View metadata, citation and similar papers at cor

ORETICAL CH

W

ERISTICS IN SUPERSONIC

' SURFACES

)

P S r‘\ )\‘ > " oh »/ '» S
" By WARREN A, "TUCKER, and
Vo N TR T U

_ t T L

asnivngtpn'ZS, D, C. Yeartly su

S Lo | -, For sale By the Sliperinterident of Documenis, U. 5. Government Printing Uffice, W
N ; A ye "+ ;7 single copy price varies ac\cérding,;o Size.. = ='maceman

e T v

bucriptién, $3,00; foreign, $4.503
Price 20 cénts w E ; Ty e [ 7

N A — L
~ - : ot - - b - -
N ! . \\ -
» to ~ . b ,
= : NN 1
4 W ) -
N - . N !
N [ 4 - B
L B e S .
- . N
/ z . »



https://core.ac.uk/display/42794393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tt (or Thi).
sec, (or hrLg

‘/, Sta dard densrtz of dryfmr' )
=, "afid 760 Tim; or. »@23781
7 8 epl.ﬁc welght 05 \sta;ndard”

\ic pressux:e, 2p

-




TECH LIBRARY KAFB, NM

L

0143111

REPORT 939

——

THEORETICAL CHARACTERISTICS IN SUPERSONIC
FLOW OF TWO TYPES OF CONTROL SURFACES
ON TRIANGULAR WINGS

By WARREN A. TUCKER and ROBERT L. NELSON

Langley Aeronautical Laboratory
Langley Air Force Base, Va.




National Advisory Committee for Aeronautics

Headquarters, 1724 F Street NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study
of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act
approved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President,
and serve as such without compensation.

JeroME C. HUNsAKER, Sc. D., Massachusetts Institute of Technology, Chairman

ALExaANDER WETMORE, Sc. D., Secretary, Smithsonian Institution, Vice Chairman

Honx. Jorn R. ALisoN, Assistant Secretary of Commerce.

DeTtiLeEv W. BRONK, PH. D., President, Johns Hopkins University.

KarLT. Compron, PH. D., Chairman, Research and Development
Board, Department of Defense.

Epwarp U. Conpon, Pu. D. Director, National Bureau of
Standards.

James H. Doorrrrii, Sc. D., Vice President, Shell Union Oil
Corp.

R. M. Hazen, B. 8., Director of Engineering, Allison Divisjon,
General Motors Corp. '

WirLLiam LirrLewoop, M. E., Vice President, Engineering,
American Airlines, Inec.

Tueopore C LonNQuest, Rear Admiral, United States Navy,
Deputy and Assistant Chief of the Bureau of Aeronautics.

Downarp L. Purr, Major General, United States Air Force,
Director of Research and Development, Office of the Chief of
Staff, Matériel.

JouN D. Prics, Vice Admiral, United States Navy, Vice Chief of
Naval Operations.

Arraur E. Ravmonp, Sc. D., Vice President, Engineering,
Douglas Aircraft Co., Inc.

Francis W. REICHELDERFER, Sc. D., Chief, United States
Weather Bureau.

Hon. DeELos W. RENTzEL, Administrator of Civil Aeronautics,
Department of Commerce.

Hoyr S. VANDENBERG, General, Chief of Staff, United States Air
Force.

Tureopore P. WricaT, Sc. D., Vice President for Research,
Cornell University.

Hucre L. DrypEN, Pu. D., Director

Jorn W. CrRowLEY, JR., B. 8., Associale Director for Research

Joun F. Vicrory, LL. M., Executive Secretary

E. H. CaamBerLIN, Evecutive Officer

Henry J. Rem, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.
Smrte J. DEFrANCE, B. 8., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.
Epwakrp R. Smarp, Sc. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

OPERATING PROBLEMS
INpUsTRY CONSULTING

AERODYNAMICS
PowER PLANTS FOR AIRCRAFT
AIrcrAFT CONSTRUCTION

Coordination of Research Needs of Military and Civil Aviation
Preparation of Research Programs
Allocation of Problems
Prevention of Duplication
Constderation of Inventions

AMES AERONAUTICAL LABORATORY
Moffett Field, Calif.

Lewis Frigar ProrurLsioN LABORATORY
Cleveland Airport, Cleveland, Ohio

LANGLEY AERONAUTICAL LABORATORY
Langley Field, Va.

Conduct, under unified control, for all agencies of scientific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE
Washington, D. C.

Collection, classification, compilation, and dissemination oy scientific and technical information on aeronautics

11




REPORT 939

THEORETICAL CHARACTERISTICS IN SUPERSONIC FLOW OF TWO TYPES OF CONTROL
SURFACES ON TRIANGULAR WINGS

By WarreN A. TuckeEr and RoBerT L. NELsoN

SUMMARY

Methods based on the linearized theory for supersomic flow
were used to find the characteristics of two types of control
surfaces on thin triangular wings. The first type, the constant-
chord partial-span flap, was considered to extend either outboard
from the center of the wing or inboard from the wing tip. The
second type, the full-triangular-tip flap, was treated only for
the case in which the Mach number component normal to the
leading edge ts supersonic. For each type, expressions were
JSound for the lift, rolling-moment, pitching-moment, and hinge-
moment characteristics.

Calculations were made from the equations to illustrate
various points of interest. A major conclusion was that flaps
of the triangular-tip category are more suitable than constant-
chord flaps for use as control surfaces on triangular wings,
particularly when used as ailerons. Not only is the effective-
ness of the triangular-tip flap in general greater than that of the
constant-chord flap having the same area but the problem of
providing hinge-moment balance 1s inherently simpler for the
triangular-tip flap.

INTRODUCTION

There is a certain amount of interest in the use of wings

having triangular plan forms for flight at supersonic speeds,

and some work has been done on the aerodynamic character-
istics of such wings (references 1 to 5). Investigation of the
characteristics of control surfaces which might be used on
triangular wings was therefore considered desirable.

A variety of control-surface arrangements has been sug-
gested for use on triangular wings. Two such arrangements
are the constant-chord partial-span flap (extending either
outboard from the center of the wing or inboard from the
tip of the wing) and the full-triangular-tip flap, which is
located at the tip of the wing and has a plan form geometric-
ally similar to that of the wing. (See fig. 1.) The analysis
of these two types of control surface forms the subject of the
present report. The full-triangular-tip flap is treated only
for the casc in which the Mach lines from the apex of the
wing lie behind the leading edge (supersonic leading edge);
the subsonic-leading-edge case is analyzed in reference 6,
together with more general types of triangular-tip controls.

Methods based on the linearized equations for supersonic
flow are used in the analysis, so the results are subject to
the usual limitations of the linecarized theory. Viscous
effects have been neglected.

cHinge line

Hinge line-,

Hinge lne for
hinge morments
in table TU,
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(a) Outboard constant-chord flaps.

(b) Inboard constant-chord flaps.

(¢) Full-triangular-tip flaps,

Fi1cURrE 1.—The control-surface configurations investigated,
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SYMBOLS

maximum wing span

total maximum flap span normal to free
stream

total maximum flap span parallel to hinge
line (b/=b; for constant-chord flap;
see fig. 1)

wing root chord

wing local chord

wing mean aerodynamic chord

2 (o, 2
(5, ertr=3e)

flap chord
flap root-mean-square chord perpendicular
to hingé line

Lift coefficient <£>
qS

pitching-moment coefficient about wing

1 i entoer (Z‘é)
aerodynamic center 5%
. . l
rolling-moment coefficient (—q@)
. . ( H >
hinge-moment coefficient ( - ;" 7=+
gb/c/

lifting pressure coefficient <];>

complete elliptic integral of second kind
with modulus +'1—m? (used in table I,
equation (6))

hinge moment of two flaps

lift of two flaps

rolling moment of two flaps, each deflected
an amount § in opposite directions

free-stream Mach number; pitching moment
of two flaps about wing aerodynamie

center <at -g— c>

lifting pressure

T
. . o DT o { P- -
free-stream dynamic pressure ( > )

wing area
areca of two flaps

free-stream velocity

vertical disturbance velocity (677)

Cartesian coordinates parallel and normal,
respectively, to free-stream direction (for
field points)

Cartesian coordinates parallel and normal
to free-stream direction (for source points)

angle of attack

8 angle of flap deflection in free-stream
direction

€ wing semiapex angle

=tan_Z
¢=tan o
1
© Mach angle <ta.n—1 B)
_By_ yl
y= =
r tan p

0 free-stream density

) disturbance-velocity potential

¢ disturbance velocity in z-direction

Subsecripts:

a partial derivative of coefficient with respect

o}

to « <example: C, = az”)

) partial derivative of coefficient with re-
spect to ¢

a. partial derivative of coeflicient with re-
spect to (g

© infinite-span or two-dimensional wing
condition

All angles are in radians, unless otherwise specified.
ANALYSIS

The two types of control surfaces (constant-chord flap and
full-triangular-tip flap) are most conveniently considered
separately. For each case the control-surface characteristics
to be determined are as follows:

('y,  lift coeflicient due to flap deflection

(', rolling-moment coeflicient due to flap deflection
C pitching-moment coefficient due to flap lift

ey,
C,; hinge-moment coefficient due to flap deflection
(", hinge-moment coefficient due to angle of attack

CONSTANT-CHORD PARTIAL-SPAN FLAP

Pressure distributions..—Any of the aforementioned control-
surface characteristics can be found for the constant-chord
partial-span flap if the pressure distributions due to flap
deflection at constant angle of attack and due to angle of
attack at constant flap deflection are known. This fact is
true because of the principle of superposition.

The pressure distributions over certain regions of the
flaps and over the wings are already known. For both the
inboard flaps and the outboard flaps, the pressure due to
flap deflection in the region between the Mach cones spring-
ing from the inner and outer corners of the flap is equal to the
pressure on an infinite-span wing at an angle of attack.
The pressure due to flap deflection in the tip Mach cone of
the outboard flap when the Mach lines are ahead of the
leading edge has been found from material in reference 7.
The pressure distributions over the wing due to angle of
attack have been found in reference 2 (Mach lines behind the
leading edge) and reference 4 (Mach lines ahead of the
leading edge).
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There remain to be determined only the pressure distribu-
tions due to flap deflection in the following regions: First,
the inner Mach cone of the outboard flap and the inner and
outer Mach cones of the inboard flap (all three cases are
identical); and, second, the tip of the outboard flap when
the Mach lines are behind the leading edge. The pressure
. distribution for.the first-case is.given in appendix-A and for
the second case, in appendix B.

The various pressure distributions are shown graphically
in figures 2 and 3. The equations for the pressure distribu-
tions are as follows:

For figure 2 (a),

On_ 8 i
3 _—'n‘ﬁ co v
COn_2
6 B
C 4 m 1—mvp
3 % 1 LA, -1 A
6 =B [COS s Iz ©08 m—v)]
0&_ 4m
5 Bymi—1
For figure 2 (b),
o _ 4 cos™ —v
) 3
Cpg:-’-l

6

14

8
', 8( m _ /}ﬂ:—};>
T U LmVmo, TR YT

For figure 2 (c),

_C’ﬂ——i cO —~1__
5 —xp 08 v
Cr,_4
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For figure 3 (a),

=S

Pressure on section A-A Pressure on section A-A

(a) (o)
(a) m=1 (reference 2). (by m=1 (reference 4).

FIGURE 3.-—Prossure distributions due to angle of attack,

(2) Outboard flap; m21,

Pressure on section A-A

(b) Outboard flap; m=1.

)

Pressure on section A-A

(¢) Inboard flap.

FIGURE 2.—Pressure distributions due to flap deflection. Constant-~hord flaps.
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Derivation of control-surface characteristics.—Once the
pressure distributions are known, the various control-surface
characteristics can be found by integrating the pressure over
the proper areas, multiplying by appropriate center-of-
pressure distances when necessary, and dividing by the proper
.dimensions to form coefficients. Giving all the derivations
for the cases treated in the present report would cause the
report to be unduly lengthy; therefore, only one sample
derivation is given.

The example chosen is C,, for the outboard flap for the
case in which the Mach lines are ahead of the leading edge.
The equations for the pressure distribution are found from
figure 2. Consider first the inner Mach cone. Integrating
the pressure only over the part of the flap contained in the
Mach cone (since the pressure on the wing contributes no
hinge moment) gives for the lift on this part of the flap

L_ 20, ( 1
g5
and, since the pressure distribution in the Mach cone is

cf behind the
The hinge moment on this part of the flap is then

H 2, % (r—1>__gc_,3<7r—1>
qB— €r o 3BE 7

Next, for the part of the flap contained between the inner
and outer Mach cones, the pressure over this entire region
is noted to be constant at the two-dimensional value, so
that the hinge moment can be found simply by multiplying
the pressure by the moment of the trapezoidal area about the
hinge line which gives

conical, the center of pressure of this lift is

hinge line.

E 6m+80f bC_fz
@ 3 B '8

The lift in the tip region has been found from integration of
the pressure distribution to be

L_

and, since the flow in the tip region is conical, the hinge
moment is

H 2

H _2__
qa

Adding the three hinge moments gives the total hinge

moment
H 2r+4 c_f3
ﬁ__bf + 3 62

The hinge-moment coefficient is formed by dividing the
total hinge moment by b,,%/2, which in this case is found
to be

Performing the division yields

g _lat2e

o B__"b m T ¢
h52 bf Cr
b ‘¢

The other control-surface characteristics may be derived
in a similar manner. Before giving the final equations,
however, a short discussion of the range of applicability is
advisable.

Range of applicability.—Both in the discussion of pressure
distributions and in the sample derivation of one of the
control-surface characteristics, the Mach lines were tacitly
assumed to have had the positions shown in figure 2. Many
other cases are possible; for example, two Mach lines may
intersect or & Mach line from one corner of a flap may cross
the leading edge of the wing. These various cases have been
examined to determine over just what range each equation
is applicable. The method used to determine the range of
applicability is given in appendix C. The limits are con-
veniently expressed as the minimum and maximum values
of b;/b that can be used for given values of ¢,/c and m; it is
in this form that the limits are given in tables I to IV.

FULL-TRIANGULAR-TIP FLAP

The analysis of the full-triangular-tip flap is for the most
part very simple for the case in which the wing leading edge
is supersonic (m_>1) because there is no change in pressure
over the main surface of the wing when the flap is deflected.
Each flap can therefore be regarded as an isolated triangular
wing so that the lift and center of pressure are known from
reference 2. The problem of finding the derivatives Cp;
Ch, C’,,,CL’ and (), is then mainly one of simple algebra.

This simple concept cannot be used to determine the
derivative (. Instead, a suitable integration of the pres-
sure distribution of figure 3 (a) must be performed over the
surface of the flap in much the same manner as for the
constant-chord flap.

The range of applicability of the resulting equations for
the characteristics of the full-triangular-tip flap is limited
only by the conditions that the wing leading edge must be
supersonic (m>>1) and that the two flaps must not be so

large as to interfere physically with each other (%f = 0.5>.

Although in calculating hinge moments the flap hinge line
has been assumed to lie along the inboard edge of the flap,
as shown in figure 1, it could equally well be in the alternate
position shown. (The distance between the hinge line and
the trailing edge is arbitrary.) Under the assumptions of
the present theory, the only derivatives affected by the
change would be the hinge-moment derivatives Cs, and Ch,.

RESULTS AND DISCUSSION

The resulting equations for the control-surface character-
istics are presented in tables I to IV, together with the range
of applicability of each equation.
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A comparison of inboard and outboard constant-chord
flaps is afforded by figure 4, in which some of the control-
surface characteristics are shown for a ratio of flap area to
wing area of 0.2 and a value of m=0.8. As would be ex-
pected, the characteristics of the two types of flaps tend to
become identical as the ratio of flap span to wing span
approaches unity. Another point to notice is that small-
chord large-span flaps are the most efficient when the lift
per unit hinge moment (—c¢L/H) is used as a criterion.
This finding is consistent with subsonic experience with
plain flaps.

The curve of O, 8 for outboard flaps in figure 4 shows the
interesting fact that for a given flap-area ratio an optimum
flap-span ratio exists which gives the greatest rolling-moment
effectiveness. This optimum flap-span ratio has been found
by differentiation of equations (2) and (8) (tables I and II)
and is shown in figure 5 for various values of m. For m>1
(supersonic leading edge) the resultant flap is a half-triangular-
tip control rotating about an axis normal to the stream,
as shown by the small sketch in figure 5. The results shown
in figure 5 are strictly applicable only to wings having zero
thickness. The effeet of finite thickness is discussed in the
following paragraphs.

The half-triangular-tip flap and the constant-chord full-span
flap can both be regarded as limiting cases of the constant-
chord partial-span flap. The half-triangular-tip flap can
also be thought of as belonging to the family of which

.3

24

/6

-eL/H
NN

v///

o .2 4 .6 .8 1.0
Flap span ratio, bf/b

the full-triangular-tip flap is a member. A comparison of
the characteristics of the three flaps is therefore of interest.
Such a comparison is given in figure 6 for a particular wing
and ratio of flap area to wing area. The information neces-
sary to obtain results for the triangular-tip flaps at Mach
numbers less than /2 was taken from reference 6.

The curves of figures 5 and 6, having been obtained by
the use of linearized theory, are strictly applicable only to
wings of zero thickness. When wings having finite thickness
are considered, the picture will change considerably. The
effect of thickness will be to decrease the effectiveness of the
constant-chord flaps; this effect is discussed in references 8
and 9. However, the streamwise sections of the triangular-
tip flaps for the most part appear more as complete airfoil
sections ‘than as sections of trailing-edge flaps. The effect
of finite thickness on the lift of a complete airfoil section is
very small, so it is to be expected that the effectiveness of
the triangular-tip flaps would change very little when finite
thickness is considered. There arc some experimental data
which support these statements. When the curves of figure
6 are viewed with these considerations in mind, the con-
clusion is reached that triangular-tip flaps are more cffective
as controls on triangular wings than are constant-chord
flaps, particularly so far as rolling moments are concerned.

No hinge moments are shown in figure 6 for the reason
that they depend on the location of the hinge line. For
either of the triangular-tip flaps the value of (7, theoretically

1.2
et J
/_/
g
Ry
hd
o<
O
4
o
.3
—_— e —
\ N
™~
2 ~
EY —
2
b /
)
/ e /mboard flops
A -——|—— Outboard Fflops

0 2 4 .6
Flop span rotio, bf/b

Sy

Ficure 4.—Comparison of control-surface characteristics of inboard and outboard constant-chord flaps. -§=O.2: m=0.8.
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o

be/b for maximum €, .0
kS

o 2 4 6 .8 1.0
Flap area ratio, Sy/S

FIGURE 5.—Flap span ratio required for maximum rolling-moment effectiveness. Outboard
constant-chord flaps.

will be zero at all supersonic Mach numbers if the hinge line
passes through the center of area of the flap and is parallel
to the trailing edge. In a practical case, the chordwise
location of the center of pressure of the load due to flap
deflection will probably not be at the center of area, and it
will also probably shift some slight amount with Mach
number. However, the problem of hinge-moment balance
will certainly be less serious for triangular-tip flaps than for

other types.
CONCLUDING REMARKS

The control-surface characteristics of constant-chord flaps
and triangular-tip flaps on triangular wings were found by
the use of methods based on the linearized theory for super-

sonic flow. Because of their generally higher effectiveness
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FicurE 6.—Comparison of the characteristics of three types of control surfaces on a triangular

8
wing. J=02; e=45°,

and less serious hinge-moment problems, triangular-tip flaps
were concluded to be more satisfactory than constant-chord
flaps for this application.

LANGLEY AERONAUTICAL [.ABORATORY,
NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS,
LancLeYy Arr Force BasE, Va., July 21, 1949.




APPENDIX A

PRESSURE DISTRIBUTION OVER INBOARD CORNER OF FLAP

The ﬁap in ﬁgure 7 may be represented by 8 umf01m d1s-
tribution of sources and sinks. If the chordwise gap between
wing and flap is considered sealed, the pressure distribution
due to flap deflection may be determined by the method of
reference 2.

The equation for the surface velocity potential at a point
(z,y) due to a uniform source distribution is given by
reference 2 as

__l w dE dn
¢@Y) rf f Jo—b By —n)?

where w is the vertical velocity and the area of integration
is over the fore-cone of (x,y). Thus,

_ w(w T—B{n—y) dE
¢ (z,y)= ,,fo d"ﬁ, v (@—E&2—p(y—mn)?

The first integration (reference 10, equation 260.01) gives

¢($y)=-—~f dnl: cosh-llﬁ(y n)l:r Pln=v)

w [N x
= -2 " cosh™ - ———d
TJo Bln—yl K

Differentiation under the integral sign with respect to x re-
sults in

w ¥
¢z (@,y) = f \/_r —32(77 y)z

=7
Nt — By 2521117 B

This integral can be evaluated (reference 10,
380.001) to give

equation

U
b (z,y) = _’:ri) [ 6 sin—! By — . 677]0

where at y,

_Z+By
B
Thus,
bz (2,y) = ;% —sin™! B’.l/——(;;‘-FB_y) +sin! _@z?_/:I
/3 5 Z+sin™? BZ/)

865171—50

il

il

///

iy

]

&
~
5
] v 7 \
xf x€
FIGURE 7.—Notation used in appendixes A and B.
Since ¢, is constant along lines %=constant, a new variable
V:B?y is introduced.
Then,
w (T, .
— -1
o (2, y) =— 5 <§+s1n v)
or
w _
¢ (2, y) = — g 08 (=)

From reference 2 (taking into account upper and lower
surfaces),

Since v =3,
.__éa _“ I —1
C, 3 2—{—sm u)
.__4_6 -1 (__
] cos™! (—v»)



APPENDIX B

PRESSURE ON OUTER CORNER OF OUTBOARD FLAPS (m>1)

The pressure within the Mach cone over the outboard
corner of the flap when the Mach line lies behind the leading
edge of the flap (see fig. 7) may be determined in a manner
similar to that of appendix A. The equation for the poten-

tial i1s then the two-dimensional value _ Y% ninus the

B

contribution from the source distribution in area .A. Then,

__1_01: w kn dg
¢@,y) +— f f e—8— B (y— .,])2

fz Bln—y) dt
" Jo Ve—9 —By—n)°

The first integration (reference 10, equation 260.01) gives

o(z,y)= ——+w fyl dn[—cosh‘ et
2d ! z—B(—y)
; ” n[—cos
__w w (n _|_w_‘ _
6+7rﬁ cosh™ |5 =y 1%
w 1 -1
WI cosh™ B(y dnt] OOSh Bly— n)’d"
== ___+w fyz cosh™! x—ﬂ) {dn—

wfyl b‘ﬁ(y ld

Differentiation with respect to ¢ to obtain ¢, gives

w 1 _w un dy
f Va? —ﬁ"’(y 0 ﬁx/(z—kn)z—ﬁz(y—n)z

¢ (x,y) =

:_#_l_wf!/z dn _
VTP — B2+ 2% n — B

Q 143 dn

7 Jo NP—pyP+2(y—kx)n— (B°—

k)y?

The integrals can be evaluated (reference 10, equation
380.001) to give

L — By )5tB
&< (x,Y) :_%)‘l“jr—u [_B sin—! ﬁ_yx_ﬁ‘fl:lo v
48y
= [_—1— sin™! Bry—kz— (52—k2)n:| BHE
mLop-R Ba—ky) o
Z;+ u; 2+s1n“1 By>_
w m kx—f}zy
7"\/52 l: —sin” B(x-—]cy)
=2 (r—Gsin &)~
LW et 2By
T'\/EZ-:kh cos ,B(x_ky)
By
=% -1 6?/ w 1 k (1
=g 08 —————r 08~ —kBy_
3 1— ﬁ(
Let v= ﬁ’y and m—g, then,
é:(z,y)=— ﬁ cos™ ,,_{_‘/ - 1_.my>:|
Since Opz_%%;}' and 'w=5V,

0,,=:—§ [cos‘1 v+ ln:—ir:,):l

When »=1, this expression for C, becomes

___4m
O = g1

The pressure is constant at this value everywhere outboard
of the Mach cone.



APPENDIX C

METHOD OF DETERMINING THE RANGE OF APPLICABILITY

As an illustrative example, consider an outboard flap with
the Mach lines ahead of the leading edge and suppose that
two Mach lines cross on the flap. (See fig. 8.) It is to be
determined if the equation for the lift due to flap deflection
(to take a simple example) is the same equation that would
be obtained if the Mach lines did not cross. The test may
be made in the following manner.

First, determine the pressure coefficients in the various
areas indicated by numbers in figure 8. In region 1

Cp=Cy.,
Cp,—Cy_—AC),

where AC;, is the result of the inboard tip effect so that
AC,=C, —C),

Similarly,
Cpy=0C, — A0,

where AC,, js the result of the outboard tip effect so that

AC,=C, —C,,

Now,
Cp =0y — 4G, AC,
or

Cpy=Cryt+-Cpy—Cy

The lift per unit flap deflection is

L 1

3 (J s [t ot .5
1
L ‘opsds—fs 40,,&8)

1
-1 ( fs _ CrodS+ fs o oS+ L 3+S*0,,3ds>

Now, if the total area affected is written as

Sf,=Sl+Sz+Sa+S4

FI1GURE 8.—Notation used in appendix C.

then
SI_S4:Sf,_ (S2+Sa) - (Sa‘f‘ 84)

The area covered by the inner Mach cone is S;+.S; and the
area covered by the outer Mach cone is S;+8;, so that the
final equation for L/¢é can be written as

%:% [C,, (Total area affected— Area in inner Mach
cone— Area in outer Mach cone) - Lift in inner

Mach cone—+Lift in outer Mach cone]

which is exactly the same equation that is used when the
Mach lines do not cross.

This method is very convenient to use, since no lengthy
integrations need be performed. Although a lift case was
used as an example, the extension to other cases (hinge
moment, rolling moment, and so forth) is not difficult.
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TABLE I.—CHARACTERISTICS OF OUTBOARD FLAPS ON TRIANGULAR WINGS
[m< 1, Mach lines ahead of leading edge]
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TABLE II.—.CHARACTERISTICS OF OUTBOARD FLAPS ON TRIANGULAR WINGS
[m>1, Mach lines behind leading edge]

m—1 ¢ m—1

‘g ég Range
§ gg Equation
g =3 Z (bf./b) min (b!/b)maz
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TABLE IV.—CHARACTERISTICS OF FULL-TRIANGULAR-TIP FLAPS ON TRIANGULAR WINGS

[m>1, Mach lines behind leading edge]
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Forc' !
- A(parallel]| -
~ 1 to axis)

symbof

: Anglew of - set/oi control “surface (relatlve to neutral - -
pomtlon), 6. ‘ (In ‘ ate surface by proper sul)scnpt ) -

B A Inﬂow velochty
e va;;,,\f Sllpstream véloeity‘
; E Thr’ust

I hp b4 kg-m/s '550.,ft-16/sec
‘1 metric. horsepower——O 9863 hp

- mi=1,609.85 m=5280 6~ - - T
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