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STABILITY DERIVATIVES OF TRIANGULAR WINGS AT SUPERSONIC SPEEDS

By HeErserT 5. RiBNER and Fraxk S. MavvesTUTO, Jr.

SUMMARY

The analysis of the stability derivatives of low-aspect-ratio
triangular wings at subsonic and supersonic speeds, given in
NACA TN No. 1428, is extended to apply to triangular wings
having large vertex angles and traveling at supersonic speeds.
The Uift, rolling moment due to sideslip, and damping in roll
and pitch for this more general case have been treated elsewhere
on the basis of the theory of small disturbances. The surface
potentials for angle of attack and rolling taken therefrom are
used to obtain the several side-force and yawing-moment
derivatives that depend on leading-edge suction, and a tentative

value for the rolling moment due to yawing. The lift and .

moment due to downward acceleration are obtained on the basis
of an unpublished unsteady-flow solution. All the known
stability derivatives of the irtangular wing at supersonic speeds,
regardless of source, are summarized for convenience and
presented with respect to both body axes and stability axes. The
results are limited to AMach numbers for which the iriangular
wing is contatned within the Mach cone from its vertex. The
spanwise variation of Mach number in the case of yawing is
neglected, although the effect must be of importance.

INTRODUCTION

An earlier investigation (reference 1) has provided theoreti-
cal stability derivatives of low-aspect-ratio wings of triangu-
lar plan form at subsonic and supersonic speeds. The
restriction to low aspect ratio was a consequence of the
limitations of the theory. Several investigators have since
obtained pressure distributions for angle of attack, rolling,
pitching, and sideslip at supersonic speeds (references 2 to 6
and unpublished analyses), without restriction to low aspect
ratio. These derivations have employed variants of the
linear theory of supersonic flow and have, in fact, constituted
important steps in the development of the theory.

If the rotations are taken about the vertex, the pressure
distribution for each motion in the more general case is found
to have the same shape as the corresponding low-aspect-ratio
approximation, so long as the triangular wing is contained
within the Mach cone from the vertex. The magnitudes
differ by factors which are functions solely of the ratio of the
tangent of the semivertex angle of the triangle to the tangent
of the Mach angle. The same similarity exist§ between the
distributions of surface potential. It is thusrelatively simple
to extend most of the derivations of reference 1 to remove
the restriction of low aspect ratio for supersonic speeds. Such
an extension is made in the present report.

The lift-curve slope, the damping in roll and pitch, and (in
effect) the rolling moment due to sideslip have been evaluated

in references 2 to 6, so that the principal contributions of the
present report are the normal acceleration derivatives ob-
tained on the basis of an unpublished unsteady-flow solution
due to Clifford S. Gardner, the several side-force and yawing-
moment derivatives, and a tentative value of the rolling
moment due to yawing. All the known stability derivatives
of the triangular wing at supersonic speeds, regardless of
source, are collected herein for convenience and presented
with respect to both body axes and stability axzes. Wings
with dihedral are not treated (although they were included
in reference 1), and the results are limited to Mach numbers
for which the wing is contained within the Mach cone from its
vertex. '

SYMBOLS

r,y,2  rectangular coordinates (fig. 1) ]

¢ time o

u, v, w incremental flight velocities along z-, y-, and
z-axes, respectively (fig. 2); induced flow veloc-
ities along z-, o-, and z-axes of figure 1,
respectively ' -

p, ¢, r angular velocities about z-, y-, and z-axes, respec-
tively (fig. 2)

FIGTRE 1,—Axes and notation used in analysls.

flight speed
speed of sound in free stream

stream Mach number (V/a)
component of the Mach number normal to wing

. MO

leading edge (\fl_-—i-zﬁ)
cotangent of Mach angle (+/Af"—1)
angle of attack (Flight w/V)
angle of sideslip (Flight »/V)
semivertex angle of triangle
Mach angle (cot=!+/A*—1) o
local pressure difference between lower and upper

surfaces of airfoil, positive in sense of a lift
density of air _
semiwidth of triangle at distance z from vertex
span (base of triangle)
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c root chord (height of triangle)
[ mean aerodynamic chord
A 2
( =5, (Liocal chord)zdy=§ c)
a da_A_ b
C cdge slope <§=&’E—Z_2c>
A aapect ratio (2b/¢)
S aren of triangle (é bc)
Ty velocity potential
¥ value of ¢ for unit pitching velocity about y-axis
X value of & for unit angle of attack
—=cos~1 ¥
n=cos™! p
k=+1—BC*
E’(BC) complete elliptic integral of the second kind with
modulus % (ﬁz V1—k?sin®z dz)
F!'(BC) complete elliptic integral of the first kind with
z dz )
modulus % ( J; TiFents
1
E"(BO =g ST
Ef? BO 2

G(BC)= —BC?
) == 2320’}E’(BC’)+B—T_0_)20’ (B
H(BC)=3G (BC)—2E"' (BC)

_ 2 ( 1—BC?)
I(BO)'—(Z B& 2) ( )_ 202FI(B
J(BC)=E'" (BC)I(BC)J1—B:C*
K constant defined in equation (186)
N yawing moment )
¥ lateral force
f suction force per ulr;nftt length of edge
Cs lift coefficient (=
5 o128
Ca pitching-moment, coeflicient PitChIin g moment
= pV2Se
2
C, rolling-moment coefficient Rolling moment
2 oV2Sh
5 [
C. yawning-moment coefficient i N
'2‘ pV2Sb
Cy lateral-force coefficient i Y
. '2- szs
Ch, profile drag coefficient (M)
72
5 YN
Ox induced surface velocity normal to wing leading

edge
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8 . perpendicular distance of point (x, ¥) from wing
leading edge

:t-:c, distance of center of gravity forward of ic

Subscripts:

R right edge )

L . TTleft edge

When 2, y, 2, or { are used as subscripts, the respective
partial derivative is indicated. For example,

_9% _ .
== Tz
_ 0%
P==3z0t
Whenever «, &, ¢, p, 8, and r arc used as subscripts, a

nondimensional derivative is indicated and this derivative
is the slope through zero. For example,

E) (277) a0

Om —_—

° b( ) o
o,=[ 251 ]

’ a(oI)JM
=[]

c oC,
= ;T
2V) =0

A dot above a symbol denotes differentiation with respocL
to time, All angles are measured in radians. -

ANALYSIS
SCOPE

The stability derivatives of triangular wings al supersonic
speed that have been treated theorctically herein or clse-
where are listed in table I, together with the expressions
that have been found for them. All the derivalions make
use of body axes. The derivations that follow give tha
values with reference to the principal body axes of figure 2

9
<§-c, o,o).
sion has been made to the system of stability axes shown in

with origin at the aerodynamic center Conver-

figure 3 with origin a distance z, shead of the -23-c point.

Table I comprises parallel columns which present formulas
relative to both systems. The expressions are limited to
Mach numbers for which the {riangle is contained within
the Mach cone from its vertex.
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FIGTRE 2.— Veloeltfes, forces, and moments relative to principal axes with origin at gc-

Fmcre 3.—Veloclties, forees, and momants relative to stability axes with origin at %c — Tee.
Principal axes of figure 2 dashed In for comparison.

DERIVATIVE C:,

The pressure distribution on a thin triangular wing at an
angle of attack in a supersonic stream has been obtained in
references 2 to 4 by the linearized theory without restric-
tion on the vertex angle of the triangle. The approximation
originally given for the slender (low-aspect-ratio) triangle
(reference 7) and used as the basis for reference 1 is found
to apply to the general case upon division by a constant (an
elliptic integral) that depends on the ratio of the semivertex
angle to the Mach angle; that is,

AP 400 1
Ly EEONT— @

where E’(BC) is the complete elliptic integral of the second
kind with modulus -

k= T—FC?
= JI—GF=T)C?

Thus, the lift-curve slope for the more general case is the
value given by references 7 and 1 divided by E’(B():

—5 AE"(BO) @

The surface potential given in equation (3) of reference 1 is
likewise extended to include nonslender triangles at super-
sonic speeds upon division by E’(B(C). The revised po-
tential is

(@) tz=0=1=k E(BC)

=+T @) @
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The elliptic integral E’(B(") depends only on the param-

eter B 0=§:"%—5 (ratio of the tangent of the semivertex

angle of the triengular wing to the tangent of the Mach

angle) and is therefore a constant for a given wing at &

given speed.
DERIVATIVES C’-‘, CL( AND Clp

The derivatives O',,.q, Crp and O, are derived in reference 5.

With respect to the axes of figure 2
3rA

Ony=—=5 GBC) @
x4
Cu,="3 H(BC) ®)
0,=—21(B) ®
where
1—B*C*
(BC)=G—3B*C" E"(BC) T+ B*C°F ' (BC) @
H(BC)=3G(BC)—2E" (BC) @
_ 2(1—B2C?% L

IB0)=g—penE BO-BCF B O

and F’(BC) and E’(BC) are the complete elliptic integrals
of the first and second kinds, respectively, with modulus
k=1—BC".

DERIVATIVES CL: AND Cu;

The derivation of Oy, and Cn; in reference 1 is based on
the assumption that the steady-state surface potential is not
altered in the first order by & small normal acceleration.
This assumption is true for the narrow triangles treated in
the earlier paper, but it fails for the general triangles treated
in the present paper. For this more general case the linear-
ized potential equation for unsteady motion,

2 1
B2¢::_¢yy—¢u+'a§'v ¢’=:+gz’ =0 (10)
must be solved, subject to the boundary condition on the
wing, that is, for 2=0
o6 .
3,=—aVt (11)

In an unpublished paper, Mr. Clifford S. Gardner has, in
effect, shown that a suitable solution is

$ M3 M2
Z_'Ef‘/""(t—W X

where ¢ is the steady-state potential corresponding to & unit
pitching velocity about the y-axis and x is the steady-state
potential corresponding to unit angle of attack. That equa-
tion (12) is a solution can be verified by direct substitution
into equations (10) and (11). Thus, Gardner has shown that
the time-dependent potential for an angle of attack &t may be
compounded of two time-free or steady-state potentials, one for
a constant angle of attack and the other for steady pitching.

(12)
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The lift distribution at time ¢=0 for the angle of attack
of is obtained from the surface potential by

AP=2p(Vé:+ 6} 10

M? M2
=2pVa B Yo VB::X’ 'Vx?'

=§i [M“’(AP) el — Va: (AP)a-r—pr:l (13)
where
(AP) . lift distribution for unit pitching velocity a,bout.
y-axis

(AP) 4oy lift distribution for unit angle of attack
The choice of time t=0 eliminates.the lift due to angle of
attack and leaves only the mcrement due to time rate of
change of angle of attack.

Integration to obtain the lift and moment and reduction
to coefficient form yields

M2

g X
C =5 CL + Bz mq—'?s.a—ff-vds (14)

Cni="5 Cn, g5z | [ ( ) s+
A N ETCATS 15)

where the integrations are carried over the wing plan form.
For the triangular wing with y-exis taken through the

serodynamic center, % ¢ from the apex, the derivative Cy_ is

zero. The derivatives C, and O, for this case are evaluated

in equations (4) and (5), respectively. The potential x is

-obtained by setting a=1 in equation (3), and the pressure

coefficient (i) is obtained by setting a=1 and
1

1
2V .

a=C (g c+z> in equation (1). Substitution, integration, -

and simplification yields the results
A B! (BO) M2H (BO)

Co=—%5 y.Y - (16)
A E"(BO)—M*H(BC)
Cni=Tg s g a7

DERIVATIVE Cy

The pressure distribution over a thin triangular wing in
yaw (sideslip) at an angle of attack at supersonic speed has
been pbtained in reference 6 and unpublished work. If the

angle of yaw is assumed to be small (ﬂ«zl/j), the rolling-
moment coefficient.can be expressed in the approximate form

o —T28 pr(B0)
Thus, the derivative with respeet to 8 is

Cy=—"5 E" (BOC) . (18)
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An alternative derivation based on the surface potential,
equation (38), for the unyawed wing will be given because
the method provides the starting point-for a derivation of
Oy, Cyy Cup, Cy,, and Cy

The potential for the disturbance velocity may be ex-
pressed relative to axes alined with the stream (wind axes)
or with respect to axes that yaw with the body (body axes).

For small angles of yaw <ﬂ<<nl,—1-), the linearized equation for

the potential has the same form relative to cither system of
axes. Tbe potential is determined by the normal velocity
of points of the surface and by the orientation of the surfuce;
for negligible thickness, this normal velocity is just &V for all
angles of yaw. The potenblal expressed relative o wingd
axes thus varies as the wing yaws reclative to these axes.
The potential expressed relative to body axes is constant for
small'yaw because the orientation of the wing relative to the
axes does not change.

For wind axes, Bernouili’s law has the form
AP=2 pV bqi -

and the change in the pressure distribution with yaw results
from the change in the potential function with yaw. For
body axes with small yaw, Bernoulli’s law has the approxi-
mate form

AP=2,1" F"-—Bay (19)

and the change in pressure distribution with yaw results

from the term—-ﬁg—z since ¢ does not change.

In reference 1 in the section entitled “Derivative C,," the
derivation employs body axes and equation (19) of the
present paper. The surface potential used (equation (3) of
reference 1) is the approximation for narrow vertex angle.
Equation (3) herein for a general vertex angle may be used
instead. Equation (3) herein differs only in the faclor
1/E'(BC), whence the earlier expression for Cj, (equation
(19), reference 1, with I'=0°) acquires this factor to agreo
with equation (18).

DERIVATIVE C,

The faregoing discussion of the triangular wing in yaw
(sideslip) may be extended to provide a prcliminary treat-
ment of the case of & small angular velocity of yaw r. The
corresponding extensionh for narrow vertex angle i3 made in
reference 1. The treatment is generalized to an arbitrary
vertex angle for supersonic speeds, as before, by using
equation (3) herein for the surface potential. Two changes
then appear in the pressure equation, equation (20), of
reference 1. The right-hand side is divided by E'(BC), and
the term aC=zC? must be retained sinee C*is no longer small
compared with unity (C=Tangent of semivertex angle).
With these changes, the derivation leads to

Cp=ra(gqt5)B"BO (20
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In the derivation of equation (20), the spanwise variation
in local Mach number caused by yawing is not taken into
account although the variation in forward speed is taken into
account. The surface potential that is used, equation (3),
satisfies the linearized equation for a flow of uniform Mach
number. This potential is inadequate to describe the
compressibility effects associated with a spanwise variation
of Mach number. .

Thus, consider a high-aspect-ratio rectangular wing with
tips cut off along the Mach lines. In straight flight the
Ackeret theory can be applied. The pressure difference is
given by
2p842 (Speed of sound)?

,‘AZZ

In yawing flight the forward velocity varies linearly along
the span. If the rate of yaw is made sufficiently low, the
variation from wing tip to wing tip can be made so small that
the flow is still nearly two-dimensional at any point. Thus
the Ackeret theory is still applicable if the local Mach number
is used at each spanmse station.

The variation in pressure with local Mach number can be
obtained from equation (21). "As the Mach number is
increased, the pressure decreases from infinity at Af=1 to &
minimum at 3f=1.4 and then increases again. Thus below
Mach number 1.4 the faster moving sections of the yawing
wing have the lesser lift. 'This result is contrary to subsonic
behavior and to that which would be predicted if the span-
wise variation of Mach number were neglected. Thus the
spanwise variation of the compressibility effect causes a
reversal of the sign of the rolling moment due to yawing for
rectangular wings at Mach numbers between 1 and 1.4, and
at Af=1.4 the moment is zero. (This result refers to yawing
in 8 system of stability axes, fig. 3. For body axes, fig. 2,
the effect is similar but the reversal extends to M= ».)

A yawing triangular wing may be expected likewise to show
an effect of the spanwise variation in Mach number. If the
triangle is contained within the Mach cone from its vertex

AP=q

(21)

(the only case considered in this report), however, the effect _

should be very much less than for the rectangular wing. In
particular, where the predicted effect for the rectangular wing
is a reversal of the sign of the rolling moment, the effect for
the triangular wing is expected to be merely a change in the
magnitude. A reversal in sign is not expected until the edges
of the triangle protrude from the Mach cone. This behavior
is inferred from the fact that the analyses of references 2 to
7 show many subsonic characteristics for triangles within the
Mech cone and a marked change in characteristics for
triangles with side edges outside the Mach cone.

DERIYATIVES Cr, AND C"-'

Extensive changes are necessary to generalize the treat-
ment of Cy, and C,, in reference 1 to arbitrary vertex angles
for supersonic speeds therefore, the revised derivation is
given in detail.

The derivatives Cyg and G’,p relative to body axes for &

very thin triangular wing without dihedral arise entirely

003385—50——22

from suction on the wing side edges. Consider a condition
for which the induced velocity normel to the edge is of the
form

K
“UN—- + Tg

in the immediate neighborhood of the edge, where & is the

perpendicular distance from the edge and K is & constant.
Reference 3 points out that for such a flow there is a suction
force per unit length of edge,
f=mpK2\1—AL"? (23)

so long as the triangular wing does not protrude from the
Mach cone from its vertex. In equation (23), AL’ is the
Mach number of the component of the stream flow normal
to the leading edge.
Glauert compressibility factor for the normal component of
flow. Equation (23) is limited to real values of the radical
by the condition expressed for the Mach cone.

For the delte wing in rolling motion the induced velocity
component % has been obtained in reference 5 as

pyC®

’u1=:l:2 sz—ﬁ_<%) I(BO)

Angle of attack gives the additional contribution (reference 2)
aV(?
B B0 [o—(Y)

The total induced velocity on the upper surface is thus the
sum of «; and u, with the plus sign

(y) [_'WW I3 0)]

'ug=

Very near the side edge this velocity is approximately

W[ . iT’T&I(BO)]_ |

where the plus sign refers to the right edge and the minus
sign to the left edge.

If & similar calculation is made for v=gf§: it is found that

as the side edge is approached the resultant induced velocity
~u'* becomes normal to the edge.
velocity near the edge is

Vi C

oy=t—r—u
¥ (0]

Thus the normal

321 "

‘(22) S

The radical 4/1—A£7% is the Prandtl-
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The perpendicular distance of point (2, %) from the side
edge is
—Z
()
V1+C?

The resultant induced velocity very near the edge may
therefore be expressed approximately as

1/2
oy 292 s o (B

which is of the form of equation (22). The suction force per
unit length of edge is from equation (23) thus

2V I(BO)] ;_DQC"Q:2
f= 9 pr {[Ef(BO)]z I 4
e yaroa—1 (24)

where the plus sign refers to the right edge and the minus
sign refers to the left edge. The factor + (1+0’) (1— M”)
can be reduced to +1—B2C?, where B2=M?—1.

The lateral component of this suction force is given by

= [ Us—trde

IBO)J1=BC*
E"(BC)

=% pC%aVp

The lateral-force coeflicient is formed by division by—é— VS,

and the derivative with respect to p8/2V is the stability
derivative Cy,. Itis

OY .=.2_g3 % VI_BZ Ez - (2 5)

r

The yawing moment of the leading-edge suction about the
vertex of the triangle is

No=— f | Ust) oVTF O dayTF O

= ———Z pC?caVp(L+ P {% "}9_3202

The moment about the reference point (%— c,0,0) is

N=No+§cY

~——— pO’c‘an(l—]—QC") I(T?O.)E,('%Bﬁ o

The yawing-moment coefficient is forméd by division by
%--pV’Sb, and the derivative with respect' to pb/2V is the

stability derivative C, . It is
I(BO)y1—BC?
Cy=—na (g +15) "B (26)
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DERIVATIVES Cr‘. C.‘, Ct,» AND Cu,
According to the discussion on (', a small angle of yaw

or _sideslip_ (ﬁ«ﬁ) does not alter the surface potential (to

the first order in B) expressed relative to body axes. Thus,
the initially symmetric distribution of leading-edgo velocity
persists in sideslip. The symmetry of the leading-edge
suction ig, however, upset by the sideslip because of a comn-
pressibility effect. The quantitative evaluation of the
change proceeds as follows:

Equsation (23) expresses the suction per unit length of
edge in the form

f'=1er’\/1—M 2

For infinitesimal sideslip the constant X, related to the cdge
velocity, is unchanged, but A4”, the component Mach number
perpendicular to the edge, is altered A’ increases on the
right edge and decreases on the left edge. Because of the
change of A’ with sideslip angle 8 the edge suction may be
written, for small values of 8,

s=pt8(E), |

By differentiation of equation (23), with A coustant and
M'=M sin (eXpB), there results

J=fomoFBf2=0 (4111-:?—_’1%;)5-0

where the upper sign refers to the right edge and the lower
sign to the left-edge.

The quantity fa-, is obtained by setting p=0 in equation
(24):

(27)

(28)

y =rp0xa2V’-\/1—BEC”.
S 10

Substitution of equation (29) in the last term of equation
(28) and simplification, with tan «=0C, yiclds

.(29)

o ViairO?AL?

fzfﬂ-U:Fﬁ 2 [E_, (BO)- ],_\/W_‘ B,“ ;

-(30)

Equation (30) gives the suction per unit length of edge for a
triangular wing with an angle of sideslip 8.

For the case of a small angular velocity of yaw r, the edge
guction may be approximated by

S=fraatr (g{

where f,- is the same as fs=q and is given by cquation (29).
If the center of rotation is at the reference point(g- ¢, 0,0 ),

the component Mach number normal to the edges is

=M[sin eﬂ:‘%(% ¢ oS e—X sec e)]
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This value of 3£ is to be incorporated in equation (23) for f
before the indicated differentiation gr can be carried out.
The final result is

(% c—x sec? e) wpV2x (A2
2 [E’(BO)|:\1—BC*

J=fouFr B1)

The difference between the suction forces on the right and
left edges, as determined from equations (30) and (31), has
been integrated to yield values of side force and yawing
moment.
coefficient form, are similar to those leading to equation (25)
for Cy, and to equation (26) for C,,. The results are

N

Cy,= —g o2 AN2Q(BO)

Cuy=3g FATMQ(BO)
< (32)
Cr,=gg AATM*Q(BO)

ﬂ-aﬁfl._[ 2 A 9L

+555) QB0 |

== (544

where

_E/@BOE
CBO==px

The analysis thus far has been based on potential-flow
theory. A little consideration will show that the direct
viscous effect—that is, the skin-friction drag—will have a
negligible effect on all the stability derivatives studied
herein except C,. To this derivative the skin friction will
add an increment

as determined in reference 1.

RESULTS AND DISCUSSION

The formulas that have been obtained for the various
stability derivatives are collected in table I. Derivatives
obtained elsewhere are included for completeness, and the
source is indicated in each instance. Expressions are given
for two systems of coordinate axes. In the first column are
shown the derivatives relative to the principal body axes of

figure 2 with origin a distance % ¢ from the vertex of the

triangle. In the second column are shown the results rela-
tive to stability axes with origin & distance z., ahead of the
9

§ ¢ point.
axes is shown in figure 3. Equations for transforming from
body axes to stability axes are given in reference 8; the shift
in origin results in additional terms.

The relationship between the two systems of

The procedures, and the subsequent reduction to-
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In the transformation of the present results from principal
body axes to stability axes terms of order A%/16 and the more
important terms of order o are retained (see footnote, {able
I), whereas in reference 1 such terms are dropped as & conse-
quence of the narrow vertex-angle approximation.

These results for an arbitrary vertex angle may be com-
pared with the asymptotic values for the case of vertex angle
approaching zero given in reference 1. The present results
for principal axes are found to differ from the asymptotic
velues (except for small terms in A2 and &%) only in the
acquisition of certain factors which in general are functions
of BC. Thus (;,, (i, and (' of reference 1 are multiplied
by E''(BC); Ca, is multiplied by G(BCY; C’L‘ is multiplied by
H(BC); C’;’ is multiplied by I(BC); C’,,p and C’Y’ are multiplied
by

I(BO)1—B*C?_ '

and (7 and Cn; are multiplied by

AH(BC)—E"" (B()
AME—1

The parameter BO=E—E: is the ratio of tangent of the semi-

vertex angle of the triangle to the tangent of the Mach angle;
B( approaches zero, therefore, as the vertex angle approaches
zero. The several funetions E*(BC), . . . J(BC) all
approach unity as BC approaches zero, and thus the
derivatives obtained herein approach the asymptotic
values of reference 1 as the vertex angle goes to zero.

The variation of the sta,bﬂlty derivatives with Mach
number (except %y, and () is contained entirely in the

factors E'(BC), . .. J(BC) and an additional factor

_[EZEO)
CEO=r=por

B(C= e: the ratio of the tangent of the semivertex angle

to the tangent of the Mach angle, in figure 4.

The derivatives apply to a wing of triangular plan form and
zero thickness. The calculations are based on the assump-
tion of potential flow with small disturbances, except in the
case of the derivative (', in which skin friction is considered.
The predicted infinite negative pressure acting on an edge of
zero thickness to yield a finite suction force is, of course, a
mathematical idealization. (The local violation of the
assumption of small disturbances is not serious.) Subsonie
experience indicates that with a suitably rounded edge a
considerable leading-edge suction force may be realized in
practice, with the theoretical value an upper limit. On the
other hand, a sharp leading edge is known to cause loss ‘of
the leading-edge suction. The requirements of extreme
thinness and a rounded leading edge (that is, appreciable
radius of curvature) are evidently in conflict. Thus, the
degree of applicability of the yawing-moment and lateral-
force derivatives to actual triangular wings is uncertein. A

The six factors are plotted against

tan
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with Mach namber., (See table L)

further limitation on validity, already claborated on in the

section on (' exists also for the derivatives with rospeet Lo
yawing velocity. The analysis neglects the spanwise varia-
tion in Mach number caused by the yawing (but not the
spanwise variation in velocity). The result is an error in the
magnitude of the yawing derivatives that is expected to
vary from zero for BC—0 to an important amount for BC—1.

The potential ¢ satisfies the linearized equation of motion
for the steady state but not the more general linearized
equation for unsteady motion except for the case of normal
acceleration (&). This circumstance implies that the present
expressions for the stability derivatives are suitable only for
steady motions, motions with small accelerations, or sinuous
motions of low frequency. This limitation is accepted in all
stability work and may become serious only in cases of high-
frequency oscillations such as flutter.

’
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TABLE I.—STABILITY DERIVATIVES OF THIN TRIANGULAR WINGS AT SUPERSONIC SPEEDS

. ) Principal body axes Stability axes?
Deriva- Source 2 : 2
tive” origin at 3¢ (origin at dist-anke z.e ahead of 3¢ point
Ci. | References2tod.._ =4 4e(8C) ™4 g (BO)
' =4 E'(BCY—A1*H(B A E'(BCY—AM*H(BC
(e, Present report..____ 72 ( 3 T (BO) T ( I)L'f‘ (BC)
C:, | References _______ 2 p&e) A 180y +r4 % B (BO)
Cn, | References2to4.___ 0 TA Zeg E"(BO)
77 A4 " __hfe
C.. | Present report..—... % E (Bc?w ifl H(BO) xA (1 e E (Boz)m E H(BC)
Cn, | Reference 5.________ ~¥4 g0y ~3r4 4BC) A % HBOY —ra 2 % g (BC)
Ci, Reference 6_________ —135 E"(BC) —T?a E"(BC)
A wa? 1'«:: "
C, | Reference5 _______ —22 1(80) ~5 B0 +35 (1+8%) 1B BO) ~J(B0)]
' 8 a:c ’
o m[(g oty St p g0y +2 I(BC’)]
¢, Present report___.._ Ta <m+ﬁ) E""(BC)
O +a)
c T 2743 @[ 1, Az, 2
ng  |--—-- do .. 38 CATM*Q(BC) =5 | £"(BC+ g% ) M*QBC)
8 z A
L4 Ta[<9A+16+9A ?’)J(BO)_:EI(BO)]_
Cob foee- oo —ra (9—A+E) J(BO)
«Co,(5+520)
1 4 1 4, 8z ’r .
: ] N 4 _0D0<__|—9—1¥)_7a2<9_;1.—l—_-'_g?‘ [E"(BCY—J(BO)]
. Term in Op_ derived | 20 (E @)— ra’M A 947 x,
Ca, in reference 1. ,‘.a!ﬂIZ A g8 —wal; 32 I(BO) <A+ +256 +A_{+
(A'I' +256) Q(BC) 8 z ~
5 %) a0 R
Cr, | Present report__.__. — T AMQ(BC) —7 AMQ(BO)
27a 27c
Cr, |----- doo . —J(BO) —- J(BO)
2 21!'&2 zcg g
Cr, |ommdomee 37 24MQBO) J(BO)+ LM Q(BO)]

!In the transformation from body axes, terms of order & have been neglected in comparison with unity, but terms of order a?fA have been
retained since they may be appreeciable for small values of A.



