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Page 663, column 1: h equation (38a), the last
should be corrected as follows:

[ 1-392 + 6..- 4XO(2-+ pa). . .

Page 663, column 2: k equation (38b }, the last
should be corrected as follows:
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Page 665, column 2: U equation (k5c ), the factor 2 preceding the second ,

parenthesis should be deleted; that is, the second term within the
bracket should read

Page 665, cohmm 2: Equation (k6a} should be corrected
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to read as follows:
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EFFECT OF ASPECT RATIO ON THE &Et FORCES AND MOMENTS OF
HARMONICALLY OSCILLATING THIN RECTANGULAR

—

WINGS IN SUPERSONIC POTENTIAL FLOW ‘

By CHARLES E. fiATKLXS

SUMMARY

l%i~ report treats the efect of a8pect ratio on the air force8
and moment8 of an 08ciUating jkt rectangular wing in sup6r-
wmic potential $ow. The linearized relocity potential for the
wing undergoing tinuwidal torsional oscillations e%ultane-
ou81y with 8inusoidaJ .rerticaJ translations -is dericed in the
form of a power series in terms of a frequency parameter. Th6
series derelopmt=nt i~ such that the di$erentiat equation for the
oeiocity potential is satiq$ed to the required power of the fr{-
queney parameter corwidered a:nd the linear bounds-~ condit ion.8
are 8at@ed exactly. I%e method of 8olution can be utilized
for other plan form-that is, plan form8 for which certain
8teady-.!?tatesohItion8 m%?known.

Simple, closed express-ions that include the reduced frequency
to the third power, which is suj%ient for application to a large
class of practicable prob[em8, are gicen for the relocdy potential,
the components of total force and moment coeji.cients, and the
components of chordwise section force and moment coejikients.
T%e components of total force and moment coe@cient8 indicate
the over-all e$ect of a3pect ratio on the8e quanttiie8; houerer,
the component of chordwise coej%ie-nt8 yield more information
becuu8e they account for the 8panun.8e distribution of aerody-
namic !oading of a rectangular un%g and may therefore be
more usefu/for @tter cakuk.tions. It is found that the com-
ponents of force and moment coefficients for a wnaLa8pect-
ratio wing may den-ate considerably fro-m those of an in$n ite-
a8pect-ratio wing. Thidnew e$ect8 which may alter some oj
the conclusions are not taken into account in the anuiysis.
Re81dt8 of some selected ca&u[atwn8 are presented ‘in sermd
figures and di8cus8ed.

INTRODUCTION

The effect of aspect ratio on the singkdegree to~ional
instability of a bite rectangular wing oscillating in a super-
sonic stream was treated in reference 1 by expanding, in
povie.~ of the frequency of oscillation, the linearized velocity
potential developed in reference 2. Since ODIYslow oscilla-
tions were considered pertinent to singb+d&ree torsional
instabi&, terms in the expansion involving the frequency
of oscillation to pormrs higher than the flret -ivere not
considered.

In the present report the expmded linearized -reIoeity
potential is used to study the effect of aspect ratio on the air

forces and moments of tin oscillating, thin, flat, finite, ret=
tangular ring when b&her powers of the bequency of osoilla-
tion are taken into account. The motions considered are _.
sinusoidal torsional osoihtions about. a spantie axis taken
simultaneously with sinusoidal vertical tm~a~ons of ~ .
axis. The ~eIo@y potential is developed by use of sources
and doubIets, sc as to include all powers of the frequency
of oscillations up to any desired power. Simple, closed
expressions are giren for the veiocity potent ial, components
of the total force sad moment coefficients, and components -
of the chordwise section force and moment coefficients invok- . __
ing povrers of the frequency up to ud including the third
po~er. Extension of the results to include higher powers of
the frequency is straightforward.

.l recent publication, reference 3, that became a-wulabIe
after this investigation was completed, is partly de-roted to ‘-
the treatment of a rectangular wing undergoing the same -
types of harmonic motions as those comidered here~ The .—.
reIocity potentiaI is determined in the form of a double
integral, by application of the Fourier trmform to We.. ~“
boundary-due problem for this potential, and expressions
for forces and moments are given in’terms of this double . .
integral. The reduction of the integral expressions of
reference 3 to forms desirable for flutter c.~ctiatio~-that —
is, chordwise section forces and moments—is not gken.

.,
SYMBOLS

4 disturbance--ielocity potential
.’

z~’y,z rectmgular coordinates attached to wing ,
mov”mg in negative z-direction -. –.

5 T rectangular coordinates used to repr~~ent
space location of sources or doublets b
zy-phane

z. function defining mean ordinates of an~ ._
chordwise section of wing such as y=y, m
~wn in figure 1

U??x:yl,t) TerticaI vekity at surface of wing along
chordwiee section at y=yl

ro ‘ abscissa of axk of rotahon of w-kg (elastic
axis) as shown in figure 1

t time
h vertical diapIacement of axis of rotation
ho wtuplitude of vertical displacement of axis

of rotation, positive downward

t Supmdes >-AC.* TX- X6+ YSf?ect of .kwA Ratio on the A& Fcmc?ssnd Momerh of HarmorIImUY OscUWhg Tbh Reclanguhr Wirq?sfn SupersonicPotmtbil FIow” by CMrIes
E. Watkins Iwo.
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angle of attack
amplitude of angdar displacement about

axis of rotdion, positive leading edge up
time derivative of h and a, respectively
velocity of main stream
velocity of sound
free-stream Mach munb.er (V/c)

functions defined with equation (7)
function used to represent space variation

of source and doublet strengths
function used to represent time variation of

source and doublet strengths
frequency of oscillation.-

reduced frequency (wb/V)
R=flJ(q-ql)(q,-q)

..-— .—.

represent functions of Z, x, and M, cletined
in equations (15)

represent functions of x, W, and ;; defined
in equations (19)

function used to denote doublet distribu-
tions (see equation (22)) ‘

function defined in equation (28)
function defined in equation (29)
density
10CSIpr~ure difference mea9yred positive.

downward, dhed ‘in equation (31)
half-chord
half-span
aspect ratio (s/b)

total force actiug on wing defined in equa-
tion (32)

component of total force ccwflicients,
defined in equations (35)

total moment acting on wing, defined in
equation (36)

components of total moment coefficientk,
deiined m equations (38)

section force (total force at any spanwfie
station), defined in equation (39)

components of section force cuef3icient9,
defined in equations (41) and (42)

section moment (total moment at any spm -
wise station), defined in equation (40)

components of sectioD moment coeficienta,
deklnedin equations (43) and (44)

functions reIated to Priand & defhed “ti
appendix

ANALYSIS

BOUNDARY-VALUE PROBLEMS FOR VELOCITY POTENTIALS

Consider a thin flat rec@mguIarwing moving at a constant
supersonic speed in a chordwise direction normal h its lcML
@&e 9? s~m in figure 1. The boundary-value problems
for the Ye.loclty potential for such a wing may bo cunwm-
iently classified into two types associated with tho naturo
of the flow over different portions of. tlm wing. On the
portion of the wing between tho Mach cones emanating from
the foremost point of each tip (region N in fig. 1 (a)) tlwro
is no interaction botwocu tho flow on the upper and lower
surfaces of the wing. The type of bcmndar,y-valuoprolkn

/
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X=b

Axis of
rotation

x-x~

-—-— . —-—- -~
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v

(d I
(a) Plan form (u-plane).

(b] Section pyl (rZ+12rle).

FKUE L-sketoh Illostmdhg chcaenwmrrlha?e -em .rmrJ
a and L

the two dcmw of frccrfom
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for this portion of the wing is referred to herein as “purely
auperaonic” and the wlocity potential for region IV is de-
noted by & On portiona of the wing within the Mach
cones emanating from the foremost point of each tip (regions
Tl, Tz, and T3 in fig. 1 (a)), there is interaction between the
flow on the upper and lower surfaces of the wing. The type
of boundary-value problem for these portions of the wing is
referred to as “mixed supersonic” and the vrJocity potentials
for these regions are designated by +~1,d~z, and ~~a,respec-
tively. The complete -reIocity potential at a point may then
be expressed as h, $Tl j @Tp or +T8 according to the region
that contains the point.

As customary in linear theory, as applied to thin flat sur-
faces, the boundary conditions are to be uMmately satisfied
by the ~elocity potentiak at the projection of the wing onto
a plane (the zy-plane) with respect to which all deflections
are considered smalI and which lies parallel to the free-
strea.m direction. Thickness effects are not taken intu
account; hence, the velocity potentials are associated only
wit-h conditions that yield lift and are consequently anti-
_etrical with respect to the plane of the projected wing.
It is therefore neceswwy to consider the potadials at only
one surface, upper or lower, of the projected vring. The
upper surface is chosen for this analysis.

The differential equation for the propagation of small
disturbances that must be satisbd by the velo,city potentkds
is (when referred to a rectangular coordinate system Z,V,Z
with the ry-phme coincident with the reference plane and
moving uniformly in the negative x-direction, fig. 1)

(1)

The boundary conditions that must be satisfiedby the veloc-
ity potentiaI are: (a) h regiona Tl, T2, T3, and K the flow
must be t~~ent to the surface of the w-ingor

(2)

where 2. is the vertical displacement of the ordinates of the
surface of my chordwise section of the wing (see fig. 1 (b)).
(b) In regions T, and T, the pressme must fall to mm along
the wing tips and remain zero in the portion of the Mach
cones emanating from the foremost points of the iring tips
not occupied by the wing. (Another condition, that the
potential must be zero ahead of the wing and m the region
off the wing adjacent to the Mach cones emanating from
tbe foremost points of the tips, is automatically satisfied
by the type of source and doublet synthesis emplopd in
the solutions.)

.-

For the particular case of a w&u independently per- _
forming smalI sinusoidal tmsicmd oscillations of amplitude
M ~ fiequen~~ ~ about some sp~fie ~ ~0 ~d sma~
sinusoidal vertical translations of amplitude ILJ and fre-
quency u, the equation of Z= is

.-

Z.=ef~’[aJx–zJ+ h~=~z–xJ+h (2) “-

Substituting this expression for Z. into equation (2) gh-es =-

w(x,yl,t)= Va+ci(z-%) +i (4)

The velocity potentiaI may thus be expreesed as the sum _
of separate effects due to position and motion of the -r&g
associated with the individual terms in equation (4) as

#=4a+4i+#i (5)

DZRIVA’HOIS OF +x

The boundary-value problem in the purely supersctic _
region (@. z (a)) is the same as that for the tm-o-dimensiomd
wing treated in reference 4.

—
This problem is there shown to -

be satisfied by a distribution of sources referred to, in this Q-
case, as moving sources bemuse of the uniform motion;
that is.

—

In equation (6), lT(&q) represcmts the space variation of
source strmgth and must be evahated k accordance with . .
the individual terms of equation (4), and d, is the potential
of a movhqg source situated at the point (&nrO]that may be
expressed as

~l=w(t—n)+w(t-rz)
J(n-m)(ww) (7) “

w-herew(t) is the time -mriation of saume strength and the
symboLs with subscripts appearing in equation (7) are
defined as

1/~–g)Lf32&q*=7J–– ~d -----

The time variation of source strength w(t) for haxmonic
osciktions may be mitten as

__—
..—

w(t)= ei”t (8)
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respect to q can be readily performed mci tho remaining
integral evaluated m a series of Bessel functions. (sCc,
for example, reference 4.) However, in order to be Con-
sistent with and to lead naturally to a succeeding part of
the analysis the integrand is expanded into a hfaclaurill’s
series with respect tQ Z. The expansion yields

+.. .
1 1+a.~[nlFm-’+ . . .)+ . . . dvd[ (14)

I

(b)
(a)Purely saperzrmhregion. ‘

(b) Mixed SW@raonforegion.

FICI~m!Z-Skehb f.lfrrstitlng areasC4Inkgraticm for purely ‘euperwmlcrmd mfxed soper-
smlo regionsof flow.

Tho numerator in cquatiori (7) thus becomes

U7(t-rl)+w(t— rz)=e!”(t-’l) +efa(t-d

Substituting equations (7) and (9) into ecluation (6) yields

Yf-(f,q)e ‘f=&-:) cosZ-19Z ?* ( )........_ :~B dqd~
#N(z,y,z,t)= -:

Sfo . w R
(10)

whine, for briefness,

The vahms of W(&n) associated with the different. terms of
equation (4) are

For h

For Va
W(#,q) = Vq

For &(z–xO)
,-

w(&T)=%220(&2’0)

If any of the values of lV(#, q) given in equations (11),
and (13) is put into equation (10), the integration

(11)

(12)

(13)

(12),
with

where the coeflicie~ts a.~ are functions of 3, z, and M;
those coefficients involving Z, up to and including the third
power, arc

,- .
aol=l —izz–yd+$$

.- 8

a12=–2a&

(15)

Observe the following identity that is valid rcgardlcss of the
highest power of Z considered and that wiUbc of subsequent
use, namely

aol+xall+ . . . +2W,II=1 (16) .-
It will G noted in equation (14) that the potential of Dnmv-
ing source when expanded in terms of the frequency appears
as a w“iiiwof terms similar to steady-state source potentials
plus series of terms involving various powers of R. By
grouping the terms in equation (14) with respect to powers
of & the. following form of the source potmtial convenient
for later use is obtained:

+ao~R2=-8+ . . .
)(

+t all~+a@+ . . .

) (+al~R2rn-8+ . . . + . . . +tn a..,$+a.n2R

+ ,.. +a.~~s-a+ . .
‘)+ o ald~d’ ’17)

Withthe terms of the series grouped in this manner, in view
of the fact that the differential equation (1) is independent
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of g, it is appaxent that the coefficient of each power of ~ in
equation (17) is a solution to the dill%rentialequation.

If the values of lT(&tJ in equations (11), (12), and (13)
are put into either equation (14) or equation (17), the inte-
grations of each term can be easily carried out in closed
form. Moremw it can readily be shown that, when all the
terms invohing Z up to a given power are taken into account,
the differential equation (1) is satisfied to the highest power
of Z considered. The boundary condition of tangential
flow as expressed in equation (4) is satisfied exactly and
does not depend on the order of = considered.

Putting the values of W(5,T) in equations (11), (12), and
(13) successively into either equation (14) or equation (17),
carrying out the indicated integration, and setting z=O
yields for the veIocity potential, to the third power of Z at
the uppw surface of the wing, in the pureIy supersonic

where

(18)

(19)

In order to satisfy the boundary-value problem in regions
of mixed supersonic flow it is convenient to start with the
potential of a moving doublet. Then, for a given order of
the frequency of oscillation, this potential, as vdl be shown
in the following analysis, can be modified so that when
integrated over the appropriate region the results wilIsatisfy,
as in the purely supersonic case, the ditTerentialequation to
the given order of the frequency and will satisfy the condi-.
tion of tangential flow exdly. The potentiaI of the type of
doublet required may be obtained by part-id ditlerentiation
of the potential of a moving source (seeintegrand of equation
(17)) with respect to the direction normal to the plane of the
wing, name~y

~(au &a@+. . . +a,.R2m-3+ . . .)-F

.. ( )1.-I-Fa~*~+a,2R+. . .+a~.JFm-3+. . . +. . .

(20)

Examination of equation (20), like equation (17), shows
that the co~cient of each power of 5 satizfies the diHarential
equation and, since the differential equation is Iinear, it is
permissible in synthesizing the solution to the boudary-

~Altho~h the derfvatfcmof thesewtentfak in N.& C.&TN ZJWled to comwt resuh, the
mmcednmfoaowed therefn 19W on ermn20nsargmnemm. The -t procedure fs

oon’ectand E?neml.

value problem to weight these coficients separately.
Furthermore the coficient. of each power of t consists of a
term that has the form of a steady-state doublet potential,
namely

(21)

plus a series of other terms involving various powers of R.
In t-hafolIowing ana.l@s, attention is first directed to the ‘—
treatment. of the first term of the coefficient g’, (expression
(21)). The other terms WWbe treated subsequently.

Expression (21) has the form that in steady flow is con-
venient for treating the (at-asymmetric) problem of satis- _
fying the condition of tangential flow for a distribution of _
normal velocity prescribed, at the wing surface, independent
of v but proportiomd to x’; that is, a weight or distribution
function D,(.f,q) can be detetied so that

~y L(~&,+I); CGdq =mcn
,4 az’ ,

n=(o,l,2,...) (22)

where the region of integration r is the portion of the -U
situated in the fore cone emanating from the field poimt
(z,y,z) (shown in fig. 2(b) for the rectangdar wing with
2=0].

The distribution function D= for rectangular wings maybe
easily determined when Do, the distribution function for this
wing at constant angle of attack in steady supersonic flow, is
known. The expression for DOis derived in reference I and
found to be

From this expression and equation (22) it follows by direct
substitution and reduction that

‘.=’’JT-””l%,(:, MQ)n=n~:(Hm-’Do(h, tJdx

(24)

Vi%h D. known so that equation (22) is satisfied it may be
demonstrated, with use of identity (16), that these “doublet-
type” terms alone satisfy the condition of tangential flow.
For exampIe, let it be required to satisfy this condition for
vertical translations; then,

=k(aol+zall+ . . . +znaEJ=A

The nest step in the analysis is to consider terms of the type

a
~(anm~z”-g) m> 1 (25)

appearirg in the coefficients of ~’ (equation (2o)). It is to be
noted that, when the power of Z to -irhichthe potential is to be
derived is chosen, the number of terms in equation (2o) that -
are to be treated is determined by the expressions an. that
contain ~ ta the chosen order (see equations (15) for Z to the
third power) ~
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If the distribution function D. (equation (24)) is intro-
duced into equation (20) and the resulting equatiou is inte-
grated over the appropriate region of the rectangle (fig. 2(b)),
it is found that in the limit as z+O terms of the type
given in expression (25) do not contribute to the resulting
potential, but they do contribute to the resulting vertical
velocity. Therefore, since it has been shown that the doublet-
type terms, taken alone, satisfy the condition of tangential
flow, the distribution of vertical velocity would now contain
extraneous terms that need to be canceled. This canceling
may be achieved by what is essentially an iterative process:
the functions D. (equation (24)) are used with terms in
equation (20) that have the form given in expression (25) to
calculate the velocity that is to be canceled; then, terms in-
volving I/R that may be individually weightid and w~cb,
of course, must satisfy the differential equation to the order
of Z to which the velocity potential is to be derived are added
tQ equation @O); finally, by making use of equation (22),
weight or distribution functions for these additional terms
may be determined so as to cancel the extraneous velocity.

This process is illustrated for a to the third power as
follows:

where it is noted in the integmnd that two extra terms have
been added to equation (20) to accomplish the desired
cam-ding. Substituting the vrdues of l?T(&q) defined in
equations (11), (12), and (13) into equation (26) gives me
expression for: the velocity potential at the upper surface of
the wing

“l=-&(’I’F’-(’i’+%)F’-%F’]+
[(

;2 .-8~?”~F1–‘~=+~x.—‘a% )
Xz Fz—

1{~ ~3+& (z62–1)~4 +6 2(z–zJF,-

[ .12+2iz@-z0)+&2 (d-–’mo) Fz+

[

~iz /3%’——
~, (x 1—x’) F’a+&2 (2/32+ 1)F4

D

(27)

where the terms are grouped conveniently by the definition
of F. in the following integral:

J r“F8= ‘z”-’ sin-t $ dz (n=l,’, 3,4) (!28)
o

(The functions F=, given in equation (28), and certain
rektted functions are of particular importante in the remaind-
er of this development. Integrated values of this function
for the 6rst few values of n and expressions for related
functions needed htter in this analysis am given in t!lc
appendix.)

Exainination of equation (27) shows that tilong tbo }Iach
line x=dy, separating region TI from region N, tho expression
qh, reduces to the expression for ~~ given in equation (18).

The ‘cimrespohding potentials for regipns Ta and Ts catl.
now be obtained. The potential ~=, is obt.aincd from equa-
tion (27) by merely substituting 2s–y for yin equation (28)
so that

The potential in region T8 (that is for 1S A13<2) is a simplr
superposition of the potentials for regions N, T1, and Ts, as
in the steady case (see, for example, reference 5), and may bc
Writti as

+T8= #T,+ @T2–dN (30)

FORCES AND MO.MENTS

Two types of force and moment coefficients aro dcriw’d.
First, in order to gain some insight into the over-all eflect of
aspect ratio cm the forces and moments, mqmssions for total
force and moment coefficicmtsaro derived. Thcm, in or(irr
to present expressions that are moro suitable for usc in
flutter calculations, expressionsfor section form and momcnb
coefficients for any station along tho span are dcrivd.

Total forces and moments.—The local pressure diflmrncc
between the upper and lower surfaces on the wing may be
written

“=-2’(%+”3 (31)

In order to derive expressions for total forces aml total
momenta, it is only necessary to consider the velocity
potential in two regions-either regions 37 and TI or regions
N and T2. Therefore the exprewion for the total forcr,
positive downward, on the wing may be written as

F=-2 SS~ApNdydx–2
u

‘APT, dy dx
T1

(32)

where ApN is to be calculated from equation (18) and tlw
integrations in the- first term are to be cxtwndml over the
shaded ‘&rtion of region N shown in flgurc 2 (a], and w]wrc
APT1is to be cdcuIated from equation (27) and the integra-
tions in the second term are to be extended over region Tl,
(The integrations in the fit term are simple and may bc
performed by inspection. Those in the second term may be
readily performed by making use of the relations given in
the appendix.)
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.kfter the indicated integrations have been performed and
all position coordinates involved have been referred to ~e
chord 2fi (but the original coordinate symboIa maintained),
the results mu be mitten M

where the reduced frequency k is related to OJand ~ by the
relations

(34]

and where

1
~ [(3192+4)+ 4/9’Gl(2+I!m]

}
(35C)

r’=+ L6’-l-2P’xJ+~ (5+/92 +12 B2J%J”t

1
[
~z

.%?%
~A ~.k ( + 3p2xo)–~ (8+4132+20/S2xO+5F%) 1

(35d)

The quantities ~t (i= 1,2, 3,4) me the in-phase and out-of-
phaee components of the total force coefficients, Z and ~
being the in-phase and Z and ~~ being the out-of-phase
components. It wilI be noted that Z and Z are associated
only -with vertical translations of the wing and me inde-
pendent of mis-cf-rotation Iocation Zo. The components
G and ~. are associated with angular position and rotation
of the -wing about any ati Z=XO and depend partly on the
location of *O.

The total moment, positive clockwise, on the wing about
the arbitrary axis of rotation X=x. is

Z.–2 SS SS~(x–xJApNdydx-2 ~1 (x–xo)ApT1dg dx

(36)

If steps simiiar to those required to obtain equation (33)
are performed, there is obtained

Z=–8pb8V’k2Ae{ut
[

* (Z+im +CYJ~+imJ 1
(37)

where

(38a)

.,—

~{&(2–3#$! [4(J9+4) (4–5ZJ1], (38h)
..

{+AE&z–W-+, [4(4+ 3f?2)+5q(3134+3 /3’–4)– ---

~:(20+4&-25xo+40 @’xo-60f/’xo’)+

{

11—— .
3A fl’k [3+4~o(~’–l)–6@ro’]_

~8[20(2+j3~-24,0(2 -3 f1’-~~-30f?2X/(4 +&)]]

(38d)

The quantities E ancl E are, respectively, the in-phase and
out-of-phase components of total moment coefficients about
the asis Z=zo associated with vertical trandations of the
wing; E and E are the corresponding components due to
angular position and rotation of the -wingabout XYXO.

It is of interest to note in equations (35) and (38) that the-” —
components ~ and ~ do not in-robe the reduced frequency –”
k. The effect of frequency on these tmo components comes
from terms involving the frequency to the fourth and higher
powers; but for values of k thought Iikely to be encotmtired
in supersonic flutter (k<O. 1), the contzl%ut.ionof thesehigher-
po-werterms to any of the components in equations (35) and
(38) is, for the most.part, negligible.

Section forces and moments.—The section for- and. _
moments at any spamvise station are derived by integrating
the pressure difference along the chord for the forces and the _,
pressure difference multiplied by a moment arm for the
moments. Since the distribution over the entire wing &
symmetrical vi-ithregard to the mklspan section, it is only
necessary b derive e.xpressionefor the forces and moments
at any station of the half-span adjacent to the origin. (See
figs. 1, 2, and 3.)

Under the restrictions previo~y stipulated, two cases .
that can arise are considered (see ~. 3): (1) the Mach lines
from the tips do not intersect on the wing (or AP>2), and
(2) the Mach lines intersect on the wing but the Mach line
from one tip does not intersect the opposite tip ahead of the
trailing edge (or 1sA.13=2). OnIy the final forms of the
section force and moment equations are given. These
forms axe easily calculated by deriving the pressure diilerence
for the diflerent regions from the appropriate velocity
potential, making use of figure 3 to determine the limits of
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intigration for the regions involved, and using the relations
given in the appendix to carry out the more troublesome
integrations. The int~ated expression for any region can
then be reduced to the forms

[
‘O L,+i~)+ tYO(La+&)P= —4P bVzk2e~’” T( 1 (:39)

and

[
‘o Ml+ {M,)+-cq (M,+ W)Ma= —4P bgVskzeiWt 3( 1 (40)

where the position coordinates are referred to the chord
length 26.

The components of force and moment coefiicieuts for h
half-span adjacent to the origin are as follows:

Case 1 (see fig..3 (a)): For any section between the tip
and the point where the Mach line intersects the trailing

.
edge, or where O<y<~, the components of section force

coefficients are

(41a)

(41b)

(41C)

where f, (n=l, 2, 3, 4), given in the appendi.., is obtained
from F. (equation (28)) when z=2b. For any section
between the point where the Mach line intersects the trail-

Aing edge and the midspan, or where ~s ys ~ the compo-
6

nents of section forces me:

L’=&-?&

L=+2-+5 [(3+ifJ2)+tWXol

L4=+ [(fP–1)–2P2zo]+ a#(5+f12+ 12 B2ZO)
J

As a check on the results in equations (41) and (42) the
expressions in equations (41) reduce to those in equations

(42) when y=;.

COMMITTEE FOR AERONAUTICS —

o
s 2s

N

T1
2b Ib

1 ( )\F

x (a)

o
s 2:

N

T1

T3

2S

.

(a) Mach llnesfrom tips do not Intaraeotcmwhg.

(b) Ma& Ilnea from tips lntarwxt on wing but Mach line from me tip dam not lnkraeet
oppmdte tip.

(c) 3ieeb Unee from tl~ ln&eot on wing end Meoh llno trom oue t[p lntc&w~ op&alte
tlp at trafllng dge.

FIGGRE 3.+k@tA u~t~ ~ffmt M~& he l~tIcIns ewountod for In andyeh.

The components of section moment coefficients for cnso I
are as follows:

For O<y< ~,

(43n)

4/92+ 1 = 1~F, (43b)
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[

= ) 4(1–32!0+3.0’) ~,+
ala=+ ~ (F2—ZOF1 —

fir k’ 3

(619’+3P2-l)(E2XO)+4/32Z;(l+219’)~,+
P’

16(1+/3’)#_WW#32+3~4p2
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(43C)

([4 ~ (1 –Z,)%,+* ‘“--~+q+
‘14=FT k

xOFz—

4JPk f 1 4&-2&+ 1)(1 —3zo+3z09+l—3xol~z—~~~t(

(2–4zo+3x$)&~4 (813’+ 462-1)~,+

+ (5p2+ 3)75
1)

(43d)

A
andfor-sys-~

;2

Al,=& (2–3zJ

~’=+ ‘1 –2XJ –*(3–4ZO)

M,=+, (1–2ro)–&5 (3+19’-4xo+4&co–813’xo’)

t“

(44)

M,=% [2(P2-1)-3XO(21? ’-1)+ 66’XOY+

& [4(5 +/9’)+ 5zo(8f12-5)-60/9’zo’]

The wrpressionsin’ equations (43) reduce to those in equa-

tions when y=;. The expressions in equations (42) and

(44) correspond to the more exact two-dimtiomd compo-
nents of force and moment coefficients derived in reference 4.
For values of k<O.1 these expressions -yield, for t-hemost
part, ~alues that are in good agreement with those that
may be calculated from the tables in reference 4.

Case 2 (see Qm.3 (b)): For any section between the tip
at y=O and the point where the Mach line horn the tip at

( )
y= 28 intersects the trailing edge or where 0< y 5 A–; J

the components of section force coefficients are gken by
equations (41) and the components of section moment co-
efficients, by equation (43). For any section between the
point where the Mach line from the tip at y= 2s intersects

)
the trailing edge and the midspan ( or where A-;<ys # ~

the components of section force coefficients are

L1=-{;[(F*+31)-~ (~2+:2)]+$} (4~~)

L=;{; (R+ a+$b ‘–1)(~,+ @-3&(&_ 5J]~-

(

1 Wk

)
———
~k 135

(45b)

!?1.3687--5848
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FIOVRE 4~Components of total form coatW!onts as functions rA M for ZO-O.4, k-O.02, and
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For the limiting condition of ease 2—that is, when the
Mach line from one tlp intersects the opposite tip at the

trailing edge, or A=~ (see ~.g. 3 (c))—thq components of
B

Sectioa force coefficients are given by equations (45) aud
the corresponding components of moment cueflicients, by
equations (46).

SOME PARTICULAR CALCULATIONS AND DISCUSSIONS

From the expressions for total force and moment. co-
efficients (equations (35) and (38), respectively) the over-all
effect of aspect ratio on the magnitude of the forces and
moments can be calculated for particular values of the
paramelws M, k, ZO,and A. Examination of these equa-
tions shows that varying some of the parameters might
cause some terms in the equations to vanish and to change
sign. For example, if r. is continuously increased from some
value less than 1/2 to some value greater than 1/2, the first

terms in the expressions for Z and % vanish at xO=~ and

48 T
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.
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b
24 \
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\- ,.\. .- .——- —.. -->

. .
/2 ~ . —.,- .—

-.

(b)

8J 2 3 4 7..’”

W

(b) ~.

FIGURE 4.—CMlthUCd.

change sign when q becomes greatw than 1/2. h particular,
decreasing the aspec~ ratio decreases tl~mm_~onents of force
and moment coefficients ~, LT, ~, Ml, & and=fi~ but
increases the two importaut components L4 and Mi.

A1though the effect of aspect ratio may chango considerably
with ordy a small change in any cme(or more) of the prwam-
eters M, k, and Zo, some insight into whab the over-all
effect might be can be gained from calculations of all the
components of total force and moment coefficients for various
values of M and A and fixeclva~ues of the parameters k and
%. KXiilts of such a Set of calculations are prcsentml in
figures 4 to 7,

In Qurcs -4 and” 5 the components of total force and
moment coefficients for various values of A and for ro= 0.4
ancl k=o.02 are plottid &sfunctions of M*. Tho curves in
these figures calculated for infinite aspect ratio corrcspoml
to the two-dimensional results of reference 4. Tho dashed
curves represent calculations for aspect ratio and Jlach
numbei “combinations that cause the Alach lines from one
tip to intersect the opposite tip at the trailing edge so that
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along the dashed curves the ~pect ratio is not constant but
varies with Alz according to the previously given expression

The difference, at. any value of Lfz, betvieen the dashed
curves and the curves corre~qmnclingto infl.niteaspect ratio
in figures 4 and 5 is, therefore, for the chosen values of
k and ZO,the maximum effect of aspect ratio on the com-
ponents of total force and moment coefficients for a rec-
tangular wing under the restrictions of the foregoing amdyais.
It will be noted in figures 4 and 5 that, where the aspect
ratio is smsX, the deviation of the three-dimensional results
from two-dimensional results may be quite large.

In figures 6 and 7 the components of the total force ~d
moment coe.fficierits are plotted as functions of aspect ratio
for XO=0.4, k= O.02, and some
will be noted in these figures
force and moment coefficients

particuhr ~alues of 31. It
that aII the components of
undergo rapid changes with

24

16 ,- -- --- ___
/ -- .

-- -_/

‘-- --4-$I
8

0

~

-8

L-16 / ------6

-24
/l

(4
-32/

2 3“ 4 5“6 7
A.@

cd)35.
FIG~E L—Concluded, ---

—..

respect to wir~~~ aspect ratio vihen A becomes lees than
4 or 5. lt maybe remarked that the directions of the changes
with respect to aspect ratio appear to be such that they would
have favorable effects on the flutter characteristics of a wing.

The spanwise distribution of the components of section
force ancl momcmt coefficients computed from equations (41)
to (M) for ~=4, 20=0.4, k=o.02, and 1!=2 are plotted
in figures 8 and 9. The portions of the curves b“ these

fiagures corresponding to Talues of y in the range ~~y~ A–;

are the two-dimensiomd values, and the effect of aspect ratio

may be noted io the tip regions, Osys; and ~—~sy 5-4,

as deviations from these two-dimensional values.
In conclusion, it may be stated that, in regard to the

effect of aspect ratio on supersonic flutter, u important itern
that hm not been discussed herein but cm be studied for any
particular case with the aid of equations (33) and (36)
is the change in center of pressure, associated with prescribed
motions of the wing, wit-h change b aspect ratio. A-n
investigation to fid the effect that thickness might have
on the center-of-pressure location is also needed. An
extension of the foregoing malysis to include the effect of an
aileron as an additiond degree of fre~dom viould follow
in a straightforward mmmer.

L&XGLEYAERONAUTICALLABORATORY,
h~.vrtoh’mADVMORYCO~WIWEEFORhRO~A~ICS,

LAXGLE~FIELD,VA., January 6, 1960.
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APPENDIX

SOME INTEGRATED VALUES OF Fm,Gs,~=ja=, AND OTHER RELATED FUNCTIONS

Values of F. and G. ,—The valucs of the functioti F. (equation (!%))” and ‘Gm(equation (29)) for the firsl few vrdu& “

.

—.

,. -=

—.

--

F _35x4+40fiyx3+ 48~zy2X2+64fiayaX+l 28 fi4y4
6— 1575 I’PY(X —13Y)+; sin-l ~~x

.. ---

‘----’--““”WV““”””~~u,= ~’p(2s–y) [z–p(2s–y)] +x Sln ..-

.-

—

.-

—.

z +2i9(2~ = Y?11P(2s—Y)[x—P(2s—Y)I+; sin— G,= 6
-’c) ~ “-’-:””””””- “ ::---- ‘--

. . . .. .-.

Q,= 3zs+4f?z(2s-y)+ 8j3*(2s-y)a
45 d

I@(%-y) [&9(2&y)]+: sin-’ ~@;-y)

G,=
5xa+ 6&#(2s-y)+8@2(2s -y)2+ 16/9a(Zs-y)8

140 .F ““” “- -
J19(29—y)[Z—p(!?s-y)] +; &n-1

Gb= 35z4+40z8@(2$-y) +48z*~2(2#-?JV+ 6U~a(2s-j)8+ l28~4(2s-~)4
1575 ~~~(2s-y) [x—@(2#—y)] +$ sin-l

F“

Values of fi. and ~n,—The following expressions define the functions ~n and ~“ appearing in equations (41), (43),
(45), and (46) in the body of the report. In these expressions the variatde y has been referred to tho chord 26; that is

y/2b has been replaced by y and in the expressionsfor ~. the ratio s/b has been replaced by A:

F,=.J-+&’,& “ ‘-”””’ ‘-
y.: .=—

1+W( J-+; sin-~F2= 6
~. ---

3+4L3V+8&y2 ,Fa= 45 Wi%(l –py)+~ sin-l @

F4=
5+6 fly+8~2y2+16~ay8

140 “ 4PY(l–6Y)++sin-l @ ‘“.-

~b=3fj+401.9y+48132yz+ 6413ay8+128&J
1575 4BY(1–BY)-++ Sk-’ JZ

072
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L?4=—5+ 6p(A–y)+8/9~(A- y)~+ 16&(A-y)3
140

~+;sin-1 \m

~ =35 +4013(A-y)+4813’(A-y)’+64/SS(A-y~+128/9TA-y)’
6 1575

+’~+;sk-’ ~-

Some integral re~ations for F. and G..-Some pertinent rntegral relations for F. are RSfollows:

J
z

Fx dx=xFn –Fm~,
o

Jo=zFn dz =: (zZF.q— F,+J

r

,
&Fn dz=+ (z9F. ‘F~~8)

o

Cmresponding integral relations for Q= may be obtained horn these relations by.simply repIacing F by Q.

ktegral relations for ~.,—IntegraI relations for ~n that may be used in calculating total forces snd moments from
sectional forces and moments are as follows:

L

9
4.

3.

4.

5.
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