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REPORT 1060

DETAILED COMPUTATIONAL PROCEDURE FOR DESIGN OF CASCADE BLADES WITH PRE-
SCRIBED VELOCITY DISTRIBUTIONS IN COMPRESSIBLE POTENTIAL FLOWS *

By GEORGD R. CosrELLO, ROBERT L. CuMMings, and Joun T. SINNETTE, Jr.

SUMMARY

A detailed step-by-step computational outline is presented for
the design of two-dimensional cascade blades having a prescribed
velocity distribution on the blade in a potential flow of the usual
compressible fluid. This outline is based on the assumption
that the magnitude of the velocity in the flow of the usual com-
pressible nonviscous fluid is proportional to the magnitude of
the velocity wn the flow of a compressible nonviscous fluid with
linear pressure-volume relation. The computational procedure
includes several ways of adjusting the prescribed velocity to sat-
18fy restrictions imposed by the method. Tables of coefficients
are given for evaluating the necessary integrals, including the
determination of the harmonic conjugate function. Numerical
examples are included.

INTRODUCTION

A method for computing blade profiles with prescribed
velocity distributions based on the assumption that the pres-
sure-volume relation is linear is presented in reference 1.
The method uses the prescribed velocity distribution and
compatible free-stream conditions to determine a mapping
function that transforms an incompressible flow about the
unit circle into an exact compressible flow, with linear pres-
sure-volume relation, about a cascade of blades having the
desired velocity distribution.

In order to apply this method to the design of a cascade
with a given veloeity distribution and free-stream conditions
in a flow of an “actual” fluid (the usual compressible non-
viscous fluid), the relation between the actual fluid and the
fluid with the linear pressure-volume relation must be approx-
imated so that the required velocity distribution and free-
stream conditions for the second fluid may be determined.
In this investigation, which was made at the NACA Lewis
laboratory, the magnitudes of the velocities in the two fluids
are assumed to be proportional and the constant of propor-
tionality is determined by the continuity equation using the
same upstream and downstream flow angles for the two fluids.

By use of this relation, a computational procedure was
developed to obtain the blade profile with a minimum of
effort. The procedure, presented herein, includes the adjust-
ment of the prescribed velocity distribution to satisfy the
restrictions on the mapping function and the numerical
computation of the harmonic conjugate function.

SYMBOLS

The following symbols are used in this report:
A, B, (s, . . . constants

Cs, D
a, b, c constants
C(e®) function of ¢ defined by equation (18)
d spacing of cascade blades
H(e®) function of ¢
H{(e') final values of H(e™)

Im imaginary part

Ig(e) distorted velocity defined by equation (22)

K(6) modified K(6)

k constant determined by mnge of potential

M Mach number

n constant determined by trailing-edge angle of
blade

Q(s) dimensionless velocity on blade in direction of
increasing s

q magnitude of dimensionless velocity (ratio of
velocity to stagnation velocity of sound) for
flow with linear pressure-volume relation

q final value of ¢ after modification of ReH (e)

Re real part

A(ReH) change in ReH (e*)

r ratio of velocities (determined by equation (4))
s arc length along blade measured counterclock-
wise from tail (figs. 1 and 2)

s arc length along final blade shape
U magnitude of dimensionless velocity (ratio of

velocity to stagnation velocity of sound)
for actual fluid
v(8) velocity on unit circle (incompressible flow)
z=x-+y complex variable in cascade plane
a angle of velocity in compressible flow (meas-
ured from positive z-axis)
circulation (positive counterclockwise)
ratio of specific heats
b difference between Re H(e?) and parabola at
half-interval point
¢ including trailing-edge angle of blade

6 circle angle (incompressible flow plane) pos-
itive counterclockwise

1 Supersedes NACA TN 2281, “Detailed Computational Procedure for Design of Cascade Blades With Prescribed Velocity Distributions in Compressible Potential Flows’™ by George R.

Costello, Robert L, Cummings, and John T. Sinnette, Jr., 1951.
989337—52
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A auxiliary function defined by equation (15)
0 density

T variable of integration
@ velocity potential
Subscripts:

¢ compressible flow

) incompressible flow

n leading edge (nose)

t trailing edge (tail)

1 upstream

2 downstream

RELATION BETWEEN FLOWS

In the present problem of designing a cascade, the pre-
scribed conditions are the upstream velocity weis, the
downstream velocity use, and the magnitude of the di-
mensionless velocity on the blade as a function of the arce
length u=wu(s) (see figs. 1 and 2). The upstream and down-
stream velocities are related by the continuity equation

1 1

— =1 —1 =1
<1 —7—9—1 u12>7 %, COS a1=<1——7—94 uf) Uy COS oy (1)

Consequently, only three of the quantities u;, us, «;, and
oy may be assigned, and the fourth is determined by equa-
tion (1).

In utilizing the method of reference 1 to design the cas-
cade, the prescribed conditions are employed to determine
the upstream and downstream velocities and the velocity
distribution on the blade for the fluid with the lincar
pressure-volume relation by assuming that the magnitudes
of the velocities for the two flows are proportional; that is,

g=ru (2)
The constant of proportionality is determined from the
additional assumption that the flows have the same free-
stream directions by substitution of equation (2) in the

<

__/,’\,_4 u,

/

Fieure 1. —Cascade in z-plane.
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FraUre 2.—Preseribed veloeity distribution on cascade blade.

continuity relation for the flow with the linear pressure-
volume relation:

1 1
—=——=— (1 COS = === (3 COS @ (3)
A1Hq) A

Us? COS? aa — U2 €O8% oy
U2 u% (cos® oy —c0s? ay)

.2

4)

7

Hence, the upstream velocity g¢e’®s, the downstream vel-
ocity (e, and the velocity distribution on the blade
q=¢q(s) are now determined for the flow with the linear
pressure-volume relation.

Other approximations to the relation between the two
flows could be used but, with the present cascade inter-
pretation, the upstream and downstream flow angles and the
spacing are the same for the two flows. The two density-
velocity relations are also in good agreement, as shown in
figure 3 where the density-velocity relations are plotted for
w;=0.700 and u,=0.500. When the upstream and down-
stream velocities are equal, the density-velocity relation, as
given by this interpretation, is the same as the density-
velocity relation in the Kdrmdn-Tsien approximation.
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FisUure 3.—Comparison of density-veloeity relations for wi=0. 700 and n2=0. 500.
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DETAILED COMPUTATIONAL PROCEDURE FOR DESIGN OF CASCADE BLADES : 3

NUMERICAL PROCEDURE

After the free-stream conditions and velocity distribution
on the blade are determined for the flow with the linear
pressure-volume relation, the method of reference 1 is used
to obtain the blade shape. In this method, the given
conditions are -used to select an incompressible flow about
the unit circle and to determine the mapping function that
transforms this flow into a compressible flow with the circle
transforming into the desired blade. A detailed procedure
for determining the circle flow and the mapping are given in
the following paragraphs.

FLOW IN CIRCLE PLANE
The velocity potential ¢.(s) and the circulation T, on the
blade are obtained by integrating the prescribed velocity

distribution ¢(s). For this purpose, it is convenicent to
define Q(s) by

Q(S):_(](s) OSSSNH
Q(‘S) - (](Q) Sy S b S 27
then
o= |/ @ i (5)
2
I',= I:) Q@) ds (6)
1.2
0(s) Nose
| - pel$) point
'.
I
.8r ! 3 I
! /
L I .
1 /
A ': /
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F16URE 4.—Velocity and potential distribution for fluid with linear pressure-volume relation.

where the total arc length has been taken equal to 2x.
These integrals are evaluated by Simpson’s rule using suf-
ficient points so as to obtain accurate values of ¢.(s). The
values of ¢.(s) should be plotted on the graph with @(s)
(fig. 4) in order to obtain ¢ casily as a function of the circle
angle later in the computation. The spacing d of the
cascade is given by

d= L.
¢1 8N a;— @ sin o

@

From equation (35) of reference 1, the incompressible
potential function for points on the unit circle may be
written

tan g

_, cos b ,
tanh k +

h &

_, siné
(Im A—Im B)tan™! ﬁﬁlTk+ D (8)

¢.(0)=—2 Re Atanh +UIm A+Im B)tan™!

where D is chosen to make the potential zero at the tail
) N sin ¢

aonali : I -1 Y
stagnation point 8, the angle convention is 2<tan SmhF

tan @

™ . .
<2y and tan™! ~— —- is taken in the same quadrant and the
2 tanh k&

same direction as 8. The values of Re A, Im A, Re B, and
Im B are determined from the free-streamm conditions and
spacing by

’1=q1d lcos ay|

Re s om 1T (9)

Im A=—1+4¢*Re Atana, (10)
ReB=—1[te A (1

Im B=+1+q.2 Re Atan a, (12)

The value of the constant k is determined by the condition
that the potential range on the circle is equal to the potential
range on the blade:

905(27")-‘¢c(871):§°i(61+27r)—Spi(en) (1 3)

The proper value of k is computed by assuming a value for k
and computing the stagnation points 6, and 6, which are
the roots of the equation

—({Im A+Im B)sinh k

sin (04N ="""9"R, A sec x (14)
where \ is given by
A=tan~! (Im A_QII';;—-I;) @IL@ (15)
™ T
—3<r<3
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and then determining the value of ¢;(6,-+27)—(6,). This
process is repeated for different assumed values of £ to ob-
tainaplot of ¢;(6,+27)— ¢:(8,) as a function of k. The valueof
k satisfying equation (13) is then obtained by interpolation.
A computational outline of this process for use with a desk
calculator is given in table I, in which the usual column op-
erations are written as lines.

When % has been determined, the flow about the circle
is known with the value of the potential on the circle given
by equation (8) and the velocity on the circle given by

)_4 Re A cosh k sec A
20 =—osh 2k —cos 26

I:sin (842)—sin (0,2—1—)\)] (16)
A computational outline for »(8) and ¢;(8) based on 80 points
is given in table II, lines 1 to 19.

DETERMINATION OF MAPPING FUNCTION

The mapping function (equation (62), reference 1) may be
written in the form

_ f4 2> —v(0)*@2 cosh 2k —2 cos 29) ' (” S+ontanct (SEF) de
4 g, €4/2 cosh 2k—2 cos 26
17

where

a1= [2 — 92 cos (91 — 6)] n/2q [Re C(eif)4-(2 cosh 2k—2 cos 20) Re Fl(e:8)]

ga=n (ﬁ—gd>+1m Ce*)+(2 cosh 2k —2 cos 26)Im H (e

and

n=1-—-
™

where ¢ is the trailing-edge angle of the blade in radians.
The mapping function is completely determined when
Re C(e®®), Im C(e®*), Re H(e®), and Im H(e*) are known.

Determination of Re C(e?) and Im C(e?).—The function
C(e®) is defined by equation (44) (reference 1) and may be
written in the form

Ae‘“1+k(1+w/—+91)
AR

—Be"“z“(lJmW)
(1+e' Mg,

Cle)y== (1—}—6’" ”’)1 +

—(1 —ef % In

3 (18)

Hence Re C(e®) and Im C(e®) are obtained by taking the real
and imaginary parts of equation (18):

ReC(e?)== [(03—{— Cy) e (Cs— Cy) cos 6+ e*(C;— Cp) sin 0] -

(19)

ImO(ew)=%[(05+ 0+ (Cy— C) cos 6—eH(Cy— C)) sin o]
(20)

where
Ci=In {—lj-——— W\/RezA—i—ImzA e[e (2 cosh k—
1

2 cos 49,)]‘"’2;>

T2
Ci—In {—1+—‘/(11ﬂ1\/Re2B+Im"’Be"[e"‘(2 cosh k-

2 cos 6,)] ‘"/2}

@:tan“(%ﬁ j)%— a;—n tan~!

—sm 8,
—cos 0

Cﬁ—tan (Im 13>+a7 n tan- <_ §}9_6l _>+

e -}-cos 6

The quadrants for the arc tangent terms in C; and C; are se-
lected by considering the numerator and the denominator of
the argument as signed quantities and choosing a quadrant
in which the sine has the same sign as the numerator and
the cosine has the same sign as the denominator. For con-
venience, these angles are taken as positive and the resulling
values of C5and (5 are changed by multiples of 27 until |Cj]
and |G| are each less than 2.

Determination of Re H (e).—In order to obtain Re I (e®),
the prescribed velocity along the blade must be determined
as a function of the circle angle ¢g=¢(8). This relation is
obtained from the equality of the potentials at corresponding
points in the two planes. Because @(s) and ¢.(s) are plotted
on the same graph (fig. 4), the magnitude of the prescribed
velocity at a given circle angle ¢ may be found directly by
reading the absolute value of @ (¢g=|Q|) at the abscissa
where ¢.(s) cquals the calculated value of ¢;(6) (table IT,
line 19). The preseribed velocity is thus obtained as a
function of the cirele angle g=q(6).

From cquation (48) (reference 1)

|2(6)]+ 2 cosh 2k —2 cos 26

In Re (*(e”’)Jrlf
o K()[2—2cos(6,—6)]"* 1
ReH(e'¥)=-- 2 cosh 2k —2 cos 26
21
where
2q(0
(= 2900 22)

ESESTCE

Lines 20 to 36 of table Il show the detailed computation for

obtaining Re H(e?), including the evaluation of Re C(e®).
Adjustment of Re H(e").—Restrictions on the mapping

function require that Re H(e*) satisfy the conditions

f " ReH(e®) d6—0 (23)
f " ReH(e")sin 6 d6=0 (24)
f” Re H(e#) cos 6 d—0 (25)
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These integrals are evaluated numerically (in the manner
developed by Dr. Glenn H. Peebles, while at Douglas Air-
craft Co., Inc., in his work on isolated airfoils in incom-
pressible flows) by using a parabolic variation of Re H(e*)
between three consecutive points and integrating analyti-

.. cally... The point spacing used in the examples.of this
" report is an equal spacing of 80 points (designated whole

points and numbered 0, 1, 2, . . . 79) around the circle
beginning with point 0 at §=—180° and continuing around
the circle at 4.5° intervals. Where Re H(e*) has large
fluctuations (usually in the neighborhood of the stagnation
points), the midpoints of these intervals (called half-points)
are also used. The coefficients for evaluating the integral in
equation (23) are the Simpson’s rule coefficients. The
coefficients for the integrals in equations (24) and (25),
which are obtained by integrating analytically the product
of the parabolas and sin 0 or cos 6, are given in tables III to
VI. When half-interval spacing is used, it should begin and
end at even-numbered points of the original 80 points and
the integration coeflicient to be used at the beginning (or
ending) even-numbered point is onc-half the sum of the
whole-point coefficient and the half-point coefficient at that
point.

If the values of Re II(e?) from equation (21) do not satisfy
equations (23), (24), and (25), the velocity distribution
chosen is incompatible with the chosen free-stream conditions
and must be modified to make these integrals zero. The
most desirable method of modification will depend on the
magnitude of the integrals in equations (23), (24), and (25)
and on the featurces of the original prescribed conditions that
are to be preserved. Usually the original free-stream con-
ditions are retained and the veloeity distribution is modified.
When the integrals are large, however, changing the circle
flow may be desirable in order to minimize the changes in
the cssential characteristics of the original velocity distribu-
tion (such as limits on maximum velocity, diffusion rate,
and so forth).

Modification of the circle flow provides essentially one
additional degree of freedom, as can readily be seen from
equations (9), (10), (11), and (12). The strength of the
singularities A and B are determined by the free-stream con-
ditions and the spacing. The range of potential is deter-
mined by the location of the singularities, that is, by the
constant k. Only the ratio of the potential range to the
spacing is important, however, because changing both to-
gether merely changes the dimensions of the cascade by a
scale factor. This additional degree of freedom may be con-
veniently represented by the ratio of arc lengths of the upper
and lower surfaces. Consequently, this ratio has a large in-
fluence on the size of the integrals in equations (23), (24),
and (25). The selection of the ratio may be based on the
ratio for a blade having a similar velocity distribution; or,
in some cases, it may be advantageous to try several ratios
of arc lengths and roughly approximate the integrals using
only 20 points and from these results select the proper ratio
to minimize these integrals. The final adjustment to reduce

these integrals to zero may then be obtained with a fixed
circle flow by adjustment of Re H(e®).

When adjustments are being made in Re H(e®), the change
in profile arc length and profile velocity ¢(6) produced by
these adjustments must be considered. The local arc length
ds corresponding to df will be decreased in the same ratio
that the velocity is increased in order to maintain the same
potential. The change in arc length is automatically ac-
counted for in the final integration for the blade coordinates.
The change in the velocity produced by changing Re H(e%)
by an amount A(Re H) is indicated by the change in the
“distorted” velocity K(9), which is related to q(8) by equa-
tion (22) (fig. 5). The changed value, denoted by K (6), is
given by

I?(O) =K () ¢~ (2 cosh 26—2 cos 20) A 2e H) (26)

Making a change in Ke H(e®) therefore has the effect of mul-
tiplying the distorted velocity by a factor. This factor varies
widely with the circle angle and produces the smallest change
in K(8) at =4 or §=0 and the largest change at = +=/2.
Hence, for a given percentage change in K(9), the greatest
values of A(Re H) oceur near 6= 4+ or §=0. The effect of
k on these values of A(Re H) for a given ratio of I~{(0)/K(0)
is shown in figure 6.

Consequently, for small values of the integrals in equations
(23), (24), and (25), complete adjustment can frequently be
made by merely changing the slope of the distorted velocity
K(8) at the stagnation points. The changes in the integrals
produced by this change in slope are given by

f " A(ReID do
fﬂ A(fle H) sin 6 d6

f " A(Re H) cos 6 d6

2

/

o 2 4 6 8 7] 2 2] 7
qre)

Ficure 5.—Distorted velocity K(6) as function of g(6).
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where A(ReH) is determined from equation (26). These
changes in slope are effective in eliminating or reducing
S Re H(e?®) do and S"Re H(e*) cos 6 df. (See figs. 6 and 7.)

Another method for adjusting Re H(e?) is to use a multi-
plier on the entire velocity distribution; that is,

K(6) =e~K(6)
then ,

a
ABe D)= o5 cos 20

and’

f_ A(Re H) do=—3"
J'r A(Re H) sin 8 d§=0

f" A(Re ) cos 6 d9—0

Changes in the sine and cosine integrals may be obtained
by using different multipliers over the upper and lower
surfaces:

KO)=K@es  §,<0<0,

K@O=K@e:  §,<0<0,+2r

then

o 6,<6<0,

A(ReI—D=2 cosh 2k —2 cos 26

ay
2<0<560,+2
2 cosh 2/ —2 cos 26 0, <00+ 27

AReH)=

and

x o a, . ta}lﬁ? >an
.f—,rA (Re F)d 6= 2 sinh 2k tan tanh % /o, +
tan 6 >”t+2"

-1 b
tan tanh k /e

(semior
2 sinh 2k
rr A(ReH)sin 6 d(i——(——g'—_ tanh ! ‘C.O.S_Q)G”
Jow n ~ \4coshk cosh k /o,

cos 8 0,+2r

_y Cos §
(4 cos sh T tanh cosh & /e

, sin 6
sinh k /s,

sin 6 >” 2w

v _ ay _
f_WA (Re H) cos d"—<—”—4 A tan

@, .
(Zfsinh F T Gnh
These integrals may be easily evaluated because the inverse
trigonometrie functions all enter into the computation of
¢i(#) and have been calculated in the determination of %.
A possibility for making small adjustments in Re H(e¥) is
to use a multiplier that is a simple function of 6, such as

I%(a) :K(G) g~ (atbcosgtcsing

then
; a+b cos 8+csin 6
A (Re H)= 2 cosh 2% —2 cos 20
and
f_ A (Le H) da:sin(i:rﬂf

(1 — tanh k)

..:

f A(ReH) sin 0 do=

" AMRel _ br(l—tanh k)
S atern conodo=2 S,

Various combinations of these methods for adjustment of
e H(e®) have been used in the illustrative examples of this
report.

After the adjustments in Re H(e®) have been made, the
{inal values should be checked in equations (23), (24), and
(25), as indicated in table II, lines 42, 43, and 44. At this
time, IZ(B) should be computed in order to determine whether
]:’(0)<2, as required by part (d) of equation (5), reference 1.
If 1%(0) does not satisfy this inequality, a different modifi-
cation of Re I7(¢%*) is necessary.

x4

’ s "

= =30 /L

-8 -90 0 80 /80

FIGURE 6.~ A(Re 1) as function of k and 8 for ratio of distorted velocities A (0)/E(6) =0.950.
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FIGURE 7.—Products A(Re I1) cos 8 and A(Re 1) sin 0 for £=0.20 and for FK(0)/K(6) =0.950.
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The final values of Re H(e%) and §(8) should be plotted in
order to insure that no excessive fluctuations have becn
introduced. At this time, ¢(8) should be compared with the
original ¢(8) to malke certain that the velocity has not been
changed beybnd acceptable limits. Because the potential

~ range is fixed, these changes will change. the arc length. - If
desired, §(6) may be obtained as a function of the new arc

Iength § by
1O=TEI=1(D

and
~ ® v (8 .
s(e)zﬁl ;(03' Ao 0,<6<6,+2x
The values of ‘—%E—Z))‘ are given in table 11, line 50.

Computation of Im H(e®).—When Re (e*®) satisfying all
requirements has been obtained, the computation of the
conjugate function Imf](ei") is done by direct numerical
integration of Poisson’s integral

Im INI(()"")-———;——7r f” Re [NI(ﬂ”) cot T:—(—) dr

on the 80 basic points using an extension ol the method
developed by Dr. Glenn H. Peebles. The integration is
accomplished by replacing Re I7(e% by 40 parabolas on the
80 basic points and integrating analytically the product of
the parabolas and the cotangent term. The two sels of
80 cocflicients so obtained for the integration are given in
tables VII and VIII. (See appendix A for derivation.)
The set in table VII is used for the computation of the con-
jugate at the end points of the parabolas; that is, at the even-
numbered points 0, 2, 4, . . . 78. The set in table VIII
is used for the computation of the conjugate at the odd-
numbered points 1, 3,5, . . . 79. Thus, to obtain I'm f]((a”)
at once of the basie points, for example, point 7, the value of
Re f[(e“’) at this point is multiplied by the first coeflicient
(0.000000) in table VIII, the next value of Ifef](e“’) (at
point 8) is multiplicd by the next coefficient (0.412368),
and so forth, and the sum of these 80 products is the desired
value of I'm f7(e%) at that point. Hence to obtain Im Hieo)
at the 80 points requires 80 such accumulative multiplica-
tions. This computation is done very cfficiently on an elec-
tronic calculating punch using only 415 cards and taking
approximately 2 hours, including the time for key punching
and verifying.

When Re [T (e™) has large fluctuations so that some of the
80 basic intervals are divided by half-points, the preceding
values of ImH (€' must be corrected 1o take into account
the difference between the values of Re H(e') and the basic
parabolas at these half-points. The correction to be added
to the calculation is the harmonic conjugate of these differ-
ences. The coefficients for computing the value of the con-
jugate (at the 80 basic points) of these differences are given
in table IX. (Sec appendix B.) This computation has been
arranged on two concentric disks—the coefficients are carried
by the outer disk and the differences (denoted by &) are
entered on the inner disk in the proper places (fig. 8). It is

Fi6URE 8.—Wheel for computing correction for Im /{(e'0). Indicated setting gives correction
at point 78,

casy to sce where these diflerences will make a significant
contribution to I'm ]~1((1”’) and to obtain the contribution by
accumulative multiplication. This correction is then added
to the calculated results.
COMPUTATION OF BLADE COORDINATES

After the corrected values of the conjugate have been
obtained, the blade coordinates are given by equation (17),
which for convenience of computation may be written in the
parametric form

? {e(@)! in 26
0= f_” ‘gi(;) cos [0+—’25+g2 () —tan~ Ed?;"é:é%] de (27)
¢ o] . sin 260
Y (0):.[_7r ’g—i%' sin [0+%+g2 (6)—tan~! (_—O-S—m] do (28)
where
0 (0)=n <?-+Z‘Te)+1m € (') +(2 cosh 2k —

2 cos 26) Im[—?(e”)

These integrals are evaluated by Simpson’s rule. In order
to obtain sufficient accuracy, use of at least the same number
of points as were used in the evaluation of Re b2 1 (e*) 1is
advised. Because the values for Im H(e?) were calculated
at the 80 basic points only, interpolation of ¢.(8) is necessary
when half-points are used. The values of z(#) and y(6) are
given in table II, lines 70 and 71.

EXAMPLES

Several examples have been computed to illustrate some
of the variety of conditions to which the method may be
readily applied. No attempt has been made to pick the
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best velocity distribution or to obtain the most desirable blade
shape, as to do so would lead to many considerations far
beyond the scope of the present investigation.

In these examples, the adjustment of the prescribed Veloc-
ity altered the arc length slightly. For uniformity, figures
9 to 12, which show the final velocity distribution and blade
shape, were therefore scaled to give an arc length of 2.

Example 1.—For this example of a cascade blade with
low turning and a cusped trailing edge (e=0), the free-stream
conditions were taken as

U1=04:88 a1=170°

U =10.478 as=180°

The velocity distribution prescribed on the blade was the
velocity distribution for an isolated Joukowski airfoil. Ad-
justments to Re H(e™) altered this distribution somewhat
and the resulting blade (which is very similar to a Joukowski
airfoil) and velocity distribution are shown in figure 9.

Example 2.—For an example of an impulse-type blade
with rounded leading and trailing edges (e=w), the free-
stream velocities were assigned the values

u;=0. 555

a1=135°
a2=225°
and the prescribed velocity distribution on the blade was

constant over most of the upper and lower surfaces with
different values on the two surfaces and varied linearly

Yy

d=325
o, =/80°
[ u,=0478

-

14 x Zn

s

FicurE 9.—Final velocity distribution and blade shape for Example 1. Mi1=0.500; ¢=0
(cusped trailing edge).

through the stagnation points. In this example, the expres-
sion for » (equation (4)) is indeterminant and the value of r
was obtained by taking the limit as «, approaches 225°.
In this example, complete adjustment of Re H(e*) was made
by multiplying the velocities on the upper and lower surfaces
by constants. The resulting blade shape and velocity dis-
tribution are shown in figure 10. A smaller nose or tail
radius of curvature could be obtained by increasing the slope
of the velocity distribution through the nose or the tail,
respectively.

Example 3.—The free-strcam velocities chosen for this
example were representative of a compressor stage with

Of1:135°
ay=155°

In order to keep the changes in the prescribed velocity to a
minimum, three ratios of lower surface length to upper surface
length of 0.95, 0.90, and 0.85 were used with the same pre-
scribed velocity distribution (but, of course, different circle
flows) and the integrals in equations (23), (24), and (25) were
quickly approximated using only 20 points. By use of these
results, a ratio that would give the smallest integrals was
chosen (a ratio of 0.93) and the blade shape with rounded
trailing edge (e==) was computed in the usual manner.

<

=264
u,=0.555

L P\
52 e

2,-0.555

L N T T

1
o ” P
s

FIGURE 10.—Final velocity distribution and blade shape for Example 2. M;=0.573; e=»
(rounded trailing edge).
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The blade shape and the velocity distribution are shown in
figure 11 (a). By use of the same circle flow and a change

in g(9), a blade having a 10° trailing-edge angle (E=T7r§> and

similar velocity distribution was obtained (fig. 11 (b)).
Example 4.—In this example of a highly loaded cascade

“blade with a rounded trailing edge (e=w), the free-stream

velocities were

a;=135°
a,=180°

The prescribed velocity distribution, which was similar to
the distribution on a Griffith airfoil, had an abrupt decrease
in value on the upper surface for use with suction. The
blade and velocity distribution are shown in figure 12 (a).
By use of the same circle flow and a change in ¢(6), a blade
having a cusped tail (e=0) and essentially the same velocity
distribution was obtained (fig. 12 (b)).

DISCUSSION

Specification of the trailing-edge angle of the blade requires
that g(s) have a zero of order -2?6_:-6- ats=0and s=2x. Ifthe
prescribed velocity does not go to zero in the proper manner,

y

d=3.28
w,=0.4/7 P .= /550
2

.0

L 1 )
0 x 2n
S

(a) e== (rounded trailing edge).

Re H(e™) will be infinite at §=6,. Fairing Re H(e') smoothly
through =8, and keeping the values finite will, however,
insure obtaining the specified angle at the trailing edge of the
blade. The shape of the blade in the immediate vicinity of
this point will depend on the velocity prescribed in this
vieinity. If desired, the blade shape at the tail can easily
be modified by changing Im H(e®), which changes the angle
of the tangent .to the blade (the angle in equations (27) and -
(28)). The corresponding change in Re H(e%) is computed
from Poisson’s integral with the constant term zero, and
the modification in the velocity is obtained from this change
in Re H(e*). The changein Im H(e*), denoted by A (Im H),
should be chosen to satisfy the following conditions:

f_ A(Im H)d9=0
f_ A(I'm H) cos 8 d9=0

f" A(Im H)sin 6 d9=0

For a prescribed velocity distribution requiring only mod-
crate changes, the blade shape can be obtained in approx-
imately 50 computing hours using 80 points and 4-decimal
accuracy. The time depends, however, on the degree of
familiarity with the method and on the extent of the permis-

d=3.05
wu,=04/7 |-

@, =/55°
\ E\

u, <0583

\<‘a\ =/35°
\ o,

L0

|
g 2 Zn
s

(b) E’:lls (10° trailing-edge angle).

F1GUuRrE 11.—Final velocity distribution and blade shape for Example 3. AM);=0.604.
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y
d-=352
(e, = 180°
4 u,= 0369
u, <0579
\
1.0
u b
! L
0 x 2

s

(@) e=n (rounded trailing edge).

dw”.ﬁﬁ = 180°
<~ ——r'—\_—‘llz <0369
wu,=0.579
e *135°
x
.0
uw 5
1 1
g n zn
s

(b) e=0 (cusped trailing edge).

FIGURE 12.—Final velocity distribution and blade shape for Example 4. M=0.599.

sible modification to the velocity. When several examples
have the same free-stream conditions and cascade spacing,
the time is considerably reduced beeause the cirele flow need
be computed only once.

With the calculation based on a spacing of 80 points with
half-points around the nose and the tail, the method gives
accurate results in all cases in which the parameter k is not
less than 0.10. Experience has shown that for cascades of
moderate stagger and turning £ will usually be greater than
0.10 when the solidity is less than 1. In examples 1, 2, 3,

and 4, the values of £ were 0.2600, 0.1100, 0.2008, and 0.2851
and the solidities were 0.91, 1.01, 0.92, and 0.74, respectively.
In applying the method to other cases, a finer point spacing,
which would require new coefficients for the integrations,
should be used.

Lrwis Frigar ProrursioNn LABORATORY
NATIONAL ADvisorRY CoMMITTEE FOR AERONAUTICS
CLEVELAND, Ouro, August 28, 1950
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APPENDIX A
COEFFICIENTS FOR DETERMINING CONJUGATE FUNCTION

The coefficients for determining Im H(e%) are obtained
by considering the contributions of one of the parabolas to
the conjugate at one of the basic points. The contribution

=+ I"of the (k+41)th parabola through the points Re H(e%=),
: Re H(e*2+1), and Re H(e®x+2) to the conjugate at any
point =6, is given by

1 8,
I—Z_f2L+2[“(0“92k+1)2+b(9—*02k+1)+
Re H (¢'=+1)] cot 2"'" 6

(A1)

where

__Re H(e"%2+2)—2 Re H(e™2e+1) -+ Re H (e!%2)
- 2h2

Rell(e"+2)— [Re I (e'0%)

b= 2h

and 4 is the length of the basic interval. By substituting

Ooppr="0,-+Lh

In equation (A1) and expanding in series, equation (A1) can
be integrated to give

I=R,Rell(ei10-n e,y 4+ .8, Re I](e‘ Uht6,0) |
T, Re H(e! 14+0 w40,1)

where (for /20, 1)

e HOEHO! +1o5(5) Fadas(5) + - 1-

2 (Vi LAV, L+ Va Lo+ .. S+4 (W, L4
WL+ Wy L - - .>}
sin I+ h
S L4 )
sin —— A
h h h h
{ [ ( >+15< 2) *105( 3) *ag35(5 2) ]“L
2 (VILAH- VLAV LS+ . . Y +4 (W L+
WoLi+ WL+ - . .)}
and
tan%
[ =
tan Lh
2

t h | t
V’=< - 2)[ T e ( m; )
(tan—) (tan )

(27+5) 5 (27+7) 7
(tan ) :'
(2]+9) 9

tan g ’ 2<tan h)
W= L WM. 2
’ h 27+1) (254+3) 3

A\ AN
23( tan — id
‘ ~3<t31112) ) 44<tan 2)

@i+ 45 @+n 105 T

ety ]

1575

("1+9)
When (=0,

_’['0: _If():_lﬂ‘_ [1 —_ (h

When /=1,

SO:
1 (h) 2 h)
225 0610(
1 8
42525 2) ]

S, 4<___"__ ke _)
2 36 1350 26,460 425,250

. h? 24t hs 4h8

r=— (5t arstaszo a5t )

and 72, is undefined because the integrand becomes infinite.
The final integration coefficients, denoted by N, N,
"2, . . . are obtained from the preceding values of R,, S,

and I When 6, is an end point of a parabola (m is even),
then
N():O h
Ni=8,
N2=T1+R3 r (A2)
N2j—1:S2.7—1
N2j=T2j—l+R2j+l o

When

where N, is determined by Cauchy’s principal value.
6 1s a midpoint of a parabola (m is odd), then
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NO:SO-:O h
N1=T0+R2
Nz=S, - (A3)

N2j—1=T2j—2+R2j
sz=Szf J

The coefficients for 80 points given in tables VII and VIII
were obtained from equations (A2) and (A3) using A=2x/80.
The coefficients for other point spacings can be obtained from
equations (A2) and (A3) by using the proper value of k.
Because of the symmetry of the coefficients, only half of
them need be calculated.

APPENDIX B

COEFFICIENTS FOR CORRECTION OF CONJUGATE

The coefficients used in the wheel correction are obtained
by determining the contribution of one of the half-point
differences to the conjugate at one of the basic points.
Denoting the contribution of the difference &.+3 (the dif-
ference at §=6.+1) to the conjugate at 6=46,, by I, then

B 41 45 9— m
27r£ [ For} (0—"0,\+;) +5A+1]COt do

which, on substituting
h
6;;+ i = Bm +3+Zh

becomes

(L1 R b1+
I=§1;ﬁ+u, {— *’*[ <9m+ +lh>]+

6,"+%+,}cot 0=t g (B1)

4

Integration of equation (B1) by series expansions gives
(for 1£0)

2

sin ({+41) h
= =2 (E\G+ E.G*+ E;G°+ .. )

1
I:6m+l+% - In

sin 5
where
tan %
= )
and
4 tan ﬁ ’ (tanl—b 23<tvan ]~1>4
I 1 1 i) 1 i)
’ h 2741y 3@2j+3)  (2j+5) 45

h
1 563 <tan Z

44 <tan %)6_'_

(27-+7) 105 (2j+9) 1575
When [=0,
I=5s §<——-—— a0 >
o+ x\47 288 43,200 3,386,880

Consequently, the coefficients for the wheel correction
denoted by Ni, Nty Netd, . . ., are

8< Rt h® . >
Ny=-1{3 288 T 13,200 3,386,880

sin ((+ ]) =
sin E
The coefficients in table IX, which are for 80 points, were
obtained from equation (B2) using A = 2x/80. By use of
other values of & in equation (B2), the coefficients for dif-
ferent point spacings can be obtained. Because of the sym-
metry of the coeflicients, only half of them need be computed.
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Prescribed Velocity Distribution in Compressible Potential Flows.
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TABLE I—OUTLINE FOR COMPUTATION OF k&

QOperation Remarks

1 ! Assume a value of &
21 sinh (1)

cosh (1)
tanh (1)

Im A—Im B

2Re A X @ !

tan‘(l )(a) (6) is A; express in degrees; ~90°<A<(90° |
sec
_Um A4Im B) (2
2Re A [} '
sin-1 (8)
10| ©-6 |
i —(10)— 2(()) 180°
i 12 { (11)+36
13 | sin (10)
14 | cos (10)
tan (10)
sin (12)
cos (12)

(9) is A4-0n; —90°<N+0,<00°
(10) is 8

(11) is 6

(18) + (4 |
(18)+ (4)

25 | tan—t (19) Express in radians; —;7r<(25)<—;L

26 | tan-t (20)

27 | tanh-! (21)
28 | tanh-! (22)
29 | tan-t (23)

30 | tan-! (24)

31 | (Im A~Im B)X[(25) (26)]
32 | —2Re AX[(2T)—

330 (Im A+Im B)X[(29) (30)] !
34 (BD4(32)4-(33) Must cqual ¢ (2n)—¢:(sa) for correct
value of &

| S

Express in radians; —g <(26) <%

Express in radians; same guadrant and
sign as 642

Express in radians; same quadrant and
sign as 6y,
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TABLE II-—-OUTLINE FOR COMPUTATION OF BLADE COORDINATES

Line Operation Remarks Line Operation Remarks
1 Assign values of 0 at 4.5° intervals | Half-points may be added later to these 40 A(Re H) Changes in Re H(e't) to make integrals
2 2 (l:lw)zgmnmg at 0=—=x basie 80 points where necessary . zero; see text
~
3 cos (2) 41 (36)--(40) (41) is Re H(ei%)
4 eosh 2k—(3) *
5 | (4Re A cosh k sec N)+(4) sec A is line 7, table [ 42 f (1 do Must be zero
g ; ( )+ xlslmeﬁ tnbleI —
- mg?) ;S(},'; (64N s(;n (:"'é'” is lino 8, table 3 f" (1) sin 8 dg Must be zero
}(1) sin %13 —x
cos (1
12 tan (1) 44 f " (41) cos 0 d6 Must be zero
sy -
COS
15 (12; ~+tanh k zg —“(30) X(29)
e
16 tan-1 (13) Express in radians;——< (16) <~ 47 (46) X (23) (47) is K(6); must have K()<2
17 tanh=t (14) 2 2 i—garyt (equation (5d), reference 1)
18 tan-! (15) ng)gl:s:s ;n radians; same quadrant and 13 4&7) )(48) (49) is q (a)
19 Im A—Im B, 16)— i
g A (7/7»)+)x( 6) (19)'is $4(0) and «in 0, 50 | 1@+ @ &0 15
(Im A+Im B)X(18)+D =—Um A—Im B) tan-! &0+ sl | (Ci—cnexan
cos 8, 52 (C3—CexX(10) . )
2Re A tanh-! cohE 53 [(05+Ce)+(51)—(52)] +2 (53) is Im C(ei%)
tan 6¢ 54 Uncorrected Im H (eidy Obtained from machine caleulation using
(Im A+Im B) tan-! tanh & - ’ cocflicients in tables VIII and IX -
20 q(8) Obtain by matching potentials 85 Correction for Im H(es®) Obtained from differences between Re F1(e+9)
21 1+(20)2 and parabolas using coefficients from
29 1+ /D table IX
gi 3; (_2?% )— 22) (23) is the distorted velocity J<(6) 56 | (GD(55) " (56) is Im Fl(ein)
25 cos (24) Omit these lines when n=0 57 [(24)'*‘1300])(— (67)=0 when u=0
2% | 2—2(25) | s | EOXG
27 | (26) 2 e (1__6_) 59 | 57.20578 [(58)+(53)]
r 60 | BN+ (59 (60) is g2(6) in degrees
B enxe (28)=(23) when n=0 6 ;g;ﬁ;,k
» ( ) 63 gex) + ((gg))
31 64 An= Express as a positive angle in degrees;
32 I(Q)(]X)(BO) @) quadrant chosen so that sin (64) and cos
33 (Cs—Coyerx (10) (64) have same signs as (61) and (62),
34 (Chi—CyerX(11) o5 (1)+(60)+90°-(64) respectively
35 (¢ C’1+C’4)+(33)+(34)] +2 (35) is Re C(e’?) 6 cos(
36| [32)]—-@5)+k+(29) (36) is Re H(e'd) 67 | sin (65)
a7 . K , 68 (50 X (66)
" (36) do Evaluate by Simpson’s rule 60 (50) X (67)
i 9
70 f (68) do (70) is z(6); evaluate integral by Simpson’s
38 f " (36) sin @ de Evaluate by coeflicients in tables III and —x rule & v P
-r M f ? 60y do
7l y 71) is y(8); evaluate integral by Simpson’
39 f’r (36) cos 0 db. Evaluate by coefficients in tables IV and “r ¢ 1'1)110 v ® ¥ simpson’s !
Y VI | |
T
U S O, R |
TABLE III—WHOLE-POINT COEFFICIENTS FOR SINE TABLE IV—WHOLE-POINT COEFFICIENTS FOR COSINE
INTEGRAL INTEGRAL
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
0 0.00000 [—0.03707 |—0.05242 |--0.03707 | 0.00000 0. 03707 0. 05242 0.03707 0 [—0.05242 1—0.03707 | 0.00000 0. 03707 0.05242 0.03707 0. 00000 |—0. 03707
1| —.00821 | —.07958 | —.10433 | —. . 00821 . 07958 . 10433 06797 1 [ —.10433 | —. 06797 . 00821 . 07958 . 10433 .06797 | —. 00821 | —. 07958
2} —.00820 | —.04241 | —, 05178 | — . 00820 . 04241 .05178 03081 2] —.056178 } —.03081 00820 . 04241 . 05178 .03081 | —. 00820 | —. 04241
3| —.02443 | —.08923 | —.10176 | — 02443 . 08923 10176 . 05468 3 —. 10176 | —. 05468 02443 . 08923 . 10176 .05468 | —, 02443 | —, 08923
4| —.01620 ) —, 04671 | —.04986 | —. 01620 . 04671 . 04986 . 02380 4 [ —.04086 | —. 02380 01620 . 04671 . 04986 -02380 | —.01620 | —. 04671
5| —.04005 | —.09669 | —.09669 | — 04005 . 09669 . 09669 04005 5 | —.09669 | —.04005 . 04005 . 09669 . 09669 . 04005 { —.04005 | —. 09669
6 | —.02380 | —.04986 | —.04671 02380 . 04986 04671 . 01620 6 | —.04671 | —. 01620 . 02380 . 04986 . 04671 .01620 | —. 02380 | —, 04986
7| —.05468 | —.10176 | —.08923 05468 . 10176 08923 . 02443 7| —.08923 | —.02443 05468 . 10176 . 08923 .02443 | —, 05468 | —, 10176
8| —.03081 | —. 05178 | —.04241 | —. 03081 . 05178 04241 00820 8 | —.04241 | —.00820 03081 . 05178 . 04241 .00820 | —.03081 | —, 05178
9| —.06797 | —.10433 | —. 07958 | —. 06797 . 10433 07958 00821 9| —. 07958 | —.00821 06797 . 10433 . 07958 .00821 | —.06797 | —.10433
TABLE V—HALF-POINT COEFFICIENTS FOR SINE TABLE VI—HALF-POINT COEFFICIENTS FOR COSINE
INTEGRAL INTEGRAL
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
0 0. 00000 {—0.01852 (—0.02619 (—0.01852 | 0.00000 | 0.01852 | 0.02619 | 0.01852 0 ~0.02619 [—0.01852 | 0.00000 | 0.01852 | 0.02619 | 0.01852 | 0.00000 |—0.01852
14 |—.00206 | —.03844 | —.05231 ( —.035654 | .00206 . 03844 05231 . 03554 b2 —. 05231 | —.03554 00206 . 03844 . 05231 . 03554 [—.00206 | —. 03844
1 —.00206 | —. 01991 | —. 02611 | —.01701 00206 . 01991 . 02611 . 01701 1 —.02611 [ —.01701 . 00206 . 01991 . 02611 01701 |~—.00206 | —. 01991
114 |—.00615 | —. 04111 | —. 05199 | —. 03241 00615 04111 05199 . 03241 14 —. 05199 | —.03241 . 00815 . 04111 15199 03241 {—.00615 | —.04111
2 —.00410 | —.02119 | —. 02587 | —. 01539 . 00410 02119 02587 . 01539 2 —. 02587 | —.01539 00410 . 02119 02587 01539 |—.00410 | —.02119
213 |—.01021 | —.04353 | —. 05135 | —. 02008 01021 04353 05135 . 02908 214 —. 05135 | —.02908 . 01021 . 04353 05135 . 02008 |—.01021 | —. (04353
3 —. 00611 | —.02233 | —.02547 | —. 01368 00611 02233 02547 . 01368 3 ~.02547 | —. 01368 . 00611 . 02233 02547 01368 |—. 00611 | —. 02233
314 |—.01421 | —.04568 [ —. 06039 | —. 02558 01421 04568 05039 . 02558 313 ~—. 05039 | —. 02558 01421 . 04568 05039 02558 |—.01421 | —. 04568
4 —.00809 | —.02333 | —.02481 | —.01189 00809 . 02333 02491 . 0118y 4 —.02491 | —.01189 00809 .02333 02491 01189 1 —. 00809 | —. 02333
414 [—.01812 | —. 04754 | —. 04912 | —. 02192 01812 04754 . 04912 . 02192 413 —. 04912 | —. 02192 01812 . 04754 04812 02192 | —. 01812 | —. 04754
5 —.01002 | —.02419 | —.02419 | —. 01002 01002 02419 02419 . 01002 5 —. 02419 | —. 01002 01002 . 02419 02419 01002 |—. 01002 | —.02419
514 |—.02192 | —. 04912 | —. 04754 | —. 01812 02192 04912 04754 . 01812 544 —. 04754 | —.01812 02192 . 04912 . 04754 01812 |—. 02192 | ~.04912
6 —.01189 | —. 02491 | —.02333 | —. 00809 01189 02491 . 02333 . 00809 6 —.02333 | ~.00809 01189 . 02491 .02333 00809 [—.01189 | —. 02491
614 |—.02558 | —.05039 { —.04568 | —.01421 . 02558 05039 04568 . 01421 614 —. 04568 | —. 01421 02558 . 05039 04568 01421 |—. 02558 | —. 05039
7 —. 01368 | —.02547 | —.02233 | —. (00611 . 01368 . 02547 02233 . 00611 7 ~.02233 | —.00611 . 01368 02547 . 02233 00611 |—. 01368 | —. 02547
715 1—.02908 | —.05135 | —. 04353 | —. 01021 . 02908 . 05135 04353 . 01021 7Y% —.04353 | —. 01021 . 02908 05135 . 04353 01021 |—.02908 | —. 05135
8 —.01539 | —.02587 | —.02119 | —. 00410 01539 . 02587 . 02119 , 00410 8 —.02119 | —. 00410 01539 02587 02119 00410 [—.01539 | —. 02587
8L 1—.03241 | —. 05199 | —, 04111 | —. 00615 03241 05199 . 04111 . 00615 3% —. 04111 | . 00615 03241 . 05189 04111 . 00615 |—.03241 | —.051990
9 —.01701 | —.02611 | —.01991 | —. 00206 | .01701 . 02611 . 01961 . 00206 9 —. 01991 | —.00206 01701 . 02611 01991 00206 |—.01701 | —. 02611
95 |[—.03554 | —. 05231 | —. 03844 | —. 00206 | .03554 | .05231 | .03844 | .00206 9g | —. —00: 03554 | . 05231 03844 00206 |—. 03554 | —. 05231
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TABLE VII—-COEFFICIENTS FOR CONJUGATE AT EVEN- TABLE VIII—COEFFICIENTS FOR CONJUGATE AT ODD-
NUMBERED POINTS NUMBERED POINTS
0 10 20 30 0 50 60 70 0 10 20 30 40 50 60 70
0 {0.000000 [0.020031 [0.008323 0.003449 | 0.000000 |~0.003449 |—0.008323 |—0. 020031 0 [0.000000 [0.040322 0. 016677 10.006906 | 0.000000 |—0.006906 [—0. 016677 |—0. 040322
1 |'.636402 | 036217 | 015415 | 006151 |—. 000655 | —.007686 | —. 018042 | —. (45294 1|.412368 | .018011 | .007694 | .003072 |~ 000327 | —. 003839 | ~. 008002 | —.022467
2 | 1050356 | 016305 | (007110 | [002706 |—. 000655 | —. 004243 | — 009743 | —. 025472 o | 1223706 | 1032750 | 014242 | 1005417 |—. 001312 | — 008495 | ~ 019528 | —. 051462
3 | '144119 | -020790 | [013146 | .004702 {—. 001973 | —. 000338 | — 021150 | — 050345 3 | [065520 | 012841 | 1006563 | 1002340 |— 000086 | —. 004663 | ~.010554 | —. 029282
4 | .050044 | |Q13568 | {00049 | 001099 |—. 001319 | — 005102 | —. 011449 | —. 034277 4 |.106592 | -027228 | 012115 | [004003 |—. 002641 | —. 030218 | ~. 022960 | —. 059820
5 | 084480 | 02498 | 011141 | 003316 (—. 003316 | — 011141 | — 024968 | — 084480 5| 041111 | (012446 | (005563 | 001657 |—. 001657 | —. 0D5563 | ~. 012446 | —. 041111
6 | 1034277 | (011449 | (005102 | (001319 |—. 001009 | —. 006049 | — 013568 | —. 050944 6 | -0s9820 | -022960 | - 010218 | 1002641 |— 004003 | —. 012115 | — 027228 | —. 106592
7 | 1059345 | (021159 | [009338 | [001073 |—.004702 | —. 013146 | —. 020799 | —. 144110 7 | .020282 | |010554 | - 004663 | . 000986 |—002340 | —. 006563 | —. 014841 | — 065520
8 | [025472 | 000743 | |004243 | . 000633 |—. 002706 | —. 007110 | —.016305 | —. 050356 | 8 | [051462 | (019528 | 008495 | (001312 |— D0BAIT | —. 014242 | ~ (32750 | —. 223705
9 | 1045291 | 018042 | 007086 | .000G55 |— 00G1S1 | —.015415 | —. 36217 | —. 636402 | 9 | .022467 | -009002 | .003830 | 000327 |~003072 | —.00760% | ~. 018011 | — 412368
! : ;
TABLE IN—COEFFICIENTS FOR CORRECTION TO (ON-
JUGATE
| | ‘ |
B 10 l 20 ’ | 40 |50 } 60 L 0
b ‘v‘_ - - —\_ - T T T T '_—_’_—‘-‘;
"0 |0. 630865 |0 Qug0c1 0. 008014 0. 005262 | o.000164 |~0.003545 0. 008069 |~0.021304
BRSO } 007405 | . 002890 | —.000492 | —. 004042 | — 009379 | —. 024049 |
5| 080t | So14e06 | 006840 | 1002525 | — 000821 | — 004455 | —. 010156 | —. 027496
3| 060498 | C014222 | Z006309 | 1002175 | — 001153 | —. 004885 | —loutotr | — 031074
3| -oa6782 | Jor302L | Co0ss0w | [a01820 | — 001488 4 —1005335 + —. 011960 | —. 038045 |
{5 | (038045 | .0T1960 | [00&335 | 001488 | — 001829 | — 005800 , —. 013021 | —. 046782
16 | 031074 \ OI1011 | ©004885 | J001153 + —. 002175 | —.000309 | — 014222 + —. 060498 ,
D[ -0zmon | [0WI% | 004433 | 000821 | — 002028 | —. 00080 —. 013G ' —. OREE0L
8 | 024049 | 1009370 | 1004042 | [000492 | 1002890 | — 007406 | — 017188 + — 1461l
19 | [021304 | - 00869 | -003645 | 000164 | — 008014 | —. 010061 | —. 636365
| | ‘

—. 0032652
| i
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