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STABILITY DERIVATIVES OF TRIANGULAR WINGS AT SUPERSONIC

By HERBEET S. RIBNEE and FRAKKS. MALVESTUTC, Jr.

SUMMARY

The ana[@s of the stability derivationsof ho-aspect-ratio
tn”angularun%g~at dwonic and supersonic speeds, ~“ven in
AZ&W TN No. l@9, is extendedto apply to triangular wings
having large certex angleg and traceling at supersonic speeds.
Tiie l@, rolling moment dux to sideslip, and damping in roll
and pitchfor this more general case hare been treated elsewhere
on the basis of the theory of small disturbances. The surface
potentials for angle of attack and rolling taken therefrom are
used to obtain the several side-force and yawing-moment
derivativesthat depend on leading-edge swction, and a tentatil~e
due for the rolling moment due to yawing. The li( and
moment due to doumwardacceleration are obtained on the basis
of an unpublished unstwdy-jlow solution. All the known
stability derivatiws of the triangular un.ngat &upersonicspeeds,
regardless of source, are sunun.arizd for conr.enience and
presentedm“tiirespect to bothbody axes and stubi~ityaxes. The
reedts are limited to Mach numbersfor which the triangular
wing ia contained m-thin the Mach cone from its rer[ex, The
spanwise variution of Mach number in the case of yawing is
neglected,althoughthe e$ect must be of importance.

INTRODUCTION

An earlierinvestigation (reference 1) has provided theoreti-
cal stability derivatives of low-aspect-ratio -rings of triangu-
lar plan form at subsonic and supersonic speeds. The
restriction to Iow aspect ratio vias a consequence of the
limitations of the theory. Several investigators have since
obtained pressure distributions for angle of attack, rclling,
pitching, and sideslip at supersmic speeds (references 2 to 6
and unpubhshed analyses), without restriction to low aspect
ratio. These derivations have employed variants of the
Iinear theory of supersonic flow and have, in fact-, constituted
important steps in the development of the theory.

If the rotations are taken about the vertex, the pressure
distribution for each motion in the more generrdcase is found
to have the same shape as the corresponding low-aspect-ratio
approximation, so long as the triangular wing is contained
within the Mach cone from the ~’ertex. The magnitudes
diiler by factors Aich are functions solely of the ratio of the
tangent of the semivertex angle of the triangle to the tangent
of the Mach angle. The same similarity exist~between the
distributions of surface potential. It is thus relatively simple
to extend most of the derivations of reference 1 to remove
the restriction of low aspect ratio for supersonic speeds. Such
au extension is made in the present report.

The lift-curve slope, the damping in roll and pitch, and (in
effect) the rolling moment due to sidesliphave been evaluated

SPEEDS

in references 2 to 6, so that the principal contributions of the
present report are the normal acceleration derivatives ob-
tained cm the basis of an unpublished unsteady-flow solution
due to Clifl’ordS. Gardner, the several side-force and ymving-
moment derivatives, and a tentative value of the rolling
moment due to yawing. AUthe known stability derivatives
of the trianguhm wing at supersonic speeds, regardle~ of
source, are collected herein for convenience and presented
with respect to both body wms and stability axes. Wings
with dihedral are not treated (although they were included
in reference 1), and the results are limited to Mach numbers
for which the.wing is contained within the Mach cone from its
vertcsx.

SYMBOLS

xl Y) z rectangular coordinates (&. 1)
t time
u, v, w incremental flight velocities along z-, y-, and

z+mes, respectively (@. 2); induced flow veloc-
ities along w, y-, and z-axes of figure 1,
respectively

P, ~yr angular velocities about z-, y-j and z-axes, rcspeo-
t.ively (@g. 2)

%u Y
. .

FKKEE1.–Axes andnotationusedh andgsk.

v flight speed
z speed of sound in free stream
M stream Mach number (V/Z)
M’ component of the bfach number normal to wing

‘ea~’=edge(.:%)
B

P

AP

P
a
b

cotangent of +Machangle (~=)
ang~eof attack (Flight w/V)
angle of sideslip (Flight v/V) .
semivertex angle of triangle

Mach angle (cot-l ~~)
locrd pressure difference between lower and uppw”-—

surfaces of airfoil, positive in sense of a lift
density of air
tiwidth of triangle at distance x from vertex
span (base of triangle)
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c root chord (height of triangle)
z mean aerodynamic chord

c12 ““2 (Local chord) ’dy=~ c% a )

c
(

ada Ab
edge slope ;=&=x=~c

)
ii aspect ratio (2b/c)

s area of triangle
()

: bc

4 velocity potent iaI
$ vahm of @ for unit pitching velocity
x value of ~ for unit angle of attack

E’ (~C) complete elliptic integral of the second kind with
r

(s

z

modulus k ~ 1~1—k* sinzz CL?
)

F’(BC) complete elIiptic integnd of the first kind with
‘r

(sT dz
modulus k

)o /1 —kzsinqz

E“ (BC) =E+3q -. —

[E’’ (BC)]’~(BC)=41_B,C, . .. . . .. ...

WC) = (~_2B2c2&7)3?*c*F’ m’)

H(BC) =3 G(BC) –2E’’(BC)
2(1 —we)

l(BC) = (c&B’~2)~1 (~c) _B2&Ff (BO ““”

J(BC) =E’’(BC)I(BC) ~~i “
K
N
Y
f
c.

cm

c,

c.

c,

Cf..

~N

constant defined in equation (16)
yawing moment <
lateral forc~
suction force per unit length of edge

Lift

()

lift coefficient —
; pvzs

(
Pitching momentpitching-moment coefficient

; pv%z
)

(

Rolling momentrolling-moment coefficient
1 I’zSb5P

)
ivyawning-moment coefficient

()
1 V2Sb2P

(.)

lateral-force coefEcient —
. 1 v2~

5P

profile drag coefficient

r:edrag)
1 ~72S
2P

induced surface velocity normal to wing leadkg
edge

s perpendicular distance of pain~ (r, y) from wing
leading edge

Xcg distance of center of gravity forwmd of ~-c

Subscripts:
R right edge
L“. ~eft edge ““

‘?i%cn x, y, 2, or t are used M subscripts, the rcsprctivo
partial derivative is indicatd. For oxarnpk,

Wheneiei a, c+ g, p, /3,and r arc used as sulxwripls, a
nondimensional derivative is indicated and this dmivutivc
is the slope through zero. For e--.-ample,

A dot above a symbol denotes differentiation with respect
to time, AU angles arc measured in radians,

ANALYSIS

SCOPE

The stability derivatives of triangular wings at aupmeonic
speed that have been treated theoretically hvrcin or else-
where are listed in table I, together with the expressions
thmthave been found for thcm. All the derivalious make
use of body axes. The derivations thut follow give tho
values with reference to the principal body axes of figure 2

with origin at the aerodynamic center
()

$, 0,0 . Conver-

sion has been made to the system of st.ajilit.y &s shown in

figure 3 with” origin a distrmce Xw ahead of the $C point.

Table I comprises parallel columns which prwenL formulas -
relative to both systems. The expressions are limited to
Mach numbers for which the triangle is centtiinrd within
the Mach cone from its vertex.
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*
Iu,z

Prfirsm2.–Vskdtk$ hces, and momentsrdatiw to principnlares with orf.gkiat ~c.

FmrsiE&-VeIockf&+ fores, and momsntsrelatire to Stsbflftyaxes with orf@ at + - I.C.
Principalaxesof slgurs2 dashed In for mmparison.

DERIVATIVE CL=

The pressure distribution on a thin triangular ming at an
angle of attack in a supersonic stream has been obtained in
references 2 to 4 by the linearized theory without restric-
tion on the vertex angle of the trim”gle. The approximation
originally given for the slender (low-aspect-ratio) triangle
(reference 7) and used as the basis for reference 1 is found
to apply to the general case upon division by a constant (an
elliptic integral) that depends on the ratio of the semivertex
angle to the Mach angle; that is,

(1)

where E’ (13Cj is the complete elliptic integral of the second
kind with modulus

k= ,l~p

Thus, the lift-curve slope for the more general case is the
value given by references 7 and 1 divided by E’ (BQ:

c.== “A
2~L?3

=; A-E’’(BC) (2)

The surface potential given in equation (3) of reference 1 is
likewise extended to include nonslender triangles at super-
sonic speeds upon division by E’(BC). The revised po-
tential ia

(3)

The elliptic integral E’(BO depends only on the pwam-

eter B C’= ‘a~f (ratio of the tangent of the semivertextan P .
angle of the triangular wing to the tangent of the Mach
a@e) and is therefore a constant for a given wing at a

given speed.
DERIVATIVES Cm@C+ ~D Cla

The derivatives C~a, CLr,and C~nare derived in reference 5.

With respect to the axes of figure 2

c ‘c = –$ Q(BC)

+w3c)G,-

C%=+(BC)

where

WW = (~_2B2c9E:&5)7B’c’F’(Ba

E7(BC)=3 G(BC) –2E” @C’)

2(1 –B21!Y)
~(BC) = (Z_BZCS)E~ (13c) –&&F (I?C)

(4)

(5)

(6)

(7)

(8)

(9)

and F’(W) and E’ (BC) are the complet.e elliptic iute.@s
of the first and second kinds, respectively, with modulus
k= ~~

DERIVATIVES CL: AND C+

The derivation of aL& and C.i in reference 1 is based on
the assumption that the steady-state surface potential is not
altered in the i3rst order by a smaII normal acceleration.
This assumption is true for the narrow triangles treated in
the earlier paper, but it fails for the general triangles treated
in the present paper. For this more general case the linear-
ized potential equation for nnateady motion,

(10)

must be solved, subject to the boundary condition on the
wing, that is, for z=O

(11)

In an unpublished paper, Mr. Word S. Gardner has, in
effect, shown that a suitable solution is

(12)

where Y ia the steady-state potential corresponding to a unit
pitchi~w velocity about the y-ati and x is the steady-state
potential corresponding to unit angIe of attack. That equa-
tion (12) is a solution can be verified by direct substitution
into equations (10) and (11). Thu8, Gardnerh8 8houmtit
h timedependeni potential for an angle of tik &t may be
compounded oj ho time-jree or 8tmz@sti poientide, one for
a constantangle oj attackand the otherjor e&?adyPitching.
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The lift distribution at tinwit= O for the angle of attack
&tis obtained from the surface potential by

, A~=2p(V&+4JJ;-o

where
(Ap) ,., lift distribution for unit pitching velocity abaut

y-axis
(A~) a., lift distribution for unit angle of attack
The choice of time t=O eliminates. the lift due to angle of
attack and leaves only the increment due to time rate of
change of angle of attack.

Integration to obtain the lift and rno”mentand reduction
to coefficient form yields

Ca ss’’(~)‘s+“““-~.=4$cme’++&
a=l

B-fkfsx($)”(15)

where the i.ntegrations are carried over the wing plan form.
For the triangular wing with y-axis taken through the

2
aerodynamic center, ~ c from the apex, the derivative C~~is

zero. The derivatives Cm,and CL,for this case are qvaluated
in equations (4) and (5), respectively. The potential x is
obtained by setting a= 1 in equatjon (3),. and the pregsure

u“

()coefficient ~ is obtained by setting a= 1 and
~ P~ .=l

()
a= C ~ C+X in equation (l). Substitution, integration,

and simplillcation yields the results

~
rA E.1~(BC) —M2H(B

C.k=–y (16)

(17)

DERIVATIVE C{e

The pressure distribution over a thin triangular wing in
yaw (sideSlip) at an angle of attack at supersonic speed has
been obtained in reference .6.and unpublished work. If the

()
angle of yaw is assumed to be small l?<<~l , the rolli.ng-

moment coeilicieti.can be expressed in the approximate form

Thus, the derivative with respect to P is

Clfl= –~ E“(BC) (18)

An alternative derivation based on the surface polcutitd,
equation (3), for the unyawed wing will be given because
the method provides the starting point-for a derivation of
cl,, cY#, cap, CY,, and C.,.

The potential for the disturbance velocity may bc ex-
pressed relative to axes dined with the stream (wind ww.a)
or with respect to axes that yaw with the body (body ares).

()
For small angkwof yaw #<<& , tho lkearkcd equation for

the potentia~ has the sume form relative to either systcm of
axes. Tbe potential is determined by the normal vulocity
of points of the surface and by the orienttition of thQsurfw:c; “
for negHgible thickness, tti normal ve~ocity is jusLccVfor all
angles of yaw. The poteutkl expressed lek!tiVO to W’k(]

axes thus varies as the wing yaws rclative to these axes.
The potential expressed relative to body axes is conet.anLfor
small’yaw because the orientation of the wing relative to thg
axes does not change.

For wind axes, Bernoulli’s law has the form

and the change in the pressure distribution with yaw rcsults
from the change in the potential funcLion with yuw. For
body axes with smaIl yaw, BernouUi’s law has the appmxi -
mate form

‘p=2m=3 (19)

and the change in pressure distribution with yaw rcdts

from the term-f?% since @ does not change.—.

In reference 1 in the section entitled “Dorivativc CJ~,” tho
derivation employs body axes and equation (19) of thu
present paper. The surface potential used (equation (3] of
referencf 1] is the approximation for narrow vertex Hughh
Equtition (3) herein for a general vcrtwi angle may bc used
instead.. Equation (3) herein diffm only in the factor
l/E’ (BC), whence the earlier esprcssion for C% (equation
(19), reference 1, with I’=O”) acquires this factor to agwo

with equation (18). .—

DERIVATIVE C+

The fnregoing discussion of tho triangular wiug in yaw
(sideSlip) may be ~~tended to provido a prolimiufiry trc~~
ment of. the case of a small angukw velocity of ynw r. The
corresponding extensioh for narrow vertex angle is nmdc iu
reference 1. The treatment is generalized to an arhi[.rnry
vertex angle for supersonic speeds, as before, Ly using
equation (3) herein for the surfaco potonthd. Two chung~
then appear in the pressure equatiou, cquution (20), of
referenc~ 1. The righthnd side@ divided By _?Z’(BC’),and
the term aC=xO rntit”be retained since@ is HOlonger small
compared with unity (C= Tangent of semivcrtu angle).
With these chauges, the derivation leads to

C+=U”(+3+*)E’’(BQ(20)
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In the derivation of equation (2o), the spanwise variation
in local M~ch number caused by yawing is not taken inta
account ah.bough the variation in forward speed is taken into
account. The surface potent.ial that is used, equation (3),
satisfies the linearized equation for a flow of uniform Mach
number. This potential is inadequate to describe the
compressibility effects associated with a spanwise variation
of Mach number.

Thus, consider a high-aspect-ratio rectangukr vving with
tips cut off along the AMach]ties. In stmight fight the
Ackeret theory can be applied. The pressure dfierenc.e is
given by

~P_ ~ 2PM2 (Speed of sound)2—
\m

(21)

In yawing flight the forward velocity varies I.inearly along
the span. If the rate of yaw is made sufilciently low, the
variation from wing tip to wing tip can be made so small that
the flow is sti nedy hvodimensiomd at any point. Thus
the Ackeret theory is stiIl applicable if the local Mach number
is used at each spanwise station.

The variation in prwsure with local Mach number can -be
obtained from equation (21). As the Mach number is
increased, the pressure decreases from infinity at -M= 1 to a
minimum at .U= 1.4 and then increases again. Thus below
Mach number ].4 tbe faster moving sections of the yawing
wing have the IesserIift. This redt is contrary to subsonic
behavior and to that which would be predicted if the span-
wise variation of Mach number were neglected. Thus the
spanwise variation of the compressibility eflect causea a
reversal of the sign of the rolling moment due to yawing for
rectangdar wings at Mach numbers between 1 and 1.4, and
at M=l.4 the moment is zero. (This rwmltrefers to yawing
in a system of stability axes, fig. 3. For body axes, @ 2,
the effect is simiIar but the reversal intends to M= w.)

A yaviing triangular wing maybe expected Iikevciseto show
an effect of the spanwise variation in Mach number. If the
triangle is contained \tithin the Mach cone from its vertex
(the only case considered in this report), however, the effect
should be very much less thpn for the rectangular wing. In
partictiar, where the predicted effect for the rectangular W@
is a reversal of the sign of the rolling moment, the d-ect for
the triangular wing is expected to be merely a change in the
magnitude. A revered in sign is not expected untiI the edg~
of the triangle protrude from the Mach cone. This behavior
is inferred from the fact that the analyses of references 2 to
7 show many subsonic characteristics for triangles within the
Mach cone and a marked change in characteristics for
triangles with side edges outside the Mach cone.

.
DEFUVATI VES Cr> AND C.n

Extensive changes are necessary to generalize the treat-
ment of C’=Pand C.Pin reference 1 to arbitrary vertex angl~
for supersonic speeds; therefore, the revised derivation is
given in detaiI.

The derivatives C’YPand
wry thin triangular wing

CL, relative h body axes for a
without dihedral arise entirely

from suction on the wing side edges. Consider a condition
for which the induced veIocity normal to the edge is of the _
form

(22)

in the immediate neighborhood of the edge, where 8 is the.
perpendicular distance from the edge and K is a cons@@.
Reference 3 points out that for such a flow there ia a suction
force per unit length of edge, .—.- __

j= rpK’>h –M” (23)

so long as the triangular wing does not protrude from the
Mach cone from its vert+x. In equation (23), .11’ is the
Mach number of the component of the stream flow normal
to the leading edge. The radicd ~~s is the Prandti-
Glauert compressibility factor for the normal component of
flow. Equation (23) is Iimited to real vahms of the radical
by the condition expressed for the Mach cone.

For the delta wing in rolling motion the induced veIocity
component u has been obtained in reference 5 as

“=%f%’(’a
hgle of attack gives the additional contribution (reference.2)

“=*=J%Y‘- ‘“-
The total induced veIocity on the upper surface is thus the
sum of U1and U2with the plus siam

JTerynear the side edge this velocity is approximately

Can

‘=w#**q’(B”]”

where the plus sign refers to the right edge and the minus
sign to the left edge.

If a similar calculation is made for a=~, it is found that
.

as the side edge is approached the resultant induced velocity
~w becomti- normal to the edge. Thus the normal
velocity near the edge is

f)033HG22
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The perpendicuhix distance of point (x, y) from the side
edge is

,=’@#J)–Y
x

The resultant induced velocity very near the edge may
therefore be expressed approximately as

which is of the form of equation (22). The suction force per
unit length of edge is from equation (23) thus

{

[qBc)]’p’c’&*
f=; Pcx &+ ~

where tho plus sign refers to the right edge and the minus
sign refem to the left edge. The factor ~f(l + 0) (1–M’~
can be reduced to ~==, whesi l?=illz— 1. ““

The lateral component of this suction force is given by

= C’c%ivpI(BC) ~~
==~ P E’ (B”t7)

.
The lateral-force coefilcient is folmed by division by ~ pV?S,

and the derivative with respect to ph/2V is the stability
derivative Crv. It is

The yawing moment of the leading-edge suction about the
vertex of the triangle is

T C%4aVp(l+@
l(m) @=2wP

=–~P Ii’ (BC)

The moment about the reference point
()

~c, O,O is

N= NO++CY

=–fip&c4aVp(l+90)

The yawing-moment coefficient is

l(BC’ _ ._
E’ (IM)

form6d by division by

~ pV3Sb, and the derivative with respect+to pb/2V is the

stability derivative C%. It is

DERIVATIVES Cp@, Cmp CYe AND C+

According to the discution on CIB,&small angle of yaw

.( )
or sideslip j3<<-& does not alter the surface potcutifil (to

the first order in B) expressed relat.ive to body axes. ‘flus,
the initially symmetric distdmtion of leading-edgo velocity
persists in sideslip. The symmehy of the leading-cclgo
suction is, however, upset by the sideslip bccauso of a rom-
prwsibility effect. The quantittitivc evaluation of the
change proceeds as follows:

Equation (23) expresses the suction per uniL Iength of
edge in ~e form

j &TpKZll~
—

For infinitesimal sideeIip the constant K, rchhxl to the edge
velocity, is unchanged, but M’, the component Mach uumber
perpendicular to we edge, is altered: M’ &creascs on the
right edge and decreases on the left edge. Because of the
change of .M’ with sidedip angle P the edge auction nmy bo
written, for small values of @,

By differentiation of equation (23), with K
M’=M sin (e+ L?),there results

‘=f’-”~’’’-”6!*),-*

where the upper sign refers to thti right edge

(27) .

coustmlL llu{l

(28)

ancl the lowcr
sign to the left-edge.

The quantity jp.o is obtained by settiug p= O iu equation
(24):

Upam?vqm
f~-o= ~ [E/(B~] !4

Substitution of equation (29) in the last term
(28) an&simplification, with tan e=C, yiclds

.

--- .(29} ‘-

of equation

(30)

Equatioij (3(I) givw the suction per unit hmgth of edge for a
triangulyr wing with an angle of sidcslip P.

For the case of a small angular veiocity of yaw r, the edge
suction may be approximated by

()f ‘.fr-O+r ~ ,-0

where j,.. is the same asjP.o and is given by equation (29).

(:’0,0)’
If the unter of rotation is at the reference point

the component Mach number normal to the w-lgcsis
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This value of .11’ is to be incorporated in equation (23) for j
3before the indicated differentiation ~r can be carried out.

The final result is

“: ~_x ~ec, ,( )Tpra%c~.u2
f=f~.o+r 3

2 [E’(lx’)] ql –lw?~
(31)

The ditTerencebet-ivee~the suction forces on the right and
left edges, as determined from equations (30) and (31), has
been integrated to yieId values of side force and yawing
moment. The procedures, and the subsequent reduction to.
coefficient form, are similar to those leading to equation (25)
for CYPand to equation (26) for (?xv. The rwdts are

(32)

The analysis thus far has been based on poteIItial-flow
theory. A little consideration w-ill shovr that the direct
viscous effect-that is, the skin-friction drag-fl have a
negligible effect on all the stability derivatives studied
herein except CR,. To this derivative the sJiinfriction will
add an increment

“+=-c”(i+a
as determined in reference 1.

RESULTS AND DISCUSSION

The formulas that have been obtained for the various
stability derivatives m-e coIIected in table I. Derivatives
obtained elsewhere are included for completeness, and the
source is indicated in each instance. Expressions are given
for two systems of coordinate axes. In the fit COIUIIUI are

shown the derinit ives relative to the principal body axes of

@ure 2 tith origin a distauce ~ c from the ~ertex of the

triangle. In the second cohmm are shown the resuIts rela-
tive to stability ams with origin a distance xc. ahead of the

; c point. The relationship between the two systems of

axes is shovm in figure 3. Equations for transforming from
body axes to stability axes are given in reference 8; the shift
in origin results in additional terms.

In the transformation of the present results from principid
body axes to stability axes terms of order A2/16 and the more
important terms of order cd are ret aiued (see footnote, table
1), whereas in reference 1 such terms are dropped as a conse-
quence of the narrow vertex-angle approximation.

These results for an arbitrary vertex angle may be com-
pared with the asymptotic vaIues for the case of vertex anglc
approaching zero given in reference 1. The present results
for principal axes are found to differ from the asymptotic
values (except for smalI terms in .42 and c&) onIy in the
acquisition of certain factors which in general are functions
of BC. Thus ~L=,Cr~,and cl, of reference 1 are multiplied
by E“(BC’); Pm.is multiplied by (?(BL’); ~Lris multiplied by
H(BC’); C,pis multiplied by I(BC’); Cmpand C’YPare mult.iplied
by

and p!; and p~: are multiplied by

.WH(BC) —E” (BC)
.!12–1

tan e .
The parameter BC=G ISthe ratio of tangent of the semi-

-rertexangle of the triangle to the tangent of the Mach angle;
Bflapproaches zero, therefore, as the vertm angle approaches
zero. The several functions E“ (BP), . . . J(BO aIl
approach unity as BC approaches zero, and thus the
derivatives obtained herein approach the asymptotic
values of reference I as the vertex angle goes to zero.

The variation of the stability derivatives with Mach
number (except CL; and C.J is contained entirely in the
factors E“(BC), . . . J(BC) and an additional factor

Q(BQ .:=;. The six factors are plotted against

BC=tan ‘~P~ the ratio of the tangent of the semivertex angle

to the tangent of the Mach angle, in @ure 4.
The derivatives apply to a wing of triangularplan form and

zero thickness. The calculations are based on the assump-
tion of potegtial fIow with small disturbances, except in the
case of the derivat ive (?.,, ~ whichs~ frnctionk comide.red.
The predicted infinite negative pressure acting on an edge of
zero thickness to yield a fhite suction force is, of course, a
mathematical idealization. (The local violation of the
assumption of small disturbances is not serious.) Subsonic
experience indicates that -ivith a suitably rounded edge a
considerable leading-edge suction force may be realized in
practice, with the theoretical value an upper limit. On the
other hand, a sharp leading edge is known to cause loss ‘of
the leading-edge suction. The requirements of extreme
thinness and a rounded leading edge (that -, appreciable
radius of curvature) are evidently in conflict. Thue, the
degree of applicability of the yawirq-moment and lateral-
force derivatives to actual triangular wings is unc@ain. A
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further Imitation on validlty, already elaborat.wlml in the _
SeCtiOIl On et,, exkb ho for the derivatives with roam’ct La

A yawing velocity, T1.wanalysis neglects the.spanwia~vmin-
tion in Mach number caused by the yawing (buL noi the
spamvisevariation in velocity). The rcsu]t is tin error in the.

/%+-+ ‘NUch’;ne

IMURK4,—EDiptIcfntegraILactorsofthest4bUtYderivntIvLMthat determinethdr varktion
with Mach mmbcr, (See tabIe L)

magnitude of the yawing derivatives th~t is cxpwtwl to
vary from iero for 13C~0 to an important amounLfor BC-+1.

The potential @ satisfiss the linmrizcd equation of motion
for the titeady state but not the more general linearized
equation for unsteady mot-ion except for the case of UWIURI
acceleratkm (~). This circumstance implies thaLthe present
expressions for the stability derivatives are suit.ableonly for
steady motions, motions with small aecclcrations, or sinuous
motions of low frequency. This limitation is accrpt.vd in all
stability work imd may become serious only in mscs of l@-
frequency oscillations such as flutter.

LANGLEY lIEMORLAL AERONAUTICAL LABORATORY,
NATIOFTALADVIEIORYCOMMI~IIE FOE AERONAUTICS,
LANGLEY FIELD,VA.,iVouember6,1.047.

REFERENCES

L Ribner, Herbert S.: The Stability Dcrivativse of Low-.4spcct-Ratio
Triangular Wings at Subsouio and Supersonic Speeds. NACA
TN NO. 1423, 1947.

2. Stewart, H. J.: The Lift of a DeIt a Wing at Supersonic SpCcds.

Quarterly Appl. Math., vol. IV, no. 3, Oct. 1!3.!6, pp. 2W-251.
3. Brown, Clinton E.: Theoretical Lift and Drag of Thin Triat@ar

W%@ at SupersonicSpeeds. NA~A Rep. No. 839, I!3M3.
4. Gurevich, M. I.: Lift Force of An Arrow-Shaped Wing. AppI.

Math. and Mech. (Moscow), vol. X, no. 4, 1946, pp. 513-520.
5. Brown, Clinton E., and Adams, Mac C.: Damping in Pitch alwl Roll

of Triangular Wings at Supersonic Speeds. NACA I&x h’o. s92,
1948....

& Heaslet,Max.A., Lomax, Harvard, and Jonse, Arthur L.: Voltcrra’s
Solution of the Wave Equation as Applicd to Three-Dimcnsiomd _
Supersonic Airfoil Problems. NACA TN No. 1412, 1947.

7. Jones, Robert T.: Properties of Low-Aspect-Ratio Pointed Winm
at Speeds below and above the Speed of Sound. .N.4CA Rep.
NO. 885, 1946.

8. Glauert, H.: A Non-Din~ensio@ Form of the Stabili ~y Equations
of an AeropIane. R. & M. No. 1003, British A.R. C., 1027, p. 1(I.

1



STABILITYDERI%’ATIVESOFTRM&GUUR WINGS AT SUPERSONICSPEEDS 325
4

TABLE I.—STABILITY DERIVATIVES “OF THIN TRIANGULAR WINGS AT SUPERSONIC SPEEDS

.

Deriva- Principal body axes ~ Stability axes 1

tive b Source
(

origin at z c
) (

L
“2

3 $
origin at distan e X,Xahead of ~ c point

-.

c.= References 2 to 4----
rA

J~ .E’’(BC) TA
~ E“ (N?)

c.;
“irAE“ (BC) —M2H(BC)

Present report ------ –~ rA E“ (BC) —.WH(BC)——
./W—1 2 M’-1

.

C.c Reference 5--------- $ H(BC) ‘~ H(BC) +TA ~E’’(BC) -

c References 2 to 4---_ o zrAZer
% –77E” (BC)

.-

C Present report ------
ir~ E“ (BG’)—M2H(W)

$6+8%
E“ (B(?) –M’H(BC)

% m W-1 Jp- 1
.—

c Reference 5--------- –~A G(BC) 3~~ (3(BC) –~ ‘~g H(BC) –irA $ E“(BC’)‘e

Clfl Reference 6-----_-_- –~~#l(BC) –~ E!! (Be)

c% Reference 5--------- –~ I(BC) –“~ 1(BO +&&(1+8 ~) [E” (BO –JW)I

C,r Present report ------
““(+++)E’’(BC) ‘aacDo(i , ~,)

[(&+fi+& ~) E’’(B0 +4 UBe)]-

Cnfl --_--do ------------- -& &A’M’Q(BC)
~ “’(Bc’+G+%9’’2Q@~m+[

—-z-ac%---_-do -------------
-“”(++:)J(B’) [:;~A$%)J(B’)-$ ’(Bc)l- ‘

-cDo(i+*)-
-cDo(a*)-”a(&+a?)[E’’(B~-J(BQ~

“c.,
Term in CD, derive[l

—ro? ~: I(BC’)
(

“*gM’ :+++g+i-i?+ -in reference 1.
~ (i+:+%) QW)

): ‘~ Q(BO) —

c Yfl Present report -- ---- –~ &AM2Q(BC) –: d’AM2Q(BC)

Cyp --__-do _____________ ~J(BC) * J(_Bc)

c,, -----do ------------- ; c#A’M2Q(BC) :&[–J(BC) +~+~).JI’Q(BC)]
. ,,

I In the transformation from bod ax=, terms of order d have been negieoted in comparison with unity, but terms of order c#A have been
fretained since they may be appreciab e for small vahes of .4.
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