinates and load-distribution data corresponding

to a design lift coefficient of 1.0 are presented in figure 3 for
the a=0.8 (modified) mean line. The ordinates of a mean
line having any arbitrary design lift coefficient may be
obtained simply by multiplying the ordinates presented by

the desired design lift coefficient.
Cambered airfoils.--The method used for cambering the

basic thickness distributions of figure 2 with the mean line

of figure 17 is described and discussed in references 1 and 2.
It consists essentially in laying out the ordinates of the basic
thickness forms normal to the mean line at corresponding

stations. A discussion of the method employed for com-

bining the theoretical pressure-distribution data, presented

in figures 2 and 3 for the mean-line and basic-thickness dis-
tributions, to give the approximate theoretical pressure dis-
tribution about a cambered or symmetrical airfoil section

at any lift (.oefIicient is given in reference I.

APPARATUS AND TESTS

Wind tunnel.--All the tests described herein were con-

ducted in the Langley two-dimensional low-turbulence

.pressure tunnel. The test section of this tunnel measures
3 feet by 7.5 feet. The models completely spanned the
3-foot dimension with the gaps between the model and tunnel

2.5

/.0

p_

0

.2

c

'\

0 .2 .,/ .6 .8 /.0
x/c

C+._ 1.0 a¢_ 1.4O ° C,%1_=0.219

.t: Ye

(percent c) (percent c)

00

.5

.75

1.2,5
2.5

5.0

7.5

10
15

2O

25
30

35

40

,t5
50

55

6O

65
70

75

80

85

9O
95

1OO

• 281 O. 47539
• 396 .44004

• 603 .39531

I. 055 .33404

1. 803 .27149
2. 432 .23378

2.981 .20618

3. 903 .16546
4. 651 .134.52

5.2,_7 .10873

5. 742 .08595

6.120 .06498
6. 394 .04507

6. 571 . 02,559

6. 6,51 .00607
6. _31 --. 01404

6. 508 --. 03537

6. 274 --. (_5887

5. 913 --. 08610
5. 401 --. 120,58

4. 673 --. 18034

3. 607 --. 23430

2. 452 --. 24521
1. 226 --. 24521

0 --. 24521

AV Pn
dy_/dx pn I "_--4-

........................................

I. 092 0. 273

I. 096 .274

1.100 .275

f / I. 104 .276

I. 108 .277

I. I()S .277
I. ] 12 .278
1. t12 .278

• 840 .210

.588 .147
• 368 .092

0 0

FIGURE 3.--Data for NACA mean line a=0.8 (modified).

walls sealed to prevent air leakage. IMt measurements
were made by taking the difference between the pressure

reaction upon the floor and ceiling of the tunnel, drag results
were obtained by the wake-survey metho(l, and pitctfing
moments were determined with a torque balance. A more

complete description of the tunnel and the method of obtain-

ing and reducing the data are contained in reference 1.
Models.--The seven airfoil sections for which the experi-

mental aerodynamic characteristi('s were obtained are:
NACA 63A0 l0

NACA 63A210
NACA 64A010
NACA 64A210, NACA 64_A212, NACA 64:A215

NACA 64A410
The models representing the airfoil sections were of 24-inch
chord and were constructed of laminated mahogany. The

models were painted with lacquer and then sanded with
No. 400 carborundum paper until aerodynamically smooth
surfaces were obtained. The ordinates of the models tested

are presented in tables I to VII.



THEORETICAL AND EXPERIMENTAL DATA FOR A NUMBER OF NACA 6A--SERIES AIRFOIL SECTIONS

TABLE I.--ORDINATES OF NACA 63A010 AIRFOIL

SECTION

]stations and ordinates given in percent of airfoil chord]

ill)per surface Lower surface

St,_.tion Ordinate

0

.5

• 75
1.25

2.5

5.0
7.5

10

15
2O

25
30

35

4O

45
50

55

60
65

70

75

8O
85

930

95
100

Ordinate Station

0 0

• 810 .5

.983 .75
1.250 1.25

1. 737 2. 5

2. 412 5. 0
2.917 7.5

:3. 324 10

3. 950 15
,L 4(XI 20

4. 714 25

4. 913 :_
4. 995 35

-L 968 40

4. 837 45
4. 613 f_l

4.3tl 55

3. 943 60
3. 517 t{5

3. 044 70

2. 545 75
2. 040 80

I, 535 85

1• 030 (30
• 525 95

• 021 100

0

--.816
--. 983

--1.2,50

--1.7:37
--2. 412

--2. 917

--3. 324
--3. 950

-- 4.49O

--4. 714
--4. 913

--4. 995

--4. 968
--4. 837

--4. 613

--4.311

--3. 943
--3. 517

-- 3. 044

--2. 545
--2.040

-- i. 535

--1.030
--. 525

--. 021

L. E. radius: 0.742

T. E. radus: 0.023

TABLE II.--ORDINATES OF NACA 63A210 A[RFOIL

SECTION

]Stations and ordinates given in percent of airfoil chord]

Upper surface Lower snrface

Station Ordinate

0

• 423
.664

1.151

2. 384
4. 869

7. 364

9. 863
14. 869

19. 882

24. 89!/
29. 916

34. 935

39, 955
44. 975

49. 994

55.012

60. {)28
65. 04i

70.052

75. 061
80. 074

85.072

(30.050
95. 026

10{). [g)0
i '
i

L.E. radius: 0.742
i

T. E. radius: 0.023
" Slope of radius thrtalgh L. E.: 0.095

I

Ordinate Station

0 0

.868 .577

1. 058 .836
1. 367 1. 349

1. 944 2. 616
2. 769 5. 131

3. 400 7.6.36

3. 917 10. t37
4. 729 15.131

5.328 20. I18

5. 764 25.102
6. 06O 30. 084

0. 219 35. 065

6. 247 40. 045
6. 151 45. 025

5. 943 _. 006

5. 637 54. 988

5. 245 59. 972
4. 772 64. 959

4. 227 69. 948
3. 624 74. 939

2. 974 79. 926

2. 254 84. 928

1. 519 89. 950
• 769 94. 974

.021 1O0. (}_)

O

-. 756
--.900

--1. 125

-- 1. 522
--2. 047

--2. 428

--2. 725
--3. 167

--3. 4(_

--3. fi62
--3. 761

--3. 771

--3. 689
--3. 523

--3.28:{

-- 2. 985
--2. 641

--2. 262

-- l, 86l
-- 1. 464

-- 1. 104

--. 812

--. 539
--. 279

--. 021

TABLE III.--OR.DINATES OF NACA 64A010 AIRFOIL

SECTION

[Stations and ordinates given in percent of airfoil chord]

Upper surface Lower surface

Station Ordinate Station Ordinate

O
.5

.75

1.25

2.5
5.0

7.5
l0

15

20
25

30

35
40

45

50

55
60

65

70
75

8O

S5
90

95

19O

0 0
.804 .5

• 969 .75

1.225 1•25
1.688 2.5

2.327 5.0

2. 805 7. 5
3. 199 10

3.813 15

4. 272 20
4. 606 25

4. 837 30

4. 968 35
4. 995 40

4. 894 45

4. 684 50

4. 388 55
4. 021 60

3. 597 65

3.127 70
2. 623 75

2.103 80

1..582 85
l. 062 90

.541 95

• 02t I(X)

0

--. 804

--. 969
-- I. 225

-- 1.688

--2. 327

--2. 805
--3. 199

--3.813
--4. 272

--4. 606

--4. 837
--4.99S

--4. 995

--4. 894

--4. 684
--4. 388

--4. 021

--3. 597
--3.127

--2. 623

--2. 103
--1.582

--1.062

--. 54I

--. 02l

L. E. radius: 0.687
T. E. radius: 0.023

TABLE IV.--ORDINATES OF NACA 64A210 AIRFOIL

SECTION

]Stations and ordinates given in percent of airfoil chord]

Upper surface Lower surface

Station Ordinate

0

.424
•665

1.153

2•387
4.874

7.369
9.868

14.874

19.885
24.9{_1

29.917

34.935
39.955

44.975

49.994

55.012
60.028

65.042

70.054
75.063

8{1.076

85.074
90.052

95.027

100. 0_)

Ordinate Station

0 0
.856 .576

1.044 .835

1. 342 1. 347
1.895 2. 613

2.685 5. t26

3.288 7.63l
3.792 I0.132

4.592 15.126

5.200 20.115
5. 656 25. 100

5.984 30.083

6.192 35.065
6.274 40.045

6.208 45.025

6.014 50.000

5. 714 54.988
5.323 59.972

4. 852 64. 958

4. 31[) 69. 946
3.702 74.937

3.{137 79.924

2.301 84.926
• 1.551 89.948

.785 94.974

.021 100.9O0

0
--. 744

--. 886

--1.19O

-- 1.473
-- 1.963

--2. 316
--2. 600

--3. 030

--3. 340

--3. 554
--3. 688

--3. 744
--3. 716

--3. 580

-3. 354

--3. O62
--2. 710

--2. 342

-- I. 944
-- 1. 542

--1. 167

--. 859
--. 571

--. 295

--. 021

L. E. radius: 0•687

T. E. radius: 0.023

Slope of radius through L. E.: 0.095 i
l
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TABLE V.--ORDINATES OF NACA 64A410 AIRFOIL
SECTION

[Stations and ordinates given in percent of airfoil chord]

Upper surface Lower surface

Station

0
.350
.582

1.059
2.276
4.749
7. 230
9.737

14.748
19.770
24.800
20.834
34.871
39.910
44.950
49.989
55.025
60.057
65.085
70.108
75.126
80.151
85.148
90.104
95. 053

100.000

Ordinate

0 O
.902 .050

1.112 .918
1. 451 1. 441
2.695 2.724
3.034 5.251
3. 865 7. 770
4.380 10.263
5. 366 15. 252
6.126 20. 230
6. 705 25. 200
7.131 30.166
7. 414 35.129
7. 552 40. 090
7. 522 45. 050
7.344 50.011
7. 040 54. 975
6. 624 59. 943
6.106 64. 915
5.490 69.892
4. 780 74. 874
3. 967 79. 849
3. 018 84. 852
2. 038 89. 896
I.028 94. 947
.021 100. 000

Stat ion Ordinate

0
--. 078
--. 796
--. 969

-- 1. 251
--1.592
--1.919
--1.996
--2.244
--2.406
--2. 499
-- 2. 537
-- 2. 518
--2. 436
--2. 266
--2. 024
--1.736
--1. 418
--1.086

--. 760
--. 460
--.2'29
--. 132
--. 076
--. 048
_. 021

L. E. radius: 0.687
T. E. radius: 0.023
Slope of radius through L.E.: 0.190

TABLE VI.--ORDINATES OF NACA 641A212 AIRFOIL
SECTION

[Stations and ordinates given in percent of airfoil chord]

Upper surface Lower surface

Station

0
.409
.648

1.135
2.365
4.849
7.343
9. 842

14.849
19.802
24.880
29.900
34. 922
39.946
44.970
49. 903
55. 015
60. 034
65. 050
70. 064
75. 075
80.090
85. 088
90. 062
95. 032

100.000

Ordinate Station

0
1.013
1.233
1.580
2._5
3.145
3. 846
4. 432
5. 3_
0.060
6.584
6.9_
7.1_
7._2
7.177
6. 035
6.5_
6.103
5. 544
4. 033
4.197
3.403
2.001
1.751
.888
.0_

0
.591

.852
1. 365
2. 635
5.151
7. 657

10.158
15.151
20.138
25.120
80.100
35. 078
40. 054
45. 030
,50.0007
54. 985
59. 966
64. 900
69. 930
74. 925
79. 910
84.912
89. 038
94.968

100.000

Ordinate

O
-.901

-1.075
-1.338
-1.8o3
-2. 423
-- 2. 874
--3.240
--3. 796
--4.200
-4.482
--4.000
--4.741
-4. 714
--4. 549
--4.275
--3. 918
--3. 499
--3.034
--2. 537
--2.037
--1.503
--1.159

--. 771
--. 398
--. 025

L. E. radius: 0.994
T. E. radius: 0.028
Slope of radius through L. E.: 0.695

TABLE VII.--ORDINATES OF NACA 642A215 AIRFOIL

SECTION

[Stations and ordinates given in percent of airfoil chordl

Upper surface Lower surface

Station

o
.388
.624

1.107
2.333
4.811
7.304
9. 802

14.811
19. 827
24. 849
29. 875
34..003
39. 933
44.963
49. 992
55. O18
6O. 042
65. 003
70. 079
75. 093
80. Ill
85.109
90, 076
95. 039

100. 000

Ordinate

0 0
1. 243 .612
1. 509 .876
1.930 1.393
2. 713 2. 667
3. 833 5. ! 80
4. 683 7. 690
5. 391 10. 198
6. 510 15.189
7. 351 20.173
7. 975 25.151
8. 417 30. 125
8. 686 35. 097
8. 766 40. 067
8. 627 45. 037
8. 308 50. (108
7. 843 54. 982
7. 258 59. 958
6. 566 64. 937
5. 782 69. 921
4. 926 74. 907
4. 017 79. 889
;L 039 84. 891
2. 946 89. 924
1.039 94.961

.032 100. 000

Station Ordinate

O
--1.131
--1.351
-1.688
--2. 29l
--3.111
--3. 711
--4.199
--4. 948
--5. 491
--5. 873
--0.121
--6. 238
--6. 208
--5. 999
--5. 648
--5.19l
--4. 654
--4. 056
--3. 416
--2. 766
--2.147
-- 1.507
-I. O66
--.549
--, 0,32

L. E. radius: 1.561
T. E. radius: 0.037
Slope of radius through L. E.: 0.003

Tests.--The tests of each smooth airfoil section consisted

in measurements of the lift, drag, and quarter-chord pitching-
moment coefficients at Reynolds numbers of 3 X 106, 6 X 106,
and 9X106. In addition, the lift and drag characteristics
of each section were determined at a Reynolds number of

6X 106 with standard roughness applied to the leading edge
of the model. The standard roughness employed on these
24-inch-chord models consisted of 0.011-inch-diameter car-

borundum grains spread over a surface length of 8 percent
of the chord back from the leading edge on the upper _nd

lower surfaces. The grains were thinly spread to cover from

5 to 10 percent of this area. In an effort to obtain some
idea of the effectiveness of the airfoil sections when equipped

with trailing-edge high-lift devices, each section was fitted
with a simulated split flap deflected 60 °. Lift measurements

with the split flap were made at a Reynolds number of
6 X 10_ with the airfoil leading edge both smooth and rough.

RESULTS

The results obtained from tests of the seven airfoil sections

are presented in figures 4 to 10 in the form of standard aero-

dynamic coefficients representing the lift, drag, and quarter-
chord pitching-moment characteristics of the airfoil sections.
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The calculated position of the aerodynamic center and the
variation of the pitching-moment coefficient with lift coeffi-
cient about this point are also included in these data. The
influence of the tunnel boundaries has been removed from

all the aerodynamic data by means of the following equa-
tions (developed in reference 1):

cd_O.990Cd'

Cl=0.973CL

cm_:4=0.951c,_/4_

no: 1.015ao'

where the primed quantities denote the measured coefficients.

DISCUSSION

Although the amount of systematic aerodynamic data pre-

sented for NACA 6A-series airfoil sections is not large, it is
enough to indicate the relative merits of the NACA 6A-

series airfoil sections as compared with the NACA 6-series

sections. The variation of the important aerodynamic char-
acteristics of the five NACA 64A-series airfoils with the
pertinent geometrical parameters of the airfoils is shown in

figures 11 to 17, together with comparable data for NACA
64-series airfoils. The curves shown in figures 11 to 17 are
for the NACA 64-series airfoil sections and are taken from

the faired data of reference 1. The experimental points
which appear on these figures represent the results obtained

for the NACA 64A-series airfoil sections in the present
investigation. Since only two NACA 63A-series sections

were tested, comparative results are not presented for them.
The effect of removing the cusp from the NACA 63-series

.012

Io ,,I
o }--- 13 ,2
<> .4

Srnoofh_
..... Rough j

NACA 64A-ser?es

I I
NACA 64-series-

I

.Ol 0
F.

._ .008

_ . 006

._.

.004

._.

sections is about the same as that of removing the cust
from the NACA 64-series sections.

The comparative data showing the effects upon the aero-

dynamic characteristics of removing the trailing-edge cus_
from NACA 6-series airfoil sections should be used witl

caution if the cusp removal is affected in some manner othel

than that indicated earlier in this paper. For example, il
_he cusp should be removed fl'om a cambered airfoil by meam
of a straight-line fairing of the airfoil surfaces, the amount ol

camber would be decreased near the trailing edge. Naturall:y
the effect upon the aerodynamic characteristics of removin_
the cusp in such a manner would not be the same as in-

dicated by the comparative results presented for NACA
6-series and 6A-series airfoils.

Drag.--The variation of section minimum drag coefficien|
with airfoil thickness ratio at a Reynolds number of 6X 10_
is shown in figure 11 for NACA 64-series and NACA 64A-
series airfoil sections of various cambers, both smooth and

with standard leading-edge roughness. As with the NACA

64-series sections (reference 1), the minimum drag coeffi-
cients of the NACA 64A-series sections show no consistent

variation with camber. Comparison of the data of figure 11

indicates that removing the cusp from the trailing edge has
no appreciable effect upon the minimum drag coefficients of

the airfoils, either smooth or with standard leading-edge
roughness.

Increasing the Reynolds number from 3X106 to 9X 106

has about the same effect upon the minimum drag coefficient

of NACA 64A-series airfoils (figs. 4 to 10) as that indicated
in reference 1 for the NACA 64-series airfoils.

Some differences exist in the drag coefficients of NACA

64- and 64A-series airfoils outside the low-drag range of lift
coefficients but these differences are small and do not show

any consistent trends (figs. 4 to 10 and reference 1).

_....._.-----_I I

1 I

.002

0 2 4 6 8 I0 12 14 16 18 BO 2,-°
A/rfo// fh/'Chness_ percent of" chord

FIGURE 11.--Variation n[lllinimtlnl section drag eoellicient with airfoil thickness for some N ACA 6.l-series (reference I) and NAC A 64A-series airfoil sections of various etinlhers ill the smooth

condition _md with standard leading-edge roughness. R=6X1U6; flagged symbols indicate NACA 64A-series sections with standard roughness.
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T,ift.--The section angle of zero lift as a function of thick-
ncss ratio is shown in figure 12 for NACA 64- and 64A-series
airfoil sections of various cambers. These results show that

the angle of zero lift is nearly independent of thickness and

is primarily dependent upon the amount of camber for a
particular type of mean line. Theoretical calculations made
by use of the mean-line data of figm'e 3 and reference 1
indicate that airfoils with the a=0.8 (modified) mean line

should have angles of zero lift less negative than those with
the a= 1.0 mean line. Actually, the reverse appears to be

the case, and this effect is due mainly to the fact that air-
foils having the a= 1.0 type of mean line have angles of zero
lift which are only about 74 percent of their theoretical value

(reference 1), and those having the a----0.8 (modified) mean
lines have angles of zero lift larger than indicated by theory•

The measured lift-curve slopes corresponding to the NACA
64-series and NACA 64A-series airfoils of various cambers

are presented in figure 13 as a function of airfoil thickness
ratio. No consistent variation of lift-curve slope with

camber or Reynolds number is shown by either type of air-
foil. The increase in traihng-edge angle which accompanies

removal of the cusp would be expected to reduce the lift-
curve slope by an amount which increases with airfoil thick-
ness ratio (references 3 and 4). Because the present data

for the NACA 6A-series sections show essentially no varia-
tion in lift-curve slope with thickness ratio, it appears that
the effect of increasing the trailing-edge angle is about

3`2

" - (/VACA

_ 0----
_4

-2

_-4
0

0 0 2r_ ..0
0:4"

.2
(

o

.. -_4

4 8 /2 / 6 20 24

A/r-foE fh/c/<ness_ percent of chord

F[nURE 12.--Variation of section angle of zero lift with airfoil thickn_s ratio and camber for

some NACA 64-series (reference 1) and NACA 64A-series airfoil sections. R=6Xll_ 6.

./4,

s,
./,2

L

Q ./6

.oo --

L

"4 .06
0

el)

__ o O

B .2 _ NACA 6#h-ser/exo ., I I
Smooth_

.... Rough J NAC, 64-series--
I I , I I I

4 8 / 2 16 20 24

A/rfoH th/cktless_ percent of chord

Fn_uBl_ 13. Variation of lift-curve slopc with airfoil thickness ratio for some NACA 64-scrio_

(reference I) and N A ('A 64A-sl!rics airfoil sections of w_rious camhcrs hoth in the smooth

condition and with standard leading-edge roughness. R=6X10"; flagged symbols indicattl

NACA 64A-series sections with standard roughness.

balanced by the increase in lift-curve slope with thickness
ratio shown by NACA 6-series sections. The value of the
lift-curve slope for smooth NACA 64A-series airfoil sections

is very close to that predicted from thin airfoil theory (27r
per red|an or 0.110 per degree). Removing the trailing-

edge cusp from an airfoil section with standard leading-edge
roughness causes the lift-curve slope to decrease quite
rapidly with increasing airfoil thickness ratio.

The variation of the maximum section lift coefficient with

airfoil thickness ratio and camber at a Reynolds number
of 6X108 is.shown in figure 14 for NACA 64-series and
NACA 64A-series airfoil sections with and without standard

leading-edge roughness and simulated split flaps deflected

60 °. A comparison of these data indicates that the char-
acter of the variation of maximum lift coefficient with airfoil

thickness ratio and camber is nearly the same for the NACA
64-series and NACA 64A-series airfoil sections. The magni-

tude of the maximum lift coefficient appears to be slightly
less for the plain NACA 64A-series airfoils and slightly

higher for the NACA 64A-series airfoils with split flaps than
corresponding values for the NACA 64-series airfoils. These
differences are small, however, and for engineering applica-
tions the maximum-lift characteristics of NACA 64-series

and 64A-series airfoil sections of comparable thickness and

design lift coefficient may be considered practically the same.

0

I(b)

0 4

!
I (?'zi 1,

NACA 64-series

- o .4 .... _! - -

/ ..... _--

.... "1"--'1 - - -.

•2}NACA 64A-ser,'es ............

..¢t I I '

,2 I2 IG 20 Z4

A/rfoH /h/c/_ness_ per'cent of chord

(a) Airfoil with simulated split flap deflected 60".

(b) Plain airfoil•

I,'o;_sRt,: 14. -Variation of maxinmm section lift cocllieicnt with airfoil thickness ratio and

camber for some NACA 64-series (reference 1) and NACA 64A-serit,s airfoil sections with

and witlmut simulated split flaps and standard roughness. R_6X10_; flagged symbols

indicate NACA fi4A-serics airfoils with standard roughness.
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A comparison of the maximum-lift data for NACA 64A-
series airfoil sections, presented in figures 4 to 10, with
siinilar data for NACA 64-series airfoil sections indicates

that the scale-effect characteristics of tile two types of section

are essentially the same for the range of Reynolds number
from 3 X l06 to 9 X 106.

Pitohing moment--Thin-airfoil theory provides a means

for calculating the theoretical quarter-chord pitching-moment
coefficients of airfoil sections having various amounts and

./

J
"1,-_ 0

(D

0 -./

"_ -_3

I I% I I
fNACA 64A-ser/es]__

o 0

o .2

--0 .4

"-'-'-2

I I {_li

(NACA G4-ser/es)

I
u I

_ "'.4

-'4o 4 8 /2 /6 20 24

Aii,"*foi/ 7'/"t/ck,"'tes$ t percent of c_oi."d

(a) Plain airfoil. ,,

(b) Airfoil with simulated split flap deflected 60°,

FIGURE 15,--Variation of section quarter-chord pitching-moment coefficient at zero angle of

attack with airfoil thickness ratio and camber for some NACA 64-series (reference 1) and

NAOA 64A-series airfoil sections with and without split flaps. R=6X 106; flagged symbo]s

Indicate NAC.& 64A.series airfoils with 60 ° simulated split flap,

' -./O
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o
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FIGtT:a'R.16.--Comparison of theoretical and measured pitching-moment coefficients for some

NACA 64-series and 64A-series airfoil sections. R=6XI06.

types of camber. Calculations were made according to thes
methods for airfoils having the a= 1.0 and a=0.8 (modified

mean lines by using the theoretical mean-line data presente,

in figure 3 and in reference 1. The results of these calcula
tions indicate that the quarter-chord pitching-moment coeffi
cients of the NACA 64A-series airfoil sections having th
a=0.8 (modified) mean line should be only about 87 percen
of those for the NACA 64-series airfoil sections with th

a=l.0 mean line. The experimental relationship betwee:

the quarter-chord pitching-moment coefficient and airfoi
thickness ratio and camber, shown in figure 15, discloses tha

the plain NACA 64A-series airfoils have pitching-momen

coefficients which are slightly more negative than those fo
the plain NACA 64-series airfoils. The increase in th
magnitude of the pitching-moment coefficient of NACA 64A

series airfoils as compared witlt NACA 64-series airfoil
becomes greater when the airfoils are eq uipped with simulate,
split flaps deflected 60 °. A comparison of the theoretic_

and measured pitching-moment coefficients is shown in figur
16 for NACA 64-series and 64A-series airfoil sections. Thes

comparative data indicate that the NACA 64A-series section

much more nearly realize their theoretical moment coefficient
than do the 64-series airfoil sections. Similar trends hay
been shown to result when mean lines such as the a=0.

type are employed with NACA 6-series airfoils (reference 1)
_erodynamic eenter.--The position of the aerodynami

center and the variation of the moment coefficient with lif

coefficient about this point were calculated from the quarter
chord pitching-moment'data for each of the seven airfoil

tested. The variation of the chordwise position of the nero
dynamic center with airfoil thickness ratio is shown in figur
17 for the NACA 64-series and 64A-series airfoil section.,
Since the data for the NACA 64-series airfoils showed n

consistent variation with camber, the results are represente,

by a single faired curve for all cambers. Following this sam
trend, the position of the aerodynamic center for the NAC_
64A-series airfoils shows no consistent variation with cambe_

The data of figures 4 to 10 show that the variations in th
Reynolds number have no consistent effect upon the chord
wise position of the aerodynamic center.

Perfect fluid theory indicates that the position of th
aerodynamic center should move rearward with increasin
airfoil thickness and the experimental results for the NAC_
64-series airfoil sections follow this trend. The data, c

_. .28
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._ .26

o 0

I _i' I

--- a .2 _ _CA 64A-se_/es

--NACA _4-_er/e_ .....i-I""I
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2 4 6 8 /0 12 14 /6 /8 20 2,
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FIGURE 17.--Variation of chordwise position of aerodynamic center with airfoil thicknc

ratio for some NACA 64-series (reference 1) and 64A-series airfoil sections of differc_

cambers. R=6XI0 _.
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reference 5 show important forward movements of the aero-

dynamic center with increasing trailing-edge angle for a
given airfoil thickness ratio. The results obtained for tile

NACA 24-, 44-, and 230-series airfoil sections (reference 1)

reveal that the effect of increasing trailing-edge angle pre-
dominates over the effect of increasing thickness because the
position of the aerodynamic center moves forward with
increasing thickness ratio for these airfoil sections. For the

NACA 64A-series airfoils (fig. 17) the aerodynamic center is

slightly behind the quarter-chord point and does not appear

to vary with increasing thickness. These results suggest
that the effect of increasing thickness is counterbalanced by
increasing trailing-edge angle for these airfoil sections.

CONCLUSIONS

From a two dimensional wind-tunnel investigation of the
aerodynamic characteristics of five NACA 64A-series and

two NACA 63A-series airfoil sections the following conclu-
sions based upon data obtained at Reynolds numbers of
3X106, 6X106, and 9X106 may be drawn:

1. The section minimum drag and maximum lift coef-
ficients of corresponding NACA 6-series and 6A-series airfoil
sections are essentially the same.

2. The lift-curve slopes of smooth NACA 6A-series airfoil

sections appear to be essentially independent of airfoil

thickness ratio, in contrast to the trends shown by NACA

6-series airfoil sections. The addition of standard leading-
edge roughness causes the lift-curve slope to decrease with
increasing airfoil thickness ratio for NACA 6A-series airfoil
sections.

3. Tile section angles of zero lift of NACA 6A-seri(

airfoil sections are slightly more negative than those (
comparable NACA 6-series airfoil sections.

4. The section quarter-chord pitching-moment coeificient
of NACA 6A-series airfoil sections are slightly more negativ
than those of comparable NACA 6-series airfoil sectiom

The position of the aerodynamic center is essentially ind¢
pendent of airfoil thickness ratio for NACA 6A-series airfo
sections.

LANGLEY _EMOR1AL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., _l/iay 6, 1957.
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