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PLASTIC BUCKLING.OF A RECTANGULAR PLATE UNDER hDGE THRUSTS 
By G. H. HANDELMAN and W. PRAGER 

SUMMARY 

The fundamental equations for the plastic buckling of a 
rectangular plate under edge thrusts are developed on the basis 
of a new set of stress-strain relations for the behavior of a metal 
in the plastic range. These relations are derived for buckling 
from a state of uniform compression. The fundamental equa- 
tion for the buckling of a simply compressed plate together with 
typical boundary conditions is then developed and the results 
are applied to calculating the buck&g loads of a thin strip, a 
simply supported plate, and a cruciform section. Comparisons 
with the theories of Timoshenko and Ilyushin are made. Fin- 
ally, an en.ergy method is given which can be used for Jintling 
approximate values of the critical load. 

INTRODUCTION 

This paper is conccrnccl with the plastic buckling of a 
rectangular plate which, previous to buckling, is under a 
uniform comprcssivc stress u0 in the direction of one of its 
edges. In the cast of elastic buckling in which co remains 
below the elastic limit of the plate material, it is well known 
that the buckling stress tlepe~~clson the dimensions of the plate 
and on the manner in which it is supported (cf. reference 1, ch. 
7). In the case of the plastic buckling of beams, on the other 
hand, Engcsscr (rcfcrcnce 2) and Von KBrmBn (refcrcnce 3) 
developed a satisfactory theory based on the fact that for a 
fiber which is compressed beyond the elastic limit the tangent 
modulus (i. e., the ratio of the variation of strain to the cor- 
responding variation of stress) assumes different values depend- 
ing on whether the variation of stress constitutes an increase 
or a‘relief of the existing compressive stress. 

Generalization of this theory to the plastic buckling of 
plates has repeatedly been attempted. These attempts can 
be divided into two groups which may be labeled formal and 
analytical generalizations. The formal generalizations start 
from the remark that the formulas of the Engesser-Von 
Karman theory of the plastic buckling of beams differ from 
the well-known formulas for the elastic buckling of beams 
only by the fact that the so-called “reduced modulus” 
replaces Young’s modulus. A formal generalization of the 
Engessor-Von K&rman theory to the plastic buckling of plates 
is therefore obtained by introducing the reduced modulus 
into the formulas for the elastic buckling of plates in such a 
manner that the results of the Engesser-Von KEtrman theory 
are obtained in the case of a narrow rectangular strip which 
is free on its long edges and simply supported on the short 
edges where it carries a compressive load. Of course, this 
formal generalization is more or less arbitrary and leads by 

no means to a unique result. Formulas of this type have 
been suggested by l%eich (reference 4, p. 216 ff.) and Timo- 
shenko (reference 1, p. 384). 

In contrast with these formal generalizations of the Enges- 
ser-Von K&m&r theory, the analytical generalizations do not 
merely introduce the reduced modulus of the theory of beams 
into the formulas for the elastic buckling of plates. Instead, 
the analytical generalizations go back to the considerations 
by which the reduced modulus is clcrivcd and try to apply 
these to the case of a buckled plate. Gcncralizations of 
this kind have been previously prescntcd by Kaufmann 
(rcfcrencc 5) and Ilyushin (reference 6). As is shown in the 
present report, however, these authors use stress-strain 
relations which do not fulfill certain postulates of the theory 
of plasticity; the correctness of their results must therefore 
bc questioned. 

The prcscnt paper aims at developing a theory of the 
plastic buckling of plates which takes full account of the 
moclcrn theory of plasticity. The stress-st,rain relations in 
the plastic range arc discussed at considerable length in the 
first section of the ANALYSIS, and it is shown that, for an 
adequate treatment of buckling phenomena, a theory of 
plastic flow is inclicatccl rather than a theory of plastic dcfor- 
mation of the type used by Kaufmann and Ilyushin. The 
precise definitions of these terms and the basic considerations 
suggesting the use of a theory of plastic deformation for 
problems such as buckling are fully discussed in the ANALY- 
SIS. A particular theory of plastic flow suitable for the treat- 
ment of the problems under consideration is developed in the 
first section ancl its relations with other theories of plasticity 
are pointed out. It is shown that in the particular case of 
a plate buckling out of a state of simple compression there is 
very little freedom in the choice of the stress-strain relaBon 
if it is to fulfill certain simple postulates. This means that 
all the.empirical information which is necessary for the theo- 
retical treatment of the plastic buckling of a rectangular 
plate under edge thrusts can. be obtained by a simple com- 
pression test. 

The second section presents the development of the funda- 
mental equation of the plastic buckling of a simply compressed 
plate, and the appropriate equations describing typical bound- 
ary conditions are given in the third section. The remaining 
parts contain several examples, which are carried out in 
detail, as well as an equivalent energy principle which proves 
to be very useful for approximate computations. Finally, 
the appendixes contain detailed discussions of several tech- 
nical points raised in earlier parts of the paper. 

l. 
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SYMBOLS 

?l 
length of plate 
constant in compressive stress-strain law 

A expression in variational principle 
I I, 11, 

;,; ;,,; ;w; 

i 
coefficients in plastic stress-strain law 

c’ 
b width of plate 
B expression in variational principle 

c=(x-1)/[(5-4Y)x-(l-22y)*] 

Cl, cz, c3, c4 arbitrary constants appearing in equa- 
tion for ,ti 

flexural rigidity of plate (1’2 h3E,/~l-~2)) 

coefficients in plate equation for plastic 
flow 

D~~'=D,,/D,D,2'=D,~/D, Dzl=Dm/D 
DII*,D,~*,&* coefficients in plate equation for Ilyu- 

shin’s theory of plastic deformation 
&=D,,*/D, &=D,~JD, D22=022*~~ 
E tangent modulus in compression 
EO Young’s modulus 
E* Van KBrman’s reduced modulus 
ES secant modulus obtained from compres- 

sive stress-strain diagram 
f(Y) section of buckled middle surface for X= 

Constant 
h thickness of plate 
I moment of inertia of cross section 
h=12 a&(1-3 

?r2h2E 0 

number of half waves in buckled configur- 
ation 

rate of change of bending moment about 
y-axis 

rate of change of bending moment about 
z-axis 

rate of change of twisting moment 
integer 
reduced compressive stress resultant 

(uoh/Eo) 

rate of change of stress resultant in x- 
direction 

rate of change of stress resultant in y- 
direction 

p2= ( > 7 ‘;A 
22 

P total compressive force (aobh) 
&=[Dr Cl--vPIPzz 

T’VEiT3 
R side ratio (b/u) 

s=diGF3 

t time 

u=8v2+ 12v-23 

ti 

x7 Y> 2 

deflection rate 

rectangular Cartesian coordinates; x,y- 
plane coincides with middle surface of 
unbuckled plate 

zo= (2--V)Gf (2v-l)i2 
B 

2 a=l-- 
c(5-4v) 

a ratio of Von KLrm&n’s modulus to Young’s 
modulus (in section “Buckling of a 
simply supported plate” only) 

P constant in compressive stress-strain law 

i 

z 
6= 

’ [l-i lo++; (S,+)3] for B>O 

i 
[ 

1 1 +?j So--i (CO-)~J for k<O 

e uniaxial strain 

.infinitesimal strain increments present in 
buckling 

I reversible (elastic) strain increments 

3 
permanent (plastic) strain increments 
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Gb, Y> normal strain rate in middle surface in r- in some detail with special reference to the problem of load- 
direction ing beyond the elastic limit followed by unloading. 

22 (X,Y> normal strain rate in middle surface in y- 
direction 

?.(S,Y) -, 

To= 2zolh 

shear strain rate in middle surface 

The material must exhibit strain-hardening if the deter- 
mination of the buckling stress is to constitute a problem. 
Indeed, for a perfectly plastic material which yields under 
constant stress, Von K&man’s reduced modulus vanishes 
once the initial compressive stress has reached the yield 

‘limit. This means ihat the bending stiffness is reduced to 
zero and buckling must be expected quite independent of 
the dimensions of the bar. 

Stress-strain laws for materials which exhibit strain- 
hardening can be divided into two types which, for con- 
venience, will be called “theories of plastic deformation” 
and “theories of plastic flow.” According to the first group, 
there exists a one-to-one correspondence between stress and 
strain in the plastic range, as well as the elastic, provided 
that the material is being loaded. The stress-strain law of 
the well-known Hencky-Nfidai theory (reference 7, ch. 14, 
and reference 8) and the law used by Ilyushin (reference 6) 
in his discussion of plastic buckling are typical theories of 
plastic deformation, On the other hand, the theories of 
plastic flow are based on the assumption that, for a given 
state of stress, there exists a one-to-one corrcspondcnce 
between the rates of change of stress and strain in such a 
manner that the resulting relation between stress and strain 
cannot be integrated so as to yield a relation between 
stress and strain alone. Typical examples of theories 
of plastic flow are the stress-strain relations developed 
by Prager (reference 9) and Handelman, Lin, and Prager 
(reference 10). A particularly important difference between 
these two basic theories of plasticity lies in the fact that the 
strain which corresponds to a certain state of stress, accord- 
ing to the theory of plastic deformation, is entirely inde- 
pendent of the manner in which this state of stress has been 
reached, whereas, according to the theory of plastic flow, the 
strain depends on the manner in which the state of stress is 
built up. 

ratio of Von K&m&n’s modulus to 
Young’s modulus (E*/Eo) 

ratio of Young’s modulus to tangent 
modulus (Eo/E) 

Poisson’s ratio 

uniaxial stress 

intensity of stress ( Ja22+Oy2-uZrU+3Tzy2) 

critical compressive stress 
original compressive stress in plate (-a,) 
normal stress components 
shear stress components 

1 infinitesimal stress increments present in 

+f &) (l--1 & ;+.7 

[ 2 ) 41&q] 

w function of intensity of stress Ui 
IA’ =dw/du, 
L?=w/(l -w) 

fY=d~/da< 
- superscript denoting values on unloading 

side of neutral surface 
+ superscript denoting values on loading 

side of neutral surface 

ANALYSIS 

STRESS-STRAIN RELATIONS FOR BUCKLING FROM A STATE OF 
UNIFORM COMPRESSION 

The mechanism of buckling beyond the elastic limit is 
relatively complicated because the material, which was 
originally in a state of simple compression, is loaded in some 
regions and unloaded in others during the buckling process. 
Consequently, the stress-strain relations must be considered 

The stress-strain relations to bc used in the analysis of 
the plastic buckling of a rectangular plate under edge thrusts 
form a special case of those developed by Handelman, Lin, 
and Prager in reference 10. In this particular case, how- 
ever, it is possible to develop the stress-strain relation in a 
quite elementary manner, and the inherent difficulties of 
the theories of plastic deformation can be seen from a 
slightly different point of view. It appears worth while, 
then, to examine these relations in some detail with special 
reference to the problem which forms the subject of the 
present report. 

In the following, the stresses and strains in the buckled 
plate will be referred to a fixed system of rectangular Car- 
tesian coordinates x, y, and z. The x,y-plane of this coor- 
dinate system coincides with the middle surface of the un- 
buckled plate, and the axes of x and y coincide with two of 
its edges, the other edges falling on the lines x=a and y=b. 
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FIGURE l.-Plate under uniform compressive stress in direction of z-axis prior to buckling. 

Prior to buckling, the plate is under a uniform compressive 
stress u0 in the direction of the z-axis (fig. 1). The investi- 
gation of the stability of the state of stress 

uz=-(To 

uv=uz=o 

rzy=r~z=7-22=,o t 

(1) 

requires the knowledge of t,he relations between the infinites- 
imal increments of stress duz, dc,, da,, dozy, drvz, and dr,, 
and the corresponding increments of strain de,, de,, de,, 
dylv, dy,,, and &,. Within the framework of plate theory, 
u~==~~~=T~~=O, even in the buckled state, and hence dFz= 
d~zz=drvz=O. Accordingly, dyZZ=dTVz=O. Within the elas- 
tic range the remaining increments of stress and strain are 
related to each other by means of 

Eodex=duz-vduv 

Eode,= -vdu, fdu, 

EOd+= -vdu,-vdr, 

&&=2(1+v)drz, 

(2) 

where E,, denotes Young’s modulus and v, Poisson’s ratio. 
Before an analysis of the plastic buckling of the plate can 
be attempted, the relations replacing equations (2) in the 
plastic range must be known. In order to establish these 
relations, it will be convenient to think of the strain incre- 
mentsT;as consisting of reversible (elastic) and permanent 
(plastic) components : 

de,=dc,‘$-de,” 

de,,=dev’+dev” 

de,=de,‘+de,” 

dyw =dYzv’ +&a,” I (3) 

Primes and double primes denote elastic and plastic com- 
ponents, respectively. The elastic increments of strain are 
related to the increments of stress by means of equations 
(2), in which the left-hand sides must all be written with 
primes now : 

The elastic increments of st,rain, equations (4), depend 
only on the increments of stress and are independent of the 
existing stress uO. Moreover, a reversal of the signs of all 
increments of stress leads to a mere reversal of the signs of 
all elast,ic increments of strain. The plastic increments of 
strain, however, do not have these properties; since they 
must vanish as long as (TV remains below the elastic limit, 
they cannot be independent of the existing stress uO. More- 
over, if for a given value of a0 certain stress increments pro- 
duce plastic increments of strain, stress increments of the 
same magnitudes but opposite signs do not produce any 
plastic deformation, In other terms, beyond the limit of 
elasticity an infinitesimal change of stress may be classified 
as loading the material or not according to whether it. is 
accompanied by permanent deformation. Infinitesimal 
changes of stress which do not load the material may be 
classified in turn as unloading or neutral. Unloading brings 
the material into a state of stress such that all sufficiently 
small further changes of stress are accompanied by elastic 
deformations only. These basic differences in loading and 
unloading appear somewhat more clearly if the simple 
example of a uniaxial state of stress and strain (say a tensile 
test) is considered. Let u denote the stress and e the strain 
in figure 2 and suppose the material is loaded to the point 
v The stress-strain diagram for unloading is a straight 1. 

G 

E,,drz’=du,-vdu, 

EodeV’= -vdu,+du, 

Ebde,’ = -vdu,- vduv 

EodYw’=2(1+v)drw 

(4) 

J 

These relations may be regarded as the definitions of the 
elastic increments of strain. The purpose of the following 
discussion is to establish similar relations for the plastic 
increments of strain. 

FIGURE 2.-StreSS-Strain diagram for loading and unloading for unisxial state of stress and 
strain. 

_ .-- .- --~ - 
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line PA with the same slope as the loading curve at the 
origin 0. The permanent strain corresponding to loading 
up to the point P is measured by OA. Suppose now that, 
after the point P has been reached, the test specimen is 
further loaded to the point PI ; by this, the permanent strain 
is increased by the amount AAI. In other words, the change 

. from P to l’, constitutes loading in the sense just defined; --~ -..-. 
On the other hand, if the new state of stress and strain is 
given by the point Pz, that is, if the stress has been reduced 
below that at P, the permanent strain is left unchanged. 
Furthermore, any small change of stress from the point Pz 
(strictly, all changes within the ranges P,P and P,A) pro- 
duces an additional deformation which is purely elastic., 
The material has thus been unloaded. 

For uniaxial stress any change of stress constitutes either 
loading or unloading. A third possibility, designated as 
“neutral” change of stress, exists in the case of combined 
stress. A neutral change of stress, while not accompanied 
by a permanent deformation, brings the material into a 
state such that there’ exist certain further changes of stress 
which are arbitrarily small and yet produce a permanent de- 
formation. This third condition is illustrated in the analysis 
of the buckling of a plate. It is precisely the possibility of 
the occurrence of neutral changes of stress which distinguishes 
the present problem from that treated by Engesser and Von 
KArman, for in their case the stress is uniaxial in the buckled 
state as well as in the. unbuckled. Accordingly, a change of 
stress can be only an increase of the existing compressive 
stress (loading) or a decrease (unloading). The situation is 
more complicated in the case of a plate. 

Since there is no permanent deformation accompanying 
neutral changes of stress or unloading, deZf’=de,“=de ‘I= 
drw “=O; and the relations of equations (4) define the iota1 
change of strain. For loading, however, equations (4) must 
be supplemented by equations of the form 

EOdez” =a’da,+b’du, 

Ed ” =a”d~,fb”du, 0 eu 

EOdep” =a “‘da,+ b”‘da, 

Eodyzu ” = 2c’drzy I 

(5) 

where the coefficients a’, b’, a”, b”, a”‘, b”‘, and c’ depend 
on the existing stress un. 

As is customary in the theory of plasticity, the plastic de- 
formations will be supposed to represent a mere change in 
shape but no change in volume. Accordingly, 

dez”+de,“+de;‘=O (6) 

This relation must hold independently of the values of dvz 
and dn,. Thus, 

a’+a”+a”‘=O (7) 
and 

b’+b”+b”‘=O (8) 

The elastic formulas, equations (4), exhibit a certain 
symmetry of the coefficients appearing on the right-hand 

side. For instance, the coefficients of duz in the second and 
third equations are equal, as are the coefficients of du, in 
the first and da, in the second equations. Which of these 
symmetries, if any, will be maintained in equations (5)? 
The exist.ing state of stress singles out the z-axis, but it 
does not matter which of the other two axes is labeled y 
and which z. Accordingly, 

a”--a’r’ 

In view of equations (7) and (9), 

(9) 

1 a” =a”‘= -- a 
2 (10) 

These coefficients can easily be expressed in terms of the 
so-called “tangent modulus” corresponding to the compres- 
sive stress uO. Application of equations (4) and (5) to simple 
compression in the z-direction yields (with du,=O) 

or 

Eode,=Eo(de,‘+de,“) 

=du,+a’du, (11) 

(1% 

where E denotes the tangent modulus. With 

x=EJE 0 3) 
equation (11) gives 

a’=X-1 (14) 

Hence, according to equation (lo), 

a”=a”l- -(X-l) 
2 

Next, the criterion for neutral changes of stress must be con- 
sidered. Any given infinitesimal change of strain can be 

- decomposed in the following manner: 

de,=; (dE,+de,+deJ +$ @de,-de,-dez) 

de,=; (de,+de,+dez) +; (-de,+zde,-ddez) 

de,=; (de,+de,+dez) +; (-de,-de,+Zdez) 

drzv=O+drzu 

&,,z=O+dYuz 

dy,,=O+drzz 

(16) 

The change of strain defined by the first members of the 
right-hand sides of these equations is a uniform expansion 
(or contraction) in all directions. Such a uniform expan- 
sion changes the volume but not the shape of the element 
to which it is applied. The change of strain defined by the 
second members of the right sides of equations (16), on the 
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-other hand, affects the shape of the element but preserves these changes tend toward neutral changes of stress for 
its volume. The work done.by the existing stress or stresses which there are no plastic deformations. Furthermore, there 
on the change of strain, equations (16), consists of the work are no plastic increments of strain when 2du,-du,>O. It 
done on the change of volume represented by the first mem- is to be expected that the total strain increments will be 
bers of the right sides of equations (16) and the work done continuous in the region which marks the transition from 
on the change of shape represented by the second members. unloading through the neutral state to loading. Although 
Since all changes of volume are supposed to be of an elastic such a statement’does not follow specifically from the equa- 
nature, it seems natural to speak of loading or unloading tions of equilibrium or compatibility, continuity should be 
according to whether the work dW which the existing stresses expected in the strain increments. With this assumption, 
do on the change of shape alone is positive or negative. the plastic increments of strain, equations (5), should vanish 
Vanishing of this work must then be interpreted as indicating whenever the increments of stress satisfy equation (21). 
a neutral change. This furnishes the conditions 

In the case under discussion, the only existing stress is 
bZ== - uO, and the criterion for loading or unloading is fur- 
nished by the sign of 

a’+2b’=O 7 

(24) 
dW= -;c (2de.--de,-ddez) 

while neutral changes are characterized by 

(17) 

a”+26”=0 
a”‘+2b”‘=O t 

2&x-de,-dc=Q (18) 

Now, for unloading, the entire change of strain is of an 
elastic nature and equations (2) apply. Equation (17) is 
therefore equivalent to 

d=O J 
Together with equations (14) and (15); these equations de- 
termine all coefficients appearing in equations (5), which 
therefore take the form 

E,dW=-F [2(da,-vdda,)-(-vdu,+da,)-(--vda,-vdu,)] (25) 
(19) 

Since u0 >O, this expression will be negative, whenever 

E,dc,“= (X- l)da,-y da, 

E. de,” = -$ dc&‘+ da, 

E. de,“= - y dcr,+i2 dug 

E,, dy,,“=O 
2da,-da,>0 (20) 

This inequality, equation (20). is thus seen to constitute the 
criterion for unloading. Similarly, the criterion for neutral 
changes of stress is found to be 

2dn,-du,=Q (21) 

Changes of stress which satisfy neither equation (20) nor 
(21), that is, changes of stress for which 

2dus-da,<0 (22). 

must therefore constitute loading. Another definition for 
the criterion for the three types of change of stress, which 
is found by c,ombining equations (20), (21), and (22), is that 
the change of stress is classified by the sign of the increment 
in the second invariant of the stress deviator, which measures 
the intensity of stress. A detailed account of this alterna- 
tive formulation is found in reference 10. 

It is interesting to note that here again the coefficients of 
da, in the second and third equations are equal, as are the 
coefficients of du, in the first and of da, in the second equa- 
tion. Whereas in the elastic case this type of symmetry in 
the stress-strain relations is a consequence of the isotropy 
of the material, this is no longer so in the case of equations 
(25). Indeed, the equality of a” and a”’ (see equation 
(15)) follows from the assumption that the plastic deforma- 
tions do not involve a change in volume. The equality of 
b’ and a”, on the other hand, might be described as almost 
accidental, the value of the ratio a/‘/a’ being fixed by the 
assumption just mentioned, while the value of the ratio 
b/la’ is fixed by the form of the condition for neutral change 
of stress. 

Combination of equations (4) and (25) finally yields the 
stress-strain relations which will be used throughout this 
paper: 

By a suitable choice of the values of duz and da,, the 
expression 2duz-da, can be made to fulfill the following 
inequalities: 

0>2duz-du,> --E (23) 

where a is an arbitrarily prescribed small positive number. 
All changes of stress satisfying equation (23) constitute 
loading and are therefore accompanied by plastic deforma- 
tions in accordance with equations (5). For e-+0, however, 

E,d,,=xdu,-( v+y) da, 

E,&= -(v+ y) du,+T da, 

E,,dez= -(v+ y) du,-(v-7) da, 

-E&t,= 2 (1 + u> d7.m 

(26) 
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It seems worth whiie to stress once again the assumptions 
on the basis of which these stress-strain relations are derived. 
These are 

(1) Plastic deformations do not involve a change of volume 
(2) The criterion for loading or unloading is furnished by 

the sign of the work d W which the existing stresses do on the 
change of shape produced by the increments of stress 
The Srst assumption is commonly made in the theory of 
plasticity (cf. reference 7, p. 10) and is confirmed by the 
experiments of Bridgman (reference 11, p. 166). The sec- 
ond assumption is a slight generalization of a similar as- 
sumption which Prager (reference 10) introduced in the case 
of incompressible plastic materials; more recently, it has been 
used by Ilyushin jreference 6). 

It is interesting to note how far the stress-strain relations, 
equations (26)) differ from those used in previous work on the 
plastic buckling of plates. In the present notation, Kauf- 
mann’s stress-strain relations (reference 5) are 

EOdcz=Xdu2-vduv 

Eode,= --Xvdu,+du, \ (27) 

Eoh,= (1+x) (1 i-W-a, I 

(The expression for CZE~ is not given because this strain com- 
ponent is not necessary for the determination of the bending 
and twisting moments in the bucklccl plate.) It is seen that 
here the coefficient of du, in the first equation and that of 
da, in the second arc unequal. In an earlier paper on the 
plastic buckling of aylindrical shells (reference 12, footnote 
1, p. 422) in which similar stress-strain relations were used, 
Kaufmann comments on this lack of symmetry, recommend- 
ing that the stress-strain relations, equations (25)) be chcckcd 
by expcrimenL Since this type of symmetry in the present 
stress-strain relations, equations (26)) has been characterized 
as almost a.ccidental, the lack of symmetry in Kaufmann’s 
relations hardly constitutes a sufficient reason for discarding 
the stress-strain relations, equations (27). It is not difficult, 
however, to show that these relations correspond to an un- 
acceptable condition for neutral changes of stress. Indeed, 
subtraction of the elastic increments of strain, equations (4), 
from the total increments of strain, equations (27), yields 
the following plastic increments of strain: 

Eode,” = (A - 1) du, 

E~d~y”=v(X-l)duz 

I 

(2% 

Eodyzyt’= (A-1) (1 +v>dTzv 

These plastic increments of strain vanish if 

do,=0 

drzv=O 1 
(2% 

According to Kaufmann’s stress-strain relation, neutral 
changes of stress are characterized by the two conditions 
given as equations (29). If the most general change of stress 
considered here is represented by a point with the coordinates 

rw621-60-2 

duz, duy, and drZy in a three-dimensional space, the condition 
of equation (21) represents a plane through the origin which 
separates the “region of loading” from the “region of unload- 
ing.” Equations (29), however, define a straight line which 
does not mark off two such regions. 

‘Ilyushii (reference 6) considers an incompressible material 
and assumes the stress-strain relations for loading to have 
the form 

(30) 

where w is a function of the intensity of stress uf defined by 

us= Ju,2+ uv2- u,uu+ 37,,2 (3 1) 

For loading, the increments of stress and strain are then 
connected by 

(32) 

For buckling from a state of uniform compression uZ= -CO, 
in particular, 

dw I 
dw=dTi dui= -s (2du,-da,) (33) 

where 
co’=dw/dui 

Equations (32) then reduce to 

Eodc,= ’ 2(1-cJ)2 (l--w-cYuo) (2du,-da,) 

1 Eo&= -2(1 -u)z (l--w+hp’)du,+ 

Eodxr,=& drw w 

(34) 

1 1 du,, 

(35) 

For unloading, the relations, equations (2), are supposed to 
hold with Y= l/2 on account of the assumed incompressibility 
of the plate material: 

Eode,=; (2da,-da,) 

E,de,=; (2du,-du,) 
I 

(36) 

Eo&, = 3drzy J 
As to the criterion for loading and unloading, this is again 
supposed to be given by the sign of the expression 

dW=u,de,+u,de,fr,,dy,, (37) 
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In particular, it is given by the sign of 

-goae, (3% 
in the case of buckling from a state of uniform compression 
a,= -up In view of the first of equations (35), this means 
that neutral changes of stress are again characterized by 
equation (21). It is easily seen, however, that for 2dcZ- 
da,=O, equations (35) and (36) do not give the same incre- 
ments of strain. Ilyushin’s stress-strain relations are thus 
seen to exhibit an objectionable discontinuity along the 
surface 2du,-du,=O which separates the region of loading 
from the region of unloading. A more detailed analysis of 
the effect of this discontinuity in the case of a buckling plate 
is found in appendix A. 

FUNDAMENTAL EQUATION OF PLASTIC BUCKLING OF A 
SIMPLY COMPRESSED PLATE 

The technique used in the derivation of the fundamental 
equation of the plastic buckling of a simply compressed plate 
is quite similar to that needed for the same problem in the 
elastic range. (See, f or example, the more general problem 
of combined bending and compression of elastic plates in 
reference 1, p. 302.) There is one essential difference, how- 
ever, in that the stress-strain relations given in equations (26) 
must be used in the regions of loading rather than generalized 
Hooke’s law. Consequently, the middle plane of the unbent 
plate will no longer play the role of the neutral surface in the 
buckled position. Once the position of the neutral surface 
has been found and the bending and twisting moments deter- 
mined as functions of the second derivatives of the deflection 
of the plate, the equilibrium conditions and the final differen- 
tial equation can be derived in exactly the same fashion as 
that used by Timoshenko in reference 1. 

It will be found more convenient, in the following discus- 
sion, to use “reduced stresses” rather than actual stresses, 
that is, stresses reduced by dividing the actual stress by 
Young’s modulus Eo. No new notation will be employed to 
denote these reduced stresses; therefore, care must be taken 
in interpreting the results obtained here in terms of the 
known facts for elastic buckling. An attempt will be made 
at such points to keep the notation clear. In addition, the 
use of differentials of stress and strain may lead to some con- 
fusion in deriving the equations of equilibrium for an element. 
Since the stress-strain relations given in equations (4) and 
(26) are linear in these differentials, both sides of the equa- 
tions may be divided by dt>O, where t may be regarded as 
the time. It should be noted that, t appears homogeneously; 
that is, the time scale may be arbitrarily distorted without 
changing the equations. If differentiation with respect to t 
is denoted by a dot, equations (4) and (26) can be rewritten 
as reduced stress-strain relations, for l@Z 0, 

and for @IO, . 

i,=i,--vi, 

z,= -zG-,+a, 

iz= -IO?,-v&/ 

-iz,=2(1-tv)i,, 

(40) 

where l$=dw/dt. 
The stress rates +Z and &,, can be found in terms of the 

corresponding strain rates for loading by solving the first two 
of equations (39). Thus, 

““=(5--4v)k (1-22~)~ [(X+3)&+2(X’l+2v)i,] 

““=(5_4y),1(1--2u)?[2(x--+2V)i,+4x(,I 
(41) 

The criterion for loading 

2a,--a,<0 (42) 

can then be written as * 

(5--4v)hl- (1-22~)~ [(2--)&f (2v-l)C,]<O (43) 

Now, Poisson’s ratio v satisfies the inequality- 1 S v=< l/2 (cf. 
reference 13, p. 104); in addition, XZ 1. Consequently, the 
expression appearing outside the brackets is always positive 
a.nd the inequality, equation (43), can be replaced by 

(2-v)&,+ (2v-l)~,<O (44) 

The stra.in rates appearing in equations (39) and (40) must 
now be evaluated. The strain rates in the middle surface 
will be denoted by il=il(r, y), the normal strain rate in the 
r-direction; &=&(z, y), the normal strain rate in the y- 
direction; and ?;=+(x, y), the rate of shear strain. Points on 
the normal to the undeformed middle surface are assumed to 
remain on the normal of the bent middle surface. This 
implies that the strain rates Z,, &, and ?;,, at any point of 
the plate can be written in the following form: 

!Jhe quantities &I, k2, and &, appearing in equations (45) 
ne defined in terms of the rate of deflection ti=ti(x, y) of the 
niddle surface in the following way: 

(46) 
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Geometrically, h?1 and J& represent the rates of curvature 
of the middle surface in the x- and y-directions, respectively, 
whereas glz represents the rate of relative twist. The cri- 
terion for loading, equation (44), can now be rewritten in 
terms of the strains of the middle surface and the quantities 
&, k2, and I&. It is seen that loading takes place provided 

“- .^” (2-V)dl+(2V-l)~&[(2-v)&+(2v-l)&] (47) 

With the word “sign” to denote the sign of the quantity within 
the parenthesis and vertical bars to denote the absolute 
value of the enclosed expression, the last inequality may be 
transformed into ’ 

(2-v)i,+ (2v--l)& 
2 sign [W-VWIS (~v-~)K,I>,~,_~~~~+ c2v--I)g21 (48) 

This inequality can bc simplified further by introducing two 
new quantities & and z. defined by 

k= (2-v)~~+(2v-1,~2 

zo= P--)4+ (2v-l)b 

I 

(4% 
It 

The inequality, equation (48)) becomes then 

2 sign (K)>&&/~k~=zo sign (IQ (50) 

that is, 
z>z, for positive K 

z<z, for negative B I 

The surface z=zo separates the regions of loading and un- 
loading in the plate; a given part is in a state of loading or 
not according to which condition of equations (51) is satisfied. 

The criterion just developed must now be applied to the 
problem of buckling. As mentioned previously, the stress 
distribution of the buckled plate differs from the original 
st,ate of pure compression by certain additional stresses 
C&t, b,dt, and kz,dt. These new stresses are such that their 
total stress resultants must vanish and the moments pro- 
duced will be in equilibrium with the moment generated by 
the original compressive force in the buckled plate. The 
vanishing of the stress resultants will lead to a formula for 
z. in terms of the constants of the material and the value of 
uo. Once this equation has been developed, a rather straight- 
forward computation will lead to the desired equation of 
equilibrium. 

The rates I’?,, and i’?, of the stress resultants are defined as 

As indicated in equations (51)) two cases must be considered 
according to whether K>O or J?<O. For K>O, direct 
computation shows that 

N,-vN,=;,h-+cK 

(53) . 1 NV-vN,=C,h-- 2 

where the quantity c is a function of X and v given by . 

X-l 
c=(5-4v)x- (l-2vy (54) 

Appendix B contains the details of this calculation and others 
used in this section. It has been pointed out previously 
t,hat N, and N, must vanish. According to equations (53)) 
this yields 

h 2 
(--- > 

;,h 2&h 
2 O ==--=iz CK (55) 

Thus the strain rates E’~ and E’2 in the middle surface are 
related by the equation 

i1= -2& (56) 

From the definition of zo, equations (49)) and this result, it is 
seen that 

20=(2-v) $+(2?1) 2 

= -2 (5-4v) (57) 

This result may then be substituted back into equation (56) 
to yield 

h 
( > 

-- 
2 20 

2 2&h 2z,,h 
=z= -c(5-4v) (58) 

Relation (58) can be solved for z. to yield the equation of the 
neutral surface which separates the regions of loading and 
unloading. Since h, c, and v depend only on the geometry 
of the plate and the applied compressive stress, so will 
depend only on these quantities. It is more convenient to 
introduce a new quantity lo defined by 

{,+Q (59) 
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Then the quadratic equation for z,, equation (58), becomes a 
quadratic equation in 10, namely, 

(f-50) 

There are two solutions to this equation, in general, but the 
only one which is physically realizable is 

where 

Equation (61) gives the desired formula for the neutral sur- 
face. 

When K<O, the procedure is exactly the same as that out- 
lined. Again the details are found in appendix B. The 
formula for the neutral surface is given in this case by 

~“=~o-=--w- Jypq (63) 

Roughly speaking, the sign of .J? indicates whcthcr the plate 
“buckles up” or “buckles down.” Consequently, the differ- 
ences in sign found by comparing equations (61) and (63) 
are quite natural. It would also be expected tha.t the rates 
of change of the bending and twisting moments, as well as the 
resulting equilibrium equation, should be independent of 
the sign of 8. This will be shown to be true. 

The rates of change of the bending and twisting moments 
can be computed now that z0 or lo is known for K>O and for 
&CO. The rates of change of the bending moments, iL!f= 
and &fV, are defined a,s 

F (64) 

where the moments arc taken about the ?J- and x-axes, 
respectively. Tl le rntc of change of the twisting moment 
M,, is given by 

(65) 

The calculation of tbc rates, equations (64) and (65), must 
be carried out separately for k>O and k<O. It can be 
shown that the only quantity appearing in the final result 
which depends on the sign of K is the function 6 defined by 

*=~[l-~j-O++~ ({,+)3]forji>0 

*=i [I+: so--f ({o-)3] for B<O 
t 

(66) 

According to equation (63), To-= -loo+; the numerical value of 
6 obtained from equations (66) will therefore be the same in 
either case. Thus the expressions for &fZ, Mu, and Mzu will 

be the same in both cases, The details are found in appendix 
B in which it is shown that 

h3 
AL= -12(1--z) {~~[1.-c8(2-Y)2]+~[Y-c8(2-Y)(2v-1)]3 

(67) 

(6% 

The equation of equilibrium can be set up in terms of the 
bending and twisting moments and compressive load without 
reference to the stress-strain relations. This has already 
been done by Timoshcnko (reference 1, p. 305) for the more 
general case of combined bending and tension or compression. 
His results may be applied to this special case of a simply 
compressed plate. With the present notation, the equation 
of equilibrium is 

(70) 

Timoshcnko’s relation was originally written in terms of the 
actual bending moments and actual compressive stress re- 
sultant N, rather than the rates of tbc reduced quantities. 
Timoshenko’s equation can be differentiated with respect 
to time and divided by & on both sicles, so that equation (70) 
is the desired equation of equilibrium provided N, is defined 
as 

N, = o,,h/E, (71) 
From equations (46), 

k, = a27.ilpx2 

With these relations and equations (67), (68), and (69), 
equation (70) may be rewritten as 

D e&zzz+ 2h&zvy+&1-i)uyy,,= --oh& (72) 

where the subscripts denote partial diffcrcntiation with re- 
spect to the variable named and 

D,,=D [l-es (2-~)~] 

D,z=D [l-es (2--r) (2~ I)] 1 
Dzz=D [l -cS (2~ 1)2] 

1 

1 
The quantity D is the well-known flexural rigidity of the 
plate. Equation (72) resembles the equation for the buckling 
of an anisotropic plate (reference 1, p. 380). There is one 
important difference, however. In t.he case of an anisotropic 
plate, the coefficients Dll, D,,, and Dzp are constants of the 
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material; for the plastic case Dll, D12, and Dzz are functions of 
uo. In other words, the plate is anisotropic but this aniso- 
tropy is caused by and is a function of the compressive stress. 

I Consequently, certain changes must be made in the standard 
procedure for calculating buckling loads for anisotropic 
plates. Several examples illustrating this technique are 
given in the succeeding sections. Graphs of the quantities 

Dn’=l-cS(2-v)” 

and 
D,z’=l--c6(2--v)(2v-1) 

D22’= 1--cs(~Y- 1)2 

as functions of X for v=O.32 are given in figure 3 and the 
numerical values are listed in table I. 

TABLE I 

VALUES OF D,,‘, DIZ’, AND Da’ 
FOR v=O.32 

x 
_-- 

1.0 
1. 2 
1. 4 
1.6 
1.8 
2. 0 
2.5 
3. 0 
3.5 
4.0 
4. 5 
5.0 
6.0 
7. 0 
8.0 
9.0 

10.0 

I .‘- Dll' 
___-- 

1.0000 
.93030 
.8744i 
.82847 

: E%i 
.69086 
.I?4178 
.60345 

57255 
: 54W8 

52544 
: 49104 
.48459 

: :z 
.41226 

I -- 

- 

DIP’ 
_---- 

1.0000 
1.0149 
1.02tiQ 
1.03G8 
1.0451 
1.0522 
1.0662 
1.0768 
1.0850 
1.09lG 
1.0971 
1.1017 
1.1091 
1.1147 
1.1192 
1.1229 
1.1259 

I!_ 022’ 

1.0000 
.99650 
.99424 

: 2%: 
98882 
!a580 
98355 

: 98179 
98037 

: 97920 
.97821 
. ‘37GG3 
.97541 
. Si445 
.97367 
.97301 

I.3 

7 

.6 

Liiiiiiiiiiiiiiiiil ‘3/ 2 3 4 
2 

6 7 8 9 IO 

FIQURE 3.-Chphs of Dd, DII’, and Dza’ as functions 01 X for v=O.32. 

TYPICAL BOUNDARY CONDITIONS FOR THE FUNDAMENTAL EQUATION 
FOR A SIMPLY COMPRESSED PLATE 

The discussion of the boundary conditions for the buckling 
equation, equation (72), is facilitated by expressing the 
moment rates A&, MU,, and &iz-,, in terms of the second deriva- 
tives of the deflection rate ti and the stiffnesses Dll, D12, and 
D2? introduced in equations (73). Thus, it follows from 
equations (67), (68), and (69) that 

E&r =-D,,&z-[Dr(l-v)D] & 

E,A&, =-[D12- (l-v)D] &,-D&J,, 1. (74) 

E,i’&,=D(l--v)&, 1 

The following boundary conditions are typical in the buckling 
of rectangular plates: 

(1) Simply supported edge at x=0. The deflection rate 
ti and the moment rate M, must vanish at this edge; that is, 

tb=o -I 

i 
(75) 

-D u&z-[Dlz-(l-v)D] ti,,=O 

for 2=0. 
(2) Built-in edge at x=0. At this edge, the deflection 

rate ti and the slope rate 6, must vanish; that is, 

for X=0. 

?il=o 7 

f 
(76) 

&=O 

(3) Free edge at q=O. For a fret cdgc, the rates of the 
bending moment MV and of the equivalent shear load 
(--2btiJbz) + (b&X&) must vanish (reference 1, p. 300). 
Consequently, 

[D,z-(1-v)D]W,,+D:&,=O 7 

J 
(77) 

PC!- (1--v)Dlzir,,,+D2?2i)~I/Y=O 

for y=O. 
(4) Plane of symmetry at y=O. If the buckled shape of 

the plate is symmetrical with respect to the plane y=O, the 
ra$es of the slope tiy and of the equivalent shear load 
(-2b~&z) + @Mu/by) will vanish. Therefore, 

siJy=o 

[&+ (1--v)Dl~,,,+D?aZi)yuy=O 1 
(73) 

or 

for y=O. Should these boundary conditions be given on 
other edges, the necessary changes in the formulas can be 
made easily. 

Several examples of the buckling of a simply compressed 
plate with various boundary conditions of the type just dis- 
cussed are considered in the next section. In all these ex- 
amples it is assumed that the plate is in the state of compres- 
sion previously described, uz= -uo, and that the edges 

I 
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x=a and x=0, perpendicular to the direction of the compres- 
sive force, are simply supported. The qther boundary con- 
ditions are specified for each example. Equations (75) are 
satisfied at z=O and x=u if the deflection rate is written 
in the form 

tb=f(y) sin (m?rx/u) 63’3 

where m is an integer. Thus a section of the plate in the 
buckled state, obtained by setting y=Constant, is described 
by a series of sine waves; the integer m gives the number of 
half waves. Substitution of this expression for zi, into the 
partial differential equation, equation (72), yields the ordi- 
nary differential equation 

(mr/a) “&f- 2 (m?r/a) “D12f”+ D22f’v= u,h (mr/u) ‘.f (81) 

in which the Roman numerals denote the corresponding de- 
rivatives with respect to y. With 

equations (82) can be written in the form 

f’v-2py+p2(p2-q2) f =o (83) 

The general solution of this equation inf(y) is 

f(y)=cl cash ryfc2 sinh ~y-l-c~ cos sy+cI sin sy (84) 

where cl, c2, 133, and c4 are arbitrary constants which must be 
determined from the boundary conditions, and 

035) 

Equation (84) is the fundamental relation which must be 
studied for each particular case of buckling from a state of 
simple compression. The boundary condit,ions of the type 
discussed lead to linear homogeneous equations for the con- 
stants c,, cZ, ~3, and ~4. The condition that these equations 

0 - 

possess solutions cl, c2, ~3, and c4 which are not all zero yields 
an equation in r and s from which the critical stress a0 can 
be determined. 

SPECIFIC EXAMPLES 

Plastic buckling of a narrow strip; relation of present’ 
theory to beam theory.-It seems worth while to investigate 
how the present theory of the plastic buckling of plates is 
related to the Engesser-Von K&man theory of the plastic 
buckling of beams. Consider a rectangular plate of thick- 
ness h which is simply supported along x=0 and ~=a, free 
along y= 4 b/2, and under the compressive stress a,= --a,,. 
As b-+0 for a fixed value of a, the buckling condition for 
this plate might be expected to approach that of a beam 
which has the length a, is simply supported at its two ends, 
and possesses a rectangular cross section of height h and 
width b. 

The solution given by equation (80) automatically fulfills 
the boundary conditions at x=0 and ~=a. In addition, the 
symmetry condition along y=O, equations (79), requires 
that the coefficients in equation (84) satisfy 

?T2+SC4=O @6) 
and 

r3c2-ss3c4=0 (87) 
Accordingly, 

Q=Cq=O (88) 

if the function f(y) is not to vanish identically. Boundary 
conditions, equations (77), for a free edge along y= b/2 fur- 
nish the equations 

-$$ [Dn- (l-v)D] (e, cash $+e, cos $)+ 

D22 ( 
T%’ cod1 ;- s2c3 cos f 

> 
=o 

-‘ng [Dlsf (I--)I)] (x1 sinh G--X, sin f>-+ 

D22 
rb sb r3c1 sinh -F+s~c~ sin F 

> 
=0 

(89) 

The boundary conditions corresponding to a free edge at y= -b/2 are fulfilled automatically if equations (89) are satisfied. 
Now these relations are linear homogeneous equations in cl and ~3; if they are to have nonvanishing solutions, the determinant 
of the coefficients must be zero. Therefore, 

D2,r2--F [D~+~)D])cosh; -jD2,s2+m~[D~41-v)D])cos~ 

r Dz2r2- 
I 

m$ [D~2+(1-v)D]~ sinh g 
=o 

s D22sz+ { mg [D,+(l-v)D]j sin</ 

This determinantal equation can be reduced to the form 

(~2-m2?r2R2Q)2yl tan z+ (~2+m2?r2R2Q)2~ tanh $=o 

(90) 

(91) 

I 
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where 
R=b/a 

4 =rb=bm 

B =sb=bm 

Qz[D12- Cl--)DlP, 
If, for a fixed value of the span a, the width b of the plate 

approaches zero, R and hence .$ and 7 tend toward zero too. 
Accordingly, the functions [ tanh (t/2) and 7 tan (r/2) ap- 
pearing in equation (91) may be replaced by t2/2 and v2/2, 
respectively. For m=l, in particular, this relation can be 
reduced to 

kD,2’-AD22”-D,2’2+Q2D22’2=0 

in which the following notation has been used 
(93) 

D,z’=DnlD 

D22’ =&ID 

A= (DlltDzz’ -D,,‘2) /D22’2 J 
A detailed development of equation (93) is presented in ap- 
pendix C. If the plate under consideration buc’kles within 
the elastic range, D,, - ‘-D12’=D22’=1; consequently, A=0 
and Q=v. According to equation (93) then, k=l-v2 and 

(95) 

The compressive force P= a,bh under which the plate buckles 
is thus seen to equal 

.=r2h3bE, r2EI ---=-- 
12a2 a2 (96) 

where I=bh3/12 is the cross-sectional moment of inertia. 
Equation (96) is Euler’s formula for the elastic buckling of a 
simply supported beam of span a. 

k 
(I-ve) 

FIQUBE 4.-The quantity k/(1-@) as a function of A for two beams having the same sham but different values of I’. 

If the plate buckles after the compressive stress a0 has 
exceeded the limit of proportionality, the evaluation of equa- 
tion (93) becomes more diflkult. Noting the relations given 
in equations (94), equation (93) can be transformed into 

k= D,,‘- Q2D22’ (97) 

I?or v=1/2, this relation can be handled quite simply. A 
straightforward computation (see appendix C) yields the 
following result for the critical compressive stress uer=uo: 

2Eoh2 1 -- uct- 3u2 (l+ 4%)” (98) 

The critical buckling load P is given by 

(99) 

where again I= bh3/12 is the cross-sectional moment of inertia. 
Hence the reduced modulus E* is given by 

000) 

according to the definition of X given by equation (13). This 
reduced modulus is identical with that found in the Engesser- 
Von K&man theory of the buckling of beams beyond the 
elastic limit. (See references 2 and 3.) Thus in the case of 
an incompressible material, v= l/2, the critical load for a beam 
can be found as a limiting case from the theory of plates. 
It should be noted that, within the framework of beam 
theory, the critical stress is independent of the value of 
Poisson’s ratio v. 

This result is not necessarily true for materials which are 
not incompressible, vz l/2. The quantity 

k 12 u0a2 
l-v2 n2h2E (101) 

0 

which is simply a constant multiple of the critical stress for 
a given plate, has been evaluated as a function of x for the 
case just mentioned, v=1/2, and for a material with v=O.32; 
the results are plotted in figure 4. Although the two func- 
tions agree at X=1, as previously proved, there is a marked 
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difference which increases with increasing values of X. Con- 
sequently, two beams of the same shape but with different 
values of Poisson’s ratio will buckle at different critical 
stresses. 

At first sight, these results may Seem somewhat contradic- 
tory since the analysis of plates developed herein is a generali- 
zation of the Engesser-Von K&m&n theory of the buckling 
of beams and yet this theory does not always appear as a 
limiting case of the present analysis. An explanation of this 
discrepancy is afforded by a closer examination of the posi- 
tion of the neutral surface z0 as a function of the parameter X. 
The function z. depends on the plate thickness h and on Y 
and X. The limiting process considered does not affect this 
relation and the neutral line in the beam is determined by 
the intersection of the neutral surface in the plate and the 
vertical plane y=Constant. The neutral line so determined 
need not coincide with the neutral line determined directly 
from the theory of beams. This difference is the basis of the 
discrepancies in k/( 1 -v”) noted. 

According to equations (49), the function z. is given by 

where 

The quantities CL and & are the strain rates in the middle 
surface in the x- and y-directions, respectively. For the 
small displacements studied herein, k1 is the rate of curva- 
ture of the line of intersection of the plane y=Constant and 
the middle surface. Similarly, r;=? is the rate of curvature 
of the line of intersection of the plane x=Constant and the 
middle surface. In general, the position of the n!utral sur- 
face depends on the four quantities i,, ip, K,, and K2 and this 
holds in the transition from plate to beam. On the other 
hand, the Engesser-Von KbrmBn theory of beams assumes 
that the position of the neutral line depends on E’1 and g1 
alone. (See reference 1, p. 158.) The position of the neu- 
tral line will depend on the type of analysis used. Specifi- 
cally, it can be shown (see appendix C) that the position of 
the neutral line found by considering the intersection of 
the neutral surface and a plane y=Constant and the position 
determined by the Engesser-Von KBrm&n method agree if 
and only if v=1/2. Therefore, it is to be expected that the 
transition from plate to beam is valid only under this con- 
dition. 

Buckling of a simply supported plates-The critical load 
for a simply supported plate under edge thrusts, stressed 
beyond the elastic limit, has been discussed by Timoshenko 
(reference 1, p. 387) on a purely formal basis. The object 
of this section is the development of an analytical formula 
for the critical stress of such a plate on the basis of equation 
(72) and the subsequent comparison with Timoshenko’s 
results. 

According to equations (75), the boundary conditions for 
a plate simply supported at all four sides can be written in 
the form 

ti=o 
(102) 

-D~f7i&-[D,2- (l--)D]ti,,=O 

at x=0 and x=a, and 

tb=o 
-D22tih- [Dn-(l-v)D]ti,,=o 

(103) 

at y=O and y= b. The boundary conditions at x=0 and 
x=a are fulflled automatically if the function ti is of the 
form given by equations (80) and (81). Equations (103), 
applied to the functionf(y) at y=O, require that 

c1+c3=0 

-Dzz(r2c,-s’ca) + m2 ( > *[IL- Cl--y)Dlh+~) =O (104) 

Consequently, 

cl= -cg 
c3(r2fs2)=0 I (105) 

thus 

q=c3=0 (106) 

since r2+s2f0 if buckling is to take place. 
The conditions at y=b imply that 

c2 sinh rbfc, sin sb=O 

-D22(r2c2 sinh rb-ss2c., sin sb) + 

i 

(107) 

2[D,2-D(1-v)](c2sinhrb+c,sinsb)=0 

which are equivalent to 

cZ sinh rb + cd sin sb = 0 

rzc2 sin11 rb-s2c4 sin sb=O 
(108) 

Now these equations are linear, homogeneous equations in 
the two unknowns cz and c4; they possess nontrivial solutions 
if and only if 

sinh rb sin sb 
= - (r2+s2) sin sb sinh rb=O 

r2 sinh rb -9 sin sb 
(109) 

This condition will be satisfied if r2+s2=0, r=O, or s=nr 
where n=O, 1, 2, . . . . The first possibility is untenable; 
the second implies, according to equations (108), that s=O, 
7r, 2a, . . . . If s=O, then from equations (108) T must also 
vanish and buckling will not take place. The buckling con- 
dition must therefore be s=na where n=l, 2, 3, . . . . 

Since s=-,/p(p-p) from equations (85), .it follows from 
equations (82) that 

n27r2 92.:- 
b2 

=P (!-z-P) 
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With the notation of the previous sections for Dll’, D12’, Dz’, 
and A, this relation can be written as 

The critical stress u,, can then be found by direct computation 
to Abe- i. ,,.. _ 

ucr = go 

Now each of the terms in the first parentheses on the right- 
hand side is positive; consequently, the minimum critical 
stress will occur when n= 1. Thus the critical stress is given 
by 

In the elastic case, X= 1 and the functions appearing in the 
formula for the critical stress take on the values Dll’= 
D12’=D22’= 1, A==O; consequently, 

This result is the same as that found for the elastic case 
directly (reference 1, p. 330). Timoshenko suggests (refer- 
ence 1, p. 387) the application of the following equation for 
the buckling of a simply supported plate compressed beyond 
the elastic limit, 

D (w&m + 2 d&r,, t ti,,,,) +Nz&z = 0 (115) 

where here CY=E*/E,, the ratio of the reduced modulus 
(defined in equation (100)) to Young’s modulus. Under 
these assumptions, the critical compressive stress is found 
to be 

Although Timoshenko (reference 1, p. 387) gives only the 
critical stress for the half-wave number m= 1, his results can 
be easily extended to the form given in equation (116). 

It will be found more convenient to use a new quantity I% 
rather than u,, for comparison of the two theories. This 
parameter is a modified form of k defined in equation (94) ; 
more precisely, 

(117) 

For the theory proposed in the present report, this quantity 
becomes 

%= 013’ (& .,/g+mR .&&~+D,,‘Am2R2 (118) 

where R= b/a, as before. In the elastic case, $ takes the form 

i&(-&mR)Z (11% 

On the other hand, Timoshenko’s result can be written as 

020) 

The differences in the two results appear more readily if equa- 
tions (118) and (120) are expanded in full. After some simpli- 
fications, equation (118) becomes 

~=D,,tm2R2+2D,,‘+$ (121) 

while equation (120) takes the form 

~=am2R2+2-J&+$Rz (122) 

It is seen then that z is the same type of rational function of 
m2R2 for both theories except for the fact that the coefficients 
are different functions of X. 

Unlike in the case of the cruciform section which is treated 
in the next section, the computations involved in evaluating 
x as a function of X and mR are relatively simple since the 
coefficients D,,‘, D,,‘, D,,‘, and (Y can be tabulated once for all 
independently of the stress-strain law and the particular 
geometrical ratios under consideration. The critical values of 
x can be found with reasonable speed by the following pro- 
cedure. Curves of ic’ against x can be obtained for various 
values of the parameters m and R by evaluating equation 
(121) or (122), depending on which theory is used. These 
results, which form the bulk of the computation, do not 
depend on the stress-strain law but only on V. Conse- 
quently, the curves of E against X thus found are valid for all 
materials having the same Poisson’s ratio. On the other 
hand, K and h are related by a second equation which depends 
on the stress-strain law; namely, from equation (117), 

jj= $fg (l--Z) 

Since u,, is a function of X, determined by the given compres- 
sive stress-strain law of the material in question, k also can 
be plotted as a function of x once the plate width-to-thickness 
ratio b/h has been fixed for a particular example. If these 
curves are plotted on the same sheet as those previously 
d.escribed, the intersections will give the critical value of 
i, and hence the critical stress, corresponding to a given 
stress-strain law and given plate parameters b/h and R. It 

. : .  

__-1- -1’ _, 1: 
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should be noted that z depends on the ratio b/jL in the plastic 
range, whereas this is not the case within the ordinary elastic 
theory. 

Since the quantity X enters into the computations for the 
second set of curves through the stress-strain relations, it is 
quite useful to represent the stress-strain curve analytically. 
An expression of the form 

has been fitted to the experimental data in such a way that 
the experimental and theoretical curves pass through the 
same initial and final points and the slopes at these points 
coincide. The fitted curve together with the experimental 
points is shown in figure 5. 

The computational program described has been carried 
out for the material given in figure 5 and the ratio of plate 
width to plate thickness fixed at b2/h2=1000. The solid 
curves of figure 6 give z as a function of X with parameter R 
as defined by equation (121), each set of curves representing 
a different value of m. These curves can be applied to a 
plate with any ratio of b/h and any compressive stress-strain 
law provided v=O.32. The dashed lines, on the other hand, 
represent the relation between z and X given by equation 
(117); they correspond to P/h’= 1000 and the stress-strain 

0 / 2 3 4 
2 

6 7 8 9 IO 

(a) rn=l. 

6, in/in. 

FIGURE 5.-stress-Strain cuw for e=& u+AuP, E0=10,667,000,1ogA=-~.373,anda~3.~127. 
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(b) m=2. 
Fraum B.--Curves of E as B function of X for different values of m. 
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curve of figure 5. The points of intersection have been deter- 
mined and the critical values of $ plotted in the usual fash- 
ion as functions of l/R in figure 7. Timoshenko’s results are 
also shown as well as those for the elastic theory. Since the 
critical stress is given by % multiplied by a constant, the 
interpretat,ion of these curves of z against l/R holds equally 
well for the critical stress as a function of l/R. 

With a slightly different computational procedure, the 
results just obtained for the buckling of a simply supported 
plate by the present theory can be compared with Ilyushin’s 
solution of the same problem (reference 6). Ilyushin’s ;ren- 
era1 equation for the buc.kling of a rectangular plate com- 
pressed in one direction is of the same form as equation (72) 
except, for the difference in the coefficients. His fundamental 
relation can be written as First, it should be noted that the plate will buckle in one or 

more half waves according to the magnitude of the ratio 
l/R=a/b; this holds for plastic buckling as well as elastic 
buckling. Furthermore, it is necessary to consider only that 
part of the curve corresponding to a given value of m which 
lies below the intersections with curves belonging to adjacent 
values of m. Under these conditions, it can be readily seen 
that the critical stress obtained from the present theory lies 
between the results of the elastic analysis and Timoshenko’s 
formal procedure. More precisely, the elastic critical stress 
is higher than that predicted by the present, theory, whereas 
Timoshenko’s buckling stress is lower. The transition from 
a buckling mode with a given number of half waves to the 
next higher occurs at practically the same values of l/R in 
both plastic theories; whereas, this transition occurs at 
slightly larger values of l/R in the elastic range. Finally, the 
locus of minimums of all three sets of curves is, to a high 
degree of approximation, a straight line. While this straight 
line is tied for all values of b/h in the elastic case, it will 
shift, in the plastic case as this parameter is changed. 

__ -.. --_ - 

Dll*2i)z~~~+2D~~*2i)zzyu+D~~*zi)II/uv= -haod,, 024) 

where the coefficients D,,*, D,,*, and &* are rather compli- 
cated functions of the stresses which will be discussed 
shortly. Since these results apply only to incompressible 
materials, the theory developed in ‘the present report must 
be specialized to the case for which v=1/2. 

For the case of a simply compressed plate, the. basic func- 
tions entering in the definition of the coefficients in equation 
(124) can be given in a slightly less complicated manner than 
that used by Ilyushin for the more general problem. Let 
Es denote the “secant modulus,” that is, quotient of the 
compressive stress divided by the compressive strain as 
obtained from a compression test for the material in question. 
Then Ilyushin’s function w can be shown to be 

. . . 

ES C&-E (125) 
0 
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FIGURE 7.-Comparison of values of f for values of l/R with v=O.32 as determined by different 
theories. 

where E,, is Young’s modulus for the material. With Van 
Kkmgn’s modulus E* as given in equation (loo), a new 
quantity K may be defined by setting 

K=E*/E~ (126) 

The function $J will be used to designate the following relation 
containing K and w, 

(127) 

The coefficients D,,*, Dlz*, and Dzz* can then be shown to be 
of the form 

D,,*=D(l-#) 
3 1-9-K I-;? 1-# 

> 

Dlz*=D(l-+) 

i 

028) 

Dzz*= D(1 -I&) 

where D is the flexnral rigidity of the plate defined in equa- 
tions (73). It should be noted here that Ilyushin’s coeffi- 
cients depend on the two moduli E and Es, whereas those 
appearing in the present theory depend only on the tangent 
modulus E or rather the ratio X=E/E,,. Consequently, it is 
extremely dif&xlt to carry out the larger part of the com- 
putations for T independent.ly of the stress-strain law as can 
be done with the method presented herein. The numerical 
technique must therefore be changed somewhat. 

The boundary conditions for the simply supported plate in 
Ilyushin’s analysis are 

til=o 

-D,,%,,-; Dzz*d,,=o 
1 

(129) 

at x=0 and x=a, and 

d=O ) 
(130) 

at y=O and y=b. These boundary conditions are com- 
pletely analogous to equations (102) and (103), provided 
Poisson’s ratio v is taken to be l/2 in the equations (102) and 
(103). If the new quantities 6,,, &, and B,, are in traduced 
in the following manner 

&=D~JD (131) 

&=D,,*/D 1’ 

the critical parameter 6 can be found in precisely the same 
:ashion as that used in developing equation (121). Con- 
sequently, 

k=&rnzR2+2i7~~+~~, 032) 

As has been previously noted, the coefficients all, &, and 
n2, are functions of both the secant modulus and the tangent 
modulus with the result that specific reference to the stress- 
strain law in compression must be made in order to evalua.te 
equation (132) readily. The critical quantity z has been 
computed as a function of ueT for tho material shown in 
figure 5 with m and R appearing as parameters. For a 
given width-to-thickness ratio bfh, z can be determined by 
finding the intersections of these curves with the straight 
line defined by equation (117). This procedure has been 
tpplied to the case b2/h2=1000 previously discussed. The 
results obtained from Ilyushin’s method and from the present 
nethod with v=1/2 are shown in figure 8. Again consider- 
ng only those parts of the curves which lie below the inter- 
section points corresponding to consecutive values of m, 
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FIGVRE 8.-Compm’ison of values of c for values of l/R with Y= >5 as detrrminrd by the present 

method and that of Ilyushin. 

certain general conclusions can be drawn. The minimum 
value of z as determined by Ilyushin’s method is practically 
constant for all values of m as has been seen in the other 
theories considered. On the other hand, Ilyushin’s theory 
predicts smaller values of x and hence lower critical stresses 
than those of the present the0i.y. Comparison with figure 7 
would indicate that Ilyushin’s critical stresses lie roughly 
between those of Timoshenko and the present theory. 
Finally, buckling occurs at practically the same wave number 
in both theories although the jump in form takes place at 
slightly smaller values of l/R in the present theory. 

Torsional buckling of cruciform sections.-The torsional 
buckling of a cruciform section under compression can be 
studied by treating each flange as a simply compressed plate, 
simply supported at y=O and free at y=b. (See reference 1, 
p. 340.) As in the previous case, the deflection rate zi, will 
be given by equation (80) wheref(y) is found from equation 
(84). The conditions for the simply supported edge (equa- 
tions (75)) at y=O become 

The last equation. implies T%~=s*c~. Since c3=-cl and T* 
and s2 do not vanish, c1=c3=O; consequently, 

f(y)=c2 sinh ~y+ca sin sy (134) 

Finally, the boundary conditions at the free edge y=b 
.require, according to equations (77), that 

- 
( > 

y a[D1Z-(1-~)D](c2 sinh rb+c, sin sb)f 

D22(r2c2 sinh rb-s2c4 sin sb) =0 

I 

(135) 
- 

( > 
T 2[D,z+(I-,)D](rcgcoshrb+sc4cossb)+ 

Dzz(r3cz cash rb-sSSc4 cos sb) =0 

Now equations (135) are linear homogeneous equations 
in the two unknowns c2 and c4. If these equations are to 
yield nonvanishing solutions, the determinant of the coeffi- 
cients must vanish; that is, 

where 

al b, 

I I 
=o (136) a2 b2 

a,=(D22r2-{mm2~2[D,,-(l-~)D]/a2}) sinh rb 

bl= - (D22~2+ {m2~2[D12- (I-~v)D]/a’}) sin sb 

a2=T(Dp2r2- { m2?r2[D12+ (1 -v)DJ/a2j) cash rb 

b2= -s(Dz2s2+ { VL*~*[D~~+ (l-~)Dl/a*}) cos sb 

Except for a systematic interchange of the hyperbolic and 
trigonometric functions, the determinant in equation (136) 
is the same as that appearing in equation (90). The de- 
clcrminantal equation cm then be reduced to 

s {D22~2-m$ [D12-(l-~)D]\ztanl~ rb= 

r Dzzs’+ 
1 

%$ [D,2-(l--v)D]~ztan sb (137) 

With the notation introduced in equations (92), t,his result 
can be rewritten in the form 

(~2-m2a2R2Q)2 ta;h 5.w (,,2fm2,2R2Q)2 ‘7 (13% 

Again t and q can be de’termined as functions of the quantities 
Dll’, D,,‘, D2*‘, and k defined in equations (94). With some 
additional transformations, equation (138) can then be put 
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into a form suitable for solving for the quantity E as a 
function of X. Although the computations are somewhat 
tedious, the solutSions obtained are completely independent 
of the stress-strain law. These results are represented by 
the solid lines of figure 9 ancl are marked for various values 
of the side ratio R. The dashed curves, on the other hand, 
represent the quantity % as a function of X as derived from 
equation (117). These curves have been computed for the 
stress-strain law shown in figure 5 and the values of the 
width-to-thickness ratio b/h as indicated in the graph. 
Given the two dimensionless quantities b/a and b/h, the 
critical stress is then determined by the corresponding 
solid curve and dashed curve. This point gives t,he desired 
value of z, from which the buckling stress is found by solving 
equation (117). The details of the procedure are found in 
appendix C. It should also be pointed out that the solid 
curves have been computed for the half-wave number m=l, 
for it is shown in appendix C that the lowest value of 6 and 
consequently the lowest critical stress, will be obtained for 
this value of the wave number. 

0 / 2 3 4 5 6 7 8 9 IO 

FIGURE Q.-Results of solving for r as a function of X by using equations (117) and (138). 

Certain general conclusions concerning the buckling of sue-h 
a section can be reached without reference to the stress- 
strain law by means of the solid curves of figure 9. These 
curves show that, for a given side ratio R, his a decreasing 
function of X. This decrease is not the same for all values 
of the side ratio, however. For small values of R (large 
length-to-width ratios), z is almost constant. In fact, when 
R60.10, E is practically constant and the critical stress is 
the same as that found in the theory of elastic buckling of 
plates. The plastic effects are very pronounced for larger 
values of R and increase as R-1, that is, as the rectangular 
plate becomes more nearly square. 

Finally, the intersections of the solid and dashed curves of 
figure 9 yield F as a function of the side ratio R; these are 
replotted in figure 10. The top curve represents the elastic 
case (X=1) and is independent of b/h. The other three 
curves correspond to the cases b*/h*=300, 250, and 200, 
respectively. It should be noted that ‘iL: for the elastic case 
is always greater than z for the plastic case; this difference 
is more marked for shorter (larger R) and thicker (smaller 
b2/h2) plates. 

FIGURE lO.-Curves of L ns a function of R from figure 9. 
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ENERGY METHOD 

In the preceding section rigorous solutions were obtained 
for several cases of plastic buckling of simply compressed 
plates. In cases for which the rigorous solution becomes too 
unwieldly or is not known at all, the energy method provides 
a convenient means of finding approximate values of the 
buckling loads. ,i -. 

- As far .as ‘the elasts buckling of -plates is concerned, the 
energy method is well established. (See, for instance, 
reference 1, pp. 325 ff.) At first glance, it may appear 
somewhat doubtful whether this method can be extended to 
the plastic buckling of plates. That such an extension is 
legitimate, however, follows from the fact that equation 
(109) has the same form as the equation for the elastic 
buckling of an orthotropic plate with flexural rigidities Dll 
and Dzz and torsional rigidity &. Since the energy method 
is valid for this problem of elastic buckling and since the 
plastic buckling of a simply compressed plate is governed by 
the same equation, the application of the energy method to 
the plastic buckling of plates is legitimate. 

Under sufficiently small edge thrusts the flat form of the 
plate represents a stable equilibrium configuration. When 
the edge thrusts reach the critical value, however, this 
equilibrium becomes indifferent and the plate may assume a 
bent form. This transition from the flat to the bent form, 
that is, from one indifferent equilibrium configuration to 
another one, does not involve any energy input or output. 
Accordingly, the work done by the edge thrusts equals the 
flexural energy of the bent plate. The mathematical expres- 
sion of this principle is the basic energy equation: 

DJ-J{[l-c6(2-V)“]&,,2+ 
2[v-c6(2 -v) (2V--l)]d,,w,,+ 
[1-ccs(2V-l)~]6,, 2+2(1--)ZirZ,2}(E2dy=aohSSd,*dscdy 

(139) 
where the range of integration is the area of the plate; that is, 
0 5 z 6 a, 0 s y 5 b. As is easily seen from equations (46) and 
(74), the left-hand side of equation (139) equals 

-K/-S Cn;r,%, -tiz,Kn+n;r,l;r,,>dxdy (140) 

which represents twice the rate at which work is done by the 
bending and twisting moments. In the elastic range, c=O, 
this expression can be written in the familiar form 

oSSt(~~,+~,,)2--(1--) (ti,&,-&,2)]dxdy (141) 
The right-hand side of equation (139) represents twice the 
rate at which work is done by the edge thrusts and has the 
same form as in the elastic case. 

The following expression for the critical load of the plate is 
obtained from equation (139): 

A’ CT&=- B (142) 

where 

x=D 
ss 

{[l-c8(2-V)2]&,2+2[V-c8(2-V) (2V-1)]tiz&,+ 

[1-cS(2~-l)]ti~y2+2(1--~)ti~y2)d;cdy (143) 

and 

B= 
ss 

tiz2dx dy 

The right-hand side of equation (142) depends on the 
function ~b, that is, on the deflected shape of the plate. Now, 
any restriction which is imposed on the deflection rate G, over 
and above the boundary conditions discussed in the third 
section of the ANALYSIS, amounts to an increase in the 
stiffness of the plate and must, therefore, lead to an increase 
in the critical load. The critical load for a given plate is 
accordingly found as the smallest value which the right-hand 
side of equation (142) can assume for functions ti possessing 
continuous partial derivatives of the second order and 
satisfying the boundary conditions for the deflection of the 
plate. 

In the elastic case, c=O, the right-hand side of equation 
(142) is independent of the buckling stress uO. Equation 
(142) therefore furnishes the buckling stress a,, which cor- 
responds to a given plate thickness h. In the plastic case, 
however, the numerator 2 of the right-hand side of equation 
(142) depends on the buckling stress uO through the quantities 
c and 6. Equation (142) should therefore be considered as 
an equation which determines the critical thickness h 
corresponding to a given buckling stress. If the expression 
for D, from equations (73), is substituted into equation (143) 
and the resulting form of equation (142) solved with respect 
to h, the following formula is obtained: 

(145) 

where B is given by equation (144) and A’ denotes the 
integral on the right-hand side of equation (143). 

The energy method will now be applied to the buckling of a 
cruciform section previously considered. A suitable choice of 
the approximate deflection rate ti is 

2ir=7lG-w-t~tY (146) 

where [=x/a and q= y/b. This function satisfies all the 
boundary conditions on the plate except at the free edge 
y=b. Nevertheless, this expression proves to be a satis- 
factory approximation as will be seen shortly. The necessary 
integrations indicated in the definitions of xand B (equations 
(143) and (144)) can be easily carried out in this case; for 
example, P 
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ss &z2dxdy = @$g 
1 1 

ss 0 0 
~“~F--~“~~~~~=- l;R (147 

rr . . 
ti,,2dxdy =GR S 0 

1(1-12~2+8~3+36~4-48~5+16~e)d~ 

17 
=35a?R (148: 

rr 
&z2dxdy = R 

. a SJ o1 ;v~(I -12~2+St3+36(4-48(5+ 16(“)dtdiErl 

17R =-- 
105 (149) 

where R=b/a. Thus 

B 1 7a2R2 
Z = 168R*[i-~c6(2-~)2]+ i02(i-~) 

1 7a2R2 z.cz------- 
168R2Dllq lo2(1-vv) 

(150) 
and 

~~168R~D,~‘+lO2(1 -v) 
177? (151) 

where z is defined in equat,ion (117). 
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FIQURE Il.-Curves of h obtained by the energy method and exact solution for ~~0.32 and 
various values of R. 

Since D,,’ has been previously computed as a function of x 
(see table I), ic may be readily evaluated from equation (151) 
as a function of X for various values of the parameter R. 
This has .been done for the example v=O.32 considered in an 
earlier section., The results are shown in figure 11 in which 
the solid lines represent the solution obtained by the energy 
method and the dashed lines are those found from the exact 
solution. A brief inspection will show that the energy 
method, as applied here, gives a very good approximation in 
the technically interesting region of small values of R. The 
error increases as R becomes large and reaches a maximum of 
about 8 percent. It should also be noted that for a given 
value of R the error is an increasing function of X. The 
energy method actually yields better results when the 
complete problem of determining the critical values of z 
associated with a given stress-strain law is carried out. 
These points arc found from the intersections of the curves of 
figure 11 and the curves derived from the stress-strain law 
through equation (117) (fig. 9). Since the curves of figure 9 
arc monotonic, increasing functions of X with a slope angle of 
less than 90°, the error will be smaller than the original 
estimate. The results of applying this method to the cases 
treated in the previous section on exact analysis are shown in 
figure 12. The solid curves represent the solution by the 

I. 4 
E/as tic 

I 

/ 
I.3 , 

I 
L Energy method II 
----- Exocf schfion I 

I.2 
// ;: 

/ /300 
/ 

I / 
I / , I /. / I I 

250 m 
lrr 

t t 
l.0 I”, A, I I I I 

J/ ,/ 

t-i 

FIQURE 12.-Results of applying energy method to cases of Bgure 10. 
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energy method, whereas the dashed curves are the exact 
solution. It is seen that the maximum error is of the order of 
2% percent of the value of x. This appears to be well within 
the order of accuracy of the theory itself. Finally, the 
approximate value of z is always greater than the exact 
solution as is usually found in the application of the energy 
.method. .- ., ,... P. ..,... .l. ..~ ., ./ ..: ,. 

Equation (151) also affords an easy means of studying the 
general character of the critical parameter z as a function of X 
for various values of R. It has already been pointed out that 
Dn’ is a decreasing function of h starting at &‘=l for 
X= 1 and approaching &‘=0.2413 for X+00. Thus for 
small values of R, the first term has little influence and E is 
approximately a horizontal line defined by the equation 

(152) 

The elastic solution based on the energy method with the 
deflection given by equation (146) is 

z=16SR”+102(1-v) 
1779 (153) 

and equations (152) and (153) agree quite closely for small 
values of R. Under these circumstances, then, the critical 
stress determined from the plastic theory will be the same as 
that obtained from the elastic formulas. 

BROWN UNIVERSITY 

PROVIDENCE, R. I., March 26, 1947 

APPENDIX A 
DIFFICULTIES PRESENTED BY ILYUSHIN’S STRESS- 

STRAIN RELATIONS 

It has been pointed out in the first section of t,he ANAL- 
YSIS that certain objectionable discontinuities are present 
at the neutral surface when the state of stress and strain in 
a body is described by relations of the type used by Ilyushin 
(reference 6). More precisely, it has been shown that the 
equations for loading and unloading do not give the same 
increments in strain at the neutral surface; this difficulty is 
not present in the theory of plastic flow developed in the 
present report. Such problems always arise when an attempt 
is made to take unloading into account in a theory of plastic 
deformation. (See reference 10, p. 400.) 

The inconsistency is brought out more clearly if the whole 
problem is considered in terms of the state of stress and 
strain existing in the buckled plate. Let 

Q=Q(uJ = & (AlI 

Then Ilyushin’s stress-strain relations for loading in the case 
under consideration (equations (30)) can be written in the 
form 

2&e,=(lfQ) (2a,-CT,) 

2G$/=u+~)(--a,+w 

I 

642) 

E OYZU = 3 Of Ql TZY 

Differentiated with respect to time, these become equations 
of the following type: 

2E&= (1 +a) (2c+z-&v) +&2u,-ua,) (A3) 

In particular, for buckling from a state of simple compression, 
a,=-u. and u~=T~~=O, 

=-; n’(2&-,-&/) (A4) 

where V=dfi/du+ Accordingly, 

2E&= (l+i~+u&‘) (2&z-CQ (A5) 

The boundary between the regions of loading and unloading 
is a plane z=Constant. If the displacements are to be con- 
tinuous across this plane, d,, d,, and +,,,, too, must be continu- 
ous. Moreover, according to Ilyushin’s theory the sign of 
-a&, serves as a criterion for loading and unloading. Since 
& is continuous, it must vanish at the boundary between the 
regions of loading and unloading. Thus, 2k-,--ky is con- 
tinuous, too, and Q=O on the boundary. Denoting the 
values on the loading side of the boundary by the super- 
scrint + and the values on the other side by the superscript -, & 
the strains at the neutral surface become 

2E&= (1 +a) (2ir,+- &+) 

= 2&-,- - a,- 
=o 

2E&= (1 +Q) (-&ir,++2&+) 

= -kz-- + 2ir,- 

E O?ZY = 3 cl+ n2) +zv+ 
=3’ TZY- 

Thus 
crz-== (l+Q)&+ 

U ‘y-= (l+Q)a,+ 

fzu-- = (l+~)+z,+ 

(Aa 

(87) 

Since (1 +Q)>l, the rates of stress on the unloading side of 
the boundary are of the same sign as those on the loading. 
Furthermore, the absolute values of the rates of stress on 
the unloading side are greater than those on the loading side. 
While this prediction of Ilyushii’s stress-strain relations does 
not violate the equations of equilibrium, it does seem quite 
strange when compared with the usual notions of loading 
and unloading. The result is of a sufficiently startling 
character to call for direct experimental verification before 
a theory of structural stability in the plastic range is based 
on these stress-strain relations. 
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That the discontinuities implied in Ilyushin’s stress-strain 
relations are a source of concern to Russian scientists working 
in this field is seen from the following passage which is quoted 
from W. W. Sokolovsky’s recent paper (reference 14) in 
which the stability problem is specifically discussed: 

“In solving these problems, the Mises-Hencky theory was 
employed, under the assumption of the incompressibility of 
the plastic material. This assumption has a strong influence 
upon the value of displacements and does not permit satisfy- 
ing completely the conditions oj the continuity of all components 
of stress and displacements on the boundary between the elastic 
and the plastic zones. An objective of recent work is to avoid 
these defects of the theory.” 

While the discontinuities appear to have been noticed, the 
source has not been traced correctly, for these discontinuities 
subsist even if the compressibility of the material is taken 
into account. They can be avoided only by replacing 
Ilyushin’s theory of plastic deformation by a theory of 
plastic flow of the type given in the present report. 

APPENDIX B 
DETAILS .IN DEVELOPMENT OF FUNDAMENTAL PLATE 

EQUATION 
DETERMINATION OF NEUTRAL SURFACE 

The neutral surface can be determined from the condition 
t.hat the additional stress resultants present in the buckled 
state must be in equilibrium. Rather than compute the 
rates of the stress resultants arising from += and ?V separately, 
it is much simpler to consider the combinations a,-JG, and 
&-,---Y+-,. (A similar device is employed in reference 6, p. 
341.) For unloading, equations (40) may be used to yield 

a,-vc+,=i, 

1 
031) 

+-,-vciz=i, 

On the other hand, equations (39) give for loading 

X-l. C,=cr,-vvci,+(X-l)~-,---a, 

X-l X-l. 
1 

032) 
;,=a,--vcr,----- 2 &+ypv 

Transposition in the first of equat.ions (B2) leads to 

+~-vvl;,=i,-- F (2d;-- f?,) (B3) 

which, according to equations (41), can be written as 

a,--vi,=&-- (5-4v;~~;‘e2;)1 [(2-v)i,+ @v-l)&,] (B4) 

With 
- 

‘= (5-4v)k-;1-2~)~ (B5) 

and K and z. as defined in equations (49), equation (B4) 
becomes 

~-,-vvcr,=EZ+2CIz(Z-~o) 036) 

The quantity c depends only on the properties of the material 
through v and on the compressive stress through X. It is a 
nondecreasing function of X, for 

dc 
ax= 

(5-4v)X- (1-2~)~-(5--4~) (X-l) 
[(5-4v)X- (l-2v)2]” 

5-4v-l+4v-4v~ 
=[(5--4v)x- (l-2vyy 

20 (B7) 

since -15~6 l/2. For X=1 (the smallest value of X), c=O; 
for X=m, c=1/(5--4~). A similar expression for +-,--v+-, can 
be found by the same technique; namely, 

a,-v+,=i, -cIz(z- 20) (B8) 

The rates of change of the stress resultants r\j, and 2\j, can 
be computed from equations (Bl), (B6), and (B8). Two 
cases arise depending on whether the region 2>zo is a region 
of loading. or whether 2<zo is the region of loading; that is, 
whether K>q or whether K<O. 

Case (l), K>O.-Since k>O, the region 2>zo is the 
region of loading and 2<zo that of unloading. Consequently, 
equations (Bl) are valid for 26zo and equations (B6) and 
(BS) hold for 22_ zo. Now the rates of the stress resultants 
2\j, and &TV are defined as 

(B9) 

According to equations (Bl) and (B6) then 

i,dz+Bck fh” c ‘D (z--o)dz (Blo) 

The strain rate I;,=i,-2& from equations (45); neither the 
function i1 nor K depends on z. Therefore 

and 
=;,h 

In the same way, it can be shown that 

&,-vi&= S !z2 i,dz--c&T S ,:‘z (z--o)dz 

From equations (Bll) and (B13) it has been shown in the 
second section of the ANALYSIS that the position of the 
middle surface is given by that value of z. which is the solution 
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of equation (58). With {0=220/h, equation (58) becomes 
equation (60) ; and with equation (62) the solution can be 
written as 

fo=Kt J&i (B14) 

Since c is a nondecreasing function of X with values in the 
ra.nge O,(a=<1/(5~4v),, the quantity (Y will lie in the range 

- co ~‘cr~-l (Bl5) 

Consequently, only the positive root in equation’(B14) can 
be kept if the inequality J{ol=]2z,/hI~1 is to be preserved. 
It will be convenient to denote this root by lo+; that is, 

~of={o=af JTFi u31f.3) 

This is the formula for the neutral surface given in the second 
section of the ANALYSIS. 

Case (2), i<O.--The same technique, as used for case 
(l), with the exception of certain changes. in sign can be 
employed in the case when K<O. When K<O, the region 
z<zO is the region of loading and z>zO that of unloading. 
Consequently, equation (Bl) is now valid for zz z. while 
equations (B6) and (B8) hold for zszo. Thus Nz- vN, 
becomes 0 

(z-2,) dz (BlV 

which can be evaluated, as in the previous case, in the form 

&4+,h--cI+~-2,)Z ’ 

Similarly, 

=i,h --cl? 

Again the rates of the reduced stress resultants N, and i’?, 
must vanish. This gives 

( > 
;+ z. L5&= -?$ c332fJ) 

Equations (49)ycan be used to show that 

zo== (2-v) $+ (2Y-1) ; 

= -; (5--4l9 0321) 

and equations (B20) and (B21) yield 

( > ;+20 2=-2~+& 032% 

Equation (B22) is the analog of equation (58) which was 
found for the case K>O. It can also be solved by intro- 
ducing the nondimensional quantity lo defined as lo=2zo/h. 
The quadratic equation far lo is 

(B23j 

and this can be transformed into 

loZf2 l- 
[. 

2 c(5-4v) 1 + l=O (B24) 

The quantity appearing in the brackets was defined as LY in 
equations (64) ; thus the solution of equation (B24) is given by 

{0=--a& J&-l 0325) 

Again, the restriction that l{ol 5 1 requires that only one of 
the signs in equation (B25) can be taken, namely, the minus 
sign. Thus the solution is that given by equation (63); 
namely, 

fo=-a- J~={o- WW 

where the symbol lo- has been introduced to distinguish this 
case from the root lo+ previously found. Comparison of 
equations (B16) and (B26) shows that 

.ro- = - !ro+ 0327) 

In addition, co+<0 for &>O and lo->0 for &<O, as might 
bc expected from the geometry of the situation. 

DETERMINATION OF RATES OF CHANGE OF BENDING AND 
TWISTING MOMENTS 

The moment rates can be. computed now that 2. or To is 
known for each of the cases K>O and K<O. Since the. rates 
of change of the reduced bending moments az and M,, are 
defined as in. equation (64)) the device of computing liz-v&V 
and M,---v&l, may be used here. 

Case (1)‘ k>O.--Application of equations (Bl) and (B6) 
yields 

The quantity z. can be. replaced by hco+/2= z. with the result 

i&vtiv=-~[~~-c~(l-~ so++; ro+3)] (B30) 

With 
26=1-g to+++ lo+3 U331) 

the last equation becomes 

n;r,-vi&=-~ (I&--2csIzJ (B32) 

Equation (B8) for ?V-+z differs from equation (B6) for 
&-,-vv0, only in that -K replaces 2K and i, replaces i, in 
equation (B6). Without further computation, it can be 
seen that 

icrv-viGlz=-~ &+csri> (B33) 
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Equations (B32) and (B33) can be solved for the reduced 
bending moments with the result that 

. h3 
Mz=-q&v2) [&+v&-- (2-v)csk] 0334) 

. h3 
Mu=-12(l-v2) [v&S&- (2v-l)cSk] (B35) 

The curvature .& can be expressed in terms of .& and J& ac- 
cording to equations (49); consequently, 

. h3 
Mz=-12(1-vz) {Iz~[1-C6(2-v)2]+&[v-c8(2-v) (2v-1)]} 

I 0336) 

. 
M~=-12(l-v2) h3 {&[v-&(2-v) (2v-1)]+&[1-c6(2v-1)~]} 

0337) 

These relations are the same as equations (67) and (68) which 
were given in the second section of the ANALYSIS without 
proof. 

Case (2), i<O.-This case can be handled in exactly the 
same manner as the previous one provided the integrals are 
split up as follows: 

For &<O, 2,=hlo-/2 and 

&&vi&=-; [I&-&(1-; c,-~+; co-)] (B40) 

Now cc,- = -co+; thus, 

( 
l-f so-3+; ,,-)=(l,$ ro+3-; lo+)=26 0341) 

In other words, I~~--v&!~ will be given by the same formula 
for z<O as for &>O. Similarly &fV-viV?Z will be given by 
the same expression in either case; and, consequently, 
M, and .ilkV can be found from equations (B36) and (B37) 
independently of whether Ei‘<O or &>O. 

The rate of change of the reduced twisting moment i$fZ, 
is defined in equation (65). According to equations (40) 
and (45) equation (65) may be rewritten as 

jQ,, = - _--1 
s 

h/2 
2(1+4 -h/2 

Yzuz dz (B42) 

1 
s 

h/2 
=-2(1+V) -h/2 

(?;-z&2)2 dz (B43) 

Integration of the last equation furnishes 

. h3 
M”Y=q&v2) 2 

(1-v) & 
12 0344) 

This result, t,oo, holds independently of whether &>O or 
K<o. 

APPENDIX C 

DETAILED COMPUTATIONS FOR SPECIFIC EXAMPLES 
BUCKLING OF A THIN STRIP 

According to the definitions of T and s, equations (85), and 
of p, equations (82), 

rnr ( > 2 D,, rLs2,2p2=2 a D (Cl> 
22 

The terms’of the second row of the determinant (equation 
(90)) can therefore be written in the form 

r Q2s2-l- I $ [D12- (I-v)D]) sinh $ 

s DZ2r2-F 
I 

[DIz-(1-v)D]) sing 
(C2) 

The determinantal equation, equation (go), is thus seen to be 
equivalent to 

s D2,r2- 
t 

m$ ID,,-(I-v)D]/‘tan ;-I- 

T jD,,$+$f [D,,---(~-v)D]~~ tanh $=O (C3) 

With the definitions of equations (92), equation (C3) can 
be rewritten in the form of equation (91). The evaluation 
of the roots of the transcendental equation (91) can be simpli- 
fied further by introducing equations (94). A simple compu- 
tation will show that 

m2r2R2 
q2=T- 22 

-----AD,,‘2+D,2’ 

kDm’ T - AD22’2-D,2’ m 

(C4) 

If, for a fixed value of the span a, the width b of the plate 
approaches zero, R and hence E and q tend toward zero too. 
Accordingly, the functions .$ tanh (i/2) and 71 tan (q/2) ap- 
pearing in equations (C4) may be replaced by ~~12 and q2/2, 
respectively. For m=1, in particular, equation (91) can 
then be written as follows: 

(~k~~,,‘-AD~~‘2+D~~‘-QD~~‘)2(1/ICD~~’-AD~~’2-D,2’)+ 

( jkDzz’ - AD22’2- D,,‘+QD,,‘)‘(JkD,,‘--aD,,‘i+D,,‘) =o 

(C5) 
or in the form of equation (93) as 

kD,,‘- ADz2’2-D1z’2f Q2Dzzr2= 0 

Equation (99) for the buckling load when v=l/2 can be 
developed from the following considerations. According to 
equations (73) and (94), 

D,,‘=+s 

3 
09 

D,,’ = Dzz’ = 1 
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for v=l/2. From these results and equations (92), it is 
easily seen that Q=v; consequently, 

k=; (1-33~8) (C7) 

when v=1/2. For this value of Poisson’s rdtio, a straight- 
forward compwtation will yield ,. .~, ,, . ,., 

X-l 
c=3x 

x+1 -- 
a= x-1 

4-1 -~- co+- JT+1 

,=m+m 
o+ Ji)3 

Therefore, 
c,=cJx-l) (Jj;+3) --__- 

3(lfdv 
and 

On the other hand, according to equations (94), 

(C% 

Kw 

(Cll) 

where u,, is the critical compressive stress. Consequently, 

and the critical buckling load P is given by 

from equation (99). This is the desired result from which 
Von KgrmBn’s equation follows. 

It has been pointed out in the third section of the ANALY- 
SIS that the neutral line of the beam and the neutral surface 
of the plate will coincide if and only if v=1/2. This can be 
seen quite simply from the following discussion. If v=1/2, 
then z,,=eJ& according to equations (4,9). It follows from 
equations (CS) that 

The distance of the neutral surface from the lower surface is 
given by 

;+s,-h--,h _ @ 
fit-1 v/E,+ JE 

(C14) 

This is the same result as that obtained in the direct analysis 
of the buckling of a beam. (See reference 1, p. 158.) 

Conversely, assume that the two positions of the neutral 
line agree; that is, 

(C15) 

,,,. ..~ 
where lo+ is computed from equation (B16). Since equation 
(Cl5) must be an identity in X, it must be valid for any 
particular value of X. For computational convenience, 
consider the case when x=4. Then 

4-1 1 -- -=-- 
-sx-tl 3 

3 
C= 19- 12v--4v2 

“=3(5?4u) I (CW 

where u=8~“+12v-23. Consequently, 

1 
~“+=q5~4y) +3(5--4v) Ju*-9(5-4vy 

1 =-- 
3 (C17) 

and subsequent simplification leads to 

u= -5(5-4v) 

Evaluation of u in terms of v yields 

(2v- 1)2=0 Wl9) 
Or 

1 v=- 
2 cm 

Thkrefore the two methods of determining the neutral line 
will agree if and only if v= l/2, and the transition from plate 
to beam will be valid only under this condition. 

BUCKLING OF A CRUCIFORM SECTION 

Transcendental equation (138) must be solved to determine 
the critical stress. A straightforward computation will 
show that 

d 
#$2- m2G’R2 

(4 
kDzz’ -- 

D22’ ln* 
AD22Y- D,,’ 

> 

(ml) 
m2?r2R2 

q2=-iF 
k&’ 

22 
X2- - AD22’2- D,z’ 

> 

Since 

42++ 2m2r2R2D ’ D , ‘* 
22 

cw 

I : - . ..-. _ .-__- _- 
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equation (138) can be written entirely in terms of r] and the 
parameters R, &, D,,‘, and D,,‘. For given values of m and 
R, the remaining parameters in the transcendental equation 
arc functions of X alone. Thus q can be determined as a 
function of X by solving this equation by the usual iterative 
procedures. The quantity k can then be found as a function 
of X by solving the second of equations (C21). These results 
are independent of the stress-strain law of the plate material. 
On the other hand, 

k=$$ (l-2) (C23) 

that is, for a given material k can be written as a function 
of X once co is known as a function of X. 

It is a little more convenient to write the solution in terms 
of the quant,ity z rather than k. This parameter was defined 
in equation (117). Curves for Z as a function of X for given 
values of m and R can be obtained in the following way. 
The quantity k can be computed, as previously described, 
by solving equations (138) and (C21); 5 can then be found 
from equation (117). These results are independent of the 
stress-strain law and consequently hold for any rectangular 
plate. On the other hand, E can also be computed a.s a. 
function of X for a given stress-strain law according to 
equation (117). The resulting function will depend on t.hc 
parameter b?lh’. Once the side ratio I?, the width-to- 
thickness ratio b/h, and the wave form m have been selected, 
the value of x corresponding to the buckling stress can be 
obtained by finding the intersection of the two corresponding 
curves of k against X computed as just outlined. 

It has been pointed out in the third section of the ANALY- 
SIS that the lowest value of z, and hence the lowest critical 
stress, will be attained for m=l. This can be seen easily 
from the following considerations. Figure 9 showed that 
for m=l and a fixed value of X, z increases for increasing R. 
With a simple change of variables, the solution for any value 
of m ca.n be obtained from the solutions for m= I. Let 

,&% ’ 
m* 

I 

Then equations (138) and (C21), written in terms d It’ and 
R’, will be precisely the same as those for lc and R when 

m=l. Thus the curves of figure 9 can be used for any m 
provided R is replaced by R’ and z by p. For m>l then, 
E>L’ and R<R’. In other words when m#l, the value of 
z for a given value of R and X will be larger than the cor- 
responding value of % for m= 1. Since t,he dashed curves 
are monotonic, increasing functions of X, this implies that 
the critical value of x will be lowest for m=l. 
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