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A LIFT-CANCELLATION TECHNIQUE IN LINEARIZED
SUPERSONIC-WING THEORY !

By Harorp MIRELS

SUMDMARY

A lift-cancellation technigue is presented for determining
load distributions on thin wings at supersonic speeds. The
loading on a wing haring a prescribed plan form is expressed as
the loading of @ known related wing (such as a two-dimensional
or a triangular wing) minus the loading of an appropriate can-
eellation wing.

A general expression 1s derirved for the load distribution orver @
cancellation wing. The expression is valid when the plan-form
edge (on the cancellation wing) separating @ region of zero
upwash from a region of known loading 1s everywhere subsoni-
cally inclined to the free stream. The boundary conditions can
be esatisfied for both subsonic leading and subsonic trailing
plan-form edges on the prescribed wing.

The lift-cancellation technigue can be used to find the loading
on a large variety of wings. Applications to swept wings having
curvilinear plan forms and to wings having reentrant side edges
are indicated.

INTRODUCTION

The method of lift cancellation for obtaining the Iift dis-
tribution on thin wings at supersonic speeds was first sug-
gested in reference 1. The lift distribution on a given wing
is determined by canceling excess lift, through the use of a
““cancellation wing,” on a related plan form having a known
loading. This approach has been applied by several authors
(for example, references 2 to 4). The expressions provided
in reference 1 are applicable for wings that can be generated
by the superposition of conical fields.

A procedure is presented in reference 5 for determining lift
on a more general class of plan forms than can be handled by
conical superposition. The method utilizes & surface dis-
tribution of doublets and an inversion by means of Abel’s
integral equation and is equivalent to a lift cancellation.

This report, prepared at the NACA. Lewis laboratory, re-
tains certain features of reference 5 (that is, the use of a sur-
face distribution of doublets and an inversion by means of
* Abel's integral equation), whereas other features are simpli-
fied and genera.hzed The simplification consists in elimin-
ating steps in the procedure for obtaining Iift distributions.
The generalization consists in determining a solution that
can be made to satisfy the boundary conditions for either a
subsonic leading edge or a subsonie trailing edge (Kutta con-
dition). The method of reference 5 yields only the Kutta

solution. The lift-cancellation technique developed herein
is Nustrated by several examples.

In a concurrent investigation (reference 6), source dis-
tributions and integral-equation formulations are applied to
obtain the loading on a special series of cancellation wings.
Reference 7 employs some of these cancellation wings for the
determination of lift and moments on swept wings.

THEORY

The usual assumptions of an inviscid fluid and small per-
turbations are made. The velocity field consists of the free-
stream velocity U (taken in the positive z-direction) plus the
perturbation velocities %, », and w. The wing boundary
conditions are specified in the z=0 plane.

The local lift coefficient AC, may be expressed in terms of
Ay; that is, : )

_Ps—Pr_2r—ug) 24u

(All symbols used in this report are defined in appendix A.)
Inasmuch as the local lift coefficient is directly proportionsal
to Au, Au will be referred to as “lift” in later developments.

LIFT-CANCELLATION METHOD

The Lift distribution on a given wing is to be determined by
canceling excess lift on & related wing with a known loading.
The method is illustrated in figure 1. The wing for which the
Iift distribution is desired is shown in figure 1 (a). The solu-
tion can be expressed as the two-dimensional wing (fig. 1 (b))
minus a cancellation wing (fig. 1 (¢)). Theloadinginregion I
of the cancellation wing equals the loading in the correspond-
ing region of the two-dimensional wing and the upwash w
in region II of the cancellation wing is zero. The two-
dimensional wing minus the cancellation wing satisfies the
boundary conditions for the flow about the giver wing and
is the desired solution.

The fundamental problem in the lift-cancellation method
is then to determine the lift in region II of a cancellation
wing subject to the condition w=0 in this region and with
the assumption of a known loading in region I. Solution of
this problem is presented in the following sections.

DERIVATION OF LIFT-CANCELLATION EQUATIONS

The lift distribution in region IT will be expressed in terms _
of quantities in region I.

! Snpersedes NACA TN 2145, “Lifi-Cancellation Technique in Linearized Supersonic.-Wing Theory” by Harold Mirels, 1850.

213637--33——6

65


https://core.ac.uk/display/42794337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

66 REPORT 1004—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICE

Consider the cancellation wing shown in figure 2. The
portion of the leading edge to the left of the origin coincides
with a Mach line. The portion of the leading edge to the
right (designated r=ri(s)) is shown as a supersonic edge,
although no restrictions as to a subsonic or supersonic edge
are imposed. (A plan-form edge is subsonic or supersonic
depending on whether the component of the free stream
normal to the edge is subsonic or supersonic.) The line
designated r=r,(s) separates region I and region II and is

Yy
. .--Mach line
w=—xl/ .
. Au=0 "
(=)
1 y
w=-alU L x “. w=-all
Au=Au; - w=-al/ H Au=Au;
R Au=bduy !
()
wep
Auriuy
I

(c)
(a) QGiven wing.
(b) Two-dimensional wing,
(0) Cancellation wing.

F1cURE 1.—Superposition to obtain lift on given wing by canceling 1ift on two-dimensional
wing. (Given wing eguals two-dimensional wing minus cancellation wing.)

assumed to be subsonically inclined to the free stream at all
points. This line corresponds te a plan-form edge of the
wing for which the lift distribution is desired.

General solution for A¢ on cancellation wing.—The up-
wash field in the 2=0 plane (associated with an arbitrary
distribution of vorticity Av and Av) may be written, from
reference 8,

bt : f (v —yaav+ (@ —z)Au] dz.dy, ” ._(2)

2x [(x—z)'— By —y)"

The symbol designates the finite part of an infinite inte-
gral, as defined in reference 9. Application of the finite-part

concept to linearized supersonic-wing theory and the evalua-
tion of the finite part of an infinite integral are discussed in
references 8 and 10. For the present, it will suffice to state
the fundamental definition of the finite part of an integral
with a 3/2-power singularity, namely,

(FfG@adzo _ f fz)—f@)dz,_

o (z—x)¥? (x—zq)¥?

3@

(x_a)uz

By a transformation to the Mach coordinates of reference 11,

=% (81 r=—— (x— ﬁy)’
y=—1‘1—1 (s—1) S=—2A—§ =+8y) 4)
elemental srea=p; dr ds |
equation (2) becomes
[6-20 22 o—ry B2 ards )
Sfff w—m& e

Upon substitution of the limits of integration, as indicated

in figure 2,
w M{ J" ds, J" o +
8xl|Jo 6— &) ) ryay (r—10)/2
OAg
Firto o
0 (8—8)"2 ) ri0) r—10)*?

(2 dr,

(6)

Fioure 2.—Typicel cancellation wing.

Integrating by parts, noting that Ap=0 at re=r(s,), and
recalling the definition of the finite part (equation (3)) yield

OAp dr
f’ or, 1im{__A£_]" 1 L“’dﬁ_}
ni (P—1, r—r/ Fami? ("_7'»)”2 rale) 2 Jrite) (r—rq)*?
__l r Apdr,
2 fr:c-.) (r—ry2 @
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Thus,

OAp
f- o [" . 1 [ Aedr,
I 0(8_30)3"2 r1{s,) (T_ra)uz— 2[Jo (8_80)3"1 ri(s,) (,._,.,)312

8

Similarly, reversing the order of integration (with appro-
priete changes in limits of integration), integrating by parts,
and then returning to the origingl order of integration
establish the identity

OAe

J" ds, f’ Edr" _ 1 J" ds, f’ Apdr,
0 (s_sc)m r (8} (T—ra)sﬂ_ 2\Jo (3—'5'0)3"2 r1(2,) (r_rﬂ)an
(9

The right side of equations (8) and (9) are identical. Equs-
tion (6} can now be written as

oo M f ds, f Apdr,
T 8xiJo (5—8f*? ngn (r—r)?

For points in region II, w=0 and equation (10) becomes

(10)

s das, r Apdr,
0= J; (s—sqg¥2 J:_l(m (TfT,)zn {11a)
or
| (* G, 855,
o—|[) T atb)
where

= [ Agdr,
e T a2

Equation (11b) is an integral equation for the unknown func-
tion G(r,s,). The solution (appendix B) is

Q(r,s,)=0 (13)

J“' Agdr, _ ffz('-) Agrdr, + J‘ T Appdr, 0
nwy T—ry? |Jney ¢—r?" Jney r—rpt?
—_—
I r Aqoudl'a r2(20) Agaldro

iJrat) C—ra?  Jre) =1

Thus,

or

(14)

The right side of equation (14) will be considered known.
Equation (14) is then an integral equation for Apy. The
solution (appendix B) is

App= AT —7y(8) f @ Apidr,
34 T n@ (r—ry)re8)—r,

- Equation (15) indicates that the doublef strength in region
II, namely Ae¢n, can be obtained by a line integration
along s,=s¢ in region I. The geometric interpretation of the
various terms in equation (15) is shown in figure 3 (a).

It can be shown, by expanding Ag; about r,=m,(s}), that
equation (15) yields a continuous solution (Agp=Aeg))
at r=rs(s). (A discontinuity in Ay implies a lifting line
(reference 12) and is unrealistic.)

(15)

(8} Reglon I intersscted by right forward Mach Iine from (r,s}.
(b} Reglon I intersected by left forward Mach line from {r,s).

FI6URE 3.—Qeometric interpretation of terms in equations (17a) and {(17b).

Generel solution for load distribution on cancellstion
wing.—The load distribution in region II can be expressed as

Au aAqau=bAgau or [ QAen 93_
Tz or oz ' s Oz

o5 (Z+2) Ao

or, from equation (15},

28 \y =( 2, )[1/1'—1':(8) frsm Agydr, .
M o or "o x ri(® (r—ro).‘h"(s)_r' (1 )
Differentiation yields (see appendix C)
At Ar—7(8) J’ ra(4) Ay dr,
o x 1) (r—r,)4/ra(8)—r,
ds 1) (BAu;—Avpdr, (178)

28xr—r8) Jn@  fry(s)—r,

Equation (172) is the desired expression for the lift distribu-~
tion in region II in terms of quantities in region I.

Consider Ay to consist of two components, Aup’ and
Auy'’, where Aup’ and Awuy’’ are the first and second terms
on the right side of equation (17a), respectively. Investiga-
tion of the integrals indicates that at r=ry(s), Aun’=Au;;
whereas Aug’/, in general, has a half-order singularity.
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When region II is to the right of region I (fig. 3 (b)), the
integration for Aup is conducted along the line 7,=r and
may be written as

1/ s—s,(r () Auds,
1) (8—8,) v 8a(r)— s.,
1— dSQ(T)

dr (%9 (BAur{-Avyds,
28ryfs—e) Jum e () —s,

Discussion of equations (17s) and (17b).—In the par-
agraph preceding equation (2), the line r=ry(s) was deseribed
as subsonically inclined at all points to the free stream.
This condition is necessary so that the inner integral in equa-
tion (11a) (that is, G(r,8,)) can be equated to zero for all
points in region II. If this restriction on r==ry,(s} is not
satisfied, the development beyond equation (11a) becomes

(17b)

y=congtant

(v)

(a) Reglon I upstream of reglon IT (along rmry(e)).
(b) Reglon IT upstream of region 1 (along r=rss)).

Finure 4.—Possible relations between regions I and II in regard to detarmination of Ary.

invalid. The derivation of cancellation equations when
r=r,(8) is supersonic was not undertaken because such
problems can be solved more simply by other methods.

In regard to the boundary conditions, it has been assumed
that Awu, is specified. Equations (17a) and (17b), however,
indicate that a knowledge of Ay is also required in order
to obtain a solution for Auy. With regard to the deter-
mination of Ay, two possibilities exist, as illustrated in figure 4.
In the first case (fig. 4(a)), region I is upstream of region IT
(along the line r=ry(s}) and Ag is uniquely defined by the
specified Au; according to the relation

¢S

Au; dz, {18a)

[o]

Ayy=s— ay

The integration is conducted along lines of constant .

In the second case (fig. 4(b)), region IT is upstream of region I

(along the line r=r,(s)) and the expression for Ay, in region I
(for y<0) is

e (4} z
Ai);[——— [f A'un d$¢+f ) A'ul dxa] (1 Sb)
T3

Equation (18b) indicates that a knowledge of Auy is required
in order to find Az, But Ay must be known (equa-
tion (17a)) before Auy can be found. Thus, the solution for
Auy from a specified Au;is not unique for the configuration
of figure 4(b) and an additional boundary condition must
be imposed. The line r=r(s), however, corresponds to a
plan-form edge of the airfoil whose load distribution is
desired. The situation indicated in figure 4(b) occurs when
r=ry(8) corresponds to & subsonic trailing edge. The
additional condition to be imposed is therefore the Kutta
condition. In terms of the cancellation wing, this condition

"requires that the perturbation velocities be continuous in

crossing r=ry(8).

Solution for Auy setisfying Kutta condition et r=ry(s).—
It will now be shown that when the Kutta condition is
imposed at r=r,(s), the appropriate Ay distribution is such
as to make the second integral in equation (17a) identically
zero; that is,

3@ BAuy—Awy ,
fn(ﬂ [ro(8) —r0)' 2 dre=0

bA‘PI
ory

or, inasmuch as fAu;—Av;=1M

aASOI
ry(2) [?'2(3)"‘?'0]“2

This concept and its proof follow from a suggestion of
H. S. Ribner of the NACA Lewis laboratory.
Thus, from equations (7), (12}, and (13),

fr o g0 (19)

for all points (r,s) in region II. Therefore,
bAgan

aAﬁal
r3(8) ar d r aro d To 20
frm) T—rd B~ Jnw G—r)® (20)

‘When the limit as » approaches r(s) is taken, equation (20)

becomes
aAsax dr, OQApyy dr,
lim | — f Sl I
rora(e) ra (r—rg'??

f 3(8)
i) [?‘z(s) o
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However, 0A¢,for, must be confinuous in the vicinity of
ra(8). (The perturbation velocities on the basic wing can be
discontinuous only along Mach lines or along plan-form edges.
Inasmuch as r=r,(g) is neither of these cases, ell derivatives
of Agr must be continuous in the vicinity of r=r;(s).)
Vhen the Kutta condition is imposed, JA¢gn/Or, is there-
fore also continuous (and bounded) in the neighborhood of
r=ry(8). Then with the use of a mean value for 0Aen/or,,

==
f—lvlé%) frzw (r—ro'?

T e [( e Jimw<re<n Jrae (r—r)”2 =0 (22)

Therefore,

aA‘PI
ra(n) a r'o d —0
fum [ro(s) —re] /2

which was to be proved.
The solution for Aur that satisfies the Kutta condition at
r=ry(s) is then, from equations (17a} and (23),

(23)

fp—p (s) ra(s) Aur dr,
=312/
Aug=-—— r@ (r—r)r(8)—r, (242)
for the wing of figure 3 (2). Similarly,
—
_N 8§—85(r) 13(r) Ay ds,
An="— 0 (8—8) Vss(r)—s, (24b)

for the wing of figure 3 (b).

An alternative derivation of equations (24a) and (24b)
(eppendix D) indicates that only solutions satisfying the
Kutta condition will result from the integral equation for-
mulation of reference 5.

Sidewash in region IT.—An expression for Aoy ean be ob-
tained by differentiating equation (15) with respect to y.
The result is

~r—rg(8) (2@ Avidr,

L ri{e) ()' —To)‘\/f'—z(‘g)Tra

drg (s)
1 + r2(®) ﬁA’uI—AﬂI
2x47—r1(8) Jn@ ry (8)—r,

Al’n=

Similarly, for region II to the right of region I,

Avg— v8—38(r) (fu® Aprds,
x an (8—s,) /s (r)—s,
ds, 2 (" )
1477 a0 BAu+Av;

21’1/8—82(7') 10 /gy (r)—s,

YWhen the Kutta condition applies, these equations become,
respectively,

Avg— =73 () (2@ Aridr,
x nw (r—r)re{8)—r,
and
Je—s,(r) (20 Apyds,
AL’]I=

a0 (8—8,)+/8:(r)—s,

It should be noted that when r=r.(s) corresponds to a
subsonic trailing edge, Ary, as well as Arg, is not generally
known. The preceding expressions are therefore primerity
useful for those problems where r=ry(s} corresponds to a

subsonic leading edge.
APPLICATIONS

The loading in region IT of a cancellation wing is given
by the line integrals of equation (17a) or (17b). When the .
Kutta condition is imposed at & subsonic trailing edge, the
expressions reduce to equations (24a) and (24b). These
equations can be used to find the load distribution on & large
variety of wings. Wings with curvilinear plan forms or
arbitrary camber are examples. In each case, however,
the solution for the related wing must be known.

The equations are applied in several illustrative examples.
Only the solution associated with the cancellation wing is
considered. The complete solution consists of the loading
of the related wing minus the loading of the cancellation wing.

LEADING-EDGE AND SIDE-EDGE CANCELLATIONS

In leading-edge and side-edge cancellations, the lift to be
canceled is upstream or to the side of the plan form for which
the loading is desived (figs. 5 and 6).

Tip region of swept wing.—The loading in the region

influenced by the side edge (I, and II, of ﬁg 5) of a swept

wing having a subsonic leading and a supersonic trailing edge
can be obtained by canceling excess lift on a triangular wing.
The Kutta condition is applied across the portion of r=ry(s)

influencing region IT,. The Lft to be canceled in region I is
(reference 13, equation (23})
He'x He¥s+7) .
(N o S e e e

where H and @ are constants defined in appendix A. The
doublet distribution in region I,, again from reference 13, is

Sy =HFF—Fg=E0 [P —G—r)

from which

aAgaI‘

PO IS ()

TP Pt — (1)
The sidewash distribution in region I, (that is, Av;) could

be found by an integration of the type indicated in equa-
tion (18b). A knowledge of Avy,, however, is unnecessary in

(26)
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the present problem because the Kutta condition is applied for
region IT,.

The loading in region II, is obtained by substituting
equations (25) and (26}, with r replaced by 7,, into equation
(17a), which yields

Her—ry(s) (2@ (8+-ro)dr,

Aig, x R 1)y O)— oy PE LT —G—Ta)t
dra(s)
H[l_ ds | rn@__ [f@+ry)+(s—rlldr,

@7)

ry (s} \/;2(8) —7T, »\/0’(6' ‘l‘ra)B_ (8 —T,,)’

2x+fr—ry(s)

Fiaurs §.—Cancallation for obtalning loading in tip région of swept wing having supersonie
trafling edges.

For region II,, the Kutta condition applies and
_HEr—rys) J‘ ra(8} (s+ro)dr,
3

110 (r—7o)y/ra(8) — 1o (8 1oy —(s—rp)?
(28)

Aun

b

Equations (27) and (28) reduce to elliptic integrals of the
first, second, and third kinds upon transforming the variable
of integration from r, to w, according to the relation

r,=-1—}r—0 [(1— )8+ az01 (29)

where

ay=(1-46)rs(s)—(1—0s
Eqﬁations (27) and (28) may then be written
o, B 0 (2, )i 1]
. H/s6 el .
ED Y Rt = FACHR

s [F(38)-ro)

Auu._fi a ;/:7:?(8) {(s +7) ;1 1-6) [11 (—%’ . k)_n@,, . k)j )

80
[F g k)—F(¢, k)]}

(30)

and

81)

where
1—¢
k= maz a=(1+0r—(1—06)s
p=sin! % a1=(1+6)ri(8)—(1—6)s
ne=—=2 a2=(1+0)ra(s)—(1—b)s

Reentrant side edge.—A plan form has a rcentrant edge
if a line of constant y intersects the plan form at more than
two points.

The load distribution in the region influenced by the re-
entrant side edge is to be determined for the wing (unshaded
region) of figure 6. The side edge is first, for simplicity, the
straight line »=Kj;s, which is a subsonic trailing edge
across which the Kutta condition is applied. The side edge
then alternately becomes a subsonic leading and a subsonie
trailing edge. The load distribution in region I is simply

the Ackeret value Au1=-2%y—r, and Ap; =0. RegionsIL, 1L,

and II, are considered separately.

%

28"
:a:EE
%
;n
il
j-f:!!

F1ouRE 6.—Cancellation for obtalning loading in reglon Influenced by reentrant side edge.

Region IL,:

From equation (24a) with Au1=2aU

; ?
Jr—Kss I‘Kﬂ' 2aU dr,
J-t Blr—r)VEss—ro

_éﬁ . [Eet+D)s
T B tan IV r—K;s

or, in z,¥ coordinates

Ay =

(32a)

4aUt 1 z+By

A, =g R B —1) (82b)
Region II,:

A knowledge of Avy, isrequired. From equation (18b),

_0[4al [rim _‘/W  pEF e ]
Avra_ay[ Br J_p, 1BD 1 B(m,xa—'y)dwﬂ_ 3 f“m’d%
__2aU T S
[Bma|

K,+1

=2al 1 (33)
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The load distribution in region II, is then, recalling that Arr =0,

2 aUdl‘.

__NT—T4(8) r— rz(,g) J'l'z(l)

4]

Au
T Blr—rNrals)—Ts

[ f 2aUdr, | (2@ (,, U —2al Kz'l‘l dr, ]
28xr—ra(8) | J—2 +frels) —r, ra(8)—rs
U s | e z

_2_a_ -1 jrd®)+s +1

20\ 2 tan-tH0E L__E - (F57) ruo—sl] (3
Region IT,:

Because the Kutta condition is applied,
__4_&[)_ rg(s)‘l‘s —
T )

TRAILING-EDGE CANCELLATION

The calculation of lift distributions on swept wings having
subsonic trailing edges requires cancellation wings of the
type shown in figure 7. These wings cancel that part of the
lift of the basic triangular wing that is downstream of the
trailing edge of the swept wing (references 3, 4, 6, and 7).
The lift is specified in region I. The Iift in regions IT and ITT
is to be determined subject to the conditions thaf w=0 and
that the Kutta condition applies at r=r;(8) and r=rs(s).

The wing of figure 7 (a) differs from the previously dis-

cussed cases in that two unknown regions (IT and ITI) are

continuously interacting. A special treatment is required

in order to obtain the loading inm regions IT and ITI. (See, _'

for example, reference 6.) Approximate solutions can be
obtained, however, using equations (24a) and (24b). For

example, if the load at (r,8) in region IT is desired, first

assume that Ay is known. Then,

A .‘/ T—T;(S) ne A’!lmdr a . 10 A‘u;d Iy
Ma=T T st eV Jne e—r)Vra—r, (36)
An expression for Aupy is, by integration along lines of constant r, (fig. 7 (a)),
Aum='\fis—sl(7'o) s2(ra} Mg dsa 4 f‘l(fa) Ay dsa
x ;‘%‘r (s—8)Ve:Ta—so  Juatrs) (s—85) V81(r)—s,
An approximate expression for Aurry is then
ls—8y(r) (510 Aurds '
Ay A 1\/g, T [
U Jue (s—s)Valrd—s. (87)
Equation (36), which may now be written in terms of Au; by substituting equation (87) for Aupy, becomes
At yr—ry(8) f n dr, [1 §— sl(r 81(r0) Ausds, ] ‘J‘ E£10) Ay dr, 39)
= ® “‘f (r—r)yra(®)—re =<f-) (F—S)Vailrd—8ed  J11® (r—ro)/rale)—r,

The first term on the right side of equation (38) approximates
the contribution of region III to the loading inregion II.
This term, as indicated in reference 6, is negligible for
the commonly encountered Au; distributions (corresponding
to steady lift, roll, or pitch) and %@:—)>0.5. For those
cases, equation (38) simplifies to
Nr—ra(s) (@ Augdr,

) I s e el

A=

The Kutta condition at r=r,(s) is satisfied by both equations

(38) and (39). Equation (39) can be reduced to elliptic inte-
grels in canonical form by the substitution indicated in
equation (29). The elliptic integrals may be avoided by
expanding Ay in a Taylor’s series about r,=r,(s). Equa-
tion (39) can then be readily integrated, term by term, to
yield a very good approximation for Aup in terms of alge-
braic and trigonometric functions.

When region I has a partly supersonic leading edge
(fig. 7 (b)), it is possible to write exact expressions for the

linearized load distribution in regions IT and III. For

example, the load at point (r,8) of figure 7 (b) is

Mazds,

Adp=

_Vr—r(9 { f @ dr, [\'s_—?l(r_a) fw
Ly [ (I‘—T,) R 7'2(8) To (o) (3_30) v sl(ro) —&

r=<=> Audr, }

Jo =ainto= 0
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which reduces to equation (39) when the contribution of
region ITT is neglected.

From the development of reference 6 it may be concluded
that equation (39) is sufficiently accurate for most problems
involving trailing-edge cancellations. The evaluation of
equation (39) is generally simplified by the expansion of
Ay in a Taylor’s series about r,=r.(s).

(b)
(a) Reglons IT and III continuously interacting.
(b} Reglons IT and ITI not continuously interacting.

FiouRE 7.—Typical cancellation wings for canceling lift downstream of subsonic trefling
edge of swept wings.

SUCCESSIVE CANCELLATIONS

A cancellation wing may induce lift that itself must be
canceled in order to satisfy boundary conditions completely.
Thus, in figure 8, the cancellation of lift in region I induces
lift in region I’. The cancellation of lift in region I’ induces
lift in region I’/, and so forth. Each of these cancellations

is handled as previously described. These computations are
very tedious when lift is induced upstream of a subsonic
leading edge (for example, region I’ of fig. 8), inasmuch as a
knowledge of the sidewash (Aw), as well as of the lift dis-
tribution (Awuy), is needed in order to continue the cancella-
tion process. Numerical methods are generally required.

Successive cancellations are discussed more extensively in
references 3 and 4.

%
5
X

F1GURE 8.—-Successive cancellations.

SUMMARY OF ANALYSIS AND APPLICATIONS

A general expression was determined for the Iift distribu-
tion over a cancellation wing. The expression is valid when
the plan-form boundery (on cancellation wing) separating
the region of zero upwash from the region for which the Iif¢
is specified is everywhere subsonically inclined to the free
stream. This expression permits the determination of lift
distributions on a large variety of wings. The boundary
conditions for either the flow about & subsonic leading edge
or & subsonic trailing edge can be satisfied.

The lift-cancellation technique was illustrated for swept
wings having curvilinear plan forms. Leading-edge, side-
edge, and trailing-edge cancellations were considered. In
addition, the loading in & region influenced by a reentrant
gide edge was found.

Lewis Fricar ProruLsioN LABORATORY,
Narionar Apvisory COMMITTEE FOR AERONAUTICS,
CrevELAND, OxHIO, Jenuary 16, 1950.
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APPENDIX A
SYMBOLS
The following symbols sre used in this report: o angle of attack
¢ = (1+OHr—(1—0)s B = A1
a;, = (1+9rfs)—(1—0)s 8 semivertex angle of triangular wing
a2 = (1+Or()—(1—0)s 8 = ftansd
AC, local lift coefficient, Ps—Pr O(p,n,k)  elliptic integral of third kind,
¢ constant . f e dor
e root chord of swept wing o (tnad)Vi—Fu)l—w)
E(¢,k) elliptic integral of second kind, P density
E(o,l)= J“““' V1—Fw? do T area of integration
! o Ji—wd ¢ amplitude of elliptic integrals
F(g,k) elliptic integral of first kind, e perturbation velocity potential
) Ap doublet strength, ¢r—¢p
Flo, k)= f o ¢ de @o integration variable
’ (] '\/(1 — waz) @ _kszZ) Regions
F(r,s,) function of r and s, defined by equation (12) I region on cancellation wing for which loading is
2417 specified
H = N\ LI, ... subdivisions of region I
BE (‘2‘_,-\f 1—0’) I region on cancellation wing for which w=0 =
K slope of plan-form edge in ¢ coordinates, dr/ds LIk, . . . subfh.mons o.f region II . . .
k modulus of elliptic integrals 01 additionsal region on cancellation wing for which
i Mach number .  w=0
m slope of plan-form edge in x,y coordinates, dy/d= Speciel designations: .
n parameter of elliptic integral of third kind r=ry(s) r as funct{on of & along plan-form boundary 1
? local static pressure s=&(r) s as function of r elong plan-form boundary 1
1 y=(z) y as function of = along plan-form boundary 1
q = Gl pU? z=x,(y) z as function of ¥ along plan-form boundary 1
T . . r=ry(s) r as function of & along plan-form boundary 2
s: sa} Mach coordinate system (equation (4)) 8=3,(r) ¢ as function of » along plan-form boundery 2
U free-stream velocity and so forth.
U0, perturbation velocities in 2-, y-, and z-directions, | Subscripts: ' .
respectively 1,2,3 refersi to plan-form boundaries I, 2, and 3, re-
Ay = ur—ug (proportional to local lift) spectively
Ap = Pr—17p IIT refers to regions I and IT, respectively
% B bottom surface of z=0 plane
y,y,} Cartesian coordinete system T top surface of z=0 plane
2,2, 0 variable of integration
APPENDIX B

SOLUTION OF INTEGRAL EQUATIONS

Consider the following integral equation (in the notation
of the appendix in reference 5§), where the function f(z) is
gssumed known and the funection «(£) is to be determined:

o[ 25

_ f‘[u(s)——u(m)lds
« (@—H"

After an integration by parts, equation (B1) may be written

J@_ e f = w'(HdE

2 (x_a’)llﬂ a (x_91f2 (B2)
Equation (B2) is now an integral equation of the Abel type.
The continuous solution for #(§) is (reference 14)

2u(zx)
(z—a)?

(B1)

z
ue)——5- [ L% ®3)
evaluated at z=#. This result is presented in reference 5.

Equation (11b) corresponds to equation (Bl) with
w(8) =Gr,s,) and f(z)=0. The solution for &(, s,), accord-
ing to equation (B3), is then

G(r,8,)=0 (13)

Equation {14} corresponds to equation (B1) with

E=r, a=r(8,)

z=r f(:v)=._.fr’(") Ap: dr,

(s (r—ro)8/2

u(@=A¢n
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The solution for Agg according to equation (B3) is then

1 [ dr 3(6) Ay dry
Aou 27".[’2(’0) Jz—rfn(:.) (r—ra (B4)
Reversing the order of integration and integrating yield

'\/—_—T;(S—) r2(s,) X(OI_ dra . (Bs)
T 1108 (2 —ro)yral8)—7o

Equation (B5), evaluated at z=r and s,=s, yields

1/r rae) (P9 __ Aerdr,

r n@ (r— 7'5)1/7'2(8)—7'0 (15)

The derivation of equation (15) is similiar to that for equa-
tion (16) of reference 5.

APPENDIX C
DIFFERENTIATION TO OBTAIN Aug

The differentiation indicated in equation (16)

28, _(d Vr—rals) (2@ Aerdr,
M A"‘““(ar“' bs) [ f

1@ (r—r)yri(s)—r,

is to be conducted.

First,
28 Au “ds (W Agrdr, T
e 2x+r—1y(8) S (r—r,)ra(8)—7%
VT —7ys) (_ _) j‘ n®  Aprdr,
08/ o rNr o
1

Inasmuch as Ag; is a function of , and s,

(16)

However, [(A¢pr=nw]=0 and, by integration by parts,

bA‘PI Agr dr
f ra@) Apidr, J‘ n®| dr, Tr—rgl®"
n@ @¢—ro) [7'2(3) —7 7 @ (r— —1) -\/1'3(8) —Te

lim { 24¢1 :l"' }
reora®) L (r—10) Vra(8) —1_lr (0

go that equation (C2b) can be written as

Qhex 4
2 13 Apdr, r3(2) s ° .
08 Jn@) (r—r)yra(8)—r, J1@ (r—r,) \/rg(s)—r.,_r

OAer + Agr ] dr
2 (n® _ Apidr, n®  Agdr, dra(e) (2@ L Or, " —r)l (C3)
) rerIyraO)—rs | In® (18—, ds Jnw  (r—ry)Jrds)—r.
and (C28) Equations (C2a) and (C3) are substituted into equation (C1)
bAqu and the integrals containing Ay, are integrated by parts, re-
> [rain) Apidr, ra(a) )d N ducing equation (CI) to
s )i (r—ro)Vri(s)— ra rie) (r—r,) Ws)—r., m) ra(® Augdr
{ 1 drys) Agidr, \ T JIn@ (r—r)ri(s)—ro
reira(s) 2 ds T;(J) (r— 1'0)-[;'2(8)—7‘0]87! l dr (8)
— 2 - . L. .
[(Apyr,=ram] dr,,(s)}__ _[(Agdr=n@]  dris) (©2b) 1=7s @ (BAuy—Avn)dr, (172)
r—r )V —r, 88 § [r—r()]Vr(&)—ri(s) 48 2Bm\T—ro(s) Jn@  rils)—r,
APPENDIX D

ALTERNATIVE DERIVATION OF SOLUTION SATISFYING KUTTA CONDITION AT r=ry(s)

The integral equation formulation in terms of Ap (equa-
tion (14)) resulted in a solution that was continuous in Ae
(equation (15)) but discontinuous, in general, in the deriva-

tive %— Au (equation (178)) at r=ry(8). In order to obtain

a solution continuous in Au, an integral equation may be
formulated that is similer to equation (14) but in terms of
Au rather thanAep. The inversion shown in appendix B
should result in & solution that is continuous inAu but dis-
continuous in the derivatives of Au at r=ry(8).

Consider equation (10) for the w distribution in the 2=0
plane. This equation will be differentiated with respect to
z using a technique introduced in reference 15 (equations (1)
to (3) therein). The expression for w at any point (r,8) is,

from equation (10},
w__ﬂ{[_ J‘ f Apdr.ds,
T 8x|J Jr(s—8)¥ ¥ r—rg)*2

(D1)
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where r is the area abe in figure 9 (a). The wing is moved
upstream a distance dr (fig. 9 (b)), keeping the coordinate
system fixed in space. The expression for the upwash at
(r,s) now becomes

0Ag
+@ d;r—-—‘?L_‘lr J‘J‘(Aqa_l__a?"‘ dx) drods, L
T T T 8x iJ Jr

(s—sofHr—ra™*

[

The second term on the right side of equation (D2) is zero
because Ap=0 along the leading edge. Subtraction of
equation (D1) from equation (D2) then yields

(D2)

ow__ *_1{ * Audr.ds,
u srU f,(s—s,)*’”(r—r,)"’ D3)
For points in region II of a cancellation wing, ?—a:=0.
Thus, for the wing of figure 3 (a),
i * ds, T Audr,
O_U; (s—8o)* L(c.) (r—ro)™* (D9

This equation is the same as equation (11a) except that Au
replaces Ag. The inversion by Abel’s integral equation for
Ay in terms of Awu, then gives (from equation (15))

~r—ra(8) (W Augdr,

T I G—r)Vrle—r,

Auyg

(244q)

Inasmuch as the integral equations of reference 5 are
formulated in terms of Au and are inverted by means of
Abel’s integral equation, only solutions satisfying the Kutta
condition will result therein.

JU

A %Y
rd .
"l \“
» “

T, 1’0 z‘, zo s, So

lU
s T "Ye
'I’I \\\
’I \\

P D X5 8.5

(b)
(a) Original position of wing.
(b) Wing moved upstream diatance dz.

FIQURE 9,~Areas of integration relating to equatfons (D1) and (D2).
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