
REPORT 979

ON STABILITY OF FREE LAMINAR BOUNDARY

LAYER BETWEEN PARALLEL STREMvlS

By MARTIN LESSEN
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SUMMARY

.+bt ana[ysie and cakndatiow on the stability of the free
laminar bounday layer between parallel streams u~ere made
for an incompressible jiud using the Tollmien-Schlichting
theory of small didurbance~. Because the boundary condi-
tion~ are at in$nity, tww solutions of the Orr-.S’ommerfeld
stability quatbn mea? not be contired, and the remaining
two solutions are exponential in character at the in$nite
boundan”es.

The solution of the stability equation is obtained in powers
of (—ifaR), where a is disturbance ware number a.@ R i%
ReynoW number. With an asymptotic solution a~ a start,
the stability equation its numerically integrated. The e-i>en-
ralue problem between a, R, and the disturbance phase relocity c
WU8thue explored by trial-and-error process.

The calculations show that the $OW is unstable ezcept for
very low Reynold8 numbers. me re@on8 of 8tabilitgt and
instability in the a, R-plane uxre checked by obtaining damped
and amplt~ed solutions on opposite sides of the neutrally
stuble solution.

INTRODUCTION

Some of the classica.1 problems that have been of interest
to many investigators in the field of the stabdity of paraM
flows me the stability of Couette type motion, Poiseu.ilIe type
motion, and boundary-layer flows. Couette flow behveen
rotating cyLiuders was successfully treated by G. I. Taylor
(reference 1). The problem of phme Couette flow, however,
has not been decisively settkcl. Plane Poiseuille flow was
treated by Heisenberg (reference 2), Pekeris (references 3
and 4), Goldstein, and Lm (references 5 and 6) and higldy
controversial results -were obt tied. PoiseuiUe motion in a
circukr pipe was treated by Se.xl (references 7 and 8) who,
after an incomplete investigation, concluded that the flow
was stable. The problem of boundary-layer stability was
treated by Tollrnien (references 9 to 11), %Michting (refer-
ences 12 to 15), Lin, and others, and an experimental verifi-
cation of the results was obtained by Schubauer and Skram-
stad (reference 16).

In all the previous investigations, the problem of the sta-
biIity of parallel flows was treated for a case in which there
was at Ieast. one solid boundary. In the investigation dis-
c~csed here~, a flow that has no solid boundaries is treated,

the case of the stability of the laminar, free boundary layer
between two para.Uel streams of semi-iniinite extent in plane
flow. In the analysis, the fluid medium is considered incom-

pressible. After the steady-state flow configuration is de-
termined, the stability of that flow cofigurat.ion is investig-
ated. The solution is carried out for only the case of flow
in which one of the streams is considered at rest.

Most of the analysis for this report was done before June
1948 in the form of a doctorate thesis in the Mechanical
Engineering Department at Massachusetts Institute of
Technology. Acknowledgment is made to Prof. W. R. Eaw-
thorne of the Mechanica.I Engineering Department at
M. I. T. for his general supervision of the work, to Prof. C. C.
Lin of the Mathematics Department. at M. I. T. for hk
valuable assist ante and suggestions, to Dr. L. H. Thomas. __
of the Watson Scientific Computing Laboratory at Columbia
University for his assistance in setbing up the problem for
machine solution, and to the International Business Machines
Corp. for donating the use of the Selective Sequence Elec-
tronic Calculator for the numerous calculations.

SYMBOLS

The following symbols are used iu the theoretical develop-
ment:

x

Y

t
u

;
I-
P
#
zf=JL/p
~

i?,

c,

positional coordinate in direction of principal flow
positional coordinate perpendicular to principal

flovr
time coordinate
velocity component in x-diiection
-relocit y component in y-direction
stream function
Yorticity
mass density of fluid medium
absolute viscosity of fluid medium
kinematic viscosity of fluid medium
characteristic measure of boundary-layer thickness
free-stream velocity of one of parallel streams

(taken as characteristic velocity)
free-stream velocity of other paralIel stream,

Ul> L?*
1?= 6U+ Reynokls number of boundary-layer flow
q= Y/ \&m

f(l’) function defining form of boundary-layer stream
function for time-independent flow

Z*= x)5 dimensionless posit ional coordinate in direction of
principal flow

Y*= Y/~ dime~io~ess Positional coordinate PerPendic~ar
to principal flow’
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t*=+ dimemionless time coordinate

u* =u/ U1 dimensionless veloeity component in x*-direction
O*= V/UI dimensionless velocity component in y*-direct,ion

**

@(yy

@J(?/*)

@’(?/*)=

f’(q)=
CY

O!*

c
C*
~=

Erfc z=

k,, k2, k3
Im
exp

dimensionhss stream function
4*-NY*)+ @(y*)eia(Z”-Cl*j

steady-state part of dimensionless stream function
amplitude of disturbance part of dimensionless

stream function
d~
~“
dj
G ‘“” ‘“””
wave number of disturbance ..(always real)
eigenvalue of a wlwn R+ co
dimensionless phase velocity of disturbance
eigenvalue of c when R-+ m

1=

s

.
e-ts dt

z
constants” of integra.t ion –
imaginary part of
base of Napierian logarithmic system e raised to

power in parentlhwcs foIIowing exp

THEORETICAL CONSIDERATIONS

STEADY-STATE, LAMINAR, BOUNDARY-LAYER FLOW BETWEEN PARALLEL
STREAMS

The equations for the stead.v-state incompressible boun-
dary-lay& flow with no body fo;ces and no p;essure gradient
over t.he ffow fielcl are

From continuity considerations (equation
function # can be so introduced that

If the form of # be specified as

4= 4P%Crlf(v)

q= Y144 ~1

then

(1)

(2)

(2)), a stream

-.

and equation (1) simplifies to

jy’+sy’’=(l (3)

* q=consionf
-------

---------------
--------------

x
*

Elu, .

FIOURE1.—F1owwdguration,

From the physical flow configuration (fig. 1), tha boundary
conditions are

y++ co ‘U+ U1

I y+–co ‘u+ LT2
t

I or, in terms of the variables of equation (3),

q++. y-+1

q+—m f+

Becausa equation (a) is of thu third order, a third boundary
condition must be. specified. The third boundmy conditiuu
is arbitrarily selected as

It is tif interest to discuss t.hc tisymptot ic brhtivior of the
boundary-Ia.yer equation (cqua[ion (3)). Whcu

Therefork, as a first approximation for Itirgo positivo values
of q, equation (3) can be written as .

?7j’’+2j’’’gl3

and it therefore folIows thti t

Similarly, for large neg~tive values of q,

f++mfc (-,g#)

(4)

(5)
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Equation (5) degenerates for ZT,/U,=O. For that ease, if
it is assumed that. when

~+—cn

f’(n)+o
and

.f(~)~–a
then

It is also of int crest to cliscuss the position of the bounchry
between the fluid of both streams. This boundary must be
a st.reandine and also pass through the point. (x=0, I.J=O).
From the form of the stream function #, it, can then be seen
that $=0 is the boundary streamline. In order for this

condition to Md at any ~alue of z, it is necessary thatj(q) =0
idong the streamline. The boundary streamline is therefore

?/q ~.—

r1~,
The significance of the To line can also be demonstrated

from mom.enturn considerations. If, for a fixed value of r,
the boundary streamline is located at yl, the momentum
prineipIe can be formulated as follows:

-m

I
pu(~l—u)dy+ J‘1px(U2-u)dy=0 (6)

. U1 —.

If.f and q are then substituted into equation (6), the folIowing
eq-uation is obtained:

J,;f’o –fwq +S’:f’(:-fj(fq+

where ql is the boundary between the two streams. Then

(7)

However,

N’)’d~ =fY–JfY’dq

From equation (3)

fyr=–~fff

Therefore,

JW’)’dq =jf’+ 2f”

When the preceding relation is substituted into equation (7),

f(+(+ ~(ml-gf+)-f (“)f’(~)+f(-”)~(-”)–

2f’’(~)+2y’(-m)=o (8)

140we~er,

j“(cn)=y’(–m)=o

Equation (8) therefore reduces to

[
j(~)[l –f’(~)1-.f(– ~) :,+(- +(+) f(nl)=o

From the asymptotic behavior off (equations (4) and (5))

<(4[HV41=0

~(– +:+’(- +]=0

Therefore,

fbll)=o

and ql= ~o, as previously demonstratecl.

STARILLTY OF LAM.INAR BOUNDARY LAYER 9ETWEEX PARALLEL STREAMS

The criterion used in the investigation of the stabiIity of
the laminar-flow configuration is the behavior with respecb
to time of a smaIl periodic disturbance introduced into the
flow field. If the disturbance is damped with respect. to
time, the flow co~guration is said to be stable with respect
to that disturbance. If the disturbance grows with respect
to time, the flow is sa.icl to be unstable. If the disturbance
remains unchanged -with time, the flow is considered as
neutraIIy stable.

--

In reference 17, Squire demonst rates thtit two-dimensional
disturbances are more destabilizing than threedimensiomd
disturbances for two-dimensional parallel flows. OriIy two-
dimensional disturbances are therefore considered in this
discussion.

. The equation of ~-orticity for an incompressible viscous
fluid in plane flow can be stated as

f-,+ucz+rrr=v~r (9)

where

~=g–g

ATOW,let t, u, and o consist of steady-state (time-independent)
and dist.urbimce (time-dependent) parts. Then

{=W, Id+ r’(~, ?/,0

?l=ii(r, y)+u’(z, ?/,0

.~,=~(x, y)+ 0’(2, ?/:0

where
r’<<F Ut<<ii 0’<<;

If the expression for r, u, and u are substituted in equation
(9), the steady-state terms cancel out as satisfying them-
selves. Because the disturbance is considered very small
compared with thes teady-stat.e flow, alI terms nonhnear in
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the disturbtmce are neglected. Equation (9) then becomes

It is assumed that u’ and v’ are of the same order of
magnitude and that f’= and f’V are of the same ordex of
magnitude. If it is now considered that the steady-state
flow is of the boundary-layer variety %.nd that the principal
direction of flow is the x-direction, then

Equation (9) then reduces to

If a stream function of the form

**=*(V*)+ #&)eia@*--’t”) (11)

is introduced into equation (10) after the dimensionless
variables u*, v*, x*, and y* are substituted for the corre-
sponding dimensional variables, the OrrAommerfeld equation
is then obtained (references 18 and 19).

.
(@’–c)(t#”– C&#)—m’’’l$=—:R (#’- 2cu*#’+ a%$) (1 2)

where

A more rigorous and detailed derivation of the Orr-Sommer-
feld equation may be found in reference 20.

dIf the characteristic length 6 is set equal to ~, then

Y*=V
and

The Orr-SommerfeId equation for the Iamina.r boundary
layer therefore becomes

(y_~)(@’’-a~@y”@=@= –* (@’’–2&+/’+ CA#)) (13)

For boundary conditions cm equation (13), it suffices to
specify that ~ is bounded throughout the flow -field.

Because equation (13) is of the fourth order, a set of four
linearly independent solutions to the equation exists.

d=clol+ C242+ca43+ C*44

The nature of the solutions @aand 41 can be investigated by
introducing the following transformation into equation (13):

t

4=exy(~gdq)

Equation (13) then becomes

(f’-c).[(g’+g!) -.~fl”l” = –-$ [g4+6g’g’+3g’’+ 4gg”+

9“’-2 d(g~+g’)-a4]

If g is expanded as follows:

g=(all)+go+g,+”(al?)+ gg+. . .

the folIowing set of equations is then obtaimxl by equating
like powers of &: -.

~–c) g$=–ig$

v–c) (9rJ’+291vJ= —i (%tgl + 6g?go’)

. . . . . . . . . . . .

The successive approximations can then be obtained with-
out integration

go=k>m

Finally,

5 go’
91=–– —2 go

. . . . .

[fh= (f’ –C)-:””ixp – >Ii txR~ —C) dy
. 1

[s44@’–c)-~ F?ZP + >Ii aR(f’-c) dy 1
It- -should be noted that when

q+— w $8+ Cu

q++ w 444 w

Because ~~ and +4 are each unbounded somewhero in the
flow field, they cannot be considered in the solut-ion of equa-
tion (13).

The quantities d, and 4, can be solved for in the following
manner:

Let

4=~o(__.jJ’4w (14)

If equation (14) is substituted into equation (13) and like
.

.( )orders of —~ are equated, the following system of equa-

tions is obtained:

For 1=0, equation (15), after being rearranged, becomes

(16)



ON STABILITY OF FREE LAMINAR BOUNDARY IA4YXR BETWEEN PAIL4LLEL STREAMS 575

The asymptotic behavior of d(o) can nom be investigated.
Where

q+&u3 =

f
?//

——y_c+o

Therefore,

@(~(-&cO)~Cle”T+Cze-”?

Because the soIution must remain bounded,

C,=o when ~~ + cu

C,=o q+—rm

In the region-where #@jis exponential, d(’) is ako exponential,
as can be shown by substitution into equation (15). It can
thus be demonstrated that @‘*) is also e.sponent,itd in the
aforementioned region. The proper bounctary conditions
on 1#1are therefore

q+— m ~’+ci+

~~+m #+- .4

From the boundary conditions and the general form of the
solution, the secular relation formally stating the eigenvalue
problem can be easiIy obtained.

F(iY,c,R)=
4{(– ~)–a&(- m] 42’(– m)–@2(- =’)

@l’(+ m)+wh(+~)
=0

42’(+=)+ @2(+ ~)
(17)

From equation (17), it can be seen that only particular com-
binations of the parameters a, c, and R alIow the boundary
conditions on @to be satisfied.

For a rigorous treatment of the asymptotic expansions for

@l, h h, and +4, see reference 21-

SOLUTION OF BOUNDARY LAYER AND ORR-SOMMERFELD
EQUATIONS FOR LAMINAR BOUNDARY LAYER BETWEEN

PARALLEL STREAMS

The general plan of solution of the boundary layer and
Orr-Sommerfeld equations is to carry the analytical methods
only far enough to reduce the problem to a routine numerical
solution. In the problem under consideration, it is neces-
sary to investigate the asymptotic behavior of the solutions
so that boundary conditions at finite -ralues of the independ-
ent variable are known in terms of the infinite boundmy
conditions. Mter boundary conditions at finite points are
obtained, the solution can be continued by ordinary numeri-
cal methods.

ASYMPTOTICBEHAVIOROFSTEADY~TATEBO~XDARY-LAYEREQUATTON

The following transformation of equation (3), fl’+2f’’’=O,
is permissible without sdt-ering the form of the equation:

. g(z)=: f(t’)

X=aq+b
936646-51-3S

If the discussion is limited to the case where UJUI=O, it is
then possible to expand a solution for the transformed equa-
tion as follows:

q =&+~le;’ + &e’-!-&e;’ + . . .

The foregotig expansion is convergent for negative dues ._
of x. If a numerical solution is started from inside the area
of convergence of the series solution, the asymptotic value of
q’( co) can be evaluated. Because the asymptotic value of
f’(~) is 1, the scaling factor a is given by

1_—
a– ~~)

The scaIing factor b can be fixed by designating

f(ml)=o

The asymptotic form off is then given by

f=aO+a,ei’’+a2e’q+ a,e;”+ . . .

and, becausefl (starting) <c,

y, ;a!l—hle~”+ b2ea~+ bae
f’-c

The various coefEcients of the expansion can easily be
evaluated by elementary methods.

ASK%WTO~CBEHAVIOROF EXPANDEDORR-SOMMERFELDEQUATIOX

If the asymptotic form of ~“1 (f ‘—c) is inserted into equa-
tion (16), the following equation is obtained:

(
; 0~(o)”— ~+~le;”’+ ~ze~+ f)3e + . . . ) @o)=-J

and the form of @@)foIIows:

(=G ’1’+ h20e{~+~~+h30e(.++ U)q+
‘[o=e~+hlwP . . . (18]

If o(o) is substituted into equation (15) to obtain the next-
order term ~(l), the following equation is obtained:

(
+ av : aw+(l)~r )– d+ ble +bze’~+bse + . . . rP(l)

=l,e(=w’ +Le(~~ala+Le(a%’)~

and

(“G ‘J’+ fi2,e(a~~*+h,le (.+.)?+ .-. (19)
@tlJ=ea~+hlle

From equations (18) and (19), the boundary conditions
can be obtained for integrating the stability equations
starting at a tite q.

~ tabulation of the values for the coefficients of the first
few terms of the expansions is given in the appendix.
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INTEGRATION OF BOUNDARY-LAYE-R EQUATION

The boundary-layer equation is

fy’+zy”=~

or

jfll– : fjlt

Diffcmmtiation once gives

ADVISORI” COMMITTEE FOR AERONAUTICS

(3)

and twice,
.—

f“= –; Vf ‘V+g.f’.f’”+m

13xpmsicm in a Taylor’s sm.ies gives

jb? +W)=m+wf’(d+:.f’’(d+:?’(d+gm+
w’

pjj .M?)

Y(q+w)=m+wfl’(d+ :f’’’(d+$(d+(d+
~m+...

j“(q+w)=j%)+wj’’’(n)+$(d+$j%)+%)+

%~~ .f’(d+. . . ““ ““-

where

afl(q)=j’(q)--y(q – w)”

The values of j’”(q +w), j’v(q +w), fl(q+w), find ~fl(v + w)
can now be algebraically computed. as indicated and the
integration carried forth for the next interval. The process
can be started by evaluating tifl from the asymptotic form
of the solution.

INTEGRATIONOFEXPANDEDORR-SOMMERFELDEQUATION

Consider the equations for the first two terms of the
expansion (equation (15)) of @

~–c)(@’~’’–@(”))) f–@(”)=o)=o

(f/–c)(@(l)’’—&#rl)) @(l)@(l) s(~(o) lv_2a24(o) “+a4@(o))

Expansion of +(0) in a Taylor’s series gives

~fo)(q+w)=@(q)+ w+(o)‘(q)+;* +(o)’’(q)+: z(~’’’(q)+

~4
%$ ‘o)’V(T)+ . . .

@(o)‘(q+ W)=+(O ‘(q) + w#”) “ (v)+; #’”’’’’(T)+# @ ‘“(q)+

@ a (OIV(T)+ .,;-. .. .-..g~

The values of @(@’’(?+ w), ~(~ ‘“(~+ w), dm ‘V(q-t=w},and
&j{~‘“(~+ w) can now be computed in a mmner similar M
the case of the boundary-layer cqunt.ion and the in@re-
tion of d(o) can be carried forth. A.s More, &#(@1’cm] be
evaluated in starting.

Expansion of ‘~(~)in a Taylor’s series gives

W8 (,),>,f#f’)(~+ w)=+(’)(q)+ W@(’)’(q)+;: @“)“(??)+~ 4. (v)+

Now (32@!?(q)=6@(1)(q+ W)–c$@(’)(q)—.

Therefore,

a’+(l)(q)= @(l)(q+W)+ &)(?l –w)–2@~l)(q)

=w’@w’(q)+g .&) qq)+o-dw’(q)+. . .

and

in n sLep-The quantity 4(’J can be integrated as indicnt cd
by-step manner. From the tisymptolic form of 4[!),

(
~ ~(l)_@~~ 4(1)”

)
can be evaluated in starting.

When 4(0) and d(’) have been integrated to a largo positivo
value of q, the boundary condition at ?=+ ~ can be imposed
to evaluate R:

#(+~)+c@(+m)=O

Therefore,

(20)

Although the foregoing ~cthod of integration was used in
the solution of the probkml, it was not Lhe most cfficicnb
scheme. Ori#nally, the problem was programmed for
integration along a rectangular path through the complex
plane; complex integration was necessary bccausc of tho
singularity at the point where j’=c in cquat.ion (15). IL
later became apparent that the rectangular path was dis-
advantageous and that a better choim was a path starting
in the third quadrant of the complex plane and tmvelh]g in
a straight line to a point on the posit.ive~ rcal axis (fig. 2).
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FIGCEIi2.-Pat~of rrumeriealintegrationof bwndar~-la~erond disturbsrm equationsfn
complexq-phe.

Most of the original program could be used for the straight-
line path. In order to espedite the solution, the equations
were therefore integrated along the -new path in the manner
previously indicated. !l?hc interval of integration w was
taken as 0.2+0.05 i.

-k more adwmtageous scheme for the straight-line path of
integration of equation (15) is inchded herewith for complete-
ness.

METHOD OF SOLUTION OF EIGEXVALUE PROBLEM

If sets of eigenvalues of a, c, and R are to have any physical
significance, R must be real; a is taken red and c ma-y be
complex. The process then to be followed is:

1. For a fisecl value of a and a. set of dues of c, integrate
the equations and obtain the corresponding v-dues of R.
These values of 1? are usually complex.

2. For the value of R that. is realj the corresponding c is
the desired eigenvahle.

3. Repeat. the process until the secular relation (equation
(17)) is explored.

RESULTS AND D1SCUSS1ON

The secular reIation (equation (17)) for the case of the
“free” boundary layer was esplored for damped, neutrally
stable, and amplified disturbances. The stable disturbance
corresponds to Im c<O, the neuMIy stable disturbance
corresponds to Im c=O, ancl the unstable disturbance cor-
responds to Im c>O (equation “(11)). The disturbance
equationa were soked for values of h c= 0, .7m c= O.O5,
.h c= O.1O, and lna c= —0.05 (table 1). The resdts were
then interpolated for Im R=O to give the neutral stability

curve ancl curves of equivalent degrees of damping and
amplification (table 11 ancl fig. 3).

The cum-es obtained were continuous, v&M indicates a
low effect of rounding errors in the numerical techniqms
employed. Some integrations -were redone using an interval
of half that used throughout the problem. The results” of
both integrations were the same to the fifth significant
figure and indicated the low truncation error. Because the
parameter of expansion of the eigenfunction @(equation (14))
was (+02?) ancl only the first two terms of that. expansion
were used, the determination of the eigenva.hs of a, c, and
R was inaccurat e at low values of all. For the same reason,

.5

.$
‘u
c

!
.3

lz

.1

0
10 20 30 4050 K@ m 3m400m [m

Reynolds rwmbw, R

FIGURZS.-Curresof equfralentmplifimtionand dampingforfreeboundwy layer.

it was impossible to obtain the lower branch of the curve of
neut rd stability. For purposes of comparison with the
free boundary layer, Lin’s curve of neutral stability for ““’
Blasius type flow is included in figure 3, (See ref~ences 5

-.—

and 6.)
~ comparison of the stability characteristics of the free.

boundary la.yer with Blasius type flow re-reals certain basic
differences. First, the free boundary layer is unstable for
some disturbances at an infinite Reynolds number (tanta-
mount to “inv-iscid” flow), vihereas the B1asius type flow
is completely stable in that range. This type of instability
is caused by the presence of a point of inflection in the
veloeit y profile. Some implication of the presence of a
point. of inflection in the -relocity profile were first investigated
by Rayleigh (reference 22). kother salient dfierence
between the two types of flow is the presemce of a highly
oscillatory solution (43) in the general solution for the dis-
turbance in Blasius type flow, whereas no such solution
exists for the free bouudary layer. This difl’erence arises
from the doubly infinite bounclary conditiom for the free
boundary layer as opposed to the singly infinite boundary
conditions for Blasius flow. The foregoing is apparent from
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the asymptotic forms of the sohxtions ds and du. AS shown
by the form of the solutions, viscosity has a second-order
effect on 41 and q$z,whereas it has a first-order eflect on
~s and #JA. The inclusion of 43 in the general solution of the
disturbance for Blasius flow therefore indicates a greater
effect of viscosity on the disturbance than for the case of the
free boundary layer. As could be inferred from the fore-
going, therefore, the effect of viscosity on the stability
characteristics of the free boundary layer is apparent only
at very low Reynolds number, whereas the B1a.sius flow
stability characteristics are much more affected even at
higher Reynolds numbers.

The inaccuracies due to small values of the parameter aR
can be avoided by direct integration of the Orr-SommerfeM
equation for those cases. The asymptotic solution of the
entire disturbance function could easily be developed as was
done for the e.xpancled disturbance function, and the numeri-
cal technique of integration after stm-t.ing from the asymp-
tot ic solution would correspond to equation (21). These fur-

ther solutions should be performed as soon as more higll-
speed computing-machine service can be obh~incci.

CONCLUS1ONS

It is concluded that the laminar boundary lnyer Lctwmn
parallel streams is an unstable-ff ow configuration OMXpl u L
lo-iv Reynolds numbers. The method of calculation of
stability characteristics is successf u] for small absolutc wdum
of the parameter (—i/&).

In comparison with Blasius type flow againak n flat plai c,
instability occurs at much lower ReynoMs numbers for the
free boundary laye~ than for the boundary layer agains~ a
flat plate with no pressure gradient..

—

LEWIS”FLIGHT PROPULSION JJABOR.:TORY,
NATIONAL ADVISORYCOMM~TTEEFOR i4ERONAUTKC~,

CiEVELAND, OHIO, March .$?1,1949.

APPENDIX

COEFPICIENTS FOR ASYMPTOTIC SOL-U’I’lONSOF $0 AND .#l

a=l.238493Tt3

aO=—1.23849316

al=l.23849316

a,=–O.30962329

a2=0.08600647

b,=–~a,

do=–; --- ----

‘z=-$(a’+~a”)
hlo=

b,

()

2“”=””““” ““””-““”
aa+ ~

.

.

h~o= b1J20+ b2Lo+ ba

()

2

3aa+ jija

“=a’(a+:ab”
“=’’a’’(a+iah”
“=’3a’2(a+~aPL’o

l,= dOK,

lz=dOK,+ d,K,

ls=dOKS+d,Kz+dzKl

b,h,,+bz+.lz ._
hzl= 2aa+a2
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TABLE I—EIGENVALUES OF a, C, AND R

[Inviztid zdution (Ibrn); c,=O.5S7271@and a,=O.39527.]
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TABLE H-EIGENVALUES OF a, c FOR R REAL
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