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TEMPERATURE DISTRIBUTION IN INTERNALLY HEATED WALLS OF EEM’

EXCHANGERS COMPOSED OF NONCIRCUMR FLOW PASSAGES 1 —

By E. R. G. ECKEETand GEORQEIM. Low

SUMMARY

In the walls of heat exchangers composed of noncimda.r
pamages, thetempemtureraries in the cimumfwential direh”on
because oj local rariationa of the bed-transfer coeficien$s. A
prediction of the magnitude of thisviwiti”cmisnecessa?yin order
to determine the re~”on of highest temperature and in mder to
determim the admissible operating te?npt=nrtu~e8.

A method for the o%terrnination of thae te?npemture di8tri-
bution.s and of the heat-tra?k?fer cha.raetm-s$ics of a special type
of heat exchanger is dewioped. Tile heat exchanger is composed
of polygonal$mo passages and the passage wal18 are uniformly
hakd by internal heat sources. The coolant jlow within the
pa.wa.ge8 is assumed to be turb?dent. The circumferential
oatition of the local heat-transfer coejim”enti i8 estimatedfiom
$OW meawrements made by ~Tikurnd8e, postulating tinda-tity
between velocity and temperature jek?e. Cal&-ions of tem.-
peratwe distn”ilutimw based on th.we heat-tmmfer coej%ients
are cawied out and rewdte for heat exchanger8 with tm”angular
amd Tectangu[ar pa%wges are pre8en.ted.

INTRODUCTION “

The conventions.I recuperative type of heat exchmger
consists of passages for two Liquidsor gases separated by a
heating surface. Heat from an outside source is ctied with
a fluid flowing through one of the passages and is transbrred
in the heat exchanger to a second fluid flowing through the
other passage. Very often such a heat exchanger is com-
posed of a large number of tubes, with the two liquids flowing
iuside md over the outside of the tubes, respectively.
. The regenerative type of heat exchanger has passages for
one fluid ody. During the heating period, heat from an
outside source is carried to the heat exchsnger by a hot fluid
and is stored within the solid mills of the passages. This
heat is then gi-ien off to a cold fluid, which passes through
the heat exchsnger during the coding period.

In this report, a heat exchanger is considered that. diflers
&m the regenerative type only by the fact that the heat is
generated by heat sources within the passage wak ad is
transferred to a coohmt flowing contirmoudy through the
passages. The passage -mdle of b heat exchanger me
assumed to be flat pktes assembled to form a honeycomb;
thus the ffow passagesformed in this manner have a polygonal
cross section. A cross-sectional vie-w of a typical heat

mcb.anger of this type is shown in figure L The emhanger _
is composed of a number of pIatw a, whioh form the oooknt
passages b. The flow of the cooknt is normal to the oross .‘~
section show& High temperatures may be anticipated near ~ -- ~—
the mrners c of the passages, inasmuch as the rate of beg!..
trausfer there is expected to be poor. A theoretical imms-
tigation of the temperature distribution in such a heat ~
exch~~er was made at the LNAC?ALewis Laboratory during j
1950 and is presented hereim

The basis for this investigation is a knowledge of IocaI ‘-
heat-transfer ticients in passages of nonoircukw cross .:
section. Some information is availabLe on the average
heat-transfer ccdcients in suoh tubes (references 1 and 2). ‘—
The redt of tke irmestigations is essentially that the ~~- “”-
presions derived for the heat-transfer coefficients in circular ~
tubes apply for other cross sections as -well, provided the
diameter is replaced by the hydraulic diameter. (The ..:
hydrwdic diameter is defined es four times the cross-sectional -.._
flow wea divided by the circumference of the passage.)

A lmowIedge of IocaI heat-trader coeilicients in noncir- ._

cul.ar passages is importmt not only in the.present probIem,
but also for several other engineering problems, such as the
determination of local temperatures in the walls of air-cooled
turbine bIades. No Mormation on IocaI heat-tnmsfer “~
coelliaents was found in the available literature, however.
These values are therefore estimated from flow measure-
ments made by Mnrradse (reference 3) on the basis of the” -
similarity between temperature and velocity fields. ‘-

FKHE L-CIXSSseothn thmwh - hat @xeb8ngerCOIWJAof tinc~anlar UOW
---
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SYMBOLS
E--

!tle following symbok. are used in this report:
croee&ciional flow area (sq ft) -
ratio “of wall area to flow area (dimensiordees)
interred circumference of passage (ft)
C/D (dimensionless)
specific heat at constant pressure, Btu/(lb) (°F)
hydraulic diameter, 4A/C, (ft)
acederation due to gravity (ft)/(see?)
local heat-transfer coefficient, Btu/(see) (sq ft) (°F)

c ,ch~Javerage heat-transfer coefficient, 1 J
Btu/(see) (sq ft) ~F)

‘hj~ (&atiodew)
thermal conductivity of wk~ ““materiaI,

Btu/(see) (ft) (°F)
thermal conductivity of cookmt, Btu/(see) (ft) (“F)
kjk. (dimensionless)
residual value (dimensionhws)
Nusselt number, ~D/itr, (dimensionless)
coordinate normal to passage walI (ft)
n/D (dimensionless)

Piiindtl number, V/CY,(dimensionless)
pressure (lb)/(sq ft)
local rate of heat transfer, M, Btu/(see) (sq ft)
h“ 8* (dimensionless)
radial coordinate (ft)
Reynplds number, uD/v, (dimenaiorde=)
rate of internal heat genemtion, Btu/(see) (CUft)
wall thickness (ft)
s/D (dimensionless)
Iocal total temperature of coolant, ‘F
bulk totaI temperature of coolant, ‘F
Tk/rU (dimensionless)
IocaI wall temperature, ‘F ‘“”
tk/rD2 (dimensionless)
velocity components in z- and y-direction, r“&

speotively (ft/see)
Cartesian coordinates
z/D (dimensionless)
y/D (dimensionless)
z/D (dimensionless)
thermal difhsivity, k./pgcP, (sq ft)/(see)
angle subtended by two adjacent sideaof polygonal

pas&ge (deg)
increment of length (ft)
A/D (dimensionless)
increment or difference
turbulent diilusivity of heat (~ ft)/(see)
turbulent diffusivity of momentum (sq ft)/(see)
temperature difference, t-TE, “F
6Jk/rD?(dimensionless)
kinematic viscosity (sq ft)/(see)
mass density (Ib) (see*)/(ft4)
local wall shear stress (lb)/(sq ft)

Subscripts:
c. conditions for equivalent circular tube
‘7n .-conditions at center of ffow pmsago
n conditions normal to passage wd
s conditions at wall surfaco
Superscript:
* dimensionless quantity

ASSUMPTIONS

If this analysis were to be made withouL any simplifyil]g
assumptions, the simultaneous solution of the cqualions of
motion of the coolant and of the heat flow in tho coolant and
in the passage wails would be required, The following as-
sumptions are made in order to make thcw cquntions
amenable to adution without seriously curtailing the rcsulh
of the arialysie:

(1) The Prandtl number of LJMcoolant used in tlw h@L
exchang~: & in the neighborhood of 1. This condition is
weI.Ifiltilled by gases and by water abovo a tmnpermt.uroof
200° F, excluding the neighborhood of the critical point.,

(2) The pae.sagesof the heat exchanger are long enough so
that in the cross section investigated tho flow is fully dcvcl-.
oped, which means that the veloci by profilo does no Lchnngo
its shape in the direction of the tube axis.

(3) The rate of heat generation in the walls of tho heat.
exchanger is uniform. As a consequence of t.hi9condition,
the temperature within the coolant and tho walls incrcascs
linearly in a downstream direction provided the flow is ther-
maIIy developed. For a fluid with a I?rtmdtlnumber of 1,
the points of thermal and velocity dcvcIopment in a tube
practically coincide provided that the heating of the Lube
starts at the entrance section.

(4) The temperature gradient along the tube axis is m.-
sumed smaII as compared with the gradients in any cross
section of the passage.

(5) The thermal conductivity of the solid material is large
as compared with the thermal conductivity of the coolant.
This condition is ahvays fulfilled for metal walls regardless
of the type of coolantt used provided that msumption (1)
applies and for nonmetallic walls if the coolant is a gas.
For the case of nonmetallic walls and liquid coolants, the
applicability of the oalculations presented in this repd musL
be checked in each individual case. Furthcrrnorc, tho tcn~-
perature differences within the passage wall at any onc cross
section are postulated to be small as compmcd with the
temperature dtierences between tho wdl and the core of
the coolant. As a consequence of tbo assumption Mcd in
this paragraph, the heat transport within the cooh-mt,normal
to the tube axis and parallel to the walls, is small as com-
pared with the heat conduction wit,hiu the walls and may
therefore. be neglected. The heat transport withn t.hc
coolant, normal to the tube axis and normal to the walls,
is of course taken into account.

(6) Thfi turbu~entdifluaivity of momentum CMand thaLof”
heat CHme equal.
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FLOW IN TUBES WITH NONCLRCULAR CROSS SECTION

~ thorough investigation of the flow through tubes with
noncircular moss sections was made by M.kura.dse (refer-
ence 3). This investigation is used in the present report
as the basis for estimating IOCSIhea.t+transfercoefficients.

The flow of water through tubes of several Merent shapes,
as show-nin @me 2, was investigated in reference 3. Three
of the tubes had triangular cross sections; an equilateral
triangle, an isosceIesright triangle, and a right triangle with
the sides encIosing the 900 mgIe hawing a ratio of 1 to 2.32.
One tube had a tra~ezoida-Icross section and two tubes -were
circular with one and two grooves, respectively. In a.second
report, hrikmradseinvestigated tubes with a recta.ngulascross
section; however, only a.summary of this report is available
(reference 4). The hydraulic diameter of the passagesvaried
from 0.3 to 0.6 inch and the Iength-to-hydraulic-diaraet=er
ratio mried horn 100 to 200. The Reynolds number based
on the hyh-aulic &meter and the mean veIocity ranged
from 77,000 to 120,000. Because it is Imovm that the shape
of a turbulent velocity profle changes only slightly with
ReynoIds number, the results of the calculations shouId be
applicable for a fairly huge range of ReynoMs number in
the turbulent region. The veIocity profik were measured

Fmcm 3.–VI?IOCMYmntonrsfn MWIS’UWWSS%S= measuredfn reference9. ReynoIds
nmnlw,81,K@.

with a smaU total-head tube in a cross section near the
downstream end of the tube.

Results of reference 3 for the isosceks right triangIe are
shown in figures 3 tcI 5. SimiIar resuhtsfor aU other oross

FIGUBE4.-Semndary170wh trfsngtdarpfmi#ddeducedfrommeasurements&referencei%
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sections can be found in the original report. In figure 3 the
lines of consttit velocity are presented as contour liries.
These contours are indented near the center of each side of
the passage. The conclusion of reference 3 is that these
indentations indicate a secondary flow normal to the main
flow direction. A qualitative sketch of this secondary flow
is presented in figure 4. Prandtl (reference 5) has ascribed
the secondary flow to a turbulent mixing motion within the
fluid, which is more intense in the direction paraIIel to the
walI than normal to it. This secondary flow tends to equal-
ize the velocities and temperature within any cross section
of a noncircular tube and isthereforeftivorablefor the simi-

larityConsiderationthat willbe used to deduce the temperat-
ure field from the measured ve~ocity fieId. On the other
hand, because no quantitative knowledge of the secondary
flow exists, an exact theoretical calculation of the tempera-
ture field in noncirctiar passages is impossible. The local
wail shear stresses were computed by Nikuradse, using the
measured velocity proties together with the assumption that
the .Blaeius pipe resistance Iaw of the turbulent velocity
profile for circular tubes applies ako for noncircular passages
on normals to the walls (fig, 5), A check by Nikuradse of
the calcudated average shear. stresses against the meas~ed
pressure drop showed good agreement.

SIMILARITY BETWEEN VELOCITY AND ‘TEMPERATURE
PROFILES FOR Pr= 1

It is well knoym that the velocity and temperature proflks
in the boundary layer of a fluid with a Prandtl number of 1
are similar in shape--in the absence of a pressure gradient.
This similarity is immediately apparent from a comparison
of the momentum and energy equations of the boundary
layer for two-dimensional steady flow along a flat plate
(reference 6):

(1)

where T represent the total temperature, the Prandtl num-
ber is equfd to 1, and the specific heat is constant. The
effect of iutarnal friction on the temperature profile is taken
into account by basing equation (2) on the total temperature.

Because it is assumed that the turbident iliflusivity of
momentum CMqnd of heat e~ are equal, equationa (1) and
(2) are simiIar. The eoIutions of the equations, namely,
the velocity and t~mperature profiles, are therefore aIsg
simiIar, prcvided the boundary conditions are similar. The
boundary conditions for the velocity field on a flat plate are
that the velocity is Oalong the wall and has a constant value
outside the boundary layer. SimiIar boundary conditions
for the temperature field are that the temperature is constant
both along the wall and in the main stream, .-

It is therefore evident that similarity between velocity
and temperature profika in the boundary layer owm a &it

plate exists in an exact mathematical sense. TIN same is
not true, however, for fully developed pipo flow. Tlm M-
ance of the forces and of the heat energy on n stationary
annular volume ekment with a radius l?, thickness dR, and
length (in the direction of the tubo a.sis) d?, lends ta tho
foIlowing equations for fully dmdoped flow in a circular
tube:

(3)

(4]

where the”heat-conduction term in the z-direction is ncglcctrd
in equation (4). It is apparent that equations (3). and (4)
are not similar, even if the viscosit~ and diffusivity hmns in
the two equations are equal. The following type of analysis
can be made, however:

The turbulent di.tlueivity of momentum c.V can lm cal-
culated from equation (3], provided that the velocity profilo
u=f(R) ‘knd the pressure drop dp/dz arc experimentally
how-n. If it is again assumed that w and w are equal, tho
temperature profile can then be calculate~ from cquation (4).
Such an analysis, based on constant property values d with
internal friction neglected, was carried out by Lat.zlio (refer-
ence 7). The resulk of this analysis were used to calculato
the relation between the temperatures and the velocities for
hydrodynamicaUyand thermally developed flowof a fluid with
P?= 1. Figure 6 represents a plot of the local tcmpwaturc-
dithrence ratio (T–tJ/(Tm-tJ against tho local vuloc-
ity ratio ulun. It can be seen that this relation is very
nearly linear. This Iinearity means thut the velocity and
temperature proties are simiIar as far as practicrdity is con-

Velociiy fro%, G/uw “-

FIGURE6.-RdEtkmMtweenlocaltemperatureandW AocftlmInfuflydovelopcdlur.
bulentregbmofofrculutu~. Basedonreference7.
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cerned, even though they are not-similar in a strict mathe-
matimd sense. 310st of the recent theoretical investigations
of turbulent heat fransfer are therefore based on the assump-
tion of aimilmi~ between these protlles for a fluid with a
Prandtl number of 1.

It is known that the fully developed turbuIent velocity
profile in a circular tube is such that the essentiaIpart of the
-ieIocity change from Oat the wall to a nwYinmm value at the
center occurs in a narrow strip mound the periphery of the
tube. The investigations of referemcas3 and 4 show-that this
condition ia also true for tubes of polygonal cross section, ss
Iong as the included angles between two adjacent passage
VW&axenot very srttaU.hTikuradsefurthershows that theIs-iv
for the velocity wxriation on a normal to the wall established
for turbulent flow in circular tnbw hoIds also for the non-
circuhr passages in his region of essential Teloci@ variation.
It can therefore be expected that the simikmity between
temperature and veIocity profles IVWaIso be fiElled reaacm-
ably -iveUon normaIs to the vidla for noncircda.r tubes and
fluids with a PrandtI number of 1, although a balance of forces
and energies similar to equations (3) and (4) shows that the
similarity cannot exist exactly in regions wry cdose to the
corners.

~ immediate resuh of the similarity between veIocity amd
temperature profles is the fact that the local wall shem stress
determined by the veIooity gradient at the -wall is propor-
tional to the local heat-transfer coefEcient determined by the
temperature gradient at the VWJI. (The same result can be
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obtained from ReynoIds’ anaIogy.) The proportionality of
thwe vahms, together with the knovdedge that the average
heaktransfer coefficients for ch-cular and noncircuktr tubes . .
with the same hydraulic diameter are equal, can be used to
obtain local hea~tiansfer coefficients in noncircular tubes .1
from the vmdl-shear-stressdata of refermces 3 and 4. A .
generalization of this resdt is possilie because, for a given
ReynoIds number, the shear stressdistribution in the vicinity .—
of a corner of the passage depends primarily on the conditions
nem that corner and not on the shape of the passage.

The IocaI heat-transfer coefficients, as presented iniigu.re 7, ‘-
were obtained by correhdiingthe results of references 3 and 4.
in this figure the ratio h* of the local hea~kansfer coefllciat. ~
ta the mean value is plotted aggt the dimensionless
distance from the corner’ z*. The included artgle of two -.
adjacent passage walls is the parameter for the curves. Some
of thwe corner angIes were represented on more than one of

—-—

the cross sections investigated in reference 3, and for these. . .. .
angIes the curves of h“ against z“ agree reasonably ml-l.

The application of figure 7 can best be expla.inedwith the
aid of an example. Suppose it ia desired to fid the distribu- ‘–
tion of h* omr the short leg of an isoscek right tritmgIe,as - –. ..—
shown in @n-e 8. The two ends of the curve can imme-
diately be hansposed from figure 7. The remainder of the—.—
curve is then extrapolated so that the area under the curve
divided by Iength ~ is equaI to 1. This procedure gives a ._
reasonably good approximation as long as t-he -tium _
-due of h* is not considerably greater than 1.
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DIMENS1OI?LESS VARIABLES

With the distribution of the locaI heat-hwnsfer coefficient
around the circumference” cif the pas-~ges established, the
only problem remaining to be solved is the calculation of the
heat-conduction process within the passage walls. Before
this problem is taken up, an investigation is made to deter-
mine the dimensionless moduli on which the temperature
distritmtion in“aheat exchanger of the type under considera-
tion depends. This investigation may be useful as a basis
for experimental investigations. None of the simplifying
assumptions, as summarized previously, is necessary for the
devdopment in this section of the report.

The heat conduction within the soLidwaLIsof a heat ex-
changer with i~ternal heat generation is described by Pois-
son’s equation

(5)

The number of parametem for this equation can be reduced
by the use of the following dimensionless values:

With these values, equation (5) can be rewritten

w a2t* w*
57=2+7j7+~2+l=o (7)

The temperature field that rewdta under the influence of the
internal heat generation in the sohd mdk depends on how
the heat is transferred from the wall surfaces to the coolant.
The heat mus~be conducted within the soIid material to the
surface and from there into the coohmt. Along the surface,
therefore, the following boyndary condition exists:

‘($3*=’G), (8)

where n represents the direction normal to the surface. In
terms of dimensions variables, this equation becomes

‘“(a=(%) (9)

h,

b-[0– -------

OA
B Z’

FIorn .9—Deter@W of bcal kd+ansfer mef601entain trhngobr lreat-exdmnger
pasage..

The bt t.rafifor within the coo]nnt by conduction and ‘”
convection is governed by an energy equation similar to
equation (4) and the ffow of the coolant is detem-nined~)y a
momentum equation (similar to equation (3)) and the cor-
responding continuity equation, Textbooks on hcnt trwwfcr
(for example, reference 8) show that k dimensionless tem-
perature dw.ribed by the energy equation of the coohmt
depends, for low-velocity flow nnd constant property vnlues,
on the Reynolds number Re and the Pmndtl nmnher Pr. At

high velocities and variable property values, there is an
additional influence of the Mtch number nnd other dimm-
sionless expressions characterizing the temperature dr+pend-
ency on- the properLy va.lues. By neglecting the lnst-
ment.ioned influences and summarizing all the fnctms that
influence the heat flow in the solid matcrinl md in L.hc
cooIant, a functioual relaLion of the following type cfin be
deduced:

8*=j(Re, Pr, k*, z*, v*, 2*) (lo)

Where the temperature difkence 6* is introduced bccauso

only temperature differentialsappear in the cquatiol~. Tlw
functiomj as expressed by this equation depends on the
geometric configuration of the heat+whnnger passrbgcs. —.

V7’henit can be assumed that the heat-trnnsfor procoss from
the walls to the coolant is not influenced by t.hotempwature
distribution within the wall, the number of fac.tom inffumc-
ing the problem can be considerably reduced. This assump-
tion is made throughout the calculations in this report and
seems reasonable as long as previously mont.ionrd rws.ump-
tion (5) holds. In this case equation (8) can h replaced by

()k ~ =–h(t,– 2’,) (11)
8

where h is a known funcbion of tho flow paramrters. J3y
introducing the ratio Ii* of the local hmt-trrinsfcr cocK’’ciont
to the value averaged over the c.ircumfrrcncaof tlm Pti.smgo
and the Nusselt number Nu =~D/k~ lmscd on this avcmgc
value, and by changing to the tomperaturo diflmmco 8,
equation (11) can be transformed to

(12)

The dimensionless temperature within tho solid wnlIs of the
heat exchanger is deter-minedby equations (7)
can be presented as n function of tho following

and (12) and
kind:

(13)

This dimensionlese temperature diffcronco depends only on
the dimensionless local coordinates and on t,hc pmnmcter

~ug. Temperature distributions and heat-transfer c.hnr-

acteristics for any given geometric configuration aro thc+roforc
presented as a one-parameter family of curves.
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CALCULATIONOF TEMPERATUREDE3TRIBlJTIOJKSWI’llKDJ
PASSAGE WALLS

The problem of calculating temperaturedistributionstithin
the passagevials cm be CIassMedin two gemmd categories,
depending on the relative thickness of these vmlls. 11 the
dimensionless vd thiolme= & (see @. 8) is end as com-
pared with the Iength of a vndI ~, the temperature differ-
ences in the”direction normal to tha w-allsurface we smalI as
compared with the temperature cMerenoe in the direction X*
parallel to the surface. O&f the temperature differences in
this pa.del direction need therefore be considersd~ Here-
inafter this special case of the problem is referred to as the
“one-dimensional problem.” On the other hand, if S* be-
comes Isxge, the heat flow in both thex* and s*direotions must
be considered. This second and more general problem is
referred to as the “tin-dimensional problem.”

One-dimensional problem.-Consider a thin plate of
thiclmess s that is a section of the heekxchanger pass-age
waIIs. Heat is generated uniformly throughout the plate
at a rate r. The 10wJplate (or wall) temperature t is wu.med
to be varying in the z-direction only. The bulk temperature
of the cookmt is TJjand the thermal conductivities of the ‘ivd
and cookmt are k and kg,respectively. The Iood coticients
of heat transfer to the coolant above and below- the pIate are
denoted by h and h’, as shown in the following sketclx

h
t

Q.

1

The heat. bakmce for an ekment of
dimensions dx and s and of unit depth is

Q+ Qi=Q’+Qa+Qa’
where

-rohnne -with the

Q=–k.#

Q’=-k&-+=,‘t ‘%dx )
Q,=mdx

Q.+f&’=(~+j’)(t–~.) d~

With the preceding values of Q, equation (14) becomes

=~(t-m+f=o
dz’

(14)

(15)

Equation (15) can be expressed in terms of dimensionless
variables as

$yjg”lvu (P+1 =0

This equation expresses the. dimensionless wall temperature “
6* as a function of the dimensionless coordinate Z* and a
aingle parameter (h*+h’*)IW/s*k*. For WY given gee- _
metric conjuration (which detemaines h* and h’* as func—_

I
o 0 0 -0 OS*O

.1 0 : I
The second derivative of N at an arbitrary point o can be
expressed in terms of the temperatures 6* at this point and
the two adjacent points as foIIowe:

=+2(e1*+e2*–2eoq (17)

equation (16)With this value for the second ~derivative,
becomes

81*+ 82*—L%J*~ +#~(h*+h’7d*’]+A*’=0 (18)

The rekation method, used for aching this equation, is
subsequently discussed.

—

—

t.ionsof z*), the dimensionless vd temperature is a function” -
onIy of the average Nnsselt number h%, the dimensionless
walI thickness s*, and the ratio of tie thermal conduc-
tivities k*.

In generQ equation (16) must be solved by numerical
means inasmuch ash* tmd h’* are qerimentally determined
functions of z*. Several numerical met-hodsof solution CM
be applied and two of these me considered here. The relaxat-
ion method (see, for example, reference 2, pp. 365-379, or
reference 9) has “theadvantage that it is emy to apply and
that computational errors are immediately apparent. A
second method of scdution, based on the Runge-Kutta-
method (reference 10) is presented in the appendk. This
method is preferable when results of high accuracy are
desired. It is less convenient, hcweww, than the relaxation
method because computational errors are much more dMcuIt
to detect.

For the purpose of sohing equation (16) by the rdaxation
method, the equation is first expressed in finite-difference
form. Consider a grid, or net of points, placed into the wall,
any two adjacent points being separated by a sm”h.11but
finite distance A*, as indicated in the folIoming sketch:
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Two-dimensional problem.—Consider a slab of homogr&
ous solid material with unit, thickness, as shown in the
following diagram:

Heat is again generated wi$l@ the rn~terirdgt g unifo~
rate r. The heat balance for an element of volume with the
dimensionsdx and dy and of unit depth is

Qt+Q,+Qi=Qz’+Qu’ (19)

A constant flow of heat through tho slab normal to the
plane of the preceding sketch does not influence. thk heat
balance. Imca.1deviations from this constant flow of heat
are neglected.

The individual termsin equation (19) ‘We

Q,=r dx dy

Equation (19) can~thereforebe written

Or, in termsof the dimensionlmsvariables,

.—,

(2-o)

(21)

If the slab is bounded by a coolant whose bdk temperature
is TB and if the local surface heat-transfer coefficient at a
point s on the ,surface is h, the boundary condition at that
point is -.. .

()k ~ =-h(t–T.),
*

(22)

where n &the direction normal to thesurface,. Equatiou (22)
can again be written in terms of the dimensionless rariables

M*
(–)

~U h*
i3n* , “—~ %* (23)

13quation-”(21) together with boundary condition (23) fuI1y
describes the twodirnensional problem. AU physical vari-
ables am _again grouped into a singlc parameta h* ATu/k*,
which appears in the boundary condition. In order to tipply

the relaxationmethod of soIution to these mprcssions, tbcy

are iiretconverted todifferenceequa tions.

For this purpose a rectangular grid is pluc@ m~o the slat),
as indicateclin the following diagram:

I
Y*———

-$
04

A_ fo #

02

———

1
I

I
I

Adjacent net points are separated by a clisttmccA*. Tho
derivatives of t?*at an arbitrary point Ocan be exprwscd in
terms of the temperature function aL surrounding points.
Thus the first clerivativm are

ae*

(–)
~81*—80”

1 hx* ~ A*

ae* t72*-tIO*

()
_=A*Say.

rmd the second deri-rativesbecome

With these vrdues, equation (21) becomes

191*+&*+8S*+ 64*—460*+A*Z= O (24)

The boundary condition can be evaluated by assuming lhat
points 1,0, and 3 lie on the surface of tho wall. PoinL4 theu
lies in the stream and its temperature musLl.Mexpressed by
the normal derivative at point O.

ad’
(–)

~ tJ4*-eo*
h h~* O A*
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or, with the use of the value of h9*/by* as given by equation
(z3),

—

(
194*=190*1

A“u lb”

)
—T A*

Along the boundary, therefore, the folIowing
appIies:

81*+82*+ f?~*—8~*
(

Nu h“
3+ ~.

)
— A* +A*~= (J

(25)

equation

(26)

Equation (24) together with boundary condition (26) can
again be solved by means of the relaxation method.

Solution by relaxation method.-A heat exchanger com-
posed of a Iarge number of rectangular passages @ be dis-
cussed. The walk of the heat exchanger are made of a
homogeneous material in which heat is generated at a uni-
form rate r. Figure 9 represents a cut through the heat
exchanger so that the flow of cookmt is in a direction normal
to the cut. In the discussion that follows, it is assumed that
the geometry of the configuration is given in the dimensionless
system of coordhatea.

A complete discussion of the rdaxation method is not
presented herein, inasmu& as it is generally available
elsewhere. (See, for example, reference 9.) The essential
features of the method can be outlined as foIIows:

Suppose it is desired to solve a given finite-difference
equation over a certain area of integration. The equation
is of the following type:

f(e*)=o (29)

The solution of equation (29) must also satisfy prescribed
conditions at the boundary of the mea of integration.

First, it is necessary to select a nsmiber of net points cGver-
ing the entire area of integration. TIM dist.a.nceA* between
net points is arbitrary, with the accuracy of the flnrdsolution
increasing as the disttmce between points is decreased.
h’ext, mdues of 8* are assumed at each net point. If by
chance these assumed vaks of 13*are the correct values,
then they satisfy the appropriate finite-difference equation
at a.JInet points.

In general, however, the assumed vahms of tie function do
not satisfy the difference equation and the left side of equa-
tion (29) is equal to some residd value iV instead of zero.
At any given net point 8* mnst then be adjusted in order to
make $1 vanish at that point. This adjustment of 8* aIso
cha~~es the residuals at adjacent net points. However,
if this process of adjustment is started at the point at which
the absolute value of N is greatest and is then repeatad for
points at which the value of the residual is successively less,
the correct values of 8* for the entire net eventually am
obtained.

In applying this method to the heat exchaager under
consideration, it is first assumed that the wall thickness s*
is small, so that t-heone-dimensional solution applies.

FKGUKS9.—ThkbaIkd heat exohangerwith mdnngdm ps?ages. (Skadedreglouis
consideredh mkzdstfons.) .-

1 I I
I B I

L 1

I COA

c n n 0 An n .
e d c b a &c d e

FIGUEE1.1.-Rel8xNimnetforrWaUKRW tMwwjllWkt exdlanger.

The actual con&uration to be discussed is shown@ fig-
ure 10. Because points A, B, and C are points of sym-
metry, ordy the region bounded by these points need be
considered. Furthermore, the distribution of temperature is
aIso symmetric about point O wit-h respect to AO and OC.
AR erda,rged view of the section under cmsideration @
represented in @ure 11. —

The section has been subdivided into a number of net
points a, b, c, . . . h, each separated by a distance A* from, “-’-
adjacent points. The fit step in the amdysis is the assump-
tion of temperatures at all nettpoints, which can be done by
,settingup a balance between the tohd he~t produced within
the vdls and the tottd outflow- of heat from the walls. Jn
terms of the dimensionless variables, this heat balance ‘-
bemmes

—

J
1 NILc“——0“k%”o 6*(h*+h’~dx*=l (30)

II, for the.inititd assumption, h*=h’ *= 1 and 8* is constant.,
the folIowing expression is obtained:

(31)

The value of 8“ given by equation (31) is assumed to exist
at alI net points. The appropriate differenceequation at -

points h, c, d, f, and g is (horn equation (18)) ..-
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(32)

where the subscript Orefers to-the point at which the equa-
tion is to be applied and subscripts 1 and 2 refer to adjacent
points. At point a, which is influenced by three points, the
following equation b required:

28**+ L9f*—
[ 1r9.*3+$$ (h* +h’*)A*9 +A*a=N. (33)

At point e, which is a point of symmetry, the folIowing
expression applies:

2od*–
[ 186*2+$$ (h*+h’*)A*’ +A*S=N. (34)

A similar expression applies at point h. With these equa-
tions, the residuals N are calculated at each net point. The
point at which N has the largest absoluto value is then
selected and 6* at that point is adjusted so that the residual
vanishes, The effect of this adjustment on the residuals at
adjacent points is calculated with the aid of the appropriate
finitedifference equation.

The process’ is repeated for the point at which the next
largest value of the residual appears. Eventually, if the.
process is rep~ated often enough, the residuals at all net
pointe approac~ zero. The final adjusted values of O* then
satisfy the appropriate equations at all net points.

Thwe values of 6* should also satisfy the heat balance M
given by equation (3o). This equation can therefore bo
used to check the validity of the final temperature distribu-
tion, If the check is unsatisfactory, it is necessary ta
continue the solution of the fiitediilerence equations by
using a smaIIernet spacing.

The same heit+wchanger ccnfigura.tionis now investigated
without making the assumption that the wall thickness is
smaI1. The two-dimensional equations are therefore applied.
An enlarged view of the shaded portion of figure 9 is shown
in figure 12. The Iines ~, ~, and ~ are lines of sym-
metry, and there is no flow of heat acmes these lines. The
tempemture distribution along line ~F will be symmetric
about point E; but there wiU be a flow of heat acrow this
line. A ~argenumber of net points are selected to rover the,
entire section of the configuration shown in figure 12. (Only

k~” n
“

E D

Fmurm lZ—Relaxationnet forrwhmgdarthiok-walkdMatexchangw.

a few of the-sepoints are presented in tlm fig.) An initial
value for the temperature along lines ~ and ~ is obttiimxl

I by setting up a balance between the total hmt prcduccd
&thin tie s~ction and the flow of heat to the ‘gas. h
terms of the dimensionless variables, this heat Manco
becomw

(35)

Ifj for the initial assumption, A*= 1 and O* is constant.,
then the following expression for 8* is obtainccl:

~ A* i??=— —
4 ivu (36)

It can now be assumed thaL the temperature as given by
equation (36) exists along the surface of the wall ml that
a somewhat higher temperature exists at inturnrd points.
The assumed t~mperatuies me then adjusted
the relaxation method.

The appropriate finitedifference equation
points, such a9 point e, is written se follows:

0~*+t9r*+t?**+t?~*-48, +A*’=N,

by m&ms of

for inlcrnal

(37)

For pok”ti along the boundary, such m point b, tho equation
is

19=*+I?,*+ (?C*—ea*(3+% hb”A*
)

+A*’=N, (38)

and for points on a line of symmetly, such as poinljj

6.*+ 2e.*+ ef*—49r*+A*1=Nf (39)

The appropriate equation for points along DEF can be
determined by taking advantage of the antis~met ry about
this line. At point k, for instance, tho equation bccomcs

Expressions of the type (37) to (40) apply at tillnet points.
The method of determining the actual Lempmaturcdistribu-
tion is the same as the. method outlined in the prvvious
section.

The 6.nal Wnperatum along tho surfaco of th{~wall can
be checked with the aid of equation (36). If the chock
is unsatisfactory, a finer net spacing is required. --

RESULTS — —

one-dimensional solution,-The one-dimensional aolution
was applied to heat exchangers composed of rcctrmguhw and
trianguktrpassages, respf3ctive1y. In each caso the passages
-werestaggered in order t.o minimize tho oxpmtcd hot spots.

The rectangular configuration is represented by figuro 10.
The height-to-width ratio of each passago in this ccntigura-
tion is 1 to 5. F~e 1 reprcwentsh triangular cOnf~ura-
tion. Each passage in this con6guration is an iscscclcs
right triangle.
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Fmu= 13.-TemP?Wnredfstrfbutfonforpa=ageofM- ~ ~t -W
(Eg.1).

It has previously been stated that,for each con@urat-ion,

the temperature distributionin the passage wallsisa function

onIy of the parameter Nu/s*k*. Accordingly, temperature
distributions were wdcula.tedfor several values of this param-
eter, ranging from 0.1 to 100. This range of values is
beheved to include all vskes actuaILyencountered. .

Temperature distributions were calculated according to the
method outlined in the previous section of this report and
were then checlied by equation (30). ImxI rates of heat
transfer q*=h*13* were calculated for this purpose. Accord-
ing to equation (3o), the meamvalue of g* when muhiplied
by 2iVu/k*s* should equal 1. Because the finite-difference
method of solution is essentially an approximate method, the
results were not expected to be exact. AU restits pres~ted
in this section of the report, however, were held to an mror
of has than 6 percent. The final temperatures were multi-
plied by a constant scaIe factor in order to satisfy equation
(30) exactly.

Temperature distributions and local rates of heat transfer
are presented for the tianguhr heat exchanger in figures 13
and 14 and for the rectmgdax heat exchanger in figyres 15

and 16. In the temperature plots (@s. 13 and 15), the
termper@re Mfarence (t—T~) is referred to the temperature
di#erence (t– T,), for a thin--walledcircdar tube with the
wune hydraulic diameter and an internally heated wall wit-h
the same physicaI properties. The temparatnre dMermce
for the circdm tube is given in the nondimensional form by
equation (31). SimiIarIy, the ordinate in figures 14 and 16
refers the rate of heat transfer q to the rate of heat transfer
from the wall of a thin circuhw tube q.. It ia believed that

/.6 [.2 .8 .4 0 .4 .8 /.2 ?.6 2!0
Lcngfh rofia x*-x/D

.. ...
.-—
—

—
—

—.

—
—

—

-.

.-. .

.
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FIOUEB15,—Temperaturedistributlorrfor FW.rsngaof thfn-mdledrectmgukr heat exchanger
(0.g.10).

the interpretation of the temperature and heat-transfer
curves is simpMe.d by this iinal change of ordinates. Tem-
perature distributions for the triangular configuration are
shown in @e 13, TheW curves are presented for values
of iVu/s*k* of 0.1, 1.0, 10, and 100. As was expected, the
temperatures :peak near the corners of” the passage. The
hugest temperature differences are encountered for krge
values of the parameter Nu/s*k*. A large value of this
parameter indicates a low conductivity of the wall material
or a smaI.Iviall thickness. Both of these conditions are
conducive to low rates of heat exchange within the wall.
Local rates of heat transfer corresponding to the temperature
distributions just discussed are presented in figure 14.

Temperature and heaktransfer curvas for the rectangular
configuration are shown in figures 15 and 16. The results for
this configuration are similar to those for the triangdar
configuration.

In order to determine when the one-dimensional solution
can be used, it is necessary to obtain some information on
the temperature ditlerence that exists across the passage
walIs on normals to the surfaces and to compare this tem-
perature difference with the temperature diflmnces a.long
the surfaces. : An estimate of the temperature difference
t?tmacross the waII may be obtained by calculating this value
for a flat plate. The resmltof this calculation is

(41)

The equation can be changed to the dimensionless values
to yield

M=; ~:

This temperature difference can again be
temperature difference (t—TJ. M follows:

(42)

referred to the

.-

S*NU&= 4k*
(43)

The omdmensional solution applies M long as thk valuc is
smaIIas compared with the temperature.dflorcnces prcscntcd
in figures 13 and 15.

Two-dimensional solution,-The two-dimensional solution
for the temperature field within the heat exchanger depends
on two parameters; namely, the climcusiordesswall thickness
S* and the value Nu h*/k*. In addition, the lime rcquirod
to obtain the solution for a special case ia much longer than
for the cme-dimensiorm] solution. Ouly onc cxarnplc was
therefore calculated; namely, the Lwnperatum distribution
withimthe walls of a heat exchanger composed of rcchmgular
passages, as shown in figure 9. Tho ratio of the two sido
lengthsof the rectangle is 1 to 5. The ratio of tho hydraulic
diameter to the short side of this p~ssage is 1.67 and \l!o
dimensionless WWHthickness is 0.0. Figure 17 presents tJ~o
results of the calculation using tho rclasation method with u
network of 88 points. Lines of consta~t ternpcraturo (ieo-
therms) are shown within the porJion of the hcakxchangcr
WWS that is shaded in figure 9, As may bo SCCU,[ho hcat
flow witkiu this wall is mainly in the direction normal b
the wail surfaces. The maximum temperature differences on
any normal to the surface arc not very dflerent from the
vaIue in a ffat plate as calculated in equation (42). The
temperature difierencee aIong the surface of the wall arc

-..

.
Length rai~ z’=xJD

FIOURE16.-LucPJreteofhwttrau[erfromP-ge oftfrln-walkdrc@8nguImMatcxcbnn~r
(*.lo).
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-/4

Ft@.unEli.—Edkm9 in fntemdlp heatedValInofthick-wWkdIWbmgUk benterchallger.
(S~~ mu of fk. 9 *m.) NWP, 10.U ratio c1 IICI~arm to W mm, 0.415
S*,o& pfe,1/5.

appreciably wnakr than the temperature differences across
the wall. The values of the one-dimensional solution oannot
therefore be eqected to appIy to this osse. ActualIy, the
temperature d.iilerence found in figure 17 along the surface
of the mall is considerably greater than for the corresponding
cmdimensional case. In addition, heat k.generated tithin
the corner mea of the rectanguk-wall cordiguration and has
to be conducted away aIong comparatively long paths. An
additional temperature increase c= therefore be found
tithin this corner area.

CO~CLUSIOM

A method to cdcdate the temperature distribution in a
heat exchanger composed of noncircuk flow passages with
internally heated walls has been prmented.

I.mal heat-transfer coefficients rdong the circumference of
the heat-changer passages -were obtained from flow
measurements made by hWcuradse, assuming similarity be-
tween the -reIocity and temperature fields. The heat-transfer
coefficients, as determined in this manner, decrease shaxply
near the corners of the passages and vtmish at the corners.
Tbie decrease becomes more pronounced as the corner angle

APPENDIX

SOLUTION BY RUNGE-KUTTA METHOD

Equation (16) is of the following form:

g.–f(zq d+ 1=0 (Al)

The boundary conditions me

‘d@
()Z* p=.

=0

dp
(–)dz* ..4

=0
}

—--- - -- —-=

is increased. Near the corners these coefficients are es-
sentially influenced only by the magnitude of the included ‘~~
angle of the corner.

It was shown that the dimetionlees temperature dkhibu- “=”-
tion within the passage walk depends on a single parameter,
provided the dimensionless-wrdlthickness is end. Nueri-., ~-~
ml evaluations for triangg- and rectmguhu--passage cm-
flggations for a wide range of the aforementioned parameter
were cmried out. TIM results of these evaluations are pm- —
sented so that temperature differences arising in the walls of ,.~
heat exchangers with the investigated passage shapes for any ‘“-
conclition witi the range of practical interest can be read
off one of several curves. These curves show a temperature ‘“’—
increase near the corners of the passages.” This increfie-”-” =
becomes more pronounced for high INusseltnumbers based ‘~
on the average heat-transfer coticimt, for low wall-thiclaws—.—
ratios, and for low ratios of the conductivity of the wall to
the conductivity of the coohmt.

_—

The dimensionless temperature distribution for t-hiok-
..-—

walled heat exchangers depends on the mdl-thichws ratio
in addition to the property parameter. Because the time ~--
required to calcuIate temperature distributions in the whole” . _
fieId of interest determined by the two parameters is prohibi-
tive, only a specific example vrae evaluated numerically.
The method of calculation is presented in great detail, how- --
ever, so that evaluations for other interesting cases cag be —
carried out.

-. ~
.--a

..—=..--

LEWIS FLIGHTPROPULSIONLABORATORY
~AmoxMI &meoBY CoWrrTTEriI FOR ~EROXAUTICS
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CLEVELAXO,OHIO,OctderJf,1950
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(M)

vdmre a and h are poinb of a-ymnetry.
b gened, a solution of equation (Al) cotdd be obhined

by assuming an initial value of 8* at point a in addition to
the &t of the boundary conditions (A2) and by working the

—.

the solution has to be repeated with a new initiaI value.
This trkil-and-error process is tedious and can be avoided ‘-
by spIitting equation (Al) k such a manner as to keep an
undetermi&d constant c in the solution. This constant is
finally determined by satisfying the second boundary con-
dition. Let

6*= 81*+- CL92* (A3)

gg-f(zq 0,”+1 =0 .-

g&z*) e,”=o

where
e,*(u)=o 13,”(a)=l

solution
gration.

toward point-b using a nu&ericaI m&od of ‘tit+. d8,*
()

de,*
.-..

If the bowrdary candition at point i5is not satisiied, w .=O ()m .=O ——
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Them expressions still satisfy equation (Al) and the fit
of the boundary conditions (Az). After the solutions for
01* and 62*have been numerically obtained, the constant c
is determined so that the boundary condition at point 6 is
fulfilled; thus’

(3,+’($5=0
or

de,*(–)dx” ~
c=— .... ..-.

doz
( *)~b

The final temperature distributkm is given by equation (A3).
The temperature distribution in a thin-walled heat ex-

changer with triangukm passages vr~s calculated iu this
manner (for iVu/s*k*= 10) and was compared with the cor-
responding curve in figure 13. The Runge-Kutta m-ethod
(reference 10) was used for the numerical integration. This
particuhw comparison showed differences of 2.2 percent of
the t.empera~ureratio near the corners of the passages and
smaller deviations elsewhere. The Temperaturecurves are
uncertain to the same order of magnitude, however, because

of the~fieedom ~ the extrapolation of the heat-[ransf m-
coefEcient curves: The simpler rehmation method is there-
fore regarded satisfactory for the present purpose.
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