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THEORETICAL CHARACTERISTICS IN SUPERSONIC FLOW OF TWO TYPES OF CONTROL 
SURFACES ON TRIANGULAR WINGS 

By WARREN A. TUCKER and ROBERT L. NELSON 

SUMMARY 

Methods based on the linearized theory for supersonic flow 
were used to Jind the characteristics of two types of control 
surfaces on thin triangular wings. TheJirst type, the constant- 
chord partial-span flap, was considered to extend either outboard 
from the center of the wing or inboard from the wing tip. The 
second type, the -full-triangular-tip jlap, was treated only for 
the case in which the Mach number component normal to the 
leading edge is supersonic. Phr each type, expressions were 

found for the lijt, rolling-moment, pitching-momen.t, and hinge- 
moment characteristics. 

Calculations were made jtom the equations to iLlustrate 
various points of interest. A major conclusion was that JEaps 
of the triangular-tip category are more suitable than constant- 
chord saps for use as control sacfaces on triangu,lar wings, 
particularly when used as ailerons. Not only is the e$ective- 
ness of the triangular-tip$ap in general greater than that of the 
constant-chord $ap having the same area but the problem of 
protiding hinge-moment balance is inherently simpler for the 
trianqu.lar-tip JlaL-, . 

INTRODUCTION 

Thcrc is a certain amount of interest in the use of wings 
having triangular plan forms for flight at supersonic speeds, 

and some work has been done on the aerodynamic character- 
istics of such wings (references 1 to 5). Investigation of the 
characteristics of control surfaces which might be used on 
triangular wings was therefore considered desirable. 

A variety of control-surface arrangements has been sug- 
gested for use on triangular wings. Two such arrangements 
are the constant-chord partial-span flap (extending either 
outboard from the center of the wing or inboard from the 
tip of the wing) and the full-triangular-tip flap, which is 
located at the tip of the wing and has a plan form gcometric- 
ally similar to that of the wing. (See fig. 1.) The analysis 
of these two types of control surface forms the subject of the 
present report. The full-triangular-tip flap is treated only 
for the cast in which the Mach lines from the apex of the 
wing lie behind the leading edge (supersonic leading edge); 
the subsonic-leading-edge case is analyzed in reference 6, 
together with more general types of triangular-tip controls. 

Methods based on the linearized equations for supersonic 
flow are used in the analysis, so the results are subject to 
the usual limitations of the .linearized theory. Viscous 

1 effects have been neglected. 

(b) Inboard constant-chord &saps. 

FIGURE I.-The control-surface configurations investigated, 

(c) Full-triangular-tip flaps. (a) Outbxrd coustnnt-chord flaps. 
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SYMBOLS 

maximum wing span 
total maximum flap span normal to free 

stream 
total maximum flap span parallel to hinge 

line (b,‘=b, for constant-chord flap; 
see fig. 1) 

wing root chord 
wing local chord 
wing mean aerodynamic chord 

(S s ” 
0 2 

Cl2 dy=g c 

flap chord 
flap root-mean-square chord perpendicular 

to hinge line 

pitching-moment coefficient about wing 
M 

aerodynamic ecntcr --- ( > ClSC 
1 

rolling-moment coefficient _ 
( > czsb 

hinge-moment coefficient 

lifting pressure coefficient P 
0 4 

comp1et.e elliptic integral of second kincl 
with modulus ,i1xm2 (used in t.able I, 
equation (6)) 

hinge moment of two flaps 

lift of two flaps 
rolling moment of two flaps, each tlcflcetctl 

an amount 6 in opposite directions 
free-stream Mach number; pitching moment 

of two flaps about wing aeroclynamie 

center (at i c) 

lifting pressure 

free-stream dynamic pressure 

wing area 
area of two flaps 

free-stream velocity 
vertical clisturbance velocity (aI’) 
Cartesian coordinates parallel and normal, 

respectively, to free-st.ream direction (for 
field points) 

Cartesian coordinates parallel and normal 
to free-stream direction (for source points) 

angle of attack 

r~ tan--l 2 
2 

i 
$2 

Snbsc,ripts: 
ct 

6 

CL 

co 

angle of flap deflection in free-stream 
direction 

wing semiapex angle 

Mach angle (tan-’ j) 

free-st.ream density 
disturbance-velocity potential 
disturbance velocity in r-direct.ion 

partial derivative of coefficient with respect 

to cr 
( 

example: C,,, =tz 
> 

partial derivative of coefficient with re- 
spect to 6 

part,ial derivative of coefficient with re- 
spect to CL 

infinite-span or two-dimensional wing 
condit.ion 

All angles are in radians, unless otherwise specified. 

ANALYSIS 

The two types of control surfaces (constant-chord flap and 
full-triangular-tip flap) are most conveniently considered 
separately. For each case the control-surface characteristics 
to be determined are as follows: 

c 
c:,” 

lift coefficient due to flap deflection 
rolling-moment coefficient due to flap deflection 

cc 
CL 

pitching-moment coefficient due to flap lift 

‘?Q hinge-moment coefficient due to flap deflection 

Cha hinge-moment coefficient due to angle of attack 

CONSTANT-CHORD PARTIAL-SPAN FLAP 

Pressure distributions.--Any of the aforementioned control- 
surface characteristics can be found for the constant-chord 
partial-span flap if the pressure distributions due to flap 
deflection at constant angle of attack and due to angle of 
attack at constant flap deflection are known. This fact is 
t.rue because of the principle of superposition. 

The prcssurc distributions over certain regions of the 
flaps and over the wings are already known. For both the 
inboard flaps and the outboard flaps, the pressure due to 
flap deflection in the region between the Mach cones spring- 
ing from the inner and outer corners of the flap is equal to the 
pressure on an infinite-span wing at an angle of attack. 
The pressure clue to llap deflection in the tip Mach cone of 
the outboard flap when the Mach lines are ahead of the 
leading edge has been found from material in reference 7. 
The pressure distributions over the wing due to angle of 
attack have been found in reference 2 (Mach lines behind the 
leading edge) and reference 4 (Mach lines abead of the 
leading edge). 
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There remain to be determined only the pressure distribu- 
tions due to flap deflection in the following regions: First, 
the inner Mach cone of the outboard flap and the inner and 
outer Mach cones of the inboard flap (all three cases are 
identical); and, second, the tip of the outboard flap when 

‘1 
the Mach lines are behind the leading edge. The pressure 

I.. .,~ distribution for, the first case is. given in appendix A and for 
the second case, in appendix B. 

The various pressure distributions are shown graphically 
in figures 2 and 3. The equations for the pressure distribu- 
tions are as follows: 
For figure 2 (a), 

c 4 2!=- cos-l--v 
6 d 

c 4 .A=-. 
6 P 

G3 4 m -=- 
6 4 C 

cos-‘v+- ,Yyx’ CBS-’ 
\m -1 

(EL)] 

c ‘P4 4VL 
-- 

6-p&2”-- 

For figure 2 (b), 

For figure 2 (c), 
G, 4 -=- cogl--y 
6 4 

c 4 -EL- 
6 P 

G,,=C,, 
For figure 3 (a), 

G, 
--- 

8m 1 /I--mm2t2 -= 
a 

-7-z cos-1 - 
7rpy7?-1 m 2’ P 

For figure 3 (b), 

Pressure on section A-A Pressure on se&ion A-A 
(a) (bl 

(a) al2 1 (rcferellct~ 2). (I,) ,,, 5 I (rrfcl-cIlcc 4). 
I?IG~RE :~--Pws.su~~~ distributions dur to ansIr of atl.ac!k. 

Pressure on secf;bn A-A 

(a) Outboard flap: n&l. (b) Outboard flap; msl. (c) Inboard Hap. 

FICIJHE ?.-I’ressure distributions due to Rap detiection. Constant-dmrd flaps. 
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Derivation of control-surface characteristics.-Once the 
pressure distributions are known, the various control-surface 
characteristics can be found by integrating the pressure over 
the proper areas, multiplying by appropriate center-of- 
pressure distances when necessary, and dividing by the proper 

.dimensions to form coefficients. Giving all the derivations 
for the cases treated in the present report would cause the 
report to be unduly lengthy; therefore, only one sample 
derivation is given. 

The example chosen is Cns for the outboard flap for the 
case in which the Mach lines are ahead of the leading edge. 
The equations for the pressure distribution are found from 
figure 2. Consider first the inner Mach cone. Integrating 
the pressure only over the part of the flap contained in the 
Mach cone (since the pressure on the wing contributes no 
hinge moment) gives for the lift on this part of the flap 

.-?3s” T---1 
( > !I6 P’ = 

and, since the pressure distribution in the iMach cone is 

conical, the center of pressure of this lift is $ c, behind the 

hinge line. The hinge moment on this part of the flap is then 

Next, for the part of the flap contained between the inner 
and outer Mach cones, the pressure over this entire region 
is noted to be constant at the two-dimensional value, so 
that the hinge moment can be found simply by multiplying 
the pressure by the moment of the trapezoidal area about the 
hinge line which gives 

H 6m+8c?-b c,” -L- - 
q6 3 P’ ’ P 

The lift in the tip region has been found from integration of 
the pressure distribution to be 

$=$ (3mfl) 

and, since the flow in the tip region is conical, the hinge 
moment is 

H 
-=-I Cf!$ (3m+l)=-i$ (3mfl) 
!la 

Adding the three hinge moments gives the total hinge 
moment 

The hinge-moment coefficient is formed by dividing the 
total hinge moment by 6,i?,2/2, which in this case is found 
to be 

b,$ b,$ 2 c; 
2=2--m - 3 P 

Performing the division yields 

The other control-surface characteristics may be derived I 
in a similar manner. Before giving the final equations, 
however, a short discussion of the range of applicability is 
advisable. 

Range of applicability.-Both in the discussion of pressure 
dist,ributions and in the sample derivation of one of the 
control-surface characteristics, the Mach lines were tacitly 
assumed to have had the positions shown in figure 2. Many 
other cases are possible; for example, two Mach lines may 
intersect or a Mach line from one corner of a flap may cross 
the leading edge of the wing. These various cases have been 
examined to determine over just what range each equation 
is applicable. The method used to determine the range of 
applicability is given in appendix C. The limits are con- 
venient,ly expressed as the minimum and maximum values 
of b,/b that can be used for given values of c,Ic and m; it is 
in this form that the limits are given in tables I to IV. 

FULL-TRIANGULAR-TIP FLAP 

The analysis of the full-triangular-tip flap is for the most 
part very simple for the case in which the wing leading edge 
is supersonic (m>l) because there is no change in pressure 
over t,he main surface of the wing when the flap is deflected. 
Each flap can therefore be regarded as an isolated triangular 
wing so that the lift and center of pressure are known from 
reference 2. The problem of finding the derivatives CLa, 
G, cw,, and C,, is then mainly one of simple algebra. 

This simple concept cannot be used to determine the 
derivative C,a. Instead, a suitable integration of the pres- 
sure distribution of figure 3 (a) must be performed over the 
surface of the flap in much the same manner as for the 
constant-chord flap. 

The range of applicability of the resulting equations for 
the characteristics of the full-triangular-tip flap is limited 
only by the conditions that the wing leading edge must be 
supersonic (m>l) n,nd that the two flaps must not be so 

large as to interfere physically with each other (: 50.5). 

Although in calculating hi!ig:a moments the flap hinge line 
has been assumed to lie along the inboard edge of the flap, 
as shown in figure 1, it could equally well be in the alternate 
position shown. (The distance between the hinge line and 
the trailing edge is arbitrary.) Under the assumptions of 
the present theory, the only derivatives affected by the 
change would be the hinge-moment derivatives C,, and C,,,. 

RESULTS AND DISCUSSION 

The resulting equations for the control-surface character- 
istics are presentecl in tables I to IV, together with the range 
of applicability of each equation. 
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A comparison of inboard and outboard constant-chord 
flaps is afforded by figure 4, in which some of the control- 
surface characteristics are shown for a ratio of flap area to 
wing area of 0.2 and a value of m=0.8. As would be ex- 
pected, the characteristics of the two types of flaps tend to 
become identical as the ratio of flap span to wing span 
apprp-aches-u&y. Another point to notice is that small- 
chord large-span flaps are the most efficient when the lift 
per unit hinge moment (-CL/H) is used as a criterion. 
This finding is consistent with subsonic experience with 
plain flaps. 

The curve of C, p for outboard flaps in figure 4 shows the 
interesting fact that for a given flap-area ratio an optimum 
flap-span ratio exists which gives the greatest rolling-moment 
effectiveness. This optimum flap-span ratio has been found 
by differentiation of equations (2) and (8) (tables I and II) 
and is shown in figure 5 for various values of m. For m>l 
(supersonic leading edge) the resultant flap is a half-triangular- 
tip control rotating about an axis normal to the stream, 
as shown by the small sketch in figure 5. The results shown 
in figure 5 are strictly applicable only to wings having zero 
thickness. The cffcct of finite thickness is discussed in the 
following paragraphs. 

The half-triangular-t,ip flap and the constant-chord full-span 
flap can both be rrgarded as limiting cases of the ronstant- 
chord partial-span flap. The half-triangular-tip flap can 
also be t.hought of as brlonging t,o the family of which 

.2 .8 / 

the full-triangular-tip flap is a member. A comparison of 
the characteristics of the three flaps is therefore of interest,. 
Such a comparison is given in figure 6 for a particular wing 
and ratio of flap area to wing area. The information neces- 
sary to obtain results for the triangular-tip flaps at Mach 
numbers less than JZ was taken from reference 6. 

The curves of figures 5 and 6, having been obtained by 
the use of linearized theory, are strictly applicable only to 
wings of zero thickness. When wings having finite thickness 
are considered, the picture will change considerably. The 
effect of thickness will be to decrease the effectiveness of the 
constant-chord flaps; this effect is discussed in references 8 
and 9. However, the streamwise sections of the triangular- 
tip flaps for the most part appear more as complete airfoil 
sections ‘than as sections of trailing-edge flaps. The effect 
of finite thickness on the lift of a complete airfoil section is 
very small, so it is to be expected that the effectiveness of 
the triangular-tip flaps would change very little when finite 
thickness is considered. Th ere arc some experimental data 
which support these statements. When the curves of figure 
6 are viowecl with these cDnsiclerations in mincl, the con- 
clusion is Icachcd that triangular-tip flaps are more eflectivc> 
as controls on triangular wings than are constant-chord 
flaps, particularlg so far as rolling moments are concerned. 

No hinge momcnts are shown in figure 6 for the reason 
that they depend on the location of the hinge line. For 
either of t,hc triangular-t.ip flaps the value of C,,* thcorctically 

I I 
-- -- 

-1 I 1 
.8 

%J b 
i 

./ 

- lnboord flops 
- - Outboard flops 

I I 
0 .2 .8 !. 0 

FTGERE J.-Comparison of control-surlwe chma&eristics of inboard and outboard constmt-chord Rnps. sr 3~0.2: nl=0.8. 
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.4 .6 
Flap area rafio, S/IS 

.8 f.0 

FIGURE 5.-slap span ratio required for maximum rolling-moment effectiveness. Outboard 
constant-chord flaps. 

will be zero at all supersonic Mach numbers if t,he hinge line 
passes through the center of area of the flap and is parallel 
to the trailing edge. In a practical case, the chordwise 
location of the center of pressure of the load due to flap 
deflection will probably not be at the center of area, and it 
will also probably shift some slight amount with Mach 
number. However, the problem of hinge-moment balance 
will certainly be less serious for triangular-tip flaps than for 
other types. 

CONCLUDING REMARKS 

‘l’hc control-surface characteristics of constant-chord flaps 
ancl triangular-tip flaps on triangular wings were found by 
t.he use of methods based on the linearized theory for super- 
sonic flow. Because of their generally higher effect,iveness 

L2 L4 L8 2.0 

FI~UBE 6.-Comparison of the characteristics of three types of control surfaces on a trit%IgUlar 
Sl wing. s-0.2; s=45’. 

and less serious hinge-moment problems, triangular-tip flaps 
were concluded to be more satisfactory than constant-chord 
flaps for this applica.tion. 

LANGLEY AERONAUTICAL LABORATORE-, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY AIR FORCE BASE, VA., July WI, 1949. 



APPENDIX A 

I PRESSURE DISTRIBUTION OVER INBOARD CORNER OF FLAP 
I i .~- I’ 

The flap in figure 7 may be represented by a uniform dis- 
tribution of sources and sinks. If the chordwise gap between 
wing and flap is considered sealed, the pressure distribution 
due to flap deflection may be determined by the method of 
reference 2. 

The equation for the surface velocity potential at a point 
(x,y) due to a uniform source distribution is given by 
reference 2 as 

4(x,Y)=-; ss w d.f ds J(~-V--P”(Y-d2 
where w is the vertical velocity and the area of integration 
is over the fore-cone of (z,y). Thus, 

The first integration (reference 10, equation 260.01) gives 

4(x,1/)=-; oY‘dv s r 
1 x-f I Z--8(1-Y) 

-co&-‘~P(~J--?)I 1 0 

W  S II =-- 
a o cash-’ jy qTy, dq 

Differentiation under the integral sign with respect to x re- 
sults in 

This integral can be evaluated (reference 10, equation 
380.001) to give 

&(x,y) =-F [ -$ sin-’ ~y~]~l 

where at yI 

Thus, 

XfPY ?1=- P 

f& (x,y) = - FB 
[ 

-sin-’ pY- (“‘Y) + sin-l ~ 
5 2 1 

W  =-- ( I+sin-1 $) @ 2 

FIGURE 7.--Notation used in appendixes A and B. 

Since +z is constant along lines :=constant, a new variable 

Y=P?J is introduced. 
2 

Then, 

&(x, y) = -5 (-i-sin-l V) 

or 

&(x, y) = -$ cos-1 (-v) 

From reference 2 (taking into account upper and lower 
surfaces), 

4w ?T 
==G$lv 2 

- (-+sin-1 v 
> 

Since F =6, 

46 lr CT,=-- 
TP ( 

2.+sin-’ v 
> 

,!2! cos-l 

r.0 
C-v) 

7 



APPENDIX B 

PRESSURE ON OUTER CORNER OF OUTBOARD FLAPS (m>l) 

The pressure within the Mach cone over the outboard 
corner of the flap when the Mach line lies behind the leading 
edge of the flap (see fig. 7) may be determined in a manner 
similar to that of appendix A. The equation for the poten- 

tial is then the two-dimensional value -7 minus the 

contribution from the source distribution in area A. Then, 

The integrals can be evaluated (reference 10, equation 
380.001) to give 

x+By 
W - [-h2 sin-’ P2y-kx- (P2-k2)77 1 @+k 
7r P (x-k/) 0 

zz -F+$ (;+&-I $!)- 
w y2 -s s z-p(?-y) = Yl dq 0 

The first integration (reference 10, equation 260.01) gives 

+(x, y) =- y+; f dll [-cosh- jai ];+ 

; J; dl [ -Gosh-‘I~j]:++‘) 

= -y+f .I”’ cash-‘l&ldtl- 

; so”’ cosh-‘lalds+; J; oosh-‘l&ldri 

= -y+y c coskll&lds-- 

; .(I”’ cosh-‘laldV 

Differentiation with respect to x to obtain & gives 

~~(X~Y) =-~+~~~Jx2~~(y~q)z-~~‘J(x~~q)~~~z(y~q)z 

dv 
=-;+:f Jx2-p2y2+2p2y~-p2112 

- 

w Yl S dv 
iY 

The pressure is constant at this value everywhere outboard 
0 ,ix’-P2Y2+2(p2y-k2)77- (p2-k2)q2 of the Mach cone. 

W 
__-. 

[ 

F-sin-1 kX--‘Y 
r,/p2-k2 2 i%-b/) 1 
W P =-- 

( 

PY s---sin-l - - 

4 2 X > 

-l k(l-2) 

8(1-2) 

Let v=: and m=$ then, 

c#l.(x,y)=-$ [cos-l y-l-* cosd(‘-““)] 

Since C,= -5$ and w=6V, 

cp=$ 
[ 

cos-1 v++& cos -1 (k?)] 

When V= 1, this espression for C, becomes 

c= cm- 
’ pJm2--1 

S 



APPENDIX C 
METHOD OF DETERMINING THE RANGE OF APPLICABILITY 

As an illustrative example, consider an outboard flap with 
the Mach lines ahead of the leading edge and suppose that 
two Mach lines cross on the flap. (See fig. 8.) It is to be 
determined if the equation for the lift due to flap deflection 
(to take a simple example) is the same equation that would 
be obtained if the Mach lines did not cross. The test may 
be made in the following manner. 

First, determine the pressure coefficients in the various 
areas indicated by numbers in figure 8. In region 

cq= G_ 

where ACp2 is the result of the inboard tip efl’ect so that 

AC,,=C,+& 

Similarly, 

where AG3 is the result of the outboard tip effect so that 

Now, 

or 

The lift per unit flap deflection is 

1 
=-cl- 6 s,-s4 C,, dsi- S s +s %=+ Ss,+3dS> 2 4 

Now, if the total area affected is written as 

s~=s,-%-&-!-s3+& 

FIGURE S.-Notation used in appendix C. 

then 

The area covered by the inner Mach cone is S2+S4 and the 
area covered by the outer Mach cone is S3+S4, so that the 
final equation for L/q6 can be written as 

$=i [C,, (Total area affected-Area in inner Mach 
1- -  

cone-Area in outer Mach cone) +Lift in inner 
Mach cone+Lift in outer Mach cone] 

which is exactly the same equation that is used when the 
Mach lines do not cross. 

This method is very convenient to use, since no lengthy 
integrations need be performed. Although a lift case was 
used as an example, the extension to other cases (hinge 
moment, rolling moment, and so forth) is not difficult. 

n 
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TABLE I.-CHARACTERISTICS OF OUTBOARD FLAPS ON TRIANGULAR WINGS 
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TABLE II.-CHARACTERISTICS OF OUTBOARD FLAPS ON TRIANGULAR WINGS 
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TABLE III.-CHARACTERISTICS OF INBOARD FLAPS ON TRIANGULAR WINGS 

[m<l or m> 1; Mach lines ahead or behind leading edge] 
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TABLE IV.-CHARACTERISTICS OF FULL-TRIANGULAR-TIP FLAPS ON TRIANGULAR WINGS 

[m> 1, Mach lines behind leading edge] 
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