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SUMMARY

A theoretical inrestigation of the velocity profiles for laminar
miring of a high-relocity stream with a region of fluid at rest
has been made assuming that the Prandtl number 1is unity.
A method which inrolves only quadratures is presented for
caleulating the velocity profile in the mixing layer for an arbitrary
ralue of the free-stream Nlach number.

Detailed relocity profiles have been calculated for free-stream
Mach numbers of 0, 1, 2, 8, and 5. For each Mack number,
velocity profiles are presented for both a linear and a 0.76-
power rariation of riscosity with absolufe temperature. The
calculations for a linear rariation are much simpler than those
Jor a 0.76-power variation. It is shown that by selecting the
constant of proportionality in the linear approrimation such
that it gires the correct value for the viscosity in the high-
temperature part of the miring layer, the resulting rvelocity
profiles are in excellent agreement with those calculated by a
0.76-power variation. )
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INTRODUGTION : .

.The velocity profile for ',tm;bqleng mixing at constant
pressure of an incompréssible:stréafl with a dead-air region
has been caleulated by several investigators, principally
Tollmieri (refetence 1). These calculations agree well with
the available experimental data, although the conventional
assumptions regarding the mixing length of a turbulent
flow have since been shown by experiments to be incorrect
(reference 2). The many difficulties encountered in making
precise turbulent-mixing caleulations are, of course, @
consequence of the extremely complicated mechanism
govering all turbulent flows. In contradistinction to the
case of turbulent mixing. the mechanism involved in laminar
mixing is relatively simple, and the mathematical relation
between stresses and velocity gradients for laminar flow
is well knowp. The velocity profiles for laminar mixing,
however, apparently have not as vet been calculated even
for the case of incompressible flow. Ii is the purpose of the
present paper to calculate the velocity profiles for laminar
mixing (starting with zero boundary-layer thickness) of
an air streem of arbitrary temperature with a dead-air
region also of arbitrary temperature. In cases where a
laminar boundary layer of appreciable thickness exists at
the point where mixing begins, the results given herein are
not directly applicable in the initial part of the mixing
region. For such cases, it is necessary to make some
eupplementary approximation in order to apply the resulis.
_.Since the practical applications of laminar-mixing phe-
nomenen usually involve the flow of a gas, the present
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analysis includes the effects of compressibility. Examples
of typical flows wherein laminar mixing occurs can be found
in the flow of small-scale jet pumps, in the flow behind the
intersection of shock waves of unequal strength, and in
the flow immediately behind the base of a body which has
a laminar boundery layer.!

SYMBOLS AND NOTATIONS

C constant of proportionality between viscosity and
temperature

Cp specific heat at constant pressure

k coefficient of heat conduction

L characteristic length
AL Mach number
P static pressure

Pr Prandtl number (CLL“

S Sutherlands constant, approximately 216° F for air

T absolute temperature

U.  free-stream velocity

u, ¢  velocity components in », y directions, respectively

z, 4 Cartesian coordinates

) thickness of mi_ting layer, taken between points where
the velocity is 0.01 and (.99 of the free-stream
velocity

exponent of viscosity variation with temperature

mass density

coefficient of viscosity

kinematic coefficient of viscosity

stream function

dimensionless independent variable
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SUBSCRIPTS AND SUPERSCRIPTS

*

dimensionless variables as defined in equation (14)
@ free-stream conditions

stagnation conditions of the free stream
conditions in the dead-air region

e

BASIC EQUATIONS AND ASSUMPTIONS

BASIC EQUATIONS

A schematie illustration of the flow under consideration is . ..

shown in figure 1. In order to make the laminar-mixing
process amenable to calculation, the usual assumptions are
made that the layer affected by wiscosity is thin and has zero

! The present analysis was andertaken as part of an investigation of this latter problem,
and originally appeared as Appendix B of a thesis “Base Pressure at Supersonic Velocities,”
submitted to the California Institute of Technology, June 1948. The results of some supptle-
mentary computath .ns not given in the thesis have been added for sake of completemz~s in
the present report.
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pressure gradient. Under these conditions the formal pro-
cedure for estimating the order of magnitude of the various

terms in the complete Navier-Stokes equations for viscous®

compressible flow can be carried through in precisely the
same manner as is done in the classical (Prandtl) treatment of
laminar boundary-layer flows. In so doing, the dynamic
equation for the « direction reduces to the familiar boundary-
layer momentum equation

)

pu b$+p ay ay M by) oy
while the dynamic equation for the y direction reduces to
zero on both sides. In passing from the Navier-Stokes equa-
tion to (1) it is to be noted that the usual boundary-layer
assumption 8/x< <1 is violated in the immediate vicinity
of point 0 (fig. 1} just as in the case of boundary-layer flow
over a plate.

By employing the same considerations on order of magni-
tudes as were used for the complete Navier-Stokes equations,
the complete differential equation representing the balance
of energy in viscous compressible flow reduces to

a<cm+ a(c,,T) a(k )+( @)

which is, of course, the usual energy equation for laminar
boundary-layer flow. In addition to equations (1) and (2},
the equation expressing conservation of mass is needed:

0 (fm) +a (p?)) —0 @)

For a given gas the variation of x and ¢, with temperature is
known; hence, the foregoing system of three partial differen-

. tial equations is completed by the addition of the equation of
state for a region of constant pressure

- ASSUMPTIONS

In order to solve the above system of equations, the follow-
ing assumptions are made:

1. ¢,=constant

2. Pr=cufk=1

3. —-——O (T—) ;» where C is & constant dependmg on T
and T

The second of these assumptions if often made in calculating
boundary-layer flows when only the velocity profile is desired
and not the thermal characteristics. The difference between
the -boundary-layer velocity distributions for Pr=1 and
Pr=0.73 is small, as is clearly shown by the numerical results
of Emmons and Brainerd (reference 3). Since the mixing-
layer and boundary-layer flows differ only in the boundary
conditions and not in the differential equations, the effect of
assumption 2 may be expected to be similar in the two types
of viscous flow. At moderate supersonic Mach numbers, the
use of Pr=1 for air does not introduce more than 1- or
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2-percent error in the boundary-layer velocity profile; and
hence, for all practical purposes, the mixing-layer velocity
distribution calculations for Pr=1 should be sufficiently
accurale for air.

Assumption 3 needs some explanation. since the introduc-
tion of a constant C differing from unity in the approximate
relation between viscosity and temperature apparently has
not been used in previous work. Usually C'is taken s unity,
and in such cases the approximation ufp.=(T{T.)* gives
reliable results for a fixed «, provided the free-stream tem-
perature is restricted to a certain range. By introducing the
factor C, the approximating equation can be made to give
the same value as a more exact equation at any desired

Vs u
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FiGuRE 1.—Schematic drawing of the flow.

temperature in the mixing layer regardless of 7. or w.
Assuming that Sutherland’s equation

s (TN T+8 .
o \Ta T+S )

represents the true variation of viscosity with temperature,
then the approximate equation can be made exact at any
given temperature 7' by means of the relation

TNo_(TN2Tat8S
o(r)y=(r.)" 75 ®
In particular, if the approximating equation is linear in
temperature (w=1, thereby greatly simplifying the boundary-
layer equations) and the viscosity is matched at the tem-
perature T, then the above equation gives

To+8
r ,+s ~— @

O=x

as the value of the constant C. By selecting C in this man-~
ner, rather than taking it as unity, a linear variation of
viscosity with temperature then becomes an accurate ap-
proximation in the inner part of the viscous layer, rather
than in the outer part where the viscous stresses are less

important.
SOLUTION TO BASIC EQUATIONS

As was first pointed out by Prandt! in reference 4, and
later used to advantage by Busemann and Crocco (refer-
ences 5 and 6, respectively), the consequence of the assump-
tion Pr=1 when applied to boundary-layer flow is that the
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temperature becomes & function only of the velocity. Hence
e T=5(w) 8

By substituting this relation into equation (2} and using
equation (1) in conjunction with the assumption Pr=1, it
follows that the energy equation is automatically satisfied
if the function f(u) satisfies the ordinary differential equation

4f 110 ©

du?
Integrating this equation, using the boundary conditions,
=T, foru=U,

(10)
T= Td for u=0

gives

2 2
fay=eT=0 =5+ [ aT.—To+5 | v

as the relationship between velocity and temperature.
Since the temperature determines the density, equation (11}
also provides a means for calculating the density as a fune-
tion of the velocity.

Following the method first given for incompressible flow
by von Mises (reference 7) and later used for compressible
flow by von Karmén and Tsien (reference 8), a transforma-
tion is made to a new set of independent variables (z, ¥),
wlere ¢ is the stream function. By using ¢ as one of the
independent variables, the continuity equation (3} is iden-
tically satisfied, and the velocity components are given by

u=P2 OV . p=O¥

sy T o az)
Since the requirements of conservation of energy are ful-
filled by equation (11), and conservation of mass by equa-
tion (12), the only equation now remaining {o be satisfied
is the momentum equation (1). If a transformation were
meade to a completely new set of independent variables
(s, ¥), the transformation formula would be

0 a¢a+asa pua_[_bsa
dy Oy dy ' dyds p.O¥ Oy Os
o b_!_@g__ﬂé_i_bsb
dz Ox OY ' Ox ds pe OF ' Oz O8
Setting s=,
0s__ os__

so that the transformation formulas are?

o_mo
ay_ P= a‘p
(2)~—22+(2)
0r/,  p=O¥  \Oz/y
1 The variables held constant in a differentiation process are explicitly indicated in tﬁose
eases where ambiguity could result if_the subseript notation were not used.
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It follows that

) G ),

Hence the momentum equation (1) in the (x,¥) system
becomes

and

du_2
P= 32 "0y

» %
(o4 P a‘p (13)
This can be put in dimensionless form by introducing the
variables

R T*=_T_
*=£ wx_ K _ %
¥ P ¥
= V= IUIC (14

Except for the parameter ¢ appearing in the definition of ¢*
and x*, these variables are the same as those used by Karméan
and Tsien (reference 8). Remembering that 73*, the
free-stream totel-temperature ratio, is given by

Tu*—-— 145 11[ z

then the relation (equation (11)) between temperature and
velocity can be written as

=T =YL pf s (T — T9ur (15)

The momentum equation (13) becomes, using p*7*=1,

ou* 0 a1 OU
o0 (77 57%) ae

This is the basic equation which must be solved. The
boundary conditions of the problem are such that no bound-
ary layer exists at the point where mixing first begins.
Under these conditions the velocity profiles will be similar
at all points downstream of the origin, and hence the velocity
u* will be a8 function only of some dimensionless variable {.
This dimensionless variable must involve both ¢* and x*,
and must be zero at the origin of coordinates sinee the mixing-
layer thickness is also zero at the origin. Therefore, let

f=l,b*a:t*b

where ¢ and b are pure numbers which must be determined
by the condition that both sides of equation (16) for u* are
functions only of the single variable {. Setting

g =urT**" ar)
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then the right side of equation (16) can be written as
gau* d¢\_ o du - b)
s ("G ovs ps\9 ar W

557 (5 o)

from which it is obvious that in order for the right side of
equation (16) to be a function only of ¢, it is necessary that
g=1. With w*=u*({) and a=1, the partial differential
equation (16) reduces to the ordinary differential equation

by k20— Ig- dg- d;- <g

Consequently, in order for the entire equation to be a fune-

tion only of {, it is also necessary that §=— %: hence
v ¥ .
=~ Uoml a8

and the ordinary differential equation for the velocity dis-
tribution now reduces to

__§du* du* :
RLar G 9

Equation (19) is the same differential equation that was
obtained for boundary-layer flow in reference 8. Itisa non-
linear differential equation since g depends upon the velocity
u*. This equation, however, can easily be converted into
an integral equation which can be solved by the method of
successive approximations. The conversion is made by
temporarily assuming that ¢ is a known function of ¢ (instead
of 4*) and formally applying the standard methods for

solving first-order linear differential equations. The result is
w= [Lar+a, 20)
where
J‘; E g

1)

The boundary conditions are
u¥=I1 at f=wo (22a)
u*=0at f=—o (22b)

Letting %,* be the value of u* at =0, equation (20) can be
written as

¢ .
w=; [ L dptuge 23)
0
The constant €, must satisfy two requirements -
1—uo* — U™ .
2
f L N &4

Equation (23) is an integral equation for %#*, since both F
and g are funetions of u*. By simply estimating a reasonable
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solution for u* as a function of ¢, a first approximation ,u* to
the true solution can be calculated from

&
1u*=0xj; g'g dt-ouy®

The zero-order approximations # and ¢ can be calculated
directly from (u* by using equations (15), (17), and (21).
If this process is repeated untill a given approximation is the
same as the preceding one (to the degree of accuracy desired),
and equation (24) is simultaneously satisfied, then the solu-
tion to the problem is obtained. The iteration process turns
out to be rapdily convergent, requiring two or three itera-
tions to obtain the function #*(¢) accurate to within 1 per-
cent, and about four or five iterations to obtain u*(¢) aceu-
rate to within a few tenths of 1 percent.

In order to change the function #*({) back to the physical
coordinates (z, y¥) a simple quadrature is neccessary. By
definition of the stream function,

(50), 2+ (Gp), ae=v=(5), 4+ (55),

or

P“dJ d

2§‘

Hence, with z held constant, integration gives

T. (cT*
vy [ L a (25)

from which 4/U. as a funetion of 'y\/ ;U—; can be determined.

It is to be noted that no graphical or numerical differentia-

tions are needed at any point in the above iteration process,
only quadratures are required.

As is evident from equation (16), the assumption u*=CT*,
that is, w=1, makes the momentum equation (16) independ-
ent of temperature, and hence density. Consequently, with
w=1, the solution to equation (16) in (x,§) coordinates is
independent of Mach number. For zero Mach number,

T*=1, C=1, and
vdg
(yvynx)MEO f

Using this relation the solution in physical (z,3) coordinates
for a linear variation of viscosity with temperature is obtained
from the solution for zero Mach number by substituting
equation (15) into equation (25). This gives

T _pu(y. [O=
yJV¢x0= Td* (y E)ﬁ[-u-—
e [urder (e-Tr @9)

where the integral in the second term on the rlghl. side is
carried out for '*(¢) corresponding to AM.=
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RESULTS

Numerical calculations of the velocity distribution have
been made for the following cases:

1. p*=T*76; Af =0,1,2,3,and 5
2, p*=0T%; }M.=0,1,2,3,and 5

The various solutions for case 2 are obtfained directly
{equation (26)) from the solution for 1{.=0 without carry-
ing out the laborious iteration process that is necessary to
obtain solutions for case 1. All numerical results in physical
coordinates (y+/U=fvez as independent variable) have been
calculated for the case T;=7, If the dead-air tempera-
ture is radically different from the free-stream stagnation
temperature, the proper velocity-distribution curves can be
obtained by carrying out the integration indicated in equa-
tion (25), sinee the function 4*(¢) in (x,¥) coordinates is
independent of the thermal boundary conditions of the
problem.

Curves of u*({) are shown in figure 2 for various Mach
numbers. The corresponding curves in the physical plane
are shown in figure 3 for the case p*=7"*75 and in figure 4
for the case p*=CT*, In the latter two figures the familiar
Blasius curve for the incompressible laminar boundary-layer
flow is shown for purposes of comparison. The constant
that is used in figure 4 is determined by mateching the viscos-
ity coefficient at the temperature Ty*=T,* according to
equation (7).

The particular curves shown in figure 4 apply for 7= =400°
R. Curves for any other temperature level T differ only
in the constant factor C.
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CONCLUDING REMARES

A comparison is shown in figure 5 which illustrates the
good agreement between velocity distributions calculated
for the two approximations, p*=T7*"* and p*=CT*. At
2 Mach number of 2 or less, the curves for a linear variation
of viscosity with temperature virtually coincide with the
curves for & 0.76-power variation. For general use the
linear approximation is recommended since it gives results
which are practically as accurate as the former, yet does not
require a laborious iteration solution to be worked out for
each Mach number.

In general the laminar-mixing layer is several times
thicker than the laminar boundary layer, as is illustrated in
figures 3 and 4 where, for purposes of camparison, the Blasius
profile is also shown. The rate of growth of mixing-layer
thickness with increasing Mach number is somewhat larger
than the corresponding rate of growth for a laminar boundary
layer. The curves in figure 3 indicate 2 value‘ of roughly

03 —140.117/.2
=0

for rate of growth of the mixing layer; whereas the corres-
ponding value for a laminar boundary layer (see reference
9, for example) is approximately

D 1 40.001.2

5.![ =0

This difference is to be expected since a larger percentage of
low-density air exists in a mixing layer than in a boundary
layer.
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FigURE 2.—Velocity distribution in the (r, ¢) coordinate system.
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LAMINAR MIXING OF A COMPRESSIBLE FLUID
The foregoing statements, which indicate an increase in
Jayer thickness with increasing Mach number, are

..
based on the assumption that the Reynolds number (Uazfrs)
is held constant while the Mach number is varied. In most
experimental apparatus the Reynolds number changes con-
siderably with a variation in Mach number. Consequently,
depending upon the particular experimentel method em-

ployed, the observed rate of mixing in the x direction may
be either incressed or decreased if the Mach number is

AyEs ArroNavUTICAL LLABORATORY,
NaTionalL Apvisory COMMITTEE FOR AERONAUTICS,

Morrerr Fiewp, Carir., Jen. 5, 1949.
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