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SUMMARY

.4 thwivtica[ inrestigaticm of the relocity pro$k for larninar
miring of a high-wlocdy stream with. a region qf j%id at rest
hag been made assuming that the Prandtl number is unity.
.4 method which irtrolres only quadrature is pre.wntec[ for
cakulat ing the relocityproy$le in the mixing layer for an arbitrary
.ralue @ the free-s-tream Mach number.

Detailed relocity projiles hare been calculated for free-stream
Mach numbers- of 0.1, 2, 3, and 5. For each Mach number,
relocity proji[e.s are presented for both. a linear and a (l.76-
pwer rariation of riscosit y with absolute temperature. 27-M
cakulations for a linear rariation are much ~i”mplerthan those
for a 0.76-pouw raria~ion. It i.~ shown that by selecting the
cons+ant qf proport ionaiity in the linear approm.mation sue-h
that ii! gire.s the correct calue for the ciwosity in. the kigh-
temperature part oj” the mixing layer, the resulting relo.c-ity
pro$les are in exce[lenf agreement with those calculated by a
0.76-pmcer rariation.

- y:~rxjfff <.:-.-. ., .: L , .. -.;...-L....!;:.”i. q-;-.r.~:

““INTR&iGiiOBi ‘ : ;!::.” :

The -ieIocity prcsfl.e=$sr ~wabqlen~ rnkirg at. conatant
pressure of an incompi21ssible:.s~reri~With a dead-air region
has been calculated by se-reral irwestigators, principality
TOllniien (refeience 1). These calculations agree -wellwith
the a-railable e.sperimental data, although the conventiontd
assumptions regarclirg the mixing length of a turbulent
flow have since been shown by experiments to be incorrect
(reference 2). The many clif%cultiesencountered in making
precise t.urbulent-titig calculations are, of coume, a.
consequence of the extremely complicated mechanism
go~eriq all turbulent flow. In contradistinction to the
case of turbulent misirg. the mechanism irrroI~edin la.minar
misi~~ is relati~ely simple, and the mathematical relation
between stresses and ~elocity gmclients for laminar flow
is TWUknmm. The velocity profiles for laminar mix@,
home-rer, apptirently have not as ye~ been cdcula ted even
for the case of incompressible flow. It. is the purpose of the
present paper to calculate the ~elocity profiles for Iamim.r
mixing (starti~~ with zero bcmncku-y-layer thickness) of
an air stream of arbitrary temperature with a. deacl-air
region also of arbitrary tempera.ture. In cases w-here a
la.minar boundary layer of appreciable thickness e-sists at
the pcsint where mi.sing begins, the results given herein are
not clirectly applicable in the initial part of the mixing
region. ,J?or such cases, it is necessary to make some
s.uppl~mept~f~ ~pprosimation in orcler to apply the results.

Since- ‘the’ priit ic~ applications of knninar-titig phe-.! ::___=::;...::.
nomenon usuall”j in~oh-e the flow of a gas: the present

amdysis inclucles the eflect.s of corupressibiIity. Examples
of typical flows wherein laminar raising occurs can be found
in the flow of smaU-scale jet pumps, in the flow behind the
intersection of shock waves of unequal strength, and in
the flow immediately behincl the base of a bocly which has
a kuninar bounclary layer.~

SYMBOLS AND XOTATIONS

conetant of proportionality between viscosity and
temperature

specific heat at constant pressure
coefficient of heat conduction
characteristic length
Mach number
st.at:icpressure

()
Prandtl number c;

Sutherknck constant, approximately 2160 1?for air
absolute temperature
flee-stream ~elocity
~elocity components in x, y directions, respectively
Cartesian coordinates
thickness of miting layer, taken between points where

the velocity is 0.01 and 0.99 of the free-stream
velocity

e-sponent of viscosity -rariation with temperature
mass density
coefllcient of -riscosity
kinematic coefficient of tiscosity
stream function
dimensionless inclependent variable

SUBSCRIPTS AXD SUPERSCRIPTS

dimensionless -rariablesas defined in equation (14)
free-stream conclit.ions
stagnation conclit.ionsof the free stream
conditions in the dead-air region

BASIC EQUATIONS AND ASSUMPTIONS

BASIC EQUATIOXS

A schematic ikst,ration of the flow under consideration is
shown in figure 1. In order to make the laminar-mitig
process amenable to calculation, the usual assumptions are
macle that the layer affected by viscosity is thm and has zero

LThe present analysis was onderr alien x part of an in’wAgM ion of this M ter problem,
and orignally appeared as Appendix B of a thesis “Base F’resanreat Supersonic Velocities,”
submit ted to the Caliform”aInst itme of Teelm.olagy, June 194S. The rwdts of some supple-
mentary cornputatf. m not given in the thesis haw been iuided for .w!ie of completeness ~
the present report.
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pressure gradient. Under these conditions the formal pro-
cedure for estimating the order of magnitude of the various
terms in the complete hTavier-Stokes equations for viscous”
compressible flow can be carried through in precisely the
same manner as is done in the classical (Prandtl) treatment of
Iaminar boundary-layer flows. In so doing, the dynamic
equation for the z direction reduces to the fa.milia.rboundary-
layer momentum equation

(1)

while the dynamic equakion for the y direction reduces to
zero on both sides. In passing from the Navier-13tokesequa-
tion to (1) it is to be noted that the usual boundary-layer
assumption 6/x< <1 is violated in the immediate vicinity
of point O (fig. 1) just as in the case of boundary-)ayer flow
over a plate.

By employing the same considerations on order of magni~
tudes as were used for the complete hTavier-Stokesequations,
the complete differential equation representing the balance
of energy in viscous compressible flo~+reduces to

which is, of course, the usual energy equation for la.minar
boundary-layer flow. In addition to equations (1) and (2),
the equation expressing conservation of mass is needed:

(3)

For a given gas the variation of Kand c, with temperature is
known; hence, the foregoing system of three partial differen-

. tial equations is completed by the addition of the equation of
state for a.region of constant pressure

AS9UMPTIOIW

In order to solve the above system of equations, the follow-
ing assumptions are made:

1. cr= constant
2. Pr=wdk= 1-. .

3.
()

-& =0 $ “, where C is a constant depending on T
co

and T.

The second of these assumptions if often made in calculating
boundary-layer flows when only the velocity profile is desired
and not the thermal characteristics. The difference between
the boundary-layer velocity distributions for Pr= 1 and
R-=0.73 is small, as is clearly shown by the numerical results
of Emmons and Brainerd (reference 3). Since the tig-
layer and boundary-layer flows difler o.rdy in the boundary
conditions and not in the differential equations, the effect of
assumption 2 may be expected to be similar in the two types
of viscous flow. At moderate supersonic Mach numbers, the
use of Pr= 1 for air does not introduce more than 1- or

2-percent error in the boundary-layer velocity profile; and
hence, for a.11practical purposes, the mixii-layer velocity
distribution calculations for Pr= 1 should be sufficiently
accurate for air.

Assumption 3 needs some explanation since the introduc-
tion of a constant C differing from unity in the approximate
re~ation between viscosity and temperature apparently has
not been used in previous work. Usually C is talien as unity,
and in such cases the approximation p/I.L-= (T/T- )@ gives
reliable results for a fixed M,provided the free-stream tem-
perature is restricted to a certain range. By introducing the
factor C, the approximating equation can be made to give
the same value as a more exact equation ~t any desired

u. u

FIGUEEL-Schematic drawing of the flow.

temperature in the mixing layer regardless of T= or w
Assuming that Sutherland’s equation

.
(5)

represents the true variation of viscosity with temperature,
then the approximate equation can be. made exact at my
given temperature T by means of the relation

C(+)=(+)’”* (6)

In particular, if the approxhmting equation is linear in
temperature (u= 1, thereby greatly simplifying thaboun&u-y-
layer equations) and the viscosity is matched at the tem-
perature T~, then the above equation gives

(7)

as the value of the constant C. By selecting 0 in this man-
ner, rather than taking it as unity, a linear variation of
viscosity with temperature then becomes an accurato ap-
proximation in the inner part of the viscous layer, ralher
than in the outer part where the viscous stresses are lCSS
important.

SOLUTION TO BASIC EQUATIONS

As was first pointed out by Prandtl in reference 4, and
later used to advantage by Busemann and Crocco (refer-
ences 5 and 6, respectively), the consequence of the assump-
tion Pr= 1 when applied to boundary-layer flow is that the

,
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temperature becomes a function only of the velocity. Hence

C,fr=j(’u) (8)

By substituting this relation into equation (2) and using
equation (1) in conjunction with the assumption l+= 1, it
follows that the energy equation is automatically satisfied
if the function satisfies the ordinary diflerent.ia.lequation

dy
-f@+l=o (9)

Integrating this equation, using the bounclary conditions,

T= T. for u= U.
(lo)

T=Td for u=O
gkes

[ 1f(u) =cpT=cpT.–;+~ c,(T. –T,} +? (11)

as the relationship between velocity and temperature.
Since the temperature determines the density, equation (11)
ako provides a means for calculating the density as a func-
tion of the velocity.

Following the method fist given for incompressible flow
by von Mises (reference 7) and later used for compressible
flow by von K5rm5m and Tsien (reference 8), a transforma-
tion is macle to a new set of independent variables (x, #),
where # is the stream function. By using # as one of the
independent variables, the continuity equation (3) is iden-
tically satisfied, and t-hevelocity components are given by

(12)

Since the requirements of conservation of energ~ are ful-
filled by equation (11), and conservation of mass by equa-
tion (12), the only equation now remaining to be satisfied
is the momentum equation (1). If a transformatflon were
made to a completely new set of independent wriables
(.s,#), the transformation formula would be

Setting .s=x,

so t-hatthe transformation formulas are2

~The variables held constant in a differentiation proce.w are explicitly indicated in those
~ses where Sdiguity could result if the subsaript notation were not med.

WJlriwl’tbsslkw.bi k Lul.u

It folIows that

and

“(%).=”%3=
Hence the momentum equation (1) in the (z, #) system
becomes

(13)

This can be put in dimensiordess form by introducing the
variables

**=%
u.

~*=;
.

(14)

Except for the parameter C appearing in the definition of X*
and K*, these variables are the same as those used by Kfmntm
and Tsien (reference 8). Remembering that TO*, the
free-stream tots.1-temperatureratio, is given by

TO* TO_l+y–l ~ ,
– T. ~h=

then the relation (equation (11) ) between temperature and
velocity can be mciktenas

7—1 ~m~*z+ (TO*—T~*)u*T*= T#=—~ (15)

The momentum equation (13) becomes, using p*T*= 1,

(16)

This is the basic equation -which must be solved. The
boundary conditions of the problem are such that no bound-
ary la.yer exists at the point -where mixing first begins.
Under these conditions the velocity profiles will be similar
at all points downstream of the origin, and hence the velocity
U* will be a function only of some dimensionless variable t.
This dimensionless variable must involve both 1* and 3*,
and must be zero at the origin of coordinates since the mixing-
Iayer thickness is also zero at the origin. Therefore, let

~=$*ux*h

where a and 6 are pure numbers which must be determined
by the condition that both sides of equation (16) for u* are
functions ority of the single variable ~. Setting

g(r) =U*T*u-l ‘ (17)
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then the right side of equation (16) can be written as

from which it is obvious that in order for the right side of
equation (16) to be a function only of f, it is necessary that
a=l. With u*=u*({) and a= 1, the partial differential
equation (16) reduces to the ordinary differential equation

ConsequentIy, in order for the entire equation to be a func=

tion only of t, it is also necessary that b= — ~, hence

(18)

and the ordinary differential equation for the velocity dis-
tribution now reduces to

(19)

Equation (19) is the same differential equation that was
obtained for boundary-layer, flow in reference 8. It is a non-
linear diflerential equation since g depends upon the velocity
u*. This equation, however, can easily be converted into
an integral equation which can be solved by the method of
successive approximations. The conversion is made by
temporarily assuming that g is a known function of f (instead
of u*) and formally applying the standard methods for
solving first-order linear differential equations. The result is

(20)

where

f
- fid~

F=e 0 2’ (21)

The boundary conditions are

Letting u,* be the value of u*. at {=0, equation (20) can be
written as

J

,
U*=C1 ,r : dl+uO* (23)

The constant C, must satisfy two requirements

(24)

Equation (23) is an integra~equation for u*, since both F
and g are functions of u*. By simply estimating a reasonalde

solution for u* as a function of ~, a first approximation lU* to
the true solution can be calculated from

The zero-order approximations OFand ~ can be calculated
directly from Ou* by using equations (15), (17), and (21),
If this process is repeated untill a given approximation is tho
same as the preceding one (to the degree of accuracy desired),
and equation (24) is simultaneously satisfied, then the solu-
tion to the problem is obtained. The iteration process turns
out to b.e rapdily convergent, requiring two or three itera-
tions to obtain the function u*(~) accurate to within 1 per-
cent, and about four or five iterations to obtain u*(f) accu-
rate to within a few tenths of 1 percent.

In ordei to change the function u*(f) bdi to the physical
coordinates (x, y) a simple quadrature is nccessa,ry. By
definition of the stream function,

or

Hence, with z held constant, integration gives

(25)

4““-from which u/U. as a function of y ~ can be detwmined.

It is to be noted that no graphical or numerical cliffcrcntia-
tions are needed at any point in the alJove itemt.ion process,
only qu!adraturesare required.

As is evident from equation (16), the assumption K*= CT*,
that is, w= 1, makes the momentum equation (16) inclcpcnd-
ent of temperature, and hence density. Consequently, with
u= 1, the solution to equation (16) in (x)#) coordinates is
independent of Mach number. For zero Mach number,
T*=l, C=l, and

Using this rehtion the solution in physical (xjy) coordinates
for a linear variation of viscosity with temperature is obtained
from the solution for zero Mach number by substituting
equation (15) into equation (25). This gives

where the integral in the second term on the righ~ side is
carried out for ~*(~) corresponding to 111~= O.

.

1
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RESULTS

hTumericalcalculations of the veloc.ity distribution ha~e
been made for the folIowing cases:

1. p*= T*”-~e;Mm=O, 1,2,3,and 5

2.p*=CT*; M-=0, 1, 2, 3,and 5

The wmious solutions for case 2 axe obtained directly
(equation (26)) from the solution for J1. =0 without. cmry-
ing out the laborious iteration process that is necessary &o
obtain solutions for case 1. All numerical results in physical
coordinates (yl- as independent variable) ha~-ebeen
calcuhted for the case Td= To. If the cleac~-airtempera-
ture is radically different from the free-stream stagnation
temperature, the proper -relocity-clistribution curves can be
obtained by carrying out the integration indicated in equa-
tion (25), since the function u*(f) in (x,#) coordinates is
independent of the thermal boundary conditions of the
problem.

Curves of u“(r) are shown in figure 2 for -rarious Mach
numbers. The corresponding curves in the physical plane
are show-nin figure 3 for the case ,u*= T*.is, and in figure 4
for the case jP= CT*. In the kithertwo figures the familiar
Blasius curve for the incompressible laminar boundary-layer
flow is shown for purposes of comparison. The constant. C
that is used in figure 4 is determined by matching the -riscos-
it:y coefficient at the tempera.ture Td== TO* aecord&~ to
equation (T).

The particu~arcurves shown in figure 4 appIy for T. =400°
IL Cumes for any other temperature level T= clifFeronly
in the constant factor C.

C031PRESSIBLE FLUID 235

CONCLUDING REMARKS

A comparison is shown in figure 5 which ihstmtes the
good agreement between -relocity d~t.ributions calculated
for the two approximations, N*= T*O-:sand V*= CT*. At

a Mach number of 2 or less, the curves for a linear variation
of viscosity with temperature virtually coincide with t-he
curves for a 0.76-power variation. For general use the
linear approximation is recommendecl since it gi~es results
which are pra.ct.icallyas accurate as the former, -yet.does not
require a laborious iteration solution to be worked out for
each Jlach number.

In general the laminar-tixing layer is several t:imes
thicker than the laminar bouudary layer, as is illustrated in
figures 3 and 4 where, for purposes of campmison, the B]asius
profile is also shown. The rate of growth of rnixing-la-yer
thickness -withincreasing Mach number is somewhat larger
than the corresponding rate of growth for a laminar boundary
layer. The curves in figure 3 inclicate a -raluetof roughly

(5Jf
—=l+o.113L~
aJf=o

for rate of grovrth of the mixing layer;
pending value for a laminar boundary
9, for example) is a.ppro.xirnately

*O= 1+0.09M=Z

This difference is to be expected since a
low-density air esists in a mising layer
layer.

vihereas the corres-
layer (see reference

larger percentage of
than in a boundary

f .&

FIGUEE2.—Velocity distilbution Cnthe @,$) coordinate s@em.
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The foregoing statements, which indicate an increase in
mixing-layer thiclmess with increasing Mach number, are
based on the assumption that.the Reynolds number (Z~-Z/V-)
is held constant -whilethe Mach number is varied. In most
experimental appirat,us the Iteynolds number changes con-
siderably with a variation in Mach number. Consequently,
depending upon the particular e.sperimenta.lmet-hod em-
ployed, the observed rate of mixing in the x direction may
be either increased or decreased if the Mach number is
increased.

AXES AEROX~UTIC~L LABORATORY,

N7.LTION.4L ADVISORY Co JI=TTEE FOR AERO XAUTICS,

MOFFETT FIELD, G~LIF., &J~. 5, 1949.
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