- @ https://ntrs.nasa.gov/search.jsp?R=19930092021 2020-06-17T03:19:59+00:00Z

/4

!

hOTEhTO

/'\/\J‘

WN ‘GdV AHVHEIT HO3L

7

\E\ . : T ,‘l

PN

14

R AR S T PR \'/ ‘{L‘\,n"p P
- By HARVARD-LOMAX; LOMA SLUDER, and 'MAX. A. HEASLET - .
T e R e T R
N el AR r\/:m L2 . ,/‘ Y o o

v . o o - R "~ e
\U. 8. Gevernment Printing Gffice, Washintgton 25, D. C, Yearlys
price varies according to ize. - - - === = Price 20 cents P

. /!
- v N




seo((prh%) ]

g

W ‘ Wel ght=mg~ o T el /(Kmematlc wscosmy

Sba,ndard accelera,tlon ity =9.80665"1 po Densfoy Qmasd pemn:ut volume)
" —or 82.1740 fh/sect YT T e T L -Standard deﬁsﬂ;jof “dfy-air, 0.1 2497 kg-in™
\ W T P - = and-760-mm; or.0.002378 Ibft=* gec?. - -
RIS e i,Speclﬁc ~weight ~0f tandard»«__alr; 1 2255 kg/m‘ or
“iner Jna.—mk’/' (In?:hcatef \@f7651/1b/0f1 o= ' .
radms of gyratmn]clb- 'proper subserlpt T e ' -
Coeﬁiment of wscosmy ‘ : e

= f\Angle_ of sﬂ;ablhzen—seﬁ%mg (rela.tlve to tln'usb—
_/ lme)“’"t* \‘/’</‘ ‘ N
Q ) Resultaniﬁnoment

ﬂf‘ - Resultanﬂ )gdm vé}oclbx5 T
Aspect&ratlo, Ié,
'l?uemr spéedr

(_f x\-

ﬁngle ofattack bmﬁmte »aspect rhtlo /
" Angle-of attack, mduced L
A.nglezof 'a,ttack absolute (measured from;zer

T lift. posmﬁon) s

thht-pa,th sugle o o




- TECH LIBRARY Karg

mmmmmmmm

REPORT 957

THE CALCULATION OF DOWNWASH BEHIND
SUPERSONIC WINGS WITH AN APPLICATION
TO TRIANGULAR PLAN FORMS

" By HARVARD LOMAX, LOMA SLUDER, and MAX. A. HEASLET

Ames Aeronautical Laboratory
Moffett Field, Calif.




National Advisory Committee for Aeronautics

Headquarters, 1724 I Street NW., Washington 25, D. C.
Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study

of the problems of flight (U. S. Code, title 50, sec. 151).
approved March 2, 1929, and to 17 by act approved May 25, 1948.

and serve as such without compensation.

Its membership was increased from 12 to 15 by act
The members are appointed by the President,

JeroMe C. Hunsaker, Sc. D., Massachusetts Institute of Technology, Chairman

ALEXANDER WeTMORE, Sc. D., Secretary, Smithsonian Institution, Vice Chairman

Hon. Joan R. AnisoN, Assistant Secretary of Commerce.

DrrLev W. BRoNk, PH. D., President, Johns Hopkins University.

KarL T. Compron, PH. D, Chairman, Research and Development
Board, Department of Defense.

Epwarp U. ConboN, Pu. D., Director, National Bureau of
Standards.

James H. Doorrrrig, Sc. D., Vice President, Shell Union Oil
Corp.

R. M. Hazen, B. 8., Director of Engineering, Allison Division,
General Motors Corp.

WiLiaM Litriewoop, M. E., Vice President, Engineering,
American Airlines, Inc.

TreopoRE C. LonNQUEsT, Rear Admiral, United States Navy,
Deputy and Assistant Chief of the Bureau of Aeronautics.

Downawp L. Purr, Major General, United States Air Force,
Director of Research and Development, Office of the Chief of
Staff, Matériel.

Joun D. Pricg, Vice Admiral, United States Navy, Viee Chief of
Naval Operations.

ArtHUR E. Raymonp, Sc. D., Vice President, Engineering,
Douglas Aircraft Co., Ine.

Francis W. REICHELDERFER, Sc. D., Chief, United States
Weather Bureau.

Hon. Deros W. RENTZEL, Administrator of Civil Aeronautics,
Department of Commerce.

Hoyr S. VaNDENBERG, General, Chief of Staff, United States Air
Force.

TrHEODORE P. WrIGHT, Sc. D., Vice President for Research,
Cornell University.

Hucn L. DrypEN, Pa. D., Director

Joun W. CrowrEY, Jr., B. 8., Associaie Director for Research

Joun F. Vicrory, LL. D., Ezxecutive Secretary

E. H. CaaAMBERLIN, Fzecutive Officer

Hexry J. Reip, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.
Smire J. DeFrancE, B. 8., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.
Epwarp R. Smarp, Sc¢. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

OPERATING PROBLEMS

AERODYNAMICS
InpusTry CoNsULTING

PoweER PLANTS FOR AIRCRAFT
AIRCRAFT CONSTRUCTION

Coordination of Research Needs of Military and Civil Aviation
Preparation of Research Programs
Allocation of Problems
Prevention of Duplication
Consideration of Inventions

AMES AERONAUTICAL LABORATORY
Moffett Field, Calif.

Lewis FrLicar PROPULSION LABORATORY

LANGLEY AERONAUTICAL LABORATORY
Cleveland Airport, Cleveland, Ohio

Langley Field, Va.

Conduct, under unified control, for all agencies of scientific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE
Washington, D. C.

Collection, classification, compilation, and dissemination of scientific and technical information on aeronautics

11



REPORT 957

THE CA_LCULATION 'OF DOWNWASH BEHIND SUPERSONIC WINGS
WITH AN APPLICATION TO TRIANGULAR PLAN FORMS

By Harvarp Lomax, Loma SLUDER, and Max. A. HeasLeT

SUMMARY

A method is developed consistent with the assumptions of
small perturbation theory which provides a means of determining
the downwash behind a wing in supersonic flow for a known
load distribution. The analysis is based wupon the use of
supersonic doublets which are distributed over the plan form
and wake of the wing in a manner determined from the wing
loading.

The equivalence in subsonic and supersonic flow of the down-
wash at infinity corresponding to a given load distribution 1is
proved. In order to introduce the manipulative technigues
which are subsequently employed, the unswept wing of infinite
span 1is treated for supersonic speeds. The principal applica-
tion in this report, however, is concerned with the downwash
behind a triangular wing with leading edges swept back of the
Mach cone from the vertex. Complete solutions are given for
the chord plane in the extended vortex wake of the wing and for
the vertical plane of symmetry. An approximate solution is
also provided for points in the vicinity of the center line of the
wake.

INTRODUCTION

The linearization of the partial differential equation satis-
fied by the velocity potential for compressible flow yields, for
subsonic flight speeds, an elliptic-type equation which is re-
ducible by means of an elementary transformation to the
basic equation in incompressible flow. As a consequence of
this result, wing theory in the subsonic realm employs the
same concepts and types of analyses that belong to classical
incompressible theory. At supersonic speeds, the differential
equation for the velocity potential is hyperbolic in type and
for wing theory is equivalent to the two-dimensional wave
equation of physics. In spite of the different character of the
basic differential equation in the two flight regimes, certain
formal equivalencies can be set up which are intuitively use-
ful in the solutions of specific problems. In particular, the
velocity potentials of a three-dimensional source and of a
doublet each have analogous forms in the two cases. The
solution of different boundary-value problems encountered
in wing theory has been discussed in reference 1, and it has
been shown how suitable distributions of sources and doublets
may be used to determine the flow potential associated with a
given lifting or nonlifting wing.

The calculation of downwash behind a wing, for incom-
pressible flow, relies almost exclusively on the use of Prandtl’s
lifting-line theory which is, in turn, developed from the con-

cept of a single horseshoe vortex. The conventional approach
to the general downwash problem is to determine, first, the
induced field of the simple horseshoe vortex by means of the
Biot-Savart law and, then, from a knowledge of the span-wise
distribution of loading over the wing, to calculate finally the
induced field produced by a vortex sheet composed of super-
imposed vortices of varying span. '

When downwash calculations are to be extended to the
case of supersonic wings, it appears at first that the use of
vortex sheets is inadmissible since no practical equivalent
to the Biot-Savart law cxists. It is, in fact, true that the
horseshoe vortex no longer plays the outstanding role it
has at low speeds. However, when a more detailed investi-
gation is made of the underlying analysis, it becomes apparent
that vortex theory and the Biot-Savart law can be developed
from the initial use of a constant distribution of doublets
over a given surface (e. g., see references 2 and 3). These
doublets produce a discontinuity in the velocity potential
at the surface, and, for incompressible theory, the curve
which bounds the surface can be identified with a vortex
curve possessing circulation. The proof of the Biot-Savart
law and the introduction of vortex sheets are direct conse-
quences of these basic ideas.

Since, as was shown in reference 1, supersonic boundary-
value problems involving sources, sinks, and doublets can
be solved in a manner analogous to that used in low-speed
theory, a method is therefore provided for an attack on the
downwash problem for supersonic plan forms through the
use of doublet distributions. By means of this method the
downwash immediately back of the trailing edge and at an
infinite distance behind a wing will be derived and shown to
agree with the previously published results of P. A. Lager-
strom (reference 4).

The present report has three principal aims: First, to out-
line the theoretical approach to the determination of the
velocity potential of the flow field associated with a supersonic
lifting surface and the subsequent calculation of the down-
wash ; second, to apply the theory to the case of a triangular
wing swept back of the Mach cone and to present the results
of the complete calculations over the chord plane in the
extended vortex wake of the wing and on the vertical plane
of symmetry up to about 40 percent of a semispan; and,

third, to serve as a guide through some of the more difficult

mathematical manipulations so that the calculations can be
extended to other plan forms. A simple first approximation
is also advanced for the downwash variation about the axis

1
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of symmetry, and these approximate values of downwash
are compared with those obtained from the exact calculations.

In the theoretical portion of the report, the boundary-
value problem will be introduced and the solutions, obtained
from Green’s theorem, will be given for low-speed and super-
sonic flow. In the section of the report devoted to applica-
tions, the theory will be used to evaluate the potential func-
tion at an infinite distance downstream from a lifting wing.
The theory is next applied to the case of the unswept wing
of infinite span since the mathematical problems involved
correspond closely to those for the more general case. From
this application, a general procedure is developed for treat-
ing wings with supersonic trailing edges. The final applica-
tion of the report will be devoted to the triangular wing. In
all of these applications, it will be seen that the analytic
expressions which have been obtained in supersonic theory
for the load distributions over certain plan forms afford a
means whereby the chordwise distribution of pressure may
be introduced into the analysis, and, therefore, such expedi-
ents as lifting-line theory are no longer so essential.

The entire theory is postulated on the assumptions of
thin-airfoil or small-perturbation theory and, consequently,
thickness effects and lifting-plate solutions are additive. For
the results that are given in the plane of the airfoil, the thick-
ness effect, which is necessarily symmetrical with respect to
this plane, is zero.

The material given in the present report is a combination
of two previously published NACA Technical Notes (refer-
ences 5 and 6).

LIST OF IMPORTANT SYMBOLS

ay velocity of sound in the free stream

b span of wing

o root chord of wing

E E, complete elliptic integral of the second kind with

modulus %, ko, respectively

f \/1——k"’t2
1

E@ k) incomplete elliptic 1ntegral of the second kind
with argument ¢ and modulus k
B, b= \/1 —k*
- 1—¢2
2aVy
N £
ko V1—6;?
K complete elliptic integral of the first kind with
1 dt
modulus & [K:_ﬁ, \/(1 :tﬁﬁ—:ﬁ]
F@, kb incomplete elliptic integral of the first kind with
argument ¢ and modulus k
t, k
[F( )= f VA=t (1— t2) (1 k?t?)]
M, free-stream Mach number (7)
0
P static pressure
Ap Di—Du

q free-stream dynamic pressure <% pOV()z)

| Va—2)"F §—y)°F =2

Te Va—2)?—p yY—y)’—B(z—2)*

U, v, W perturbation velocity components in the direc-
tion of the z, ¥, and z axes, respectively

Au, Uy— U

Vs free-stream velocity
wp 2z component of velocity induced by doublet dis-
tribution over plan form
Wy z component of velocity induced by doublet dis-
tribation over wake
Wo —"V()a
x, Y, 2 Cartesian coordinates of an arbitrary point
21, Y1, 21 Cartesian coordinates of source or doublet
position
x
Zo (?0
By
Yo Co
Bz
2o ?(;
@ angle of attack
B VM —1
6o B tan ¢
.1
Ko Mach angle (arc sin E)
fo density in free stream
i perturbation velocity potential
AdD; ®,—P,
¥ semivertex angle of triangular wing
|— sign denoting finite part of integral
SUBSCRIPTS
U conditions on upper portion of surface
l conditions on lower portion of surface
L E. conditions at leading edge
T E. conitions at trailing edge
W wake
P plan form
s conditions on discontinuity surface (at 2,=0)
I, II, III conditions in regions I, II and III on plan form

(fig. 4)
A, B,C,D,E conditions in regions 4, B, C, D, or E, in wake
of triangular wing (figs. 1 and 2)

THEORY

BOUNDARY CONDITIONS

The proposed problem is one of finding the downwash
behind a flat plate which supports a loading consistent with
its angle of attack and plan form. It will be assumed
throughout the analysis that this load distribution is known.
Such values were given for several plan forms in reference 7
and further results can be found in the literature on super-
sonic wings.

The load distribution over the wing may be obtained
from a knowledge of the differences in pressures acting on
the lower and upper surfaces. Moreover, in thin-airfoil
theory, where boundary conditions are given in the z=0
plane (i. e., the plane of the wing), a simple relation exists



DOWNWASH BEHIND SUPERSONIC WINGS WITH AN APPLICATION TO TRIANGULAR PLAN FORMS 3

between local-pressure coefficient and the streamwise com-
ponent of the perturbation velocity.. Thus, assuming that

the free-stream direction coincides with the positive x axis .

(fig. 1 (a)), and denoting by u the z component of the
perturbation velocity, it follows that

2Au,

A_p_Z)z—Pu_l _ . ’

q q

where the variables are defined in the table of the symbols.
Furthermore, from the definition of the perturbation velocity
potential &

b= f * uds @)

where a is a point in a region at which the potential is zero.
Combining equations (1) and (2), the jump in potential in
the plane z=0 can be determined by integrating the jump in
the % induced velocity or, what amounts to the same thing,
tbe jump in load coefficient. Thus,

[T (D
2D, — fL e =" L () d 3)

where the integration extends from the leading edge to the
point z and A®, represents the jump in ® in the zy plane.
Since load coefficiet Ap/g must be zero off the wing and since
% is an odd function in z, the value of 4 must be zero for
all points off the wing in the zy plane. It follows that A®,
remains constant at a given span station for all values of z
beyond the trailing-edge position.

[s

-7
B
i
(a) y
A, Ags
£ i - -y
A A B B’

(a) Plan form.
(b) Sections showing distribution of A®..

FIGURE 1.~Sketch showing arbitrary lifting surface together with distribution of A®s, the
jump in perturbation velocity potential in the plane of the surface.

Figure 1 indicates an arbitrary lifting surface in the z=0
plane together with the distribution of A®, for given constant
values of ¥ and z. In both subsonic and supersonic theory,
the wing together with the semi-infinite strip extending

downstream of the wing form a discontinuity surface for the
velocity potential, while A®, is equal to 0 throughout the
remaining portion of the zy plane. These conditions,
together with the fact that the vertical induced velocity w is
a continuous function at z=0, are sufficient 10 determine @
throughout space. The values of u, », and w can then be
found from the corresponding partial derivatives of & with
respect to z, 7, and 2. The attention in the present report is
centered on w, the downwash function.

SOLUTION TO BOUNDARY-VALUE PROBLEM

In reference 1, the solutions for boundary-value problems
of the type under consideration were given for both incom-
pressible and supersonic theory. The basic differential
equations satisfied by the perturbation velocity potential are,
for the two cases, respectively,

0P | 0P |, 0P
SE +W 522 =0 4)
and

o*'d 0% 0%
B ow oy o2 )

Incompressible theory.—For boundary conditions pre-
scribed in the 2=0 plane; the solution of equation (4) is

1 1 /0AD o1
ve == [ 17 (5.~ 0. (7). [
©

where
r=~@—z)+ Y—y)*+ (z—21)*
and 7 is the area for which the integrand does not vanish.
1 1 /21 _ .
The terms ey and ir (55 ?)s arc equal to the velocity

potential at x,y,2z of a unit source and doublet situated at
the point x,%,,0. The remaining terms in the integrand,
which determine the distribution of source and doublet
strengths, must be found from known boundary conditions.
If a lifting- surface fixes the boundary conditions, induced
vertical velocities on the upper and lower faces of the surface
are equal so that

20, 22,
oz 0z
and
1 > 1
26y, 9= [, [ 82, (o2 ), dmdu, @)

Equations (6) and (7) are well known in potential theory
(reference 3, p. 60), but the derivation usually employs the
assumption that the value of ® is zero at all points infinitely
distant from the wing. This assumption cannot, of course,
be made in aerodynamic applications where the discontinuity
surface 7 extends to 2= «, as in the case of a lifting wing or
lifting line with trailing vortices. These latter problems,
with which this report is directly concerned, are of such a
nature, however, that the induced effects at an infinite dis-
tance are confined to the plane x= . An investigation of
the derivation of equation (6) reveals that the conditions -
imposed on ®, in general, can be relaxed sufficiently to permit
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a discontinuity in a strip of finite width along the entire
extent of the r axis. The mathematical details of the deriva-
tion will not be given here but a statement of the restrictions
on & at infinity is worthwhile. Thus, denoting by o®/dn the
directional derivative of ® taken normal to a prescribed
surface, the following conditions apply:

1. The functions ® and 0®/0n are zero at all points having
radius vectors which make finite (nonzero) angles with the
positive » axis, the points lying on a spherical surface of
infinite radius with center at the wing. (This preserves the
usual potential theory assumptions except over the portion
of the spherical surface forming the plane z= «.)

2. The values ® and 0®/0x are bounded at all points
infinitely distant from the lifting surface and at a noninfinite
distance from the positive z axis. (This condition places
restrictions on the values of ® and 0®/0r in the planez= ».)

Conditions (1) and (2) are satisfied for a lifting surface of
finite span, and equation (7) is consequently applicable
directly to the determination of the velocity potential. As
an application of the equation, suppose a sheet of horseshoe

vortices is situated as in figure 2 with bound vortices placed
x

b2
APs(yY)~-. P
. Ll 4
-b/2
Yy
F1GURE 2.—Vortex sheet with bound vortices on ¢ axis and distribution of circulation
equal to APs.

on the y axis, trailing vortices extending parallel to the
positive z axis, and has a spanwise distribution of circulation

A® symmetrical to the xz plane and defined for —ggygg

Then the velocity potential corresponding to this vortex
sheet is given by the expression

o —Z " v,y | dn 8)
(x’y’z)_-éi;rf—b/z s@Y1 o [E—z)iF y—y) 2+ (

When A®,=constans, 8 single horseshoe vortex results.

Supersonic theory.—For supersonic boundary-value prob-
lems associated with plan forms as indicated in figure 1 (a),
where the known conditions are given in the z=0 plane,
the general solution of equation (5) is given in reference

1 in the form
1 0Ad 0
DG 7) ] d””‘dy‘

c

<I>(x, yyz) -

where

=V @—a) =B Y—y)*—B(z—21)*
and the subscript s on the parentheses indicates that the
function is to be evaluated at z=0. The region r is that

portion of the z;% plane bounded by the leading edge of
the wing, the lines parallel to the z axis and stemming from
the lateral tips of the wing, and the trace in the z;==0 plane
of the Mach forecone with vertex at the point x, ¥, z. The
sign | is to be read ‘“finite part of”” and was introduced
by Hadamard (reference 8) as a manipulative technique
with the property that

z Ar)de 70 A (x) — A (x) 2.4 (x) Y
[ R e e LD

For purposes of calculations, this was modified in reference
1 to

A)d + A)d
[ ADE [ 4Dk rw-—c  an

117)3/2

the asterisk indicating that no upper limit is to be substituted
into the indefinite integral, the latter being determined as

F@)+C

O—lim [ZA(%) —F(x)]

2o ‘\/ Ty—T

Equatlon (9) is the direct analogue of equation (6).

terms ( )
C 8

tial at z,, 2 of a unit supersonic source and doublet situated
at the point 1, ¥, 0, while the remaining terms in the inte-
grand determine the distribution of source and doublet
strength and are determined by the known boundary condi-
tions.

When the potential function associated with a lifting
surface is to be evaluated, '

where

The
Zr (b—z‘ ;)8 are equal to the velocity poten-
17e¢

0%, 0%,
Oz, 0z

and equation (9) reduces to the form

®(x,y,2) Z%rlﬁqu)s (5271 :-)s dx,dy, (12)

In application, the region of integration in equations (7) and
(12) can be divided into areas occupied, respectively, by
the plan form and the wake region. Thus, for equation (12),

fJ Ad dx,dy,
plan form (I II)Z 32(3/ 1/1)2

AD dx,dy
fjwake (1' ) —B(y— yI;Z 2P (13)

Equation (13) presents a formal solution for the calculation
of velocity potential and, subsequently, downwash for a
given surface in terms of A®,. Since A®, was related directly
to load distribution in equation (3), it is apparent that the
various known solutions to lifting-surface problems are
directly applicable. The fact that supersonic theory per-
mits the determination of load distribution in closed analytic
form for many simple plan forms provides a distinet advan-

By, )=k

6222]3/2 -

262
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tage that is lacking in subsonic theory wherein virtually all
known results are available only in numerical form. Thus,
theoretical analysis of problems involving supersonic flight
speeds can be carried further before recourse to numerical
methods is necessary.

APPLICATIONS
VALUE OF POTENTIAL FUNCTION AT x=c

It is possible to show, from equations (7) and (12), that
the potential functions corresponding to a wing with fixed
load distribution are identical at z= = for incompressible
and supersonic flow. Assuming A®; known, the values of
(z,y,2) for the two cases are given, respectively, by the
equations

_ i A@sdxldyl
® (2,7, 2) _47‘.J‘Lhm form [@—20 2+ (—y1) °+ 22]3/2+

ifjt Aq)sdilhd:l/l

4 wake [(1'—1?1)2+ (?/'—yl)z"*" 22]3"‘2

ff A@sdxldyl .
plan form [ (& —2,) 2 — 32 y—u) 2_6222]3/2

ff Aésdxldyl
wake [ (Z—2;)2—f8° Y—y)’— .3222]3/2

Since, however, A®, is finite, it follows immediately that

and

2
—pcz
‘I)(I,y, Z) Z_Q%'

Bz
27

for fixed values of y and z the integrals over the plan form
in both equations approach zero as z increases indefinitely.
Thus, denoting by 2 &, the value of 2, af the trailing edge
of the wing, the potential functions at z= are given by
the expressions

. b/2
P ( ©,1, Z) ——-11_)12 a;z.;r—f-—-bﬂ Aq?s (xT,E.,yl) d’yl .

f‘” dilh
zp.p. [@—21) 2+ (y—y1)*+- 272
and .

. 2y
&(w,y,2) =lim j_ﬁ f_ A% @r2, ) dys

—e 2

f* dx,
vp.p. [@—21)*— B (y—y1)*— B2 P2

These relations can be integrated once to give for the subsonic
case

1 —2z b/2
P (,y,2) —}LIE Ej‘—bﬂ AD(Xr 5,y) Ay,

x—x) °
{[(?/—?/1)2‘1‘ 2%] \/(x—xl)z‘i‘ Y—y)*+ Zz}fr.zz._

— b2
®(o,y,2) =lim =2 f A®, yd {
(«,¥,2) ILIE o ) @r.x.,Y1)dY

From these equations, it follows that the sidewash and down-
wash at 2= oare invariant with Mach number, provided the
load distribution is fixed. In fact, their values depend solely
on the spanwise load distribution, since the terms correspond-
ing to the chordwise distribution disappeared in the analysis.
This has been pointed out elsewhere in the literature. It
should be stressed, however, that the result which has been
obtained here states that equal span load distributions in the
two cases yield equal values of the potential function at
2=, This does not imply that a wing at low and super-
sonic speeds maintains the same potential function at in-
finity. When the wing is kept fixed, the distribution of w
on the wing is fixed, but the load distribution is a function of
speed.
DOWNWASH ON AND OFF THE WING

As a further application, the unswept wing of infinite span
will be treated for supersonic speeds. In this case, as is
well known, the induced velocities are zero at all points
downstream of the upper and lower Mach waves stemming
from the trailing edge. An abrupt jump in vertical velocity
therefore occurs at the trailing edge of the wing. Con-
sideration of this jump for the unswept wing furnishes con-
siderable insight into the nature of the mathematical diffi-
culties inherent in the calculation of downwash on and off
wings of arbitrary plan form. The calculation for the par-
ticular case will therefore be followed by a more general
discussion which will be of value in connection with. the later
treatment of the triangular wing.

2 (9?2 A®s(Er.m,Y)dY
27rf_b/2 (y—y) 2422 (14a)
and for the supersonic case
(x—x) }* =ifb/2 AR, (x7.5.,Y1) dY1 (14b)
[(y—y)*+22 1V @—2)* =B Y—y)* — B2 e5. 27 )i G—y) >+ 2

Unswept wing of infinite span.—The pressure distribution
for the wing of infinite aspect ratio is constant. For this
so-called Ackeret-type loading, Ap/q is equal to 4a/8, so
that, when the leading edge lies along the y axis

_Vo(=Ap . _2aV,
AD,= 2ﬁ q dr= 3 x, (15a)
) -~y
P(z,y,z)
N4

! P(z,y,z)

z z
(2) . (b)

(a) Point P ahead of trailing edge. (b) Point P behind trailing edge.

FIGURE 3.—Areas of integration for infinite span wing.

where « is angle of attack. In the wake
VofwAp ;. 2V
A@s—- 2 ) q dx= ﬁ Co (15b)

The downwash, or vertical velocity, will first be found when
the point is between the Mach waves from the leading and
trailing edges and then when the point is downstream of the
trailing-edge wave.



" Since the wing is of infinite width and experiences no varia-
tion with ¥, it is ppossible to consider the problem at y=0.
Thus, from equation (13), for the case when the point under
consideration is between the Mach waves from the leading
and trailing edges with its forecone cutting the wing as shown
in figure 3(a),

d=lim

-0

—2fVoa fr—ﬁ\/ez+z2 2,
] 0

\ SV EmyaE dy,
e (=)= B — 2T

where the symmetry of the problem with respect to the 9

axis has been used. Computing the finite part of the integral
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fz‘"ﬂ'\/éz—'(’z-z T dxl (16)
0 [@—w)*— %27 @ —a)) "~ Bl — 2"
and
aq) _a_ h 226Vo Qe
a bz 0 ™
z—ﬂ\/ez-i-_zz z d.’l?l :
J (oo — ez —pe—Fz

Equations (16) and (17) can be evaluated directly to give the

results
Yoa( 2
=8 (’”(zl ﬁz)

""Vo(x

(18)

—lim 223V0a For a point behind the trailing-edge wave (fig. 3 (b)), the
- 61_,0 two quantities can be determined in a similar manner. Thus,
gV e
&—Lim QZﬁVanfco 2, dx, _226Voa00j 8 dy ff—ﬂ Yta dx,
e T Jo (@) — B2 (t—x,) T B — B ™ 0 1Je [@—a))*—B%y,° —B%27*"
(19)
and wis given by the partial derivative of ® with respect to z. -y —y

The term containing the single integral is zero, since the
integral itself is bounded for all values of ¢, while the term
containing the double integral is readily calculable. Thus,
the values of the velocity potential and the downwash for a
point behind the trailing-edge wave are given by the relations

Vo aCy

*="p

IZI
(20)
w=0

These results are the familiar equations associated with two-
dimensional supersonic flatplate theory.

The point of principal interest in this development is the
jump in the induced vertical velocity w in passing from a point
just ahead of the trailing-edge wave to a point immediately
behind the wave. A study of equations (17) and (19) shows
that this jump is the result of the discontinuity in the contri-
bution to the downwash of the term containing the single
integral. Ahead of the trailing-edge wave, this term yielded
the result that

- Voa

whereas behind the wave, the contribution of the term to w
was zero.

The method of attack used in the study of the unswept
wing can be generalized to apply to arbitrary plan forms. A
discussion of this case follows.

Arbitrary plan forms.—As will be shown later, for any pla,n
form with supersonic trailing edge, the jump in the value of
w in the plane of the wing at the trailing edge can be cal-
culated directly by means of simple momentum methods.
At this point, however, it is of more interest to consider in a
general manner the nature of the integrations involved when
the point z, y, 2 is either ahead of or behind the trailing-edge

‘form in equation (13) will be made with respect to y;.

Plz,y,z)

-

¢ *Plzy,z)
(b)

(b) Point P behind trailing edge.

(2)
(a) Point P ahead of trailing edge.

FIGURE 4.—Areas of integration for arbitrary plan form with supersonic trailing edge.

wave. Iigures4 (a)and4 (b) show a plan form with a straight
trailing edge with areas of integration indicated for the point
P in each of the two positions. (The straight trailing edge
is not a necessary restriction and is only introduced for con-
venience of notation.) The regions of integration are divided
under the assumption that the first integration on the plan
When
the point P is ahead of the trailing-edge wave, therefore, the
contribution of the wake is zero and the integration overthe
plan form is made to conform with regions I and II. When
the point is behind the trailing-edge wave, three integrals are
evaluated corresponding to regions I, II, and III. In the
case of the infinite aspect ratio, unswept wing region I was,
of course, nonexistent and, in general, no essential difficulty
in regard to the limits of integration is introduced by this
region regardless of where P is situated. In region II, how-
ever, the problem must be treated in more detail.

Consider first the case when P is ahead of the wave and
denote by &y, the contribution of one side of region I1 to the
total potential. Then
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@1y =lim —F2 L"ﬂ‘/d“zdxl

€—0 21[' e

fYI A@I (l‘] ;yl) dy1
rtre[@—21)*— B2 (y —y1)* — B2° P

(21a)
where

Yi=y+ Vo—a)—p%

Similarly, when P is behind the wave and the same subscript
notation is used to refer to one side of region II, the value of
By, is

. — 2
‘I‘na =lim ‘_B_E
€—0 ™ z

fyl A@l ($1,y1)dy1

vte [(@—21) 2 — B2 (y—1y1)*— B22°P
(21b)

where Y, is as defined above.

The contributions of the other side of region II to the po-
tential will not be considered separately as the behavior is
identical. When P lies ahead of the wave, ¢ appears in the
limits for integration with respect to both y; and x;. This
corresponds to the situation in equations (16) and (17) and,
as for that problem, the limiting process is carried out after
the integration is completed. When P is behind the wave,
it is not necessary to defer the limiting process, since

—ﬁ' z ki f AD, (1, y1) dy,
(i)II& f d :EII)O y+e [(x x1)2 B? (y_y1)2_6?z2]3/2

and if {} represents the integrand, then

S o=l 74 Jan [ e

, AR (x1,1)
[(—2)*—B*(y—y1)*—B*

for e = ¢, = 2, (i. e., { } is bounded for all values of z, in the

interval of the first integration); and further, since

But since

22]3/2 S M

lim M

€0

dyl_llm Me=0

therefore, for P situated behind the trailing-edge wave, the
contribution of region ITa is given by

g orm T—
11s 21r . 1 v [(x__wl)z_ﬁz (y__yl) 2_3222]3/2

(22)

The significance of this result is that, when the point P at

x, ¥, 2 is behind the Mach wave from a supersonic trailing
edge, the limiting process associated with region IT need not
be considered. When P is ahead of the Mach wave, the
term e must be retained in the analysis and the limiting
process used. As was previously noted, the general analysis
developed in this report places no restriction on the orienta
tion of the trailing edge; however, it should be pointed out

that region IT exists only for the case in which the trailing
edge is supersonic. Therefore, the jump in downwash, ob-

- tained from the integration over region II is associated only

878019—50——:2

with supersonic trailing edges; whereas both the downwash
and loading are continuous across a subsonic trailing edge.

TRIANGULAR WING

Consider a triangular wing (fig. 5) with leading edges swept

lVa

N F

— Yo

F1GURE 5.—Regions A, B, and C for triangular wing in zeyo plane.

back of the Mach cone from the vertex. The loading over
the wing is known to be (references 7 and 9)

Ap 4002(1.’171
28 23
q EOB \/0025512—32?/12 ( )

where E, is the complete elliptic integral of the second kind
with modulus k,=+/1—46,® and 6,—=8 tan ¢, ¥ being the semi-
vertex angle of the triangle. From equation (3)

A®D = H +/0%2,— By, (24)
where
_2aVy
H= o] . (25)

Setting, for convenience, ®=%&,+®» the velocity potential
at x, y, z is given by equation (13) to be the sum of the two
expressions

__ Zlyﬁ2 J‘f \/9023712“‘52?/12 dz, dy, @6)
plan form [(m—xl)z_ﬁz (y_y1)2_B222]312
— ZHBZ ff 1/0025”12_62@/12 dxl dyl (27)»
2w wake [ (£ —21)*— B (y —y1)*— B227/*

ESVURNAT
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Equation (26) represents the contribution to the velocity
potential furnished by the doublets distributed over the
plan form while equation (27) represents the contribution
furnished by doublets in the wake. The latter equation is
the mathematical equivalent in supersonic flow of the sub-
sonic velocity potential of a sheet of horseshoe vortices
corresponding to an elliptic span load distribution. KEqua-
tions (14a) and (14b) showed that the expression for & at
z= » is identical to the velocity potential of the subsonic
vortex sheet. However, in the vicinity of the z=c¢, line,
the behavior is entirely different.

In the present report, equations (26) and (27) will be
applied to the determination of downwash in the zy and
zz planes.

SOLUTION IN THE XY PLANE

Effect of doublets in the plan form.—For the purpose of
integration, it is convenient to divide the area behind the
wing into three regions as shown in figure 5. The division
lines separating these regions are formed by the Mach cone
traces from the trailing-edge tips.

The following symbols will be used in the devivation of
the expressions for downwash in the zy plane induced by
the distribution of doublets over the plan form of a triangu-
lar wing swept behind the Mach cone:

E,E, E; complete elliptic integrals of the second kind

with moduli %,, £,, and %;, respectively

K, K, K; complete elliptic integrals of the first kind with
moduli ki, k,, and k;, respectively

kl \/ # _71
O = az) ( 5)
ks : \/ M _53

/~‘ _'Yu

(' +8) VB B

n ptu
o Eutu) — 26w —u) (ut-8) (W —9)
p—p' 28
3 (o 8+ E— DY
ptu
5 (' +8) + & =) @—w")
1 ’
Lt p
. u-bu) VB~ i) G B =D
u—u'+ 28
N s +8) N E—E—)
pt
By—y)
7 e
M yo“‘%—f‘l
’ 0oy
] 0 70—

r—x
£ e
& Zo—1
The downwash ws (2, %, 0) may be obtained by considering

lima;zp in equation (26). It can be shown that, in this

z—0 o

case, this limiting process corresponds to taking the partial
derivative of equation (26) with respect to z and then simply
setting z equal to zero. Thus the expressions for wp in the
regions A, B, and C are, respectively,

VW —n)—p) Hg
,—ﬁo [v (Ez.‘ )3/2 d = ﬁ

_ sl o g [N

140,

Yo-FpTo
140 £ —n) (i—w
Jo T ag ] g a ]

Yot+0yzy

ﬁ “hds (29

Hp o R
- pra ﬁo'*‘eofo L+ jfo hidt (29)
1¥6,
_ Hg| (= W A —n) (1—)
o= =50 || i 02t
146,
[ st oezy N Y
o (8 AW =) (=)
f — g0y dEJ " E—n")?? dn+
1+8,
—yntHdoTo
1+40, I3 — —_
f I J W‘zg? £ (Z/Q g
. yoH8yzg L)
__Hp| [~ f 1 - f ik
T o Jyo*l“(hﬂn Ulay _1«'9‘}‘9010]2(15 I Jéo I3d‘§
146, Tt
(30)

The solution of the three integrals I, Z;, and I; will be dis-
cussed in Appendix A.

The expressions for downwash in regions A4, B, and €' may
then be expressed as the following single integrals which
can be handled by standard numerical methods:

__HB(n 1 20— g :
e T o E—Eode (1)
Hp 2 (W —u)
wPB= T [ﬁo‘i‘ﬂoﬁn 2£2J e (Kl El)dg_*_
148,
0 H0s%o
fy1+:: {K ke 5_2(#_#74—22)—25#)]
(E—w) EF4") g
(E—w) (£+M) 32
2] \/ dc] (32)
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H % 28w —p)

149,
Yot9gzg
f 1+6 { X, [52(u u +2$)—2£#]
~vlo_:r:uro (¢— #) (E-I—u’)

252\/(5 ")(H'“,)}dg—i-

_1/0+ﬂnx0
T, 9
JEO 252\/ g(ﬂ' IJ') (K E3) dE]

Effect of doublets in the wake.—The study of the down-
wash induced on the zy plane by the doublets distributed
over the wake will also be divided into the three regions
indicated in figure 5, and the symbols listed as follows will
be used in the derivations:

8s (va—V
@4 Ya (51-1“1’/
) ’YB“]’I
@z YB <6B_VI>
Yo (¥ bc
e ¢ 'YC'_V/>
E,, Ep E; complete elliptic integrals of the second kind

with moduli k., kg, and k¢, respectively

N
(k)
E(—»I— k ) S
ag’ "®

422
E(k—cy ICC> J
KAy KBy KC

1 ~
F((I/—A’ ]CA>

1
F(&;; kB) e
F( ke )
N ’YA_V
/LA \/ 6,1—11

68—1/ 'YB—V,
ks (V_’YB> <63:7

7
Yo (¥ 0
kc oc <’Yc - V')

L,L,

incomplete elliptic integrals of the second kind
with arguments 1/a,, 1/ap, and ac/ke, and
with moduli k,, kg, and k¢, respectively

complete elliptic integrals of the first kind with
moduli k4, kg, and k¢, respectively

incomplete elliptic integrals of the first kind
with arguments 1/a,, 1/az, and ac/ke, and
moduli kg4, k5, and k¢, respectively

undefined limits of integration

2 x
0 o

Yo %:l*ol
2y %oz
(v’ + £ — V&= G2 D)
YA T
y b (r+v") = V25 6—») G—F) (o +7)
B v —v 28
) (v 485+ w/ (& —1%) (B*—v"?)
Ye v’
R (' +8") + V& =) &' —v")
4 v+’
5 bo(r+) + V2EG— ) —E) Gt 7)
B V’ 4 —I‘ 2&]
5 (v + 82— VEE—) G —D)
C V+ y/
" Bly—yy)
Co
v Yot &
v Yo—bo
2 x—1

On integrating equation (27) with respect to 2, and using
the notation just presented.

HE ey (5 NG—n) =)
b= 27 B Ly (772+202) \/502_772—202 dn 34

The limits on the integral as previously noted differ in the
regions A, B, and C shown in figure 5; however, in each case
the limits are roots of one of the two radicals in the integrand.

It is desirable to express equation (34) in a different form
in order to obtain an expression for downwash in the plane
of the airfoil. Integrating by parts.

H6 o {6 o o1
By {[w P =) tan™! m__ﬂ_gg]

L v4-v'—29 1 £
A G S e
L Ao —r) T zeVEr—r—a0

dn} (35)

When lim a—g)— is considered, it can be shown that in all
200

three regions the contribution to the downwash made by
the doublets in the wake is given by the expression

Hp v+v —29
> P 21n/(v—n) (n—>")

VEP—nPdy

The solution of equation (36) in 1eg10ns A, B, and C will
be considered separately.
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Region A eliminates the linear term in the radical of the integrand,

Inregion A, Ly=vand L,=»". The substltutlon n-'“l—:_i‘it and equation (36) becomes
V—’}’A
HB |___&—v4 v’ ] [ ] Eo —7,4
w e G
"= 2ag N G a—v) 04 Jy L2Gutay o LT T )m &7
5 —v V_'YA
The identities are useful in the integration.
Ef =404 5
and The transformation w=VA —;V t is next introduced, and the
a4

(5A_V) (V"—'YA) + (5A-V') (V—’YA) =0

expression for downwash becomes

\/(V—‘YA)—(‘Z:—V') (62— 7A)< >l:f_1 2%(1_’_%:):(”1 +'yA )\/1 :f’;w f (1 +’YA >2V 1'1"0A2w2dw:|

Integrating the second term by parts and applying the fundamental properties of even and odd functions yields

d—yal U vt v _ | 1 dw
Owa= 2""50\/ (V_’YA> (ya—v") Ga—72) (5 - V) {f ! 27A [1 Lot 1—<E>2d,12w2:| \/(1—]042602) (1—o?) +
- 04
_ 04 ,\/1—16/126;2 ! +f1 542(1—]*’3,42) de )__
2 . N 2 . — 2 -
ala (1+'g’_;1 aAw> 1—w B 185 —v4a4’ 1 w? (’YAaA> VA=) (1—o?) 5

Hp s L (r—1a \/1~kA2 o |
275V (v—va) (va—7') (Ba—7a) <5A—V> { l:,maA 1—|——“a, w) :I

15,21 ]fAZ)i 2dw fv—{—v - dw ]
QJO ) (=) ik 20 2va (1 —ase?) VO—Fed) A=) (38)

The Jacobian transformation w=sn u reduces the integrals in equation (38) to standard elliptic forms (reference 10), and

s B rm = | T { = [ () P G, )it @

Region B The transformations ""731_:—5;t and w=i3 :’; ¢t where
In region B, Li=§ and L,=»" and equation (36) may ?
be written (ys—7") (fs—88) + (bo—75) 0z—»") =0
\ and
W= m [( ) £ (EoLv5) (v—85) + (Eo+-05) —78) =0
(v—l—u ) et 2] ) dn ) reduce equation (40) to
2 )" T V= GotmllE—m) (11—
(40)

v—0p ()& e v+ )ys(1 +asw) 2 ¥8° (1 tapw)? dw
v 2150[ v—7s \/(53—‘1’ (&~ 532)]f {[273(1 +azw) ! +5B a3w> 2 (1 -|-J a3w> wE 1 -|—'YB > :I\/(l—k,g?wz) (1—402)} ‘
{

0p

v—20gp _ _');.1; 1 Y v+
27"50 V_'YB \/(53_1") (&*— 05" ):I 1+ 1/(1 szwz) (1——w +f [(53 &) (1 28g >+
5
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8°0+) Ga—ys) _ — ) (65—75)* do l
2’)’353(; —a5"w?) (1 ’)’B aB ) (1—wd) (lc I B G«B ) (1 —k52e?) VO —kg’w?) (1—w?)

When the transformation w=sn u is'made, equation (41) is readily mtegrable (reference 10), and, after algebraic simpli-
fication, may be written

HE % (6a—v')? VO 7ET) o (k) @ Esas [LLBE (ai 7c3>—~EBF (l; k,;)] 1
p— L0 10 - ? _ __agbyp . ] ;
Vs 7l'£0 615’2(11 2— 1) (l—l—a’B) (1 kB)KB (a —kB) ((ZB‘—]CB) 1/(1,3 1) (G/B _‘kgz) (42)
Region C ‘ The deriviation of the expression for wy, is similar to
In region C, L,=% and L,=—%, and equation (36) is | that for wy, with the exception that in this case the substi-
written tution w=\/ %ﬂ t is made, and equation (43) may be written
c
L HB (% vy —2 SE—
Wwe=5 ¢ —i———\/é P—n’dny (43)
ameo J ~h 477\’ v—n) n—v) |
r__@ 2_ o 2 114 /1 .2 —ac 125 o ‘a¢ Eg (
Ww,== %, [(&F—v") (&*—v'P)] V1—k¢ {w/zkcz—acz)_ T—ac) [KCE (k—c; ]C(;) E.F (]f—c" /Cc>:I+ T—k2 Kc} (44)
SOLUTION IN THE XZ PLANE k 00(;0
Just as in the study of downwash in the zy plane, so also b V@—c =gz

in its study in the zz plane it is convenient to consider
separately the effects of the doublets distributed over the | f,
plan form and the wake. The subscript notation for wy
and wp is the same as before and again w is equal to ww-+ws.

Effect of doublets in the plan form.—In the zz plane two | %,
regions are indicated in figure 6. Region E lies between the

V@—2)’—pF

001,' 1

V@—c)*—p2

0 Boco

z\a . Region D

In region D, equation (26) is written

! o
. ZHBZI‘ f ’\/00 T —321/1 d
= l(a—a*— g7 P

Integrating with respect to 4, leads to

e . zHB (% ﬁ
Iz" q)PD— - ™ 0 ooxl (K4—E4) dzl
AN
- 45 o
) y Changing the variable of integration gives
FigUure 6.—Regions D and E in the zoz plane for a triangular wing. 2Hﬁ fh“ 90 Il:k — /00 x2-1- B222 (k4 — 6,2 I K4 > dk
’\/602x2+ B ZZ (k4 _002) *

Mach wedge from the trailing edge and the line of intersec-
tion of the two cones from the trailing-edge tips. Region D
connects this region to infinity. Again the limits of integra-
tion form the basis of the division into the two regions.
The symbols listed below will be used in the derivation

Taking the partial derivative of ®», with respect to z gives
the expression for the downwash as

of the expressions for downwash in the xz plane, induced by We = _HB {k‘* zﬂ *2 E40 . b _
the distribution of doublets over the plan form of the wing. L LR k40 V0’x* - 8°2% (ks> — 65%)
E,E,E, E;, complete elliptic integrals of the second kind [k, — /022 B2* (ke ) 1+
with moduli £y, ks, ks, and ks, respectively 0
K4,K5,K4O,K50 complete elliptic integrals of the first kind J‘ho 23k 40,7 (
with moduli ky, ks, ks, and ks, respectively [06%2%+ B72% (s, — 6") ki—o67 —-00
jA bt (Ki:—Ey) dla} (45)
‘ Ve—z)—F7 '
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Region E ]
In region E, a similar derivation yields the solution

Wp,= HB Bzzg K50 — E50>

E - —-’7[:— 002002](,' 5, 02 1 - k 5, 02 002

0o [ — V2%hes, 00"+ B722 (1 — s 6% |

kas 2002 _I__ BZZZ (1 k5 2002)

o’ Co
£ VB + 6%,
Ep, Eg complete elliptic integrals of the second kind

with moduli k£, and kg, respectively

incomplete elliptic mtegrals of the second kind
with arguments ¢’ and @’z and moduli %',
and &'z, respectively

E(a'p, k’u)}
E(@ s k')

1 K,—FE, 6 23520,2 K, Ky complete elliptic integrals of the first kind
b, Ks 1—k52002{ (2526, +Bzzz(1_k52002)]372_1}0”55“‘ with moduli k&, and kg, respectively
23k 46 F(a’p,k’p)| incomplete elliptic 1ntegrals of the first kind
f (K,—E,) i 2 00 {[00 LT g7 (k) _902)]3/2—1}‘1’54] Fla'g k'g) with arguments ¢’, and @’z and moduli %',
and k’y, respectively
(46)
BsCo
Effect of doublets in the wake.,—The limits of integration kp V@—cy)i—p2
again necessitate the division of the portion of the plane
behind the trailing-edge wave into two regions, D and E. | k'p 1—kp?
The following. list of symbols will be used in the derivation ]
of downwash in the zz plane, induced by the doublets | £, V@—co)’—p%*
distributed over the vortex wake: 6o
a V= —F2 ks ikt
Bz sn?(iap) —ap?
a'p Mﬂz sn?(log) —az’
T—¢
Region D
Boco
= Bz In region D, equation (27) becomes
B9y - -
® =_zHB2 U’ s fz—ﬁ\/y,T'Fzz’ dx, B (47)
¥p ™ |Jo \/902002_132?/1%1/1 ) [(x_zl)z_ﬁz(y )]

Integrating with respect to ;, and using the definition of ,

\/ [ 52211

boCo
5, _7H@—c) f 5
™

» i+ ) Ve — gy
_H@—cy 6’0’ f ! \/1‘":‘; de
- . 2___ Q2.2

T Bz (x—co)2—B%2 (1_*_0220% )x/l—k i
where
By
BoCo

Applying the Jacobian transformation w=sn u

H(x—cq) 6,%¢co® 1—sn’u
‘t’w =

K-D
DT Bz @—cy) 2 — %22 J;) 1+apkpisn’u

The expression for &y, as given in equation (48) is inte-
H (z—co) 6,%¢o2

— { KD'\/1+a/D2kD )( )
2 aBz(@—cy) —B%2* ko J1+a,E / \iap

[iF(a'D, ) waé ﬁzv LI

-du  (48)

grable (reference 10) and becomes

Py

B b, k' p) —iF(@ p, kD) IE}]%:_
D

V1- —"E';
[KDF(a’D, k) — EpF(a s, k') _KDEm',,,k'D)]}
(49)

H g i L2

Since it may be shown that

a 7 4 4 7 4 ’ 4
d2 (KpF(a'p,k'p) —EpF(a’p, k' p) —KpE(a p, k' p) ] =—

8 , 1—a’ k'
N/EZéz“l‘—eozE—:Z [(KD—ED)Q »—Kp (‘"‘%i"ﬁ

the expression for the downwash wy,, obtained by taking the
partial derivative of &y, with respect to z may be written

_HB{ Ep  Kpy(1—a'p)_ 1—d? o
wWD_Té_E'B - Da——,D D ;’;T%—D'DZ [KpFla' p, k' p)—
EDF(G,DIIC’D)_KDE(G/Dyk/D)]} Gl
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Region E

In region E a similar derivation gives

Wy HB{\/l_ a2k 2<KE EE—a’ 2KE>__

E T

VI= 3 RaF@'s, ¥ ) — EaF 5, ) — K E@ 5, ')

(51)

Conditions at the trailing edge.—The value of the vertical
induced velocity immediately ahead of and behind the
trailing-edge wave must, of course, be determinable directly
from equations (21) and (22), respectively, by setting
r=cyt2zB. If, however, the discussion is restricted to the
z=0 plane, a much simpler method exists for finding the
downwash at these points. The approach taken here follows
essentially that given by Lagerstrom in reference 4.

F RN Mach lines---._____ J
/ =
‘ ’
’ ’
K & L0 !
I 4 i
/ Vo ‘U g Vo
Vo / : —_—Jws
—— h w2 K

FI1GURE 7.—Sketch of velocity vectors of the air before reaching, on, and after leaving super-
sonie airfoil.

Let conditions just ahead of the trailing-edge wave be
denoted by the subscript 2 and conditions just behind the
wave by the subscript 3. Figure 7 shows a section of a
given wing in the plane y=constant. The Mach waves at
the leading and trailing edge make the angle py=arc sin
1/M, with the z=0 plane, and the wing is presumed to be
at angle of attack «. Assuming the trailing edge to be
normal to the free-stream direction, the variation in the x
component in velocity when passing through the trailing-
edge wave can be treated as a two-dimensional problem
with the condition imposed that #;=0 in the z=0 plane.

It is known that continuity of flow together with balance
of tangential momentum across the wave lead to the result
that the component of velocity tangential to the wave is
continuous. The tangential components of velocity, V,,
immediately ahead of and behind the wave are given,
respectively, by the expressions

(V)= (Vyo+us) cos pet+w, sin g
(Vt):i:Vo CcOos y0+w3 sin o

Equating these relations, it follows that

Wy =Wy U COb o

1)

From equation (23)
(AP) 4:00 aCO -
Euﬁ By°co? —

from which it follows that

wi= 1 (B ) (52)

Approximate values of downwash near center line of
wake.—The values of downwash which were obtained on the
2y and xz planes of the wake were exact solutions subjected
to no restrictions other than those originally imposed by the
use of the linearized equations of flow. On the center line
equations (31), (33), (39), and (44) reduce to the considerably
simpler expressions

H Io 01 K,
(wPA>1/=0:' Sf i-{—G dky (53)
zp—1
__..Ziﬁ IKI _ "_;’; Ka
(wre)a= [ f, Tegede — ), " g ]
(54)
H
(W) ymo=— B Eq (55)
HB Ec.—(1—Fk
O i
where
6,
(k) ymo= 22
r—x;
(k3)u=0 é()—ZT
)
(kA)u 0 .’ET)—-—I
1

x —
(kc) y=0" 000

Since the above expressions are relatively simple to com-
pute, an approximate method based on the generalized
Taylor’s expansion in the vicinity of the line y=2z=0 can
be formulated which reduces the tediousness of the calcula-
tions and gives a good indication of the variation in the
downwash function in a portion of the wake for points near
the center line. The next higher terms in the expansion
can be found without difficulty for the region bounded as
follows:

) —5b<y<jb

(b) Bothy and zlie within the Mach cones
from the trailing-edge tips
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The problem resolves itself into one of finding the first
nonvanishing coeflicients of y, and z, in the series

'lU/wO = A() ‘I“AIZQ + Bly()_l_ A2202 + 6'220:1/0 '+‘ Bzy02 + ..... (57)
where
By
Yo="5Hg

From equations (28) and (36) the expression for total down-
wash may be written
wn 1 Yo+ Yo— (10—1)2_‘7] Z
I S dn—
HB 2@—1) Ju—t — @Wo—m)*
1 (% vot0(E0=8) /6% (2o—8)°— (Yo—)” d
2 Jzp—1 %o—0 (To—€) (E—n)?

The coefficient B; in the expansion is given by (g—g)
0,

y0=0.
Carrying out the differentiation, with proper regard for the
singularity in the first integral, it follows that B,=0.
Similarly, it can be shown that C,=0, while the coefficient

Q*w I ] .
RYRY given by the expression
. 2—ka
Br= e <2KA — 2EA>

1 Mo 14k
?Eje;f’a};?ﬁf (Fev+60) LEI k)

where the variables have previously been defined.
In order to calculate the variation with z, it is necessary

t luate A= o' here
o evalua = 5z, z0=0W ¢

- K, 12 ] dkl (58

b0

er_ _..__1/1# L T c0> _
HB—Bf 777777 , e tan oy (x—co)"’ B

be7y
% E V7 —62y1
], L) T e

The double integral contributes nothing to the coeflicient,
and the remaining portion of the expression can be evaluated,
without integrating by differentiating twice and using
Cauchy’s integral theorem

dy1 -

2]3/2 diy

i (y1>dy1 _ < >
y—2)? OY1/ =1z
Thus
_ 1 =z
A= —Eoyo |*;’ (59)

The coefficient 4, will not be evaluated since the first
higher order term in z has been found. Thus, to the first

order in ¥, and z;, the downwash function w/w, is

w___ 2 A Kl
%*m(’f“f Tt dk) Eil (©0
DISCUSSION

The variable w/w, (i. e., (wp+ww)/w,) represents the total

‘downwash behind the wing divided by the induced vertical

velocity on the wing itself. If eis the downwash angle and o
the angle of attack of the wing, then w/wy=de¢/da.

.9
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(a) 6o=0.4.
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(c) 80=0.8.

FIGURE 8.—Variation of the downwash in the zoy¢ plane downstream from the trailing edge
for various span stations.

In figure 8, the downwash in the xy plane is presented for
various 6y’s and spanwise stations and for all values of z
from the trailing edge to a point where the asymptotic value
is closely approached. The region covered in the y direction
extends from the x axis out to about (1/2) 6, where in the
coordinate system used z, equals 2/cy, ¥, cquals By/c,, and
6, is the semispan of the wing. Figure 8 can be used to
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assess the accuracy of the approximation, given by equation
(60), that the value of downwash is independent of y in
the neighborhood of the 2 axis. Within about a half span
from the trailing edge of the wing no general statement can
be made as to the variation of w/w, in the 3 direction. For
distances greater than a half span from the trailing edge,
however, the variation is quite uniform and w/w, deviates

. 1
from its value at =0 only slightly for -% 9°<y°<'2—' bo-

8 X0z 00
2217 —
1.6 T T
T 14|l At
6 ==
=pezzto--1/.0
—
w _—
“wg”
2_—£xocf linearized theory
- ----Approximote theory
0 \
o)

a v 2 .3 4 ) .6
Yo

FIGURE 9.—Variation of downwash across the span at various stations downstream of wing
trailing edge for 60=0.6.

For 6,=0.6, a more extensive study was made of the
variation of downwash with y. Figure 9 represents values
of wjw, across the span for several positions behind the
trailing edge. Immediately behind the trailing edge the
value of w/w, falls and approaches — « as the wing tip is
approached. However, at 0.4 of a root chord behind the
trailing edge (zo=1.4), w/w, rises and reaches the value of
0.7 as the wing tip is reached. At 2,=2.2, the spanwise
variation of w/w, is essentially constant. Although equa-
tion (60) is applicable only for region A, it is seen from figure
9 that the approximation that the downwash does not vary
with y is useful out to about a third of a semispan for all
values of z.

The variation of downwash in the xz plane is presented in
figure 10. The curves represent values of w/w, from the
trailing-edge wave downstream to a point where the asymp-
totic value is closely approached. In the immediate vicinity
of the Mach cones from the trailing-edge tips (i. e., zo~1--6)
the curves were not continued because w/w, becomes very
large and approaches negative infinity as the Mach cone is
approached. Since this effect results from infinitely large
values of the radial component of induced velocity at the
Mach cone, it does not exist in the z,=0 plane. Such a
behavior is consistent with the mathematical idealization of
infinite pressures at the leading edge and of an abrupt fall
of load at the trailing edge. However, in an actual flow field
where these phenomena do not exist the flow will experience
a milder change in passing across the Mach cone. Even
in the theoretical results presented in this report the growth
of the vertical induced velocity in the neighborhood of the
Mach cone is logarithmic, and the interval in which w/w, is
appreciably distorted from the general trend is very small.
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F1GURE 10.—Variation of the downwash in the rez0 plane downstream from the trailing edge.

Some further insight into the behavior of w in the vicinity
of the Mach cone from the trailing-edge tips can be obtained
by studying a single vortex which extends infinitely far ahead
of the origin at an oblique angle to the flow and infinitely
far behind the origin parallel to the flow (fig. 11). The half
of the vortex which extends ahead makes an angle with the
free-stream direction less than the Mach angle so that the

z

2=- Position of
Mach cone of
bent vortex
be-=Center line <3
of unbent AN
vortex e

v

~*--Bent vortex " Unbent

N .

RO Unbent vortex
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»nT
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’

.

Section B-8 Section C-C

FiGURE 11.—Induced vertical velocity field for bent and unbend supersenic oblique vortex
making an angle with the free stream less than the- Mach angle.
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component of free-stream velocity normal to it will be sub-
sonic. Thus, outside of the Mach cone originating at the
sudden bend in the vortex at the origin, the flow will be ex-
actly like that of a linearized compressible subsonic vortex
with a superimposed uniform velocity parallel to the line of
the vortex. Inside the Mach cone, however, the flow is
completely changed. Figure 11 gives an indication of the
change. The term “bent’” vortex refers to the vortex along
the x axis which is turned suddenly at the origin from the
angle it had maintained from — «. The term ‘“‘unbent”
vortex on the other hand refers to a vortex which maintains
the same angle from — © to -+ . The unbent vortex is
included in figure 11 for comparative purposes. The figure
shows that on the z=0 plane (section AA) the downwash is
finite and continuous in passing through the Mach cone, but
that above the z=0 plane (section BB) the value of w be-
comes infinite as the cone surface is approached from the
inside. This behavior at the Mach cone may aid in inter-
preting the discontinuity in the results for the complete
wing as given in figure 10.

Exact linearized theory
————Approximate theory

3l@ N (L) e

1
o 2 4 0 2 4 o .2 .4
. Zo/6s, Traction of semispan

(a) 6y=0.4. (b} G=0.6. {c) 8o=0.8.

FIGURE 12.—Variation of downwash in the zgzo plane at various positions on zy axis.

Approximate values of downwash in the 2z plane computed
from equation (60) are compared in figure 12 with the results
from the exact solution. The approximation that to a first
order the variation of w/w, with z/6, is linear with a slope
—1/E, is seen to be useful up to about a third of a semispan.

Values of w/w, were not computed for points off the zz
and xy planes; however, the methods given in the report are
general and directly applicable. The results already given
would indicate that the approximate solution is valid in the
vicinity of (1/3)6, about the z axis. This assumption can be
checked for large distances behind the trailing edge by con-
sidering the flow field as z, approaches «. Thus figure 13
shows a comparison between the exact value of w/jw, derived
by means of the linearized equation and the approximate
method based upon the use of a generalized Taylor’s expan-
sion. The agreement is seen to be satisfactory out to about
one-third of a semispan either vertically or horizontally from
the z axis.

Throughout the analysis it was obvious that the calcula-
tion of the downwash due to the doublets on the wake wy
was much simpler to perform than the calculation of the
downwash due to the doublets on the plan form ws. For
example, the formulas for the downwash on the z axis were

Exact linegrized theory
——— Approximate theory

zo/80
10 g
G9tH———m=mmm o —— —./
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a A 2 3
Yo/6o

FIGURE 13.—Downwash at a large distance behind triangular wing.

given in terms of the elliptic integrals £ and K; for wy the
evaluation of £ and K was sufficient but for w, a numerical
integration involving E and K was necessary. Therefore,
in caleulating the downwash for wings with plan forms other

1.0 00=.

0 T 1 1 1

i
L0 4 1.8 22 2.6
xp, distance in chords 20

FIGURE 14.—Variation of the part of downwash on z axis induced by doublets in wake with
distance downstream in chord lengths, ro=z/co. Triangular wing.

.a 14 .8 2.2 2.'8 3..0
xg, distance in chords

FIGURE 15.—Variation of the part of downwash on z axis induced by doublets on the plan
form with distance downstream in chord lengths, zo=z/co. Triangular wing.
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than triangular, it is useful to know in what regions the con-
tribution of wp to w is small. For this purpose a comparison
of wy with wp along the = axis of the triangular wing is shown
in figures 14 and 15. Figure 14 gives the value wy /wy, figure
15 the value of wpfw,, and figure 16 the total downwash
(ww+wp) [wy or just wjw,. An inspection of figure 15 shows

S B
For wing swept 45
8 B M
2 .2 lpe
4 4 108
.6 6 [.16
.8 8 L28
1.0 = === Asymptotic values
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8 // L
w .4 LT |
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.8 —
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L0 L2 14 1.6 L8 20 22 24 26

xo, Oistance in chords

FIGURE 16.—Variation of the total downwash on z axis behind a triangular wing swept be-
hind Mach cone with distance downstream in chord lengths, zo=2z/co.

that the effect of the doublets on the plan form dies out rap-
idly behind the point xe=1-}-6,, that is behind the point of

[y
-

10,
* R N
w \ \\\:\ ;;I_
.6 ]
\\:\\ 1.8
f———s
4 =%
Lo i 12 L3
M,

FIGURE 17.—Variation of downwash on z axis with Mach number at various positions down,
stream of trailing edge. ¢ =45°.

intersection of the & axis with the Mach cone from the
trailing-edge tip. '

An indication of the variation of downwash with Mach
number is given in figure 17. This figure shows values of
wjw, on the z axis plotted as a function of A4, for various
values of x,. The value of the sweepback angle is 45°, and
the Mach number range covered could be extended to 1.4
and the leading edge would remain subsonic.

AMES AERONAUTICAL LLABORATORY,
NartioNaL Apvisory COMMITTEE FOR AERONAUTICS,
MorrerT Fieip, Cavir., Nov. 9, 1948.




APPENDIX A

EVALUATION OF SPECIAL INTEGRALS
Integral I,

Since there are no singularities in I;, the finite part sign
may be discarded. The linear term in the radical is elimi-
nated by the transformation =(v;48&%)/(1+¢) and the
integral becomes

H—y
I = W —v) (i—w) (O V1I=[G—w)/ W —y) ]’ d
! Gr—ry)r?® H—m [1—(81/71) 277 )
& —p

(A1)

The expressions for §; and v; may be combined to give the
useful identities

522’)’151
and

(71“‘#) (51'—

#') = (#' —"’Yl) (51—M)

Noting that the integrand is an even function, equation
(A1) may be reduced to the canonical form

R T (e e st e

by the substitution

-
=5_1, Koy
e ¢
By the introduction of the Jacobian elliptic functions

(reference 10) in the transformation w=sn u, the integration
may be completed, and

I, 2\/(# —_’Yl)fy(;;fyl ) (# —’Yl>f ed? u du=
Py

where ¢cd u=cn ujdn u.

(A3)

Integral I,

As the first step in reducing I, to canonical form the integral
is written

E+Ewutu") +pn’ dn

[ E—E(utu) fun’
IZ‘“# [1+ 2E—9

In this case the following identities may be obtained
directly from the definitions of v, and 8,:

(’Yz—li) (5—52) -+ (’Yz—f) (#_52) =0
and

28(n+¢)

w) (E—uw) —4’

v EF) W —n) vV E—n) (—u) Ay

(E+2) (ﬂ"‘az) + (' —v) £+ 82) =0

Yot Ool _52_#
T and w=o t are made,

and after algebraic simplifications equation (A4) becomes

The transformations p=

u—u (W =r) wt+H) W +H (r—
L= I-L —’)’2) 52 ,U)\/ % (52 ’) (52+f) (29 (52—

(ut8 (W' +8 L+ky0

w) (2—§) (28) ]U V(l—kwa) 1—w)]_

C2%(etH -1 (1—k22w2)3’2~/1—w2

By applying the fundamental properties of even and odd
functions, the first two integrals in equation (A5) can readily
be integrated. The procedure for handling the finite part
sign over the third integral will be considered in detail.
Since,

k22
dw

’ 14w
Jo G viskeas T

dw-+

((—w E— #’) —u\ | * 1+o
2¢(y.— ( + >(f1 (1— o)1=k dw} (A5)
and if
-

f(w):(1+w)3/2\/ltk;%§

and
1
T =G e

then by equation (6)

1 dw (1
2]; (1—w2)3/2x/1—k22w2:2 _J; (1—w2)3/2\/1——]c22w2—

dw

1 dw _ 1 o
J(; B2(1—w)324/1—ky? 2(1—k?) |
1

. ‘
2 _ﬁ (1——w2)3/2\/1—k22w2_1i£ni V2(1—w) A=k

-
2 f d?_,l’ —lim
| Jo en?u

2 { [Kz-}-hm

w—1 (1 —k22) ‘\/l -

2 (K1)
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The solution of equation (A5) becomes, after algebraic
simplification

- ,21? \/(s—' ) k(f—l—n’). E}

Integral I, .

The procedure for integrating I, is similar to that pre-
viously discussed in connection with f;. In this case, the

. . . _— 8
integral is canonicalized by the substitution w=\/ ‘ft and
3

the solution may be written

Ia=§15\/2—£(—ﬂk_—#) (Ky—E) (A7)
3
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