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THE CALCULATION OF DOWNWASH‘ BEHIND SUPERSONIC WINGS 
WITH AN APPLICATION TO TRIANGULAR PLAN FORMS 

By HARVARD LOMAX, LOMA SLTJDER, and MAX. A. HEASLET ' 

SUMMARY 

A method is developed consistent with the assumptions of 
small perturbation theory which provides a means of determining 
the downwash behind a wing in supersonic $0~ for a known 
load distribution. The analysis is based upon the use of 
supersonic doublets which are distributed over the plan form 
and wake of the wing in a manner determined from the wing 
loading. 

The equivalence in subsonic and supersonicJlow of the down- 
wash at in$nity corresponding to a given load distribution. is 
proved. In order to introduce the manipulative techniques 
which are subsequently employed, the unswept wing of in$nite 
span is treated for supersonic speeds. The principal applica- 
tion in this report, however, is concerned with the downwash 
behind a triangular wing with leading edges swept back of the 
Mach cone from the vertex. Complete solutions are given .for 
the chord plane in the extended vortex wake of the wing and for 
the vertical plane of symmetry. An approximate solution is 
also provided for points in the vicinity of the center liae of the 
wake. 

INTRODUCTION 

The linearization of the partial differential equation satis- 
fied by the velocity potential for compressible flow yields, for 
subsonic flight speeds, an elliptic-type equation which is re- 
ducible by means of an elementary transformation to the 
basic equation in incompressible flow. As a consequence of 
this result, wing theory in the subsonic realm employs the 
same concepts and types of analyses that belong to classical 
incompressible theory. At supersonic speeds, the differential 
equation for the velocity potential is hyperbolic in type and 
for wing theory is equivalent to the two-dimensional wave 
equation of physics. In spite of the different character of the 
basic differential equation in the two flight regimes, certain 
formal equivalencies can be set up which are intuitively use- 
ful in the solutions of specific problems. In particular, the 
velocity potentials of a three-climensio’nal source and of a 
doublet each have analogous forms in the two cases. The 
solution of different boundary-value problems encountered 
in wing theory has been discussed in reference 1, and it has 
been shown how suitable distributions of sources and doublets 
may be used to determine the flow potential associated with a 
given lifting or nonlifting wing. 

The calculation of downwash behind a wing, for incom- 
pressible flow, relies almost exclusively on the use of Prandtl’s 
lifting-line theory which is, in turn, developed from the con- 

cept of a single horseshoe vortex. The conventional approach 
to the general downwash problem is to determine, first, the 
induced field of the simple horseshoe vortex by means of the 
Biot-Savart law and, then, from a knowledge of the span-wise 
distribution of loading over the wing, to calculate finally the 
induced field produced by a vortex sheet composed of super- 
imposed vortices of varying span. 

When downwash calculations are to be extended to the 
case of supersonic wings, it appears at first that the use of 
vortex sheets is inadmissible since no practical equivalent 
to the Biot-Savant law csists. It is, in fact, true t,hat the 
horseshoe vortex no longer plays the outstanding role it 
has at low speeds. However, when a more detailed investi- 
gation is made of the underlying analysis, it becomes apparent 
that vortex theory and the Biot-Savart law can be developed 
from the initial USC of a constant distribution of doublets 
over a given surface (c. g., see references 2 and 3). These 
doublets produce a discontinuity in the velocity potential 
at the surface, and, for incompressible theory, the curve 
which bomlds the surface can be iclcntificcl with a vortex 
curve possessing circulation. The proof of the Biot-Savart 
law and the introduction of vortex sheets are dirrct conse- 
quences of these basic ideas. 

Since, as was shown in rcfcrcnce 1, supersonic bounclary- 
value problems involving sources, sinks, and cloublets can 
bc solved in a manner analogous to that used in low-speed 
theory, a method is therefore provided for an attack on the 
downwash problem for supersonic plan forms through the 
use of doublet distributions. By means of this method the 
downwash immediately back of the trtiling edge and at an 
infinite distance behind a wing will be derived and shown to 
agree with the previously published results of P. A. Lager- 
Strom (reference 4). 

The present report has three principal aims: First, to out- 
lint t,he theoretical approach to the determination of the 
velocity pot,ential of the flow field associatccl with a supersonic 
lifting surface and the subsequent calculation of the down- 
wash; second, to apply the theory to the case of a triangular 
wing swept back of the Mach cone ancl to present the results 
of the complete calculations over the chord plane in the 
extended vortex wake of the wing and on the vertical plane 
of symmetry up to about 40 percent of a semispan; and, 
.third, to serve as a guide through some of the more difficult 
mathematical manipulations so that the calculations can be 
extended to other plan forms. A simple first approximation 
is also advanced for the downwash variation about the axis 
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of symmetry, and these approximate values of downwash 
are compared with those obtained from the exact calculations. 

In the theoretical portion of the report, the bormdary- 
value problem will be introduced an.d the solutions, obtained 
from Green’s theorem, will be given for low-speed and super- 
sonic flow. In the section of the report devoted to applica- 
tions, the theory will be used to evaluate the potential func- 
tion at an infinite distance downstream from a 1iftin.g wing. 
The theory is next applied to the case of the unswept wing 
of infinite span since the mathem.atical problems involved 
correspond closely to those for the more general case. From 
this application, a general procedure is developed for treat- 
ing wings with supersonic trai1in.g edges. The final applica- 
tion of the report will be devoted to the triangular win.g. In 
all of these applications, it will be seen that the an.alytic 
expressions which have been obtained in supersonic theory 
for the load distributions over certain plan forms afford a 
means whereby the chordwise distribution of pressure may 
be introduced into the analysis, and, therefore, such expedi- 
ents as lifting-line theory are no longer so essential. 

The entire theory is postulated on the assumptions of 
thin-airfoil or small-perturbation theory ancl, consequently, 
thickness effects and lifting-plate solutions are additive. For 
the results that are given in the plane of the airfoil, the thick- 
ness effect, which is necessarily symmetrical with respect to 
this plane, is zero. 

The material given in the present report is a combination 
of two previously published NACA Technical Not,es (refer- 
ences 5 and 6). 

LIST OF IMPORTANT SYMBOLS 

a0 

b 

;, E. 

-W W 

H 

ko 
K 

F(t, 4 

MO 

P 
AP 

P 

velocity of sound in the free stream 
span of wing 
root chord of wing 
complete elliptic integral of the second kind wit.h 

modulus k, ko, respectively 

(E= Jyg it) 
incomplete elliptic integral of the second kind 

with argument t and modulus k 

[E(t, k,=s,‘&$ dt] 

2crV” 
EoP 

complete elliptic integral of the first kind with 

modulus k K= [ .To’ J(lI:t+-m] 

incomplete elliptic integra,l of t,he first kind with 
argument t and modulus k 

,. 

free-stream Mach number 

static pressure 
PI-P, 
free-stream dynamic pressure 

r 
rc 
u, v, w 

Aus 
vo 
WP 

wo 

x7 Yt 2 

Xl, y1, 21 

x0 

Yo 

20 

PO 

U 

1 

L. E. 
T. E. 
II’ 
P 
s 
I, II, III 

J(x-2J2f (y-y1)2+ (z-Z1Y 
J(x-xl)“-p”(y-yl)“-p2(z-zl~ 
perturbation velocity components in the direc- 

tion of the X, y, and z axes, respectively 
uu--ua 
free-stream velocity 
z component of velocity induced by doublet dis- 

tribution over plan form 
z component of velocity induced by doublet dis- 

tribution over wake 
-vocY 
Cartesian coordinates of an arbit.rary point 
Cartesian coordinates of source or doublet 

position 
X 

& 
CO 

pz 
CO 

angle of attack 
-&A+1 
B tan rL 

Mach angle arc sin & 
> 

density in free stream 
perturbation velocity potential 
@u--61 
semivertex angle of triangular wing 
sign denoting finite part of integral 

SUBSCRIPTS 

conclitions on upper portion of surface 
conditions on lower portion of surface 
conditions at leading edge 
conitions at trailing edge 
wake 
plan form 
conditions on discontinuity surface (at zl=O) 
conditions in regions I, II and III on plan form 

(fig. 4) 
A, B, C, D, Econditions in regions A, B, C, D, or E, in wake 

of triangular wing (figs. 1 and 2) 

THEORY 

BOUNDARY CONDITIONS 

The proposed problem is one of finding the downwash 
behind a flat. plate which supports a. losding consistent with 
its angle of attack’and p1a.n form. It will be assumed 
throughout the analysis that this load distribution is known. 
Such values were given for several plan forms in reference 7 
and further results can be found in the literature on super- 
sonic wings. 

The load distribution over the wing may be obtained 
from a knowledge of the differences in pressures acting on 
the lower and upper surfaces. Moreover, in thin-airfoil 
theory, where boundary conditions are given in the z=O 
plane (i. e., the plane of the wing), a simple relation exists 
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between local-pressure coefficient and the streamwise com- 
ponent of the perturbation velocity., Thus, assuming that 
the’ free-stream direction coincides with the positive z axis 
(fig. 1 (a)), and denoting by u the z component of the 
perturbation velocity, it follows that 

AP P,-p, 2 -=-=E- (UUTUl) 2$ P a 

where the variables are defined in the table of the symbols. 
Furthermore, from the definition of the perturbation velocity 
potential Qi 

@= ‘udx S (2) a 
where a is a point in a region at which the potential is zero. 
Combining equations (1) and (2), the jump in potential in 
the plane z=O can be determined by integrating the jump in 
the u induced velocity or, what amounts to the same thing, 
tbe jump in load coefficient. Thus, 

(3) 

where the integration extends from the leading edge to the 
point z and A%8 represents the jump in + in the mu plane. 
Since load coefficiet Ap/p must be zero off the wing and since 
u is an odd function in z, the value of u must be zero for 
all points off the wing in the zy plane. It follows that Aa 
remains constant at a given span station for all values of 2 
beyond the trailing-edge position. 

(a) Plan form. 
(b) Sections showing distribution of 11%. 

FIGURE l.-Sketch showing arbitrary lifting surface together with distribution of A&, the 
lump in perturbation velocity potential in the plane of the surface. 

Figure 1 indicates an arbitrary lifting surface in the z=O 
plane together with the distribution of A@, for given constant 
values of y and x. In both subsonic and supersonic theory, 
the wing together with the semi-in&&e strip extending 

II .,.._ ./,.-. / 

clownstream of the wing form a discontinuity surface for the 
velocity potential, while A@lj, is equal to 0 throughout the 
remaining portion of the xy plane. These conditions, 
together with the fact that the vertical induced velocity w is 
a continuous function at z=O, are sufficient to determine + 
throughout space. The values of u, v, and w can then be 
found from the corresponding partial derivatives of Q, with 
respect to 2, y, and z. The attention in the present report is 
centered on w, the qdownwash function. 

SOLUTION TO BOUNDARY-VALUE PROBLEM 

In reference 1, the solutions for boundary-value problems 
of the type under consideration were given for both incom- 
pressible and supersonic theory. The basic differential 
equations satisfied by the perturbation velocity potential are, 
for the two cases, respectively, 

and 
a2a WZJ a2a 

82~-~yT-a==0 (5) 

Incompressible theory.-For bounclary conditions pre- 
scribed in the z=O plane; the solution of equation (4) is 

mherc 
03) 

T= J(Gx lj2+ (y-ylj2+ (~-2~~2 

and 7 is the area for which the integrand does not vanish. 

arc equal to the velocity x 
potential at x, y, z of a unit source and cloublet situated at 
the point x,,yl,O. The remaining terms in the integrand, 
which determine the distribution of source and doublet 
strengths, must be found from known boundary conditions. 
If a lifting. surface fixes the boundary conditions, induced 
vertical velocities on the upper and lower faces of the surface 
are equal so that 

and 

(7) 

Equations (6) and (7) are well known in potential theory 
(reference 3, p. SO), but the derivation usually employs the 
assumption that the value of + is zero at all points infinitely 
distant from the wing. This assumption cannot, of course, 
be made in aerodynamic applications where the discontinuity 
surface 7 extends to Z= ~0, as in the case of a lifting wing or 
lifting line with trailing vortices. These latter problems, 
with which this report is directly concerned, are of such a 
nature, however, that the induced effects at an infinite dis- 
tance are confined to the plane x= ~0. An investigation of 
the derivation of equation (6) reveals that the conditions 
imposed on +, in general, can be relaxed sufliciently to permit 

_. ” 
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a discontinuity in a strip of finite width along the entire 
extent of the x axis. The mathematical details of the cleriva- 
tion will not be given here but a statement of the restrictions 
on 9 at infinity is worthwhile. Thus, denoting by d@,ldn the 
directional derivative of % taken norm.al to a prescribed 
surface, the following conditions apply: 

1. The functions Cp and &P/h are zero at all points having 
radius vectors which make finite (nonzero) angles with the 
positive x axis, the points lying on a spherical surface of 
infinite radius with center at the wing. (This preserves the 
usual potential theory assumptions except over the portion 
of the spherical surface forming the plane r= 00 .) 

2. The values 4, an.d b@/bx are bounded at all poin.ts 
infinitely distant from the lifting surface and at a noninfinite 
distance from the positive x axis. (This condition places 
restrictions on the values of Q, and b@/ax in the plane x= a .) 

Conditions (1) and (2) are satisfied for a lifting surface of 
finite span, and equation (7) is consequently applicable 
directly to the determination of the velocity potential. As 
an application of the equation, suppose a sheet of horseshoe 
vort.ices is situated as in figure 2 with bound vortices placed 

z 

-Y 

FIGURE 2.-Vortex sheet with bound vortices on I axis and distribution of circulation 
equal to A%. 

on the y axis, trailing vortices extending parallel to tht 
positive x axis, and has a spanwise distribution of circulation 

A@ symmetrical to t,hc xz plane and defined for -;<yc;. 

Then the velocity potential corresponding to this vorlcs 
sheet is given by t,he expression 

Nq/,z)=~; S W -b,2 A@sdy, S m ___- dJJ1 
0 [(x-xJ2+ (y-y,)2t~22]3’2 (8) 

When A@s=constant, a single horseshoe vortex results. 

Supersonic theory.-For supersonic boundary-value prob- 
lems associated with plan forms as indicated in figure 1 (a), 
where the known conditions are given in the z=O plane, 
the general solution of equat,ion (5) is given in reference 
1 in the form 

where 
To= J(x-x,)2-p*(y-y,)2-p2(2--21)2 

and the subscript s on thr parentheses indicat,es t,hat the 
function is to be evaluated at zI=O. The region 7 is that 

portion of the sly1 plane bounded by the leading edge of 
the wing, the lines parallel to the x axis and stemming from 
the lateral tips of the wing, and the trace in the zl==O plane 
of the Mach forecone with vertex at the point x, y, z. The 
sign r is to be read “finite part of” and was introduced 
by Hadamard (reference 8) as a manipmative technique 
with the property that 

For purposes of calculations, this was modified in reference 
1 to 

S * A(x)dx 
(xo-5)3/2= a (,o-x)3,2=-Q)-Q (11) 

the asterisk indicating that no upper limit is to be substituted 
into the indefinite integral, the latter being determined as 

where 
F(x) + c 

C=lim ?f&&&- F(x) 

[ z-m 4x”-x 1 
Equation (9) is the direct analogue of equation (6). The 

terms&($)sand&(& k). are equal to the velocity poten- 

tial at x, y, z of a unit supersonic source and doublet situated 
at the point T,, yl, 0, while the remaining terms in the inte- 
grand determine the distribution of source and doublet 
strength and are determined by the known boundary condi- 
tions. 

When the potential function associated with a lifting 
surface is to be evaluated, 

and equation (9) reduces to the form 

In applicat,ion, the region of int,egration in equations (7) and 
(12) can be divided into areas occupied, respectively, by 
t,he plan form and the w&c rrgion. Thus, for equation (12), 

@(x,y,z)=~2 
. A+‘sdxldyl 
plan rorm I(~-xl)“-P”(Y-Yl)2-P2~213’2- 

A@sdxdyl 
I(x-~1)“-P2(Y-Y1)2--Pz~213’2 (13) 

Equation (13) presents a formal solution for the calculation 
of velocity potential and, subsequently, downwash for a 
given surface in terms of A@,. Since A@s was related directly 
to load distribution in equation (3), it is apparent that the 
various known solutions to lifting-surface problems are 
directly applicable. The fa.ct t$at supersonic theory per- 
mits the dcterminat,ion of load distribution in closed analytic 
form for many simple plan forms provides a distinct advan- 
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tagc that is lacking in subsonic theory wherein virtually all 
known results are available only in numerical form. Thus, 
theoretical analysis of problems involving supersonic flight 
speeds can be carried further before recourse to numerical 
methods is necessary. 

APPLICATIONS 
.-_ 

V’ALUE OF POTEN’hL EdNcTl0~ AT x= m 

It is possible to show, from equations (7) and (12); that 
the potential functions corresponding to a wing with fixed 
load distribution are identical at X= 03 for incompressible 
and supersonic flow. Assuming Aa known, the va.lues of 
(5, y, z) for the two cases are given, respectively, by the 
equations 

w?Y,4=& SS A%ddy, 
planform [(x-x11”+ (y-y*)‘+z”]“‘“+ 

SJ 

. 

& 

A%dx& 

wake [(X-X))‘+ (y-y1)2+22]3ii 

and 
-p22 

wx,YA=~- ISS A*&dy, 
plan form [(X-x,)2-p2(y-y1)2-p?22]3’2- 1 

(x-1) 
[(Y-Y1)2+~21J(x-xJ2+ (Y-y1)2+22 3 LE.= 

P @  2 S w2 A%(x,.,.,yJdy, 
21r ISS 

AWxdy, 

wske[(X-X~)2-p’(y-y~)2-@222]3’2 %i -b/2 (y--y1)2+Z2 

Since, however, A@, is finite, it follows immediat,ely that 

for fixed values of y and z the integrals over the plan form 
in,both equations approach zero as x increases indefinitely. 
Thus, denoting by x T.E. the value of x1 aG the trailing edge 
of the wing, the potential functions at x= 03 are given by 
the expressions 

and 
-2p w 

+(m,y,z)=lim- z--t- 2’ir S -b/2 
A@&.E.,yJdy1 

S * ZT.B. [(x-x*)2-b2~~YJ2-82z213~2 

These relations can be integrated once to give for the subsonic 
case 

%(a,y,z)=lim 2 S ‘I2 A$(x 
-b/2 

T.E.,YI) 4/l 
Z-+rn 

and for the supersonic case 

(144 

@+,Y,4=;\~~ S “* A%(x,.z.,y,N/, (x -21) 
-b/Z [(Y-Y1)2+~214(~--21)2-P2(Y-YJv32~2 

From these equations, it. follows that the sidewash and down- 
wash at x= 03 are invariant with Mach number, provided the 
load distribution is fixed. In fact, their values depend solely 
on the spanwise load distribution, since the terms correspond- 
ing to the chordwise distribution disappeared in the analysis. 
This has been pointed out elsewhere in the literature. It 
should be stressed, however, that the result which has been 
obtained here states that equal span load distributions in the 
two cases yield equal values of the potential function at 
x=00. This does not imply that a wing at low and super- 
sonic speeds maintains the same potential function at in- 
finity. When the wing is kept fixed, the distribution of w 
on the wing is fixed, but the load distribution is a function of 
speed. 

DOWNWASH ON AND OFF THE WING 

As a further application, the unswept wing of infinite span 
will be treated for supersonic speeds. In this case, as is 
well known, the induced velocities are zero at all points 
downstream of the upper and lower Mach waves stemming 
from the trailing edge. An abrupt jump in vertical velocity 
therefore occurs at the trailing edge of the wing. Con- 
sideration of this jump for the unswept wing furnishes con- 
siderable insight into the nature of the mathematical difli- 
&ties inherent in the calculation of. downwash on and off 
wings of arbitrary plan form. The calculation for the par- 
ticular case will therefore be followed by a more general 
discussion which will be of value in connection with the later 
treatment of the triangular wing. 

Unswept wing of inhnite span----The pressure distribution 
for the wing of infinite aspect ratio is constant. For this 
so-called Ackeret-type loading, Ap/q is equal to 4a/& so 
that, when the leading edge lies along the y axis 

X 
(b) 

(a) Point P ahead of trailing edge. (b) Point P behind trailing edge. 

F IGURE 3.-Areas of integration for inflnito span wing. 

where a is angle of attack. In the wake 

(15b) 

The downwash, or vertical velocity, will first be found when 
the point is between the Mach waves from the leading and 
trailing edges and then when the point is downstream of the 
trailing-edge wave. 

,, 
4 
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S&e th.e wing is of infinite width and experiences no varia- 
tion with y, it is possible t,o consider the problem at y=O. 

. Thus, from equation (13), for the case when the point under 
consideration is between the Mach waves from the leading 
and trailing edges with its forecone cutting the wing as shown 
in figure 3(a), 

@=lim - 2p2vo a S z-pJe2+z2 
x1 dx, 

C-10 id 0 

IS 
___- 

2 
+zl)'-bi2 

4/l 
E [(x-x,)2-p2y12-p2z2] 3’2 

where the symmetry of the problem with respect to the y1 
axis has been used. Computing the finite part of the integral 

z-8Je2+9 
s - 

x1 da 
0 [(x-x1)“-p”2”]~(x-xJ2-p22-P2Z2 (16) 

and 

w-a+- a ]im 2@Voae a2 a2 a+0 n- 
z--i3~e~+z2 

s ~ 
x1 dx, 

0 [(x-x1)“-pz2~]~(x-xJ2-~%9w 07) 

Equations (16) and (17) can be evaluated directly to give the 
results 

rn=Jg (xi-$ -p2) 
(1% 

w=-v,cY 

(P=lim ZzPvOa For a point behind the trailing-edge wave (fig. 3 (b)), the 
E 

e--10 7r two quantities can be determined in a similar manner. Thus, 

2zpvoore co $=lim ___ S x1 dx, 2zpvoffc~ 
J 

,$ J(Z-co)wrw 
&I 

J’ 
x-8 -\/YIW 

--- 
S-+0 lr 0 [(x-xJ2-p2Z2]J(x-x1)2-/3222-/32e2 a 0 co rcz-li)2-~~l?plZ213iil 

and w is given by the partial derivative of + with-respect to z. 
The term containing t,he single integral is zero, since the 
integral itself is bounded for all values of e, while the term 
containing the double integral is readily calculable. Thus, 
the values of the velocity potential and the downwash for a 
point behind the trailing-edge wave are given by the relations 

(20) 

These results are the familiar equations associated with two- 
dimensional supersonic flatplate theory. 

The point of principal interest in this development is the 
jump in the induced vertical velocity win passing from a point 
just ahead of t,he trailing-edge wave to a point immediately 
behind the wave. A study of equations (17) and (19) shows 
that this jump is the result of the discontinuit,y in the contri- 
bution to the ,,downwash of the term containing the single 
integral. Ahead of the trailing-edge wave, this term yielded 
the result that 

w=-V,a 

whereas behind the wave, t.he contribution of the term to w 
was zero. 

The method of attack used in the study of the unswept 
wing can be generalized to apply to arbitrary plan forms. A 
discussion of this case follows. 

Arbitrary plan forms--As will be shown later, for any plan 
form with supersonic trailing edge, the jump in the value of 
w in the plane of the wing at the trailing edge can be cal- 
culated directly by means of simple momentum methods. 
At this point, however, it is of more interest to consider in a 
general manner the nature of the integrations involved when 
the point x, y, z is either ahead of or behind the trailing-edge 

: 
5 

5 

. 
(b) 

(a) Point P ahead of trailing edge. (b) Point P behind trailing edge. 

FIGURE 4.-Areas of integration for arbitrary plan form with supersonic trailing edge. 

wave. Figures 4 (a) and 4 (b) show a plan form with a straight 
trailing edge with areas of integration indicated for the point 
P in each of the two positions. (The straight trailing edge 
is not a necessary restriction and is only introduced for con- 
venience of notation.) The regions of integration are divided 
under the assumption that thr first integration on the plan 
.form in equation (13) will be made with respect to yl. When 
the point P is ahead of the trailing-edge wave, therefore, the 
contribution of the wake is zero and the integration overthe 
plan form is made to conform with regions 1 and II. When 
the point is behind the trailing-edge wave, three integrals are 
evaluated corresponding to regions I, II, and III. In the 
case of t.he infinite aspect ratio, unswept wing region I was, 
of course, nonexistent and, in general, no essential difficulty 
in regard to the limits of integration is introduced by this 
region regardless of wliere P is situated. In region II, how- 
ever, the problem must be treated in more detail. 

Consider first the case when P is ahead of the wave and 
denote by %‘IIa. t,he contribution of one side of region II to the 
total potential. Then 



?r 
., . . ---. . 
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A@I (XI, yJ dye 
[(x-x,)2--p2(y-yJ2-p222]3’2 

where 
(214 

Y,=y+j 1/(x-5p--/322 

Similarly, when P is behind the wave and the same subscript 
notation is used to refer to one side of region II, the value of 
h a  is 

where Y, is as defined above. 
@ lb) 

The contributions of the other side of region II to the po- 
tential will not be considered separately as the behavior is 
identical. When P lies ahead of the wave, e appears in the 
limits for integration with respect to both yl and rl. This 
corresponds to the situation in equations (16) and (17) and, 
as for that problem, the limiting process is carried out after 
the integration is completed. When P is behind the wave, 
it is not necessary to defer the limiting process, since 

and if { } represents the integrand, then 

But since 

for cO s x1 5 CC,, (i. e., { } is bounded for all values of x1 in the back of the hiach cone from the vertex. The loading over 
interval of the first integration) ; and further, since the wing is known to be (references 7 and 9) 

lim M  
E+O s 

u"f'dyl=lim J&=0 
e-+0 

therefore, for P situated behind the trailing-edge wave, the 
contribution of region ITa is given by 

(22) 

The significance of this result is that, when the point P at 
T, y, z is behind the Mach wave from a supersonic trailing 
edge, the limiting process associated with region II need not 
be considered. When P is ahead of the Mach wave, the 
term B must be retained in the analysis and the limiting 
process used. As was previously noted, the general analysis 
developed in this report places no restriction on the orienta. 
tion of the trailing edge; however, it should be pointed out 
that region II exists only for the case in which the trailing 
edge is supersonic. Therefore, the jump in downwash, ob- 
tained from the integration over region II is associated only 

878019-50-Z 

with supersonic trailing edges; whereas both the dotinwash 
and loading are continuous across a subsonic trailing edge. 

TRIANGULAR WING 

Consider a triangular wing (fig. 5) with leading edges swept 

WY0 

,’ 
/’ 

‘. ‘\ 
,’ ‘\ 

,’ ‘l 

FIGURE L-Regions A, B, and C  for triangular u ring in 

AP 4e02ffx1 -=- 
cf Eb~1/eo2x,2-~2y,2 

(23) 

where E. is the complete elliptic integral of the second kind 
with modulus k,= Jl-Oo2 and e,=p tan +, #  being the semi- 
vertex angle of the triangle. From equation (3) 

where 

(25) 

Setting, for convenience, @=@.p+@W the velocity potential 
at x, y, z is given by equation (13) to be the sum of the two 
expressions 

-deo2x,2- P2y12 dxl dyl 
[(X-Xl)2-P2(y-yl)2-8222]3'2 (26) 

ZH/Y 
aw=-- 

Iss 
&‘02x12-P2y12 dx1 dy1 

wake [,X-X~)2-~2(y-y~)2-~2Z2]3'2 (27) I 
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Equation (26) represents the contribution to the velocity 
potential furnished by the doublets distributed over the 
plan form while equation (27) represents the contribution 
furnished by doublets in the wake. The latter equation is 
the mathematical equivalent in supersonic flow of the sub- 
sonic velocity potential of a sheet of horseshoe vortices 
corresponding to an elliptic span load distribution. Equa- 
tions (14a) a.nd (14b) showed that the expression for +W at 
x= m is identical to the velocity potential of the subsonic 
vortex sheet. However, in the vicinity of the x=co line, 
the behavior is entirely different. 

In the present report, equations (26) and (27) will be 
applied to the determination of downwash in the xy and 
x2 planes. 

SOLUTION IN THE XY PLANE 

Effect of doublets in the plan form:-For the purpose of 
integration, it is convenient to divide the area behind the 
wing into three regions as shown in figure 5. The division 
lines separating these regions are formed by the Mach cone 
traces from the trailing-edge tips. 

The following symbols will be used in the derivation of 
the expressions for downwa.sh in the xy plane induced by 
the distribution of doublets over the plan form of a triangu- 
lar wing swept, behind the Mach cone: 

E1,E2,E3 complete elliptic integrals of the second Bind 
with moduli kl, k,, and k3, respectively 

K,, K2, K3 complete elliptic integrals of the first kind with 
moduli k,, k2, and ks, respectively 

Yl 

72 

73 

61 

E 
x-x1 

CO 

40 x0-1 

The downwash wp (i, y, 0) may be obtained by considering 

v+r 2 in equation (26). It can be shown that, in this 

case, this limiting process corresponds to taking the partial 
derivative of equation (26) with respect to z and then simply 
setting z equal to zero. Thus the expressions for wp in the 
regions A, B, and C are, respectively, 

W 

(29) 

(30) 

The solution of the three integrals I,, .T2, and 1, will be dis- 
cussed in Appendix A. 

The expressions for downwssh in regions A, B, and C may 
then be expressed as the following single integrals which 
can bo handled by standard numerical methods: 

E 2 
x2 J 

(32) 



DOWNWASH BEHIND SUPERSONIC WINGS WITH AN APPLICATION TO TRIANGULAR PLAN FORMS 9 

Effect of doublets in the wake.-The study of the down- 
wash induced on the xy plane by the doublets distributed 
over the wake will also be divided into the three regions 
indicated in figure 5, and the symbols listed as follows will 
be used in the derivations: 

k, 

k, 

complete elliptic integrals of the second kind 
with moduli k,, ks, and kc, respectively 

incomplete elliptic integrals of the second kind 
with arguments l/aA, l/a,, and UC/kc, and 
with moduli k,, k,, and kc, respectively 

J 

complete elliptic integrals of the first kind with 
moduli k,, k,, and kc, respectively 

incomplctc elliptic integrals of the first kind 
with arguments l/a,, l/a,, and at/kc, and 
moduli kA, kg, and kc, respectively 

J 

a2 

x0 

undefined limits of integration 

5 

co 

YA 

+YB 
bbfv’) - &o,(v--‘I (v-to) (to+4 

v’-v+2.& 

h’+Eo2) + 1/(to”-v”> (to”-v”) 
v-j-v’ 

8A 
(vv’+502) + &to2-4 (b”-v’“) 

v+v’ 

f 

&(v+v’)+ J2E,(v-v’) (v-&l) (&l+v’) 
vt-v+2&j 

(vv’-tEo? - J(Fo2-v2) (502-v’2) 
VI-V’ 

P(Y-Yd 
Co 

V YOSBO 

VJ Yo--Bo 

t0 x0-1 

On integrating equation (27) with respect to x1 and using 
the notation just presented. 

The limits on the integral as previously noted differ in the 
regions A, B, and C shown in figure 5; however, in each case 
the limits are roots of one of the two radicals in the integrand. 

It is desirable to express equation (34) in a different form 
in order to obtain an expression for downwash in the plane 
of the airfoil. Integrating by parts. 

J’ 
4 v+v’--2r] 

4 2&v-q) (q-v’) 
tan-’ lo’ dq 

20 JEo2- f2 - zo2 
(35) 

When 22 $$ is considered, it can be shown that in all 

three regions the contribution to the downwash made by 
the doublets in the wake is given by the expression 

HP LI S v+v’-27) 
wJv=%Fgo L* 27&-q) (q-2) 

- v’%?=?dv 

The solution of equation (36) in regions A, B, and C will 
be considered separately. 
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Region A eliminates the linear term in the radical of the integrand, 

In region A, L1=v and L2=v’. 
YA + 6At The substitution r]=l$-t and equation (36) becomes 

I 

v-y.4 

wwA= 
HP I &'-^/a' - 

240,y (v--YA) (YA--‘) &--fJ Jt:: [2 (y,+Yyt;‘(l+t) 
s,-v’ 

] [-&2]$$gj;dt (37) 

The identities 1 are useful in the integration. 

and 
~o~=YA~A 

(6,-V) (v’-?A)+ (BA-v’) @-?‘A) =O 

8A--v 
The transformation w=y--rA t is next introduced, and the 

expression for downwash becomes 

IntegraCng the second term by parts and applying the fundamental properties of even and odd functions yields 

wwA 

‘l fiA2(1-kA2) w2dw 
2 0 ----+2~‘v~ (r-uA2wZ),,+f:,$33)(l-w') 

Gym) (1-w2)3/2,/l-kA2wz 3 
(3 8) 

The Jacobian transformation w=sn u reduces the integrals in equation (38) to standard elliptic forms (reference lo), and 

W 2 [ (to’-V2) (~o~-V’~)]~‘” J1--kA2 j J(k&) c1-aA2j [KAE ($ kA)-EAF ($ kA)]+&] WA=- - (39) 

Region B The transformations 7-q and w=g, t where 

In region B, L1=to and L2=v’ and equation (36) may 
be written 

and 
(YB-v’) ((O-6,) + (‘$0-d @B-v’) =o 

WWBg$ [(%‘) to2- (t;O+YB) (v-6B) + (6+6B) (v--YB) =o 

reduce equation (40) to 

- GGw &l-k,Z;L’~(~ l +J’l @B2--02) (l-g)+ 
YBaB 



- - - - -  - . . - - . - - . . - - . , , , _ - . ~ _ - , -  .  .  .  .  - - - . . - I . . - . - - . . . . -  .  .  .  .  - . . .  .  .  .  .  .  _ _ , -  , . . . . . . .  - - - - - . - - -  

, ,  

D O W N W A S t i  B E H IN D  S U P E R S O N IC  W IN G S  & T H  A N  A P P L IC A T IO N  T O  T R I A N G U L A R  P L A N  F O R M S  1 1  

~ o Z (v s -v ’)  @ B - - Y B )  _  _ _  (6 :,-2 T B ) 2  ( B B - Y B ) 2  1  d w  
2 y fJ 6 s  (1  - u & 2 J 2 ) ( l -~ ~ )(I--0 2 )-(k d -~ ~ ~ ~ )(l -- l c a 2 w 3  J (1 - -B2 W 2 )(l --W 2 j  1  

J  

W h e n  th e  tra n s fo rm a ti o n  o = s n  u  i s  m a d e , e q u a ti o n  (4 1 ) i s  re a d i l y  i n te g ra b l e  (re fe re n c e  1 .0 ) , a n d , a fte r a l g e b ra i c  s i m p l i -  
fi c a ti o n , m a y  b e  w ri tte n  

W W B  
H P  2 u E & - - v ’)2  J (v - 1 ) (V’+  1 ) = -- 

(I--~ , )KB -  ( u F : ; B ,  -  

( l -k ,) (~ ,~ + k ,)u e  [K ,E  I, k , -E,F  I, k , 
,&  6 B 2 (d 2 -  1 )  ( 1  + a ,) 

)I]’ (4 2 )  c u l l  )  (u ~  
(U B - k & h B 2 --1 )(U B 2 -k ,' ] 

R e g i o n  C  
In  re g i o n  C , L 1 = {o  a n d  L 2 =  -&,, a n d  e q u a ti o n  (3 6 ) i s  

w ri tte n  

v + v ’-2 rl  J -d ,, 
2 7 & -d  (0 -v ’) 

(4 3 )  

W w y -;$  [(.$ 0 2 -v 2 )  ( & 2 -v ’2 )] 1 /4 J 1 -k C 2  j  J $ x ;: 

S O L U T IO N  I N  T H E  X Z  P L A N E  

J u s t a s  i n  th e  s tu d y  o f d o w n w a s h  i n  th e  x y  p l a n e , s o  a l s o  
i n  i ts  s tu d y  i n  th e  z z  p l a n e  i t i s  c o n v e n i e n t to  c o n s i d e r 
s e p a ra te l y  th e  e ffe c ts  o f th e  d o u b l e ts  d i s tri b u te d  o v e r th e  
p l a n  fo rm  a n d  th e  w a k e . T h e  s u b s c ri p t n o ta ti o n  fo r w w  
a n d  w p  i s  th e  s a m e  a s  b e fo re  a n d  a g a i n  w  i s  e q u a l  to  w w + w p . 

E ffe c t o f d o u b l e ts  i n  th e  p l a n  fo rm ---In  th e  x z  p l a n e  tw o  
re g i o n s  a re  i n d i c a te d  i n  fi g u re  6 . R e g i o n  E  l i e s  b e tw e e n  th e  

2 0  
/’ 

,’ 
I’ 

,’ 
,’ 

I’ 
,’ 

,’ 

,’ 
,’ 

F IG U R E  6 . - R e g i o n s  D  a n d  E  i n  th e  z o z o  p l a n e  fo r  a  t r i a n g h r  w i n g . 

M a c h  w e d g e  fro m  th e  tra i l i n g  e d g e  a n d  th e  l i n e  o f i n te rs e c - 
ti o n  o f th e  tw o  c o n e s  fro m  th e  tra i l i n g -e d g e  ti p s . R e g i o n  D  
c o n n e c ts  th i s  re g i o n  to  i n fi n i ty . A g a i n  th e  l i m i ts  o f i n te g ra - 
ti o n  fo rm  th e  b a s i s  o f th e  d i v i s i o n  i n to  th e  tw o  re g i o n s . 

T h e  s y m b o l s  l i s te d  b e l o w  w i l l  b e  u s e d  i n  th e  d e ri v a ti o n  
o f th e  e x p re s s i o n s  fo r d o w n w a s h  i n  th e  z z  p l a n e , i n d u c e d  b y  
th e  d i s tri b u ti o n  o f d o u b l e ts  o v e r th e  p l a n  fo rm  o f th e  w i n g . 

E d  ,-G  ,E .s o E s o  c o m p l e te  e l l i p ti c  i n te g ra l s  o f th e  s e c o n d  k i n d  
w i th  m o d u l i  k ,, k ,, k 4 ,,, a n d  k +  re s p e c ti v e l y  

K & ,K ~ o ,K ~ o  c o m p l e te  e l l i p ti c  i n te g ra l s  o f th e  fi rs t k i n d  
w i th  m o d u l i  k 4 , k ,, k + ,, a n d  k s o , re s p e c ti v e l y  

k , J (x -i & 2 2 2  

T h e  d e ri v i a ti o n  o f th e  e x p re s s i o n  fo r w w c  i s  s i m i l a r to  
th a t fo r w w , w i th  th e  e x c e p ti o n  th a t i n  th i s  c a s e  th e  s u b s ti -  

tu ti o n  o =  
J  

6 c  G  t i s  m a d e , a n d  e q u a ti o n  (4 3 )  m a y  b e  w ri tte n  

k , 

k  
J  (x  --c ;)C p  

5 0  e o c o  

R e g i o n  D  

In  re g i o n  D , e q u a ti o n  (2 6 )  i s  w ri tte n  

In te g ra ti n g  w i th  re s p e c t to  y 1  l e a d s  to  

+  
p D  

_  z H P  c o  k , 
7 r  s  

o  ~ ~  @ L - - E d d x l  

C h a n g i n g  t,h e  v a ri a b l e  o f i n te g ra ti o n  g i v e s  

T a k i n g  th e  p a rti a l  d e ri v a ti v e  o f (Pp D  w i th  re s p e c t to  2  g i v e s  
th e  e x p re s s i o n  fo r th e  d o w n w a s h  a s  

~ ~ p D = -~ j k ~  (fj I$ ) $ & q g j .i o .q  

[x k q o - & 0 2 x 2 + /3 2 z ”(k 4 0 W 0 2 ) I+  

- l )  (k & ) 

(4 5 )  
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Region E 
. 

In region E, a similar derivation yields the solution 

.- __ -- 
eo[~-J;E2k,,2e&+p2~2(l-k502e02)]+ 

1/i2iii@ + p2z2 (1 - kTo2e02) 

x3kA2e02 

(46) 

Effect of doublets in the wake.-The limits of integration 
again necessitate the division of the portion of the plane 
behind the trailing-edge wave into two regions, D and E. 
The following. list of symbols will be used in the derivation 
of downwash in the xz plane, induced by the doublets 
distribut,ed over the vortex wake: 

a’, 
J(x-co)2=p2 

x-c, 

eoco - 

Pz 

ED, EE complete elliptic integrals of the second kind 
with moduli k, and k,, respectively 

Ecu’,, k’D) incomplete elliptic integrals of the second kind 
EWE, k’d with arguments a’D and u’~ and moduli k’, 

and k’,, respectively 

KD, KE complete elliptic integrals of the first kind 
with moduli k, and kE, respectively 

Fb’o, k’,) incomplete elliptic integrals of the first kind 
F(a’.m k’d with arguments a’, and CL’~ and moduli k’D 

and k’,, respectively 

k, eoco 
J(x-co)2-P2~* 

k, 

k’, JiTp 

t%‘(‘&) -UD2 
sd (by,) -UB2 
Region D 

In region D, equation (27) becomes 

2 “- 1 

Jo 0 2c 0 2-~2~ 1 2dy 1 rpeJyl co [(x-x,)2-$;y 1 2T?j]2/2 

Integrating with respect to x1, and using the definition of / 7 

&I 
@ &7(x-co) B S Jeo%2- &h* 

WD= - --:- dy, 
T 0 (y*2iz2) J(x-c”)2-p2y,*-@22 

-H(x--co) ~ eo2c02 
s 

1 

7r pzJ(x-co)*-- 

where 
PYl 

w=&Co 

Applying the Jacobian transformation w=sn u 

H(x-co) eo2c02 K~ @ lpg= S 7rBz ,qizJq’i2 0 

The expression for aWD as given in equation (48) is inte- 
grable (reference 10) and becomes 

B(x - c,) eo*co2 Q,-- ____ 
"D-?rpzJ(x-c,)2-p%2 

the expression for the downwash wwD obtained by taking the 
partial derivative of awD with respect to z may be written 

C 
iF(a’D, i~, Jl +uo2kD2 k’,) +y,r+r- EDF(U’D, k’,) -KDE(a’,, k’,)]) (50) 

ED iE(u’,, k’,) --iF(a’,, k’,) K- = - 
D II 

(47) 

KoFWn k’,) -EDF(u’D, k’D) --KDE(u’D, k’,)] \ 

(49, 

Since it may he showu that 

i; [KDF(u’ D, k’,) --EDF(u’D, k’,) -KpT(u’D, k’,)l=- 
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Region E 

In region E a similar derivation gives 

Jl -alE2 [KdW~, k’E)-Ez-Fta’g, k’J-KE-F(a’E, k’dl 

(5i) 

Conditions at the trailing edge.-The value of thevertical 
induced velocity immediately ahead of and behind the 
trailing-edge wave must, of course, be determinable directly 
from equations (21) and (22), respectively, by setting 
~=c,fzp. If, however, the discussion is restricted to the 
z=O plane, a much simpler method exists for finding the 
downwash at these points. The approach taken here follows 
essentially that given by TAagerstrom in reference 4. 

: 
8’ ‘------ Mach lines--- -_________ : 

4 
: 8’ 

: 

70 
i 

w  : 
: 

-==&a 

: 
: 8’ 

8’ : 

F IGURE 7.-Sketch of velocity vectors of the air before reaching. on, and after leaving super- 
sonic airfoil. 

Let conditions just ahead of the trailing-edge wave bo 
denoted by the subscript 2 and conditions just behind the 
wave by the subscript 3. Bigurc 7 shows a section of a 
given wing in the plane y=constant. The Mach waves at 
the leading and trailing edge make the angle po=arc sin 
l/&f, with the z=O plane, and the wing is presumed to be 
at angle of attack a. Assuming the trailing edge to be 
normal to the free-stream direction, the variation in the x 
component in velocity when passing through the trailing- 
edge wave can be treated as a two-dimensional problem 
with the condition imposed that u,=O in the z=O plane. 

It is known that continuity of flow together with balance 
of tangential momentum across the wave lead to the result 
that the component of velocity tangential to the wave is 
continuous. The tangential components of velocity, V,, 
immediately ahead of and behind the wave are given, 
respectively, by the expressions 

(VJ2=Vo+u2) cos ELO+~Z sin PO 

(V,),=V, cos po+w3 sin P, 

Equating these relations, it follows that 

w3=wz+uz cot po 

From equation (23) 

4eo%co 

2= - Eop &03c; - /3’2 

from which it follows that 

(52) 

Approximate values of downwash near center line of 
wake.-The values of downwash which were obtained on the 
xy and xz planes of the wake were exact solutions subjected 
to no restrictions other than those originally imposed by the 
use of the linearized equations of flow. On the center line 
equations (31), (33), (39), and (44) reduce to the considerably 
simpler expressions 

(wPA)r=oz. -$?l’?&$ &, (53) 

20-l 

(w~~),=~= .-- T [so’ w dk, -IT ~kIbE~ dk,] 
ks2(1 +&,kd 

(54) 

(~w~a)~=,,= -T E.4 

(wwc)y,o” 23 !5d1kc2)~ 
lr kc (56) 

where 

@A) v=o=,$ 

Since the above expressions are relatively simple to com- 
pute, an approximate method based on the generalized 
Taylor’s expansion in the vicinity of the line y=z=O can 
be formulated which reduces the tediousness of t,he calcula- 
tions and gives a good indication of the variation in the 
downwash function in a portion of t.he wake for points near 
the center line. The next higher terms in the expansion 
can be found without difficulty for the region bounded as 
follows: 

(a) -f b<y< f b 
(b) Both y and z lie within the Mach cones 

from the trailing-edge tips 
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The problem resolves itself into one of finding the first 
nonvanishing coefficients of y0 and z0 in the series 

w/w,=A,+A,z,+B,y,+A,z,‘+Czz~y,.t-B,yo”+ . . . . . (57) 

where 
E no= .--O- 

2Hp 

The value of A, is known from equations (53) and (55) to be 

% 

Ao=& 
0 ( s- 

EA+ ,“‘-‘~,; 
1 0 

From equations (28) and (36) the expression for total down- 
wash may be written 

W?r 1 

s 

Yo+Qa 
Hp=%&,xj y”-80 

?la+%@-~) ,/eO’(xO-~)‘- (yo-7)” (& 
(t2+jv- 

The coefficient B1 in the expansion is given by y,=o. 

Carrying out the differentiation, with proper regard for the 
singularity in the first integral, it follows that, &=O. 
Similarly, it can be shown that Cz=O, while the coefficient 

is given by the expression 

--..- ~~ .- kA (k,+e,) rE -1+k12 -Kl & __~ 
L ’ (1-k12)2 dk, (58) 

1 1 
where the variables have previously been define,d. 

In order to calculate the variation with z, it is ncccssary 

to evaluate A,= zo=o where 

QOCO 

dyl- 

The double integral cant rihut.cs nothing to the coefficient, 
and the remaining portion of the expression can be evaluated 
without integrating by differentiating twice and using 
Cauchy’s integral theorem 

Thus 
§ 

11 = - --!- -5 1 
Eoeo 14 

(5% 

The coefficient As will not be evaluated since the first 
higher order term in z has been found. Thus, to the first 

order in y. and zo, the downwash function w/w0 is 

W  -=-& EA+ 
wo 0 ( s 

okA4 K+T; dk,)--u z 
1 0 Eo$ 14 (60) 

DISCUSSION 

The variable w/w0 (i. e., (wP+ww)/wo) represents the total 
downwash behind the wing divided by the induced vertical 
velocity on the wing itself. If E is the downwash angle and LY 
the angle of attack of the wing, then w/wo=de/da. 

.8 

2.7 
---.-_- 

.6 
-___-___- 

.5 

.8l I I I I I I ; I I I I I I I I I 

I I I / t 

ib) 
.4 

.6 

.3 
I.0 I.2 I.4 I.6 1.8 2.0 22 2.4 2.6 

x0, dl'sfonce IR chord lengfbs 

(EL) Bo=O.4. 

(b) Bo=O.fi. 

(c) 80=0.8. 

FIGURE S.-Variation of the downwash in the zom plane downstream from the trailing edge 
for various span stations. 

In figure 8, the downwash in the xy plane is presented for 
various Be’s and spanwise stations and for all values of x 
from the trailing edge to a point where the asymptotic value 
is closely approached. The region covered in the y direction 
cstcnds from t,he x axis out to about (l/2) Bo, where in the 
coorclinat,c system used x0 equals z/co, y. equals py/c,, and 
B. is tbc semispan of the wing. Figure 8 can be used to 
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assess the accuracy of the approximation, given by equation 
(60), that the value of downwash is independent of y in 
the neighborhood of the 5 axis. Within about a half span 
from the trailing edge of the wing no general statement can 
be made as to the variation of w/w, in the 5’ direction. For 
distances greater than a half span from the trailing edge, 
however, the variation is quite uniform and w/w0 deviates 

from its value at y=O only slightly for -i eO<yo(~~Bo. 

.6 

.2 
t 

/,‘%-,,A 
-r - -+pp:ow/~ot~ theory 

- 
co 0 .I .2 .3 .4 .5 .6 

FIGURE O.-Variation of downwash across the span at various stations downstream of wing 
trailing edge for Eo=O.6. 

For &=0.6, a more extensive study was made of the 
variation of downwash with y. Figure 9 represents values 
of w/w0 across the span for several positions behind the 
trailing edge. Immediately behind the trailing edge the 
value of w/w, falls and approaches - m as the wing tip is 
approached. However, at 0.4 of a root chord behind the 
trailing edge (I~= 1.4), w/w0 rises and reaches the value of 
0.7 as the wing tip is reached. At x,=2.2, the spanwise 
variation of w/w0 is essentially constant. Although equa- 
tion (60) is applicable only for region A, it is seen from figure 
9 that the approximation that the downwash does not vary 
with y is useful out to about a third of a semispan for all 
values of 2. 

The variation of downwash in the xz plane is presented in 
figure 10. The curves represent values of w/w0 from the 
trailing-edge wave downstream to a point where the asymp- 
totic value is closely approached. In the immediate vicinity 
of the Mach cones from the trailing-edge tips (i. e., x0 = 1+ 0,) 
the curves were not continued because w/w0 becomes very 
large and approaches negative infinity as the Mach cone is 
approached. Since this effect results from infinitely large 
values of the radial component of induced velocity at the 
Mach cone, it does not exist in the zO=O plane. Such a 
behavior is consistent with the mathematical idealization of 
infinite pressures at the leading edge and of an abrupt fall 
of load at the trailing edge. However, in an actual flow field 
where these phenomena do not exist the flow will experience 
a milder change in passing across the AIach cone. Even 
in the theoretical results presented in this report the growth 
of the vertical induced velocity in t,he neighborhood of the 
Mach cone is logarithmic, and the interval in which w/w0 is 
appreciably distorted from the general trend is very small. 

I 

(a) 
2 

.6 
w 

wo 
.4 

I I I 

P’) 
.2 

.8 

.6 

WJ 
*o 

.4 

x0, disfonce in chord lengfhs 

(a) e0=0.4. 

(b) oo=O.B. 

(c) Bo=OA. 

FIGURE IO.-Variation of the downwash in the IOZO plane downstream from the trailing edge. 

Some further insight into the behavior of w in the vicinity 
of the Mach cone from the trailing-edge tips can be obtained 
by studying a single vortex which extends infinitely far ahead 
of the origin at an oblique angle to the flow and infinitely 
far behind the origin parallel to the flow (fig. 11). The half 
of the vortex which extends ahead makes an angle with the 
free-stream direction less than the Mach angle so that the 

z 

Secfion B-B Se&on C-C 
FIGURE Il.-Induced vertical velocity field for bent and unbend supersonic oblique vortex 

making an angle with the free stream less than the Mach angle. 
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component of free-stream velocity normal to it will be sub- 
sonic. Thus, outside of the Mach cone originating at the 
sudden bend in the vortex at the origin, the flow will be ex- 
actly like that of a linearized compressible subsonic vortex 
with a superimposed uniform velocity parallel to the line of 
the vortex. Inside the Mach cone, however, the flow is 
completely changed. Figure 11 gives an indication of the 
change. The term “bent” vortex refers to the vortex along 
the x axis which is turned suddenly at the origin from the 
angle it had maintained from - ~0. The term “unbent” 
vortex on the other hand refers to a vortex which maintains 
the same angle from - a to + ~0. The unbent vortex is 
included in figure 11 for comparative purposes. The figure 
shows that on the z=O plane (section AA) the downwash is 
finite and continuous in passing through the Mach cone, but 
that above the z=O plane (section BB) the value of ti be- 
comes infinite as the cone surface is approached from the 
inside. This behavior at the Mach cone may aid in inter- 
preting the discontinuity in the results for the complete 
wing as given in figure 10. 

- Exocf linearized theory 
- - - - Approximo te theory 

.a7 .7-l 

0 .2 .4 0 .2 .4 0 .2 .4 
, z&, fraction of semispon 

(a) 80=0.4. (b) Bo=O.G. Cc) Bo=O.8. 

FIGURE 12.-Variation of downwash in the rm plane at various positions on zo axis. 

Approximate values of downwash in the xz plane computed 
from equation (60) are compared in figure 12 with the results 
from the exact solution. The approximation that to a first 
order the variation of w/w, with zO/O,, is linear with a slope 
-l/E, is seen to be useful up to about a third of a semispan. 

Values of w/w0 were not computed for points off the xz 
and xy planes; however, the methods given in the report are 
general and directly applicable. The result,s already given 
would indicate that the approximate solution is valid in the 
vicinity of (l/3)& about the x axis. This assumption can be 
checked for large distances behind the trailing edge by con- 
sidering the flow field as x0 approaches ~0. Thus figure 13 
shows a comparison between the exact value of w/w0 derived 
by means of the linearized equation and the approximate 
method based upon the use of a generalized Taylor’s expan- 
sion. The agreement is seen to be satisfactory out to about 
one-third of a semispan either vertically or horizontally from 
the x axis. 

Throughout the analysis it was obvious that the calcula- 
tion of the downwash due to the doublets on the wake wIy 
was much simpler to perform than the calculation of the 
downwash due to the doublets on the plan form wP. For 
example, the formulas for the downwash on the x axis were 

I.0 

.9 

$o~o.8 

.7 

.6 

-Exacf linearized lheory 
- - - Approwima te theory 

to/e0 
0 

0 .I .2 .3 
Yoieo 

FIGURE I3.-Downwash at a large distance behind triangular wing. 

given in terms of the elliptic integrals E and K; for wW the 
evaluation of E and K was sufficient but for w, a numerical 
integration involving E and K was necessary. Therefore, 
in calculating the downwash for wings with plan forms other 

I.07 eo=.2 

I.0 /.4 f.8 2.2 
q,, distance in chords 

26 3.0 

FIGURE 14.-Variation of the part of downwash on z aris induced by doublets in wake with 
distance downstream in chord lengths, za=z/co. TrianguIsr wing. 

I.8 
~0, distance in chords 

QGURE 15.-Variation of the part of downwash on z axis induced by doublets on the plan 
form with distance downstream in chord lengths, xo=Jco. Triangular wing. 
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than triangular, it is useful to know in what regions the con- 
tribution of wP to w is small. For this purpose a comparison 
of ww with wP along the x axis of the triangular wing is shown 
in figures 14 and 15. Figure 14 gives the value ww/wO, figure 
15 the value of wP/wO, and figure 16 the total downwash 
(ww+wP)/wO or just w/w+ An inspection of figure 15 shows 

.8 
w 

wo 
.6 

/.4 I.6 I.8 20 22 2.4 2.6 
zo, disfonce in chords 

FIGURE lG.-Variation of the total downwssh on z axis behind B triangular wing swept be- 
hind Mach cone with distance downstream in chord lengths, zo=z/co. 

that the effect of the doublets on t#hc plan form dies out rap- 
idly behind the point x,=1 +&, that is behind the point of 

.8 
7.9 

wo 

FIGURE 17.-Variation of downwssh on z axis with Mach number at various positions down, 
stream of trailing edge. )=45’. 

intersection of the 2 axis with the Mach cone from the 
trailing-edge tip. 

An indication of the variation of downwash with Mach 
number is given in figure 17. This figure shows values of 
w/w0 on the x axis plotted as a function of MO for various 
values of x0. The value of the sweepback angle is 45’, and 
the Mach number range covered could be extended to 1.4 
and the leading edge would remain subsonic. 

AWES AERONAUTICAL LABORATORY, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

MOFFETT FIELD, CALIF., Nov. 9, 1948. 



APPENDIX A 
EVALUATION OF SPECIAL INTEGRALS 

Integral I, 

Since there are no singularities in 11, the finite part sign by the substitution 

may be discarded. The linear term in the radical is elimi- h--P’ .& ~=--i------ 
nated by the transformation ~=(~1-J-61t)/(l+t) and the P --Y1 

integral becomes By the introduction of the Jacobian elliptic functions P-Y1 
s1-p til-[(sl-~‘)l(~‘-Y1)12trdt 

(reference 10) in the transformation w=sn u, the integration 

[l- (61/-d2~213’2 
may be completed, and 

61-P 

(Al) 
II=2 

J 

The expressions for F1 and y1 may be combined to give the 
useful identities (A3) 

and 
t2=Y1& 

(r1- I*) @1-/-o = (EL’ - Yl) (4-P) 

where cd u=cn uJdn u. 

Integral I2 

Noting that the integrand is an even function, equation As the first step in reducing Is to canonical form the integral 
(Al) may be reduced to the canonical form is written 

(A4) 

In t.his case the following identities may be obtained 
directly from the definitions of y2 and 82: 

and 
(72-d cf-62) + (72-Q (P---2) =o 

(E+Yz) (d-62) + w--2) @+a,) =o 

The transformations v=‘e and W= sP t are made, 

and after algebraic simplifications equation (A4) becomes 

By applying the fundamental properties of even and odd and if 
functions, the first two integrals in equation (A5) can readily 
be integrated. The procedure for handling t,he finite part 
sign over the third integral will be considered in detail. and 
Since, 

__-- -. -.- 

is 

.f(l>= 1 
1 1+w 

-l (1j ,f(1-k~202) (1 lwT dw=2 (1 -J)3b;im~,~~2 / 

2312yil -k,2 

then by equation (6) 

J’ 
1 dw 1 dw 1 dw 1 

2 o (&uw?)3/2J~2~==2 Lf 0 (l-U2)3’2Jiz&V- S o 23’2(1-w)3/2&-k22 &‘(l-k22) 1 = 

2 [S 
1 dw 

0 (l-,2)3/24- 1 = 

2 Jz(l-u; 1 = (1-k22) 
1 2 Kz+;z -,/KkT E2 1 (1-,&2),/m w-i=k,2 -‘j: ,i2(l-~)(l-k2z) 

3 (A5) 

18 
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The solution of equation (A5) becomes, after algebraic 
simplification 

I,=2 
iJ 

-k,-- 
(E-d (E-d) II 

a,&-.‘+p ---id 1 K,- 

1 GP)k(E+P’) E2 p J .I. W) 
2 . .._ .,. ..-- 

Integral I3 . 

The procedure for integrating I3 is similar to that pre- 
viously discussed in connection with I*. In this case, the 

integral is canonicalized by the substitution w= s, 
r3 

t and 

the solution may be written 

C-47) 
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