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ON STABILITY OF FREE LAMINAR BOUNDARY
LAYER BETWEEN PARALLEL STREAMS

By MarTIiN LEssEN

SUMMARY

An analysis and caleulations on the stability of the free
laminar boundary layer between parallel streams were made
for an tincompressible fluid using the Tollmien-Schlichting
theory of small disturbances. Because the boundary condi-
tions are af infinity, two solutions of the Orr-Sommerfeld
stability equation need not be considered, and the remaining
two solutions are exponential in character at the infinite
boundaries.

The solution of the stability egquation is obiained in powers
of (—ifaR), where « 18 disturbance warve number and R is
Reynolds number. With an asymptotic solution as a start,
the stability equation 1is numerically integrated. The eigen-
value problem between o, R, and the disturbance phase velocity ¢
was thus explored by frial-and-error process.

The calculations show that the flow is unstable except for
very low Reynolds numbers. The reqons of stability end
instability in the a,R-plane were checked by obfaining damped
and amplified solutions on opposite sides of the neutrally
stable solution.

INTRODUCTION

Some of the classical problems that have been of interest
to many investigators in the field of the stability of parallel
flows are the stability of Couette type motion, Poiseuille type
motion, and boundary-layer flows. Couette flow between
rotating cylinders was successfully treated by G. I. Taylor
(reference 1). The problem of plane Couette flow, however,
has not been decisively settled. Plane Poiseuille flow was
treated by Heisenberg (reference 2), Pekeris (references 3
and 4), Goldstein, and Lin (references 5 and 6) and highly
controversial results were obtained. Poiseuille motion in &
circular pipe was treated by Sexl (references 7 and 8) who,
after an incomplete investigation, concluded that the flow
was stable. The problem of boundary-layer stability was
treated by Tollmien (references 9 to 11), Schlichting (refer-
ences 12 to 15), Lin, and others, and an experimental verifi-
cation of the results was obtained by Schubauer and Skram-
stad (reference 16).

In all the previous investigations, the problem of the sta-
bility of parallel flows was treated for a case in which there
was at least one solid boundary. In the investigation dis-
cussed herein, & flow that has no solid boundaries is treated,
the case of the stability of the laminar, free boundary layer
between two parallel streams of semi-infinite extent in plane
flow. In the analysis, the fluid medium is considered incom-

pressible. After the steady-state flow configuration is de-
termined, the stability of that flow configuration is investi-

gated. The solution is carried out for only the case of flow

in which one of the streams is considered at rest.

Most of the analysis for this report was done before June
1948 in the form of a doctorate thesis in the Mechanical
Engineering Department at Massachusetts Institute of
Technology. Acknowledgment is made to Prof. W. R. Haw-
thorne of the Mechanical Engineering Department at
M. 1. T. for his general supervision of the work, to Prof. C. C.
Lin of the Mathematics Department at M. I. T. for his

valuable assistance and suggestions, to Dr. L. H. Thomas

of the Watson Scientific Computing Laboratory at Columbia
University for his assistance in setting up the problem for
machine solution, and to the International Business Machines

Corp. for donating the use of the Selective Sequence EIec—

tronic Calculator for the numerous caleulations.
SYMBOLS

The following symbols are used in the theoretical develop-
ment:
z positional coordinate in direction of prinecipal flow
Y positional coordinate perpendicular to prineipal
flow
time coordinate
velocity component in z-direction
velocity component in y-direction
stream function
vorticity
mass density of fluid medium
absolute viscosity of fluid medium
efp Kinematic viscosity of fluid medium
characteristic measure of boundary-layer thickness
free-stream velocity of one of parallel streams
(taken as characteristic velocity)
U free-stream velocity of other parallel stream,
U >0,
R=sUv Reynolds number of boundary-layer flow
7= Yyl oz T )
§iO)) function defining form of boundary-layer stream
function for time-independent flow
z*=2zx/8 dimensionless positional coordinate in direction of
principal flow
y*=y/s dimensionless positional coordinate perpendicular
to principsl flow

aa_\lzl'r.'bwf-egﬂ
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prmt Ot

]
w*=u/U,; dimensionless velocity component in z*-direction
»*=yp/U, dimensionless velocity component in y*-direction
¥ dimensionless stream function

g/,*-——(I)(y*) + ¢(y*)eia (zr—ct¥y

dimensionless time coordinate

o(y*) steady-state part of dimensionless stream function
™ amplitude of disturbance part of dimensionless
stream function
de
Fla ¥y . 2T . L ; . . L
&' (y*)= dy*
af
’ — —
f ("7)— dn
o wave number of disturbance (always real)
Lo eigenvalue of « when R—w .
¢ dimensionless phase velocity of disturbance
€ eigenvalue of ¢ when R— «

1= v—1
Erfe z= fw e—t2 dt
2z
ky, kg, ks constants of integration  _.
Im imaginary part of

exp base of Napierian logarithmic system e raised to
power in parentheses following exp

THEORETICAL CONSIDERATIONS

STEADY-STATE, LAMINAR, BOUNDARY-LAYER FLOW BETWEEN PARALLEL
STREAMS

The equations for the steady-state incompressible boun-
dary-layer flow with no body forces and no pressure gradient
over the flow field are

ou_ a“’u
a:c+ dy by’ )
oy, Ov
3z oy~ 0 (2)

From continuity considerations (equation (2)), a stream
function ¢ can be so introduced that

2
Y
__%
’U-———a—x' B

If the form of ¢ be specified as
¥=nva U f(n)

1 =y/1”'-73/ U,
then
u=U,f"(n)

v=3 3 Vv Uiz (0 f'—5)

and equation (1) simplifies to
If2=0 3)

g
L™

e consfanf

---------

Ys

' Frourk 1.—Flow configuration,

From the physical flow configuration (fig. 1), the boundary
conditions are

y—>+ u—>T,

Yy—>—o u—Uh

or, in terms of the variables of equation (3),

71—+ fi—1

n—>— o

r-g

Because equation (3) is of the third order, a third boundary
condition must be specified. The third boundary condition
is arbitrarily selected as

f=0

It is of interest to discuss the asymptotic behavior of the

N="o

boundary-layer equation (equation (3)). When
N—>®
J'm)—1
and
J(m—n

Therefore, as a first approximation for largo positive values
of , equation (3) can be writien as

nfll_l_zflllgo

and it therefore follows that
1 f ook Efe (g-) 4)

Similarly, for large negative values of 4,

- f,__g_fg_kﬂ,ﬂ(_\/%%) (5)
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Equation (5) degenerates for U,/U;=0. For that case, if
it is assumed that when

p—>— o
F(@)—0
and
f)——a
then
Fla)—kse®

It is also of interest to discuss the position of the boundary
between the fluid of both streams. This boundary must be
a streamline and slso pass through the point (=0, y=0).
From the form of the stream function ¢, it can then be seen
that y=0 is the boundary streamline. In order for this
condition to hold at any value of z, it is necessary that f() =0
along the streamline. The boundary streamline is therefore

Ne= -\/y%—

1

The significance of the n, line can also be demonstrated
from momentum considerations. If, for a fixed value of x,
the boundary streamline is located at 71, the momentum
principle can be formulated as follows:

["ruti—wdy+ [ pu—uay=0  ®

If f and 5 are then substituted into equation (8), the following
equation is obtained:

" sa—yant [* 5(F-1)dn=0
where #; is the boundary between the two streams.

fl)—(1=F) fd

However,

Then

B =)= [Turd=0 @

S =ff—

From equation (3)

SIf"dq

fflf= —-2_]"”

Therefore,

S Pdn=1f"+2f"

When the preceding relation is substituted into equation (7},

f(w)—(l

—5) fa)— R Fe ) S (@) e )
217/(w)+21"(— =)=0 ®
However,

f(@)=f"(—=)=0
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Equation (8) therefore reduces to
f@ 1 f @ f— =) B pt= ) [ (1-7) fad=0

From the asymptotic behavior of f (equations (4) and (5))

f(“)[l—f'(w)l=0
fe o) F—ri= =) =0
Therefore,
Ja)=0

and 4,=1,, as previously demonstrated.

STABILITY OF LAMINAR BOUNDARY LAYER BETWEEN PARALLEL STREAMS

The criterion used in the investigation of the stability of
the laminar-flow configuration is the behavior with respect
to time of a small periodic disturbance introduced into the
flow field. If the disturbance is damped with respect to
time, the flow configuration is said to be stable with respect
to that disturbance. If the disturbance grows with respect
to time, the flow is said to be unstable. If the disturbance
remains unchanged with time, the flow is considered as
peutrally stable.

In reference 17, Squire demonstrates that two-dimensional
disturbances are more destabilizing than three-dimensional
disturbances for two-dimensional parallel flows. Only two-
dimensional disturbances are therefore considered in this
discussion. -

The equation of vorticity for an incompressible viscous
fluid in plane flow can be stated as

Setubstri,=vAl ©)
where
_ Oy ou
f—g;——a—y
of _of _o¢
g" af ; ar fr ay
b’g' 0%t
Af= +by

Now, let ¢, u, and » consist of steady-state (time-independent)

and disturbance (time-dependent) paris. Then
§=?(I: ’_l/)'{"_{"(x, y;t)
v =?(1.', y)+ v’('rl Y. t)
h - _ -
aere U<<E w<<E  v'<<7

If the expression for {, %, and v are substituted in equation
(9), the steady-state terms cancel out as satisfying them-
selves. Because the disturbance is considered very small
compared with the steady-state flow, all terms nonlinear in
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the disturbance are neglected. Equation (9) then becomes

¢ W AT 0 T = AL

It is assumed that «’ and ¢’ are of the same order of
magnitude and that {’, and {’, are of the same order of
magnitude. If it is now considered that the steady-state
flow is of the boundary-layer variety 'and that the principal
direction of flow is the z-direction, then

7< <% and $,<<%,
Equation (9) then reduces to
Eet T o =AL (10)
If & stream function of the form
Pr=2(y")+ ¢y et = (11)
is introduced into equation (10) after the dimensionless
variables u*, v¥, z* and y* are substituted for the corre-

sponding dimensional variables, the Orr-Sommerfeld equation
is then obtained (references 18 and 19).

@' —e)(¢" — P} —P'" o=

where

——5#"—22%"+ale) (1)

P
. = (0)

A more rigorous and detailed derlva,tlon of the Orr-Sommer-
feld equation may be found in reference 20.

If the characteristic length & is set equal to U’ then
1
Yr=n
and
e _ (I) ff_':fj +1s
& == =

The Orr-Sommerfeld equation for the lammar boundary
layer therefore becomes

(=@ — ) — f =~ (47— 2a%" + o) (13)

For boundary conditions on equation (13), it suffices to
specify that ¢ is bounded throughout the flow field.

Because equation (18) is of the fourth order, a set of four
linearly independent solutions to the equation exists.

d="Cc1d1+ CathsT-Cabst+ s

The nature of the solutions ¢; and ¢, can be investigated by
introducing the following transformation into equation (13):
&

¢=exp( S gdn)
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Equation (13) then becomes
(Ot +9) = afl—f"" === [g*+ 6% +3¢ "+ 499"+

9" —2a¥(g*+g")— o]

If gis _expanded as follows:

1 L
g=(aR) % go+g1+(aR) 2gst . . .

the following set of equations is then obtained by equating
like powers of aR:
(f' —c) gi*=—1gc*

(' —c) (g +29091) = —1 (494’01 +690°00")

The successive approximations can then be obtained with-
out integration

go=ki(f'—c)

5 4
gr=—g o

2 go

Finally,
5
(=0 ap| — [ TRT =S ay |

e (f'— ) ezp [-l- f Vi eR(f—0) dy]

It should be noted that when

n—>—© Pg—>

11—+ @ >

Because ¢; and ¢, are each unbounded somewhere in the
flow field, they cannot be considered in the solution of equa~
tion (13).

The quantities ¢, and ¢; can be solved for in the following

manner:
Let

(14)

If equation (14) is substituted into equation (13) and like

orders qf (—ﬁ) are equated, the following system of equa-

tions is obtained:

(F—e) (D" — a2p®)— 1 p® = g*=DI_ 24360 | gty G-
) (15)

For k=0, equation (15), after being rearranged, becomes

(£

s (4=

(16}
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The asymptotie behavior of 3 can now be investigated.

Where
>t
F=e0
Therefore,

6 (o =)—> Cremr-+ Cre ™=
Because the solution must remain bounded,
C,=0
C:=0

when >+

j—>—

In the region where ¢® is exponential, ¢! is also exponential,
as can be shown by substitution into equation (15). It can
thus be demonstrated that ¢’ is also exponential in the
aforementioned region. The proper boundary conditions
on ¢ are therefore

n—>—x

¢’ —>ap
¢'—>—as

n—>+ @

From the boundary conditions and the general form of the
solution, the secular relation formally stating the eigenvalue
problem can be easily obtained.

&' (—®)—ap(— =)
Fla,e,B)=
¢/ (+ @)+ adi(+ =)

8 (—=)—ap(—=) |
8+ =) adl+ )

a7

From equation (17), it can be seen that only particular com-
binations of the parameters «, ¢, and R allow the boundary
conditions on ¢ to be satisfied.

For a rigorous treatment of the asymptotic expansions for
¢, s, @3, and ¢, see reference 21.

SOLUTION OF BOUNDARY LAYER AND ORR-SOMMERFELD
EQUATIONS FOR LAMINAR BOUNDARY LAYER BETWEEN
PARALLEL STREAMS

The general plan of solution of the boundary layer and
Orr-Sommerfeld equations is to carry the analytical methods
only far enough to reduce the problem to a routine numerical
solution. In the problem under consideration, it Is neces-
sary to investigate the asymptotic behavior of the solutions
so that boundary conditions at finite values of the independ-
ent variable are known in terms of the infinite boundary
conditions. After boundary conditions at finite points are
obtained, the solution can be continued by ordinary numeri-
cal methods.

ASYMPTOTIC BEHAVIOR OF STEADY-STATE BOUNDARY-LAYER EQUATION

The following transformation of equation (3), ff"/+2f""'=0,
is permissible without altering the form of the equation:

a(e)=7 fn)

r=an+b
956646—51——38
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If the discussion is limited to the case where U,/U;=0, it Is
then possible to expand a solution for the transformed equa-
tion as follows:

1 3,
g=Aot Ae? + A+ Age? + ..

The foregoing expansion is convergent for negative values
of z. If a numerical solution is started from inside the area
of convergence of the series solution, the asymptotic value of
¢’(=) can be evaluated. Because the asymptotic value of
f' () is 1, the scaling factor a is given by

a=

1
Vg'(=)
The sealing factor b can be fixed by designating

f (710) =0
The asymptotic form of f is then given by

3
—aq
+aetrtae? + ...

1
1oy
f=a,}ta.e?

and, because f’ (starting) <le,

f-z”” _ b . 2

The various coefficients of the expansmn can easily be
evaluated by elementary methods.

34
"[" bgeu—l- 636-5 !

ASYMPTOTIC BEHAVYIOR OF EXPANDED ORR-SOMMERFELD EQUATION

If the asymptotic form of f///f (f'—¢) is inserted into equa-
tion (16), the following equation is obtained:

+an 2a
qﬁ("’"—(az-l-blez + baemt bee® 4 L. )¢‘°’=0

and the form of ¢® follows:

LI et a
¢(m=e°“'+hme( i ).+hzue(“+a)‘+hsoe< 2 )”‘l‘ ... (18

If ¢© is substituted into equation (15) to obtain the next-
order term ¢@, the following equation is obtained:

) pw

Lﬂ- -iﬂ'
¢<n"—(a2+ble2 b bgert-bge®  +

(b ) (ath )

=lle + lge ('*""'”'—I—de

and

atl pors 3
¢(1)=e“'+hue( 2 a)!—l-hg[@(“-h')'—l-hage( 2 “)"+ « - o= (19)
From equations (18) and (19), the boundary conditions
can be obtained for integrating the stability equations
starting at a finite 5.
A tabulation of the values for the coefficients of the first

few terms of the expansions is given in the appendix.
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INTEGRATION OF BOUNDARY-LAYER EQUATION

The boundary-layer equation is

fflf+ 2jlll=0 (3)

or
]c/l/_ __l f”
=73
Differentiation once gives o
f1v= __r]); Uflll +flfn)
and twice, -

1 (14 (44
Fr=—5 G2+
Expansion in a Taylor’s series gives

Jfatw)= f(n)—!—wf’(n)-f- f”(n)-!— f”'(n)-!- f"’(n)—l—

120 f“(n)

Fato)=F )+ of m+E 1 m+ fr)+
P+

P w)= 1)+l )+ )+ fo )+
w3
B .. -

where : e

8 ()=F"(n)—S"(n—w)
The values of f/’(n+w), f¥(n+w), fF(n+w), and 6(n+w)
can now be algebraically computed.as indicated and the
integration carried forth for the next interval. The process
can be started by evaluating & from the asymptotic form
of the solution.

INTEGRATION OF EXPANDED ORR-SOMMERFELD EQUATION

Consider the equations for the first two terms of the
expansion (equation (15)) of ¢:

(' =GO — @)= 16 =0
(FF =) (D" — a2pD)— F1/$D = (¢ M V25260 | 444 ®)
Expansion of ¢® in a Taylor’s series gives

2
$O -+ =8O (1) +ws® )+ L 40" 1)+ 2 60 () +

t3
57 2O+ - ..

2 3
69 (n-+ W)= (1) +wp® () +5 60" 1)+ $O )+

ws \f .
O e

"The values of ¢@"(n4w), ¢@""(n+w), ¢@%(y4-w), and

8¢ ¥(n4-) can now be computed in a manner similar to
the case of the boundary-layer equation and the integra-
tion of ¢@ can be carried forth. As before, 5@ can be
evaluated in starting. )

Expansion of ¢ in a Taylor’s scries gives

SO0+ u) = (n) + w8 )+ 0" )+ 4" () +

4¢(n£v(n)+120 ¢(1)v(,n)+ 0 ¢“’“(n)+ [

Now 86 (r)=86® (1 +w)— 3% (r)
Therefore,

36D () =0 (n+w)+ ¢V (n—w)—24" (1)

=g ()4 60 ) s $Tn)
and I
#EO" () =084 )+ 1% SO 4 - -
Therefore,

2
# [ 40 m—15 60" tn) |wts™ ()

The quantity ¢ can be integraied as indicated in & step-
by-step manner. From the asymptotic form of &%,
2
b <¢“’ ——Iu—z ¢“’") can be evaluated in starting.
When ¢ and ¢ have been integrated to a large positive

value of 5, the boundary condition at =-- = can be imposed
to evaluate R:

$226® +(§;;,) ¢
¢'(+ @)+ ad(+@)=0

Therefore,

_ [V (+ =)+ ag® (4w}
B 5 F =) Fad®(F =) (20)

Although the foregoing method of integration was used in
the solution of the problem, it was not the most efficient
scheme. Originally, the problem was programmed for
integration along a rectangular path through the complex
plane; complex integration was necessary because of tho
singularity at the point where f/=c¢ in cquation (15). It
later became apparent that the rectangular path was dis-
advantageous and that a betier choice was a path starting
in the third quadrant of the complex plane and traveltig in
8 straight line to a point on the positive, real axis (fig. 2).
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-

.

Imaginary axis

(6, 0i}

/‘ Reaf OXI.;

(-6, —3i)

FIGURE 2.~ Path of numerieal integration of boundary-layer and disturbance equations in
complex g-plane.

Most of the original program could be used for the straight-
line path. In order to expedite the solution, the equations
were therefore integrated along the new path in the manner
previously indicated. The interval of integration w was
taken as 0.2+40.05 4.

A more advantageous scheme for the straight-line path of
integration of equation (15) is included herewith for complete-
ness.

a (k)_E’_ﬂ WY a2 B E_i ) iv
2 b
52(¢tk)u_% ® Iv)=w2¢ﬂ'.) iv

METHOD OF SOLUTION OF EIGENVALUE PROBLEM

If sets of eigenvalues of o, ¢, and R are to have any physiecal
significance, B must be real; « is taken real and ¢ may be
complex. The process then to be followed is:

1. For a fixed value of « and a set of values of ¢, integrate
the equations and obtain the corresponding values of R.
These values of R are usually complex.

2. For the value of R that is real, the corresponding ¢ is
the desired eigenvalue.

3. Repeat the process until the secular relation (equation
{17)) is explored.

RESULTS AND DISCUSSION

The secular relation (equation (17)) for the case of the
“free’” boundary layer was explored for damped, neutrally
stable, and amplified disturbances. The stable disturbance
corresponds to Im ¢<0, the neutrally stable disturbance
corresponds to m ¢=0, and the unstable disturbance cor-
responds to Jm ¢>0 (equation (11)). The disturbance
equations were solved for values of Im ¢=0, I'm e=0.05,
Im ¢=0.10, and I'm ¢=—0.05 (table I}. The results were
then interpolated for /m R=0 to give the neutral stability

by Rayleigh (reference 22).
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curve and curves of equivalent degrees of damping and
amplification (table I and fig. 3). '
The curves obtained were continuous, which indicates a
low effect of rounding errors in the numerical techniques
employed. Some integrations were redone using an interval
of half that used throughout the problem. The results of
both integrations were the same to the fifth significant
figure and indicated the low truncation error. Because the
parameter of expansion of the eigenfunction ¢ (equation (14))

was (—ifaR) and only the first two terms of that expansion

were used, the determination of the eigenvalues of a, ¢, and
R was inaccurate at low values of «R. For the same reason,

Im c
5 o -ags
o O
5 %
F 17 o .
A é/c/ 2
TTTTTTTTTTTTTY Y T T L =TT = ===
5 pans
§3 Ay
PPad 5"
|~ | Lo
o = —
g il / 1]
T \.
AY
\\
/ Lin's neutraf 1~
’ sfabi/ify curve for g Rl
Blosius flow-4----~1 b

o
10 20 30 4050 0o 200 300400 500
Reyrnolds aumber, R

o000

FiGURE 3,—Curves of equivalent amplification and damping for free boundary layer.

it was impossible to obtain the lower branch of the curve of

peutral stability. For purposes of comparison with the

free boundary layer, Lin’s curve of meutral stability for

Blasius type flow is included in figure 3, (See references 5

and 6.)

A comparison of the stability characteristics of the free

boundary layer with Blasius type flow reveals certain basic
differences. First, the free boundary layer is unstable for
some disturbances at an infinite Reynolds number (tanta-
mount to “inviscid” flow), whereas the Blasius type flow
is completely stable in that range. This type of instability
is caused by the presence of a point of inflection in the
velocity profile. Some implications of the presence of a
point of inflection in the veloeity profile were first investigated
Another salient difference
between the two types of flow is the presence of a highly
oscillatory solution (¢;) in the general solution for the dis-
turbance in Blasius type flow, whereas no such solution
exists for the free boundary layer. This difference arises

from the doubly infinite boundary conditions for the free

boundary layer as opposed to the singly infinite boundery

conditions for Blasius flow. The foregoing is apparent from
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the asymptotic forms of the solutions ¢; and ¢;. As shown
by the form of the solutions, viscosity has a second-order
effect on ¢; and ¢,, whereas it has a first-order effect on
¢3 and ¢,. ‘The inclusion of ¢, in the general solution of the
disturbance for Blasius flow therefore indicates a greater
effect of viscosity on the disturbance than for the case of the
free boundary layer. As could be inferred from the fore-
going, therefore, the effect of viscosity on the stability
characteristics of the free boundary layer is apparent only
at very low Reynolds number, whereas the Blasius flow
stability characteristics are much more affected even at
higher Reynolds numbers.

The inaccuracies due to small values of the parameter aR
can be avoided by direct integration of the Orr-Sommerfeld
equation for those cases. The asymptotic solution of the
entire disturbance function could easily be developed as was
done for the expanded disturbance function, and the numeri-
cal technique of integration after starting from the asymp-
totic solution would correspond to equation (21). These fur-
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ther solutions should be performed as soon as more high-
speed computing-machine service can be obtained.

CONCLUSIONS

It is concluded that the laminar boundary layer between
parallel streams is an unstable-flow configuration except al
low Reynolds numbers. The method of ecalculation of
stability characteristics is successful for small absolute values
of the parameter (—ifaR).

In comparison with Blasius type flow against a flat plate,
instability occurs at much lower Reynolds numbers for the
free boundary layer than for the boundary layer against &
flat plate with no pressure gradient.

Lewis FrLiGHT PrOPULSION ILABORATORY,
NatronaL ApvisoRy COMMITTEE FOR AERON{UTI(..B,
CreveLaNnD, Oxnio, March 21, 1949.

APPENDIX

COEFFICIENTS FOR ASYMPTOTIC SOLUTIONS OF ¢9 AND ¢

a=1.23849316
ay=—1.23849316
a;=1.23849316

a.—=—0.30962329
a;=0.08600647

aa
bl——"‘—al

8¢

3
by= ~Z (M'l‘f%g 042)

2
bs—-—-—-< 7a3+8 (1102‘{‘ 20«1)

1

dm=—g oo o
a

dl-_—.g'—--z?al

dy=+= (az"[‘ )
hm=;;_ﬁ—l<%7'-—-'- S = s

h2°=blhlo+ b2 -

2aa+-a?

hao 1hzo+ bzhm+ ba
3aa+<2 )

2
Ki=a? (“_}% a) hyp
K2=<2CL)2 (a-{—% (1)2 ’&20

Ky=(3a)? (a—l—% a..)’ o

L=dK,

L=doKot-d K,

ly= oK+ di Ko+ da K

bt

ad +<—;—)2
I
o bt babugt bockl

3aa +<—32— a)z
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TABLE I—EIGENVALUES OF «,c, ANDR

[Inviscid solution (R—w); €,=0.58727198; and o, =0.39537.]

-3 c R @ [4 R
Ime, 0
0.3%0 0. 58400 292. 54+ 34.12i 0.355 0. 571000 44, 25—0.01F
-390 . 584550 305.89+ 1.96i 345 . 568600 36.104 .04
-390 . 584581 307.06— .01i .335 . 586000 30. 83+ .62
-390 - 584600 307.27— L1.25i .335 . 567000 30.76+ .12
.390 . 585000 312.08— 28.00i .335 - 567300 30. 74+ . 028
-390 . 588000 210. 66—190. 20¢ . 335 - 568000 30.68— .37
-390 - 600000 3.06— 88.13¢ .a35 . §70000 30.45—1.35
.385 . 581500 156.954 11. 5% 825 - 565000 - 26.924 .68
.385 . 582190 160644 .25 .325 567000 26.75— .02
.385 . 582204 160.76+ .01 315 . 550000 24, 35--4. 66(
.385 . 582500 161.85— 5.17% .315 . 555000 24,40+3.308
.3%0 . 579960 109.78— .0Li .315 - 563000 24, 001,208
.380 . 580000 100.83— .32 35 - 568000 23.6340 4
.380 . 583000 109. 18— 25.38i .315 - 867500 22.68—1.89%
.375 . 575000 9.734 1.7 .305 - 570000 21,124 .18
375 57700 1 83.604+ .68 -305 . 570000 2L0040 i
.875 577850 83.814- .01f .305 - 571000 21.00— .02
375 578000 83.94— .67 .295 . 576200 18,67+ .02
.375 . 580000 84. 40— 10.05 .295 . 576400 18.674+0
-365 . 573600 57.40+ .98i . 295 - 876500 18.63— .02
.365 . 573900 57,49+ .38 -285 . 577100 18. 56— . 09§
.365 . 574050 57,824+ .00t .285 . 585000 16.38+4 . 104
.365 . 574100 57.55+ .01 -285 . 586000 16.264 .02
.355 567300 43.68+ 4087 285 - 586300 16.25+0 4
.365 . 4418+ L13i -285 . 586500 16.21- .02f
Ime, 0.05
0.315 [ 0.5625004-0.05¢ | 72.574 Q.95 0.265 [ 0.54200040.05{ | 28.89+ 2.46i
315 - 562500+ .Oaz 72.68— .07 +265 | 5500004 .05¢ 24,79+ 1.908
-285 | . 510000 .05 31.19+ 8.00¢ <265 | .5600004 .058 | 23.74— .79i
.285 | .555000+ .05:_ 32.56+ .25 -245 | 5600001 . 058 19.47+ L.11§
-285 | 570000+ .05i 2.857— 7.54 245 - 570000+ . 05§ 18.26— .15
.285 | .500000-} .05{ | 24.47-10.72%
Imec 0.10
0.265 | 0.5500004-0.10i | 79.174 7.14 0.225 | 0.542000+0.10i | 27.744 1.48]
-265 | 551700+ .104 8L 124 .12 .25 5440004 .10i | 27.584 .75
-265 | .5520004 .10 | 58.03— I1.20i .25 .546000+ 10i | 27.324 .03
. 245 . 545000+ .10 | 39.83+ .88i 205 | . J108 | 2L06+ 109
.245 [ .5430004 .10i | 39.72— .88 -205 [ .5540004 . S10i 20,58+ .45
. 245 . 550000+ 10§ | 39.45— 3.73i -205 .55.000+ 2108 | 200184 .018
Imc, —0.05
0.400 | Q. 500000—0 05 [ 16.254-14.25i 0. 400 | 0. 600000—0. 058 , 59-- 0.7
-400 -05i | 26.91-1-13.76f .420 .580000— .05 | 46.72+10.09§
.400 580000— 06i 34341 164 .420 -590000— .05f | 49.92— 3.10§
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a c R a c R
Ime, 0 Ime, 005
0.395 0.587 L 0.315 0. 5634-0. 05 7.6
.3%0 .585 307.1 .285 - 5554 . 058 32.6
.385 .582 160.8 . 265 8574 . 058 24.1
.33%0 . 580 109.8 .245 569+ . 058 18.4
.376 578 83.8 -
365 574 57.6
.355 .571 143 Ime, 0.10
.35 569 36.2
.335 867 30.7
.325 . 567 26.8 0. 265 0. 552-4-0. 108 8l.1
.315 . 568 23.6 .245 L5464 10 39.8
.305 .571 2L0 . 225 . 546 L 104 7.3
.295 .57 18.7 . 203 . 8574 . 10 2.2
.285 586 16.3
Ime, —0.05
0. 400 0. 583—-0. 05¢ 340
.420 .588— .05 48.9




