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REPORT 1060 

DETAILED COMPUTATIONAL’ PROCEDURE FOR DESIGN OF CASCADE BLADES WITH PRE- 
SCRIBED VELOCITY DISTRIBUTIONS IN COMPRESSIBLE POTENTIAL FLOWS 1 ~ -~ ~“_, _ . . ..,.....: _ .- -~, 

By GEORGE R. COSTELLO, ROBERT L. CuhmmGs, and JOHN T. SINNETTE, Jr. 

SUMMARY 

A detailed step-by-step computational outline is presented for 

SYMBOLS 

The following symbols are used in this report: 
. . . constants the design of two-dimensional cascade blades hawing a prescribed A, B, G, 

velocity distribution on the blade in a potential$ow of the usual G, D 
compressible @id. This outline is based on the assumption a, b, c 
that the magnitude qf the velocity in the $0~ of the usual com- C(efo) 
pressible nonviscous -fluid is proportional to the magnitude of d 
the velocity itb the jlow of a compressible nonviscous jluid with 
linear pressure-volume relation. The computational procedure 

EJ(eie) 

includes several ways nj a@usting the prescribed velocity to sat- 
H(e@) 
Im 

constants 
function of 0 defined by equation (18) 
spacing of cascade blades 
function of 0 

isfy restrictions imposed by the ,method. Tables of coe$cients 
are given *for evaluatiti,g th,e necessary integrals, including the 

I<(e) 

determination, of the harmo,lic conjugate function. Numerical r?(e) 

examples are included. k 
Al 

final values of H(e*@) 
imaginary part 

INTRODUCTION 11 

clistorted velocity defined by equation (22) 
modified K(0) 
constant determined by range of potential 
Mach number , 
constant determined by trailing-edge angle of 

blade 
A mcthocl for computing blade profiles with prescribed Q(s) 

velocity cliskbutions based on the assumption that the prcs- 
sure-volume relation is linear is prescntccl in reference 1. 4 
The method uses the prescribed velocity distribution and 
compatible free-stream conditions to dcterminc a mapping 
funcstion that transforms an incomprcssiblc flow about the F 
unit circle into an exact compressible flow, with linear prc’s- Re 
sure-volume relation, about a cnscacle of blades having the A ( ReH) 
desired vcll0cit.v distribution. 1 

In order to apply this method to the design of a cascade S 

wit811 a given velocity distribution and free-stream conditions 
in a flow of an “actual” fluid (the usual compressible non- s” 
viscous fluid), the relation between the actual fluid and the U 

fluicl with the linear pressure-volume relation must be approx- 
imated so that the required velocity distribution and free- 
stream conditions for the second fluid may be determined. de) 
In this investigation, which was made at the NACA Lewis z=x+iy 
laboratory, the magnitudes of the velocities in the two fluids a 
are assumed to be proportional and the constant of propor- 
tionality is determined by the continuity equation using the r 
same upstream and downstream flow angles for the two fluids. 

dimensionless velocity on blade in direction of 
increasing s 

magnitude of dimensionless velocity (ratio of 
velocity to stagnation Gelocity of sound) foi 
flow with linear pressure-volume relation 

final value of p a.fter modification of ReH(eis) 
real part 
change in ReIl(eie) 
ratio of velocities (determined by equation (4)) 
arc length along blade measured counterclock- 

wise from tail (figs. 1 and 2) 
arc length along final blade shape 
magnitude of dimensionless velocity (ratio of 

velocity to stagnation velocity of sound) 
for actual fluid 

By use of this relation, a computational proceclure was Y 

developed to obtain the blade profile with a minimum of 6 
efFort. The procedure, presentfed herein, includes the adjust- 
ment of the prescribecl velocity distribution to satisfy the r 
restrictions on the mapping function and the numerical e 
computation of the harmonic conjugate function. 

velocity on unit circle (incompressible flow) 
complex variable in cascade plane 
angle of velocity in compressible flow (meas- 

ured from positive z-axis) 
circulation (positive counterclockwise) 
ratio of specific heats 
difference between Re H(efe) and parabola at 

half-interval point 
including trailing-edge angle of blade 
circle angle (incompressible flow plane) pos- 

itive counterclockwise 

1 Supersedes NACA TN 2281, “Detailed Computational Procedure for Design of Cascade Blades With Prescribed Velocity Distributions in Compressible Potential Flows” by ffeorge R. 
Costello, Robert L. Cummings, and John T. Shmette, Jr., 1961. 
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x 

P 
7 

(0 

Subscripts : 
c 
i 
n 
t 
1 
2 

auxiliary function defined by equation (15) 
density 
variable of integration 
velocity potential 

compressible flow 
incompressible flow 
leading edge (nose) 
trailing edge (tail) 
upstream 
downstream 

RELATION BETWEEN FLOWS 

In the prcscnt problem of designing a cascade, the prc- 
scribed conditions are the upstream velocity u~E~=~, the 
downstream velocity u2eiaa, and the magnitude of the tli- 
mensionlfss velocity on the blade as a function of the arc 
length u=u(s) (see figs. 1 and 2). The upstream and clown- 
stream velocities arc related by the continuity equation 

Consequently, only three of the quantities u,, ug, 01~, and 
o(* may be assigned, and the fourth is detcrn~incd b\- equa- 
tion (1). 

In utilizing the method of reference 1 to design the cas- 
cade, the prescribed conditions are employed to determine 
the upstream and downstream velocities and the velocity 
distribution on the blade for the fluid with the lineal 
pressure-volume relation b?- assuming that the magnitutlc~s 
of the velocities for the two flows arc proportional; that is, 

q=l’U (2) 
The constant of proportionality is tletcrn~inctl from the 
additional assumption that the flows have the same fret- 
stream directions by substitution of equation (2) in the 

Nose 
l.0 

+--Lower surfoc 

U 

Upper surface 

continuit>- relation for the flow with thaw linear pressur+ 
volume relation : 

+i= IL?? COG ff2-u,2 cos’ CY, 
u,“u22 (COLGy=a~~) 

(9 

(4) 

Hence, the upstream velocit- qleial, the downstrciam vcl- 
o&t?- qze+, nntl the velocity distribution on the blade 
q=q(s) are now determined for the flow with the linear 
pressure-volume relation. 

Other approximations to the relation between the two 
flows could be used but, with the present cascade inter- 
pretation, the upstream and downstream fiow angles and the 
spacing are the same for the two flows. The two clensitF- 
velocity relations are also in good agreement, as shown in 
figure 3 w!lerc the density-velocity relations arc plot ted fol 
7.6, =O.iOO and u2=0.500. When the upstream and down- 
strc>am vclocit its arc rqual, the tlc~nsit\--vclocit? relation, as 
given b>- this interpretation, is the same as the dcnsity- 
veIoeity relation in the I?T;irmlin-Tsicn approximation. 
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NUMERICAL PROCEDURE 

After the free-stream condit,ions and velocity distribution 
on the blade are determined for the flow with the linear 
pressure-volume relation, the method of reference 1 is used 
to obtain the blade shape. In this method, the given 
conditions~ are -used to select an incompressible flow about 
the unit circle and to determine the mapping function that 
transforms this flow into a compressible flow with the circle 
transforming into the desired blade. A detailed procedure 
for determining the circle flow and the mapping are given in 
the following paragraphs. 

FLOW IN CIRCLE PLANE 

The velocity potential c,o~(s) and the circulation rC on the 
blade arc obtainccl b.v integrating the prescribccl vc1ocit.p 
distribution Q(S). For this purpose, it is convenient to 
define Q(s) by 

- U(s) 
- - - pc(s) 

Nose 

r: 

‘S 

: 

FlGUHE 4.7Vrlocity and potential distribution for fluid with linens prcssurc-volume rclntion. 

where the total arc length has been taken equal to 2~. 
These integrals are evaluated by Simpson’s rule using suf- 
ficient points so as to obtain accurate values of pC(s). The 
values of cpC(s) should bc plotted on the graph with Q(s) 
(fig. 4) in order to obtain 4. easily as a function of the circle 
angle later in the computation. The spacing d of the 
cascade is given by 

From equation (35) of reference 1, the incompressible 
pot,ential function for points on the unit circle may be 
written 

(pi(e) = -2 Re A tanh-’ s+(Im A+Im, B) tan-‘sk+ 

(Im A--lm B) t:ul-’ T&yk 
Sill0 +D 

whcrc II is chosen to malcc the potential zero at, the ta,il 
sin e 

st:lgnation point 01, tlic nnglc c.onvcntion is-;<tarl-’ ~-~- sinh 1~ 
tan 0 

<-;, a.ntl 1~u-’ --~ -.- 
tnnh k 

IS taltrn in llic 5:1m( quadran anti 11~ 

samr tlircction 01s 8. The values of I?c A, Im 11, RP B, and 
Imn, B arc dctcrminctl from the free-strtam conditions and 
spacing by 

lie ,Qw~ kOS~l/ 
h,‘i+q,? 

(9) , 

Imil=--11+g,21~efltaxl~, (10) 

Re n= -Re A (11) 

Imll=-\ 1+(/z2 Iieiltnn~~~ (12) 

The value of 111~ constant k is clct.crminecl by the conclilion 
thal the potrntial range on the circle is equal to the potenLia1 
range on the blacle: 

rpc(2T) - cpc(s,J = de1 + 2r) - den) (13) 

The proper value of k is computecl by assuming a value for k 
and computing the stagnation points et and e,, which are 
the roots of the equation 

where x is givrn by 

(Im A--lm B) tanh k 
X=tnll-’ -2 Xi-A (15) 

--;<x<; 
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and then determining the value of cpi(01+2?r)-&8,). This 
process is repeated for different assumed values of k to ob- 
tainaplot of cpi(Bz+27r)- qt(O,) as a function of k. Thevalueof 
k satisfying equation (13) is then obtained by interpolation. 
A computational outline of this process for use with a desk 
calculator is given in table I, in which the usual column op- 
erations are written as lines. 

When k has been determined, the flow about the circle 
is known with the value of the potential on the circle given 
by equation (8) and the velocity on the circle given by 

4 Re A co& k set X 
v(e)=-- cash 2k--cos 28 sin (0+X)-sin (&+A) 1 (16) 

A computational outline for v(0) and (pi(e) based on 80 points 
is given in table II, lines 1 to 19. 

DETERMINATION OF MAPPING FUNCTION 

The mapping function (equation (62), reference 1) may be 
written in the form 

2= 
.I- 

4 g12- v(e)‘y2 c0~112k-2 cos 20) ei(8+;+g?-tan-‘c~~~~)(re 
4 gl ek2scosh 2k-2 cos 28 

(1V 
where 

g,=[2-2 cos (et-e)]W3~ Iire C(eq+(z cosll Zk--2 cm 20) Re H(e*q] 

g,=n (“+z-‘)+ImC(e”3+(2 cosh2k-2 cos2B)ImH(ei@) 

a.nd 

where E is the trailing-edge angle of the blade in radians. 
The mapping function is completc1.v determined when 
Re C(e’o), Im C(e@), Re H(e@), nnd Im H(eie) are known. 

Determination of Re C(efs) and Im C(e@).-The function 
C(e’e) is defined by equation (44) (reference 1) and may be 
written in the form 

$(I -e”-“O) In --Bei-z+k(l + I-> 
(1 +ei@L-‘i)lzqz (1% 

Hence Re C(eis) and Im C(eis) are obtained by taking the real 
and imaginary parts of equation (18) : 

ReC(eia)=$ 
[ 

(C,+ C,)+e”(C,-- CJ cos e+ek(CS- C,) sin e 1 l 

(19) 
ImC(ei0)=$[(C5+ C,)+ek(C5- C,) cos e-e”(C,- CJ sin e] 

(2 0) 

where 

C,=ln ‘+~.,/Re2A+ImzAe”[e-“(2 cash k- 
Pl 

2 cos et)]-=‘2 
1 

C,=ln 
r 

” J1i-qz,/Re2B+Im2Be)L[e-k(2 cash k+ 
p2 

2 cos e,)]-n12 

C,= tan-’ Im. A 
( > 

-Reli +ff,-n tan- 1 (e;--;,) 

Cg=tan-l Im B 
( 1 

lZeB +c+-n. tan- l(Fi~!!~LL;)+T 

The quadrants for the arc tangent terms in C5 and C, arc se- 
lected by considering the numerator and the denominator of 
t.he argument as signed quantities and choosing a quaclrant 
in which t,he sine has the same sign as t’he numerator and 
the cosine has the same sign as t,he denominator. For con- 
venience, these angles arc Mien as positive and the resulting 
values of C5 ant1 CG are changed by multiples of 2n until lCjl 
and IC,l are each less than 27r. 

Determination of Re H (e@),-In order to obtain lie II (et@), 
the prescribed velocity along the blade must bc cleterminecl 
as a function of the circle angle q=q(e). This relation is 
obtained from t.he equality of the potentials at corresponding 
points in the two planes. Because Q(s) ancl q,(s) are plotted 
on t,he same graph (fig. 4), the magnitude of the prescribed 
vcloc,it?- at a given circle angle 0 ma>- bc found clirectl>- b- 
reading the absolute value of Q (q=IQI) at the abscissa 
where (~~(8) equals the calculated valur of (pi(e) (table II, 
line 19). The prescribccl velocit)- is thus obtained as a. 
function of the> circle angle a=q(e). 

From equation (48) (rcfcrcnce 1) 

(21) 
where 

3(e) K(e)= _- 1 +\‘I +q(e)’ (22) 

Lines 20 to 36 of table I1 show the cletailccl computation fol 
obtaining Re H(e@), inclucling the evaluation of Re C(e@). 

Adjustment of Re H(e@).-Restrictions on the mapping 
function require that Re N(eis) satisfy the conditions 

L 
T Re H(eis) de= 0 

! T Re H(eie) sin e de= 0 
* -7r 

(23) 

(24) 

Re H(eie) cos e de= 0 (25) 
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These integrals are evaluated numerically (in the manner 
developed by Dr. Glenn H. Peebles, while at Douglas Air- 
craft Co., Inc., in his work on isolated airfoils in incom- 
pressible flows) by using a parabolic variation of Re H(e”o) 
between three consecutive points and integrating analyti- 
-cally.~.. The. point spacing used in the examples of this 
report is an equal spacing of 80 points (designated whole 
points and numbered 0, 1, 2, . . . 79) around the circle 
beginning with point 0 at 8= - 180” and continuing around 
the circle at 4.5” intervals. Where Re H(eie) has large 
fluctuations (usually in the neighborhood of the stagnation 
points), the midpoints of these intervals (called half-points) 
are also used. The coefficients for evaluating the integral in 
equation (23) are the Simpson’s rule coefficients. The 
coefficients for the integrals in equations (24) and (25), 
which are obtained by integrating analytically the product 
of the parabolas and sin 0 or cos 0, are given in tables III to 
VI. When half-interval spacing is used, it should begin and 
end at even-numbered points of the original 80 points and 
the integration cocfficicnt to bc used at the beginning (or 
ending) even-numbered point is one-half the sum of the 
whole-point cocfficicnt and t,hc half-point coefficient at tbnt 
point. 

If the values of Re ll(eie) from equation (21) do not satisfy 
equations (23), (24), and (25), the velocity distribution 
chosen is incompatible with the chosen free-stream conditions 
and must be modified to make these integrals zero. The 
most desirable mct,hocl of moclification will depencl on the 
magnitude of the intcgrn,ls in equations (23), (24), and (25) 
and on the features of the original prcscribecl conclit.ions that 
are t,o be prcservccl. Usually the original free-stream con- 
ditions are rctainccl and the velocity distribution is modified. 
When the integrals arc large, howcvcr, changing the circle 
flow may be desirable in orcltr to minimize the changes in 
the essential characteristics of the original velocity distribu- 
tion (such as limits on maximum velocity, diffusion rate, 
and so forth). 

Modification of the circle flow provicles cssent,ially one 
additional degree of freedom, as can readily be seen from 
equations (9), (lo), (ll), and (12). The strength of the 
singularities A ancl B arc clctcrminecl by the free-stream con- 
clitions and the spacing. The range of potential is deter- 
mined by the location of the singularities, that is, by the 
constant k. Only the ratio of tbe potential range to the 
spacing is important, however, because changing both to- 
gether merely changes the dimensions of the cascade by a 
scale factor. This additional degree of freedom may be con- 
veniently represented by the ratio of arc lengths of the upper 
and lower surfaces. Consequentsly, this ratio has a large in- 
fluence on the size of the integrals in equations (23), (24), 
and (25). The selection of the ratio may be based on the 
ratio for a blade having a similar velocity distribution; or, 
in some cases, it may be advantageous to try several ratios 
of arc lengths and roughly approximate the integrals using 
only 20 points and from these results select the proper ratio 
to minimize these integrals. The final adjustment to reduce 

these integrals to zero may then be obtained with a fixed 
circle flow by adjustment of Re H(et6). 

When adjustments are being made in Re H(e”), the change 
in profile arc length and profile velocity a(e) produced by 
these adjustments must be considered. The local arc length 
ds corresponding to de -will be decreased in the same ratio 
that the velocity is increased in order to maintain the same 
potential. The change in arc length is automatically ac- 
counted for in the final integration for the blade coordinates. 
The change in the velocity produced by changing Re H(e@) 
by an amount A(Re H) is indicated by the change in the 
“clistorted” velocity K(0), which is related to a(0) by equa- 
tion (22) (fig. 5). The changed value, denoted by I?(e), is 
given by 

k(e)=K(e)e- (2 cash 2/c-2 COB 20) A (Re H) (26) 

Making a change in Re H(eiB) therefore has the cfl’ect of mul- 
tiplying tho distorted velocity by a factor. This factor varies 
widely with the circle nnglc and procluces the smallest change 
in K(e) at e= rtr or e=o ancl the largest change at e= &t/2. 
Hcncc, for a given percentage change in K(0), the greatest 
vnlucs of A(Re H) occur near 0= f?r or 0=0. The effect of 
k on thcsc values of A(Re $1) for a given ratio of g(e)/K(e) 
is shown in figure 6. 

Consequently, for small values of the integrals in equations 
(23), (24), ancl (25), complete adjustment can frequently be 
made by merc1.y changing the slope of the distorted velocity 
K(e) at the stagnation points. The changes in the integrals 
produced by this change in slope are given by 

I- 
T A(& I-I) de 

. -7r 

s 
* A(k’e H) sin e de 

. -* 

s 
?r A(I?c H) cos e de 

* -ST 

d2 

.8 

0 .2 .4 .6 
A 

10 I2 I.4 

Fronne 5.-Distorted velocity K(8) as function of p(e). 
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where A(ReZZ) is determined from equation (26). These 
changes in slope are effective in eliminating or reducing 
J Re H(efe) de and JRe Il(e”) cos e de. (See figs. 6 and 7.) 

Another method for adjusting Re H(e@) is t,o use a multi- 
plier on the entire velocity distribution; that is, 

then 
lQe)=e-T(e) 

A(Re H)= 
a 

2 cash 2k--2 cos 28 

and 

I 
‘Tr 

A(ReZr) sin 0 de=0 
-7r 

r 
* A(ReH) cos e de=0 

* -?T 

Changes in the sine and cosine integrals may bc obtained 
by using different multipliers over the upper and lowei 
surfaces : 

then 

iZ(e)=K(e) e-“l f-h5e5en 

E(e) =&Z(e) e-“z e,L935et+2* 

A(Rel?)=- al 
2 cash 2k-2 cos 28 et595b 

A(ReH)= ai! 
2 ~0~11 2k-2 cos 28 

e,se<e,+2a 

and 

2 si?h 2k tan-l tvl-f 
Q,, 

tanh k + 0, 
Ql!-ZT 
0,, 

A(ReZl) sin 0 de=- “,‘- 
t 

01+2r 

A (Re H) cos e de= AC tan-’ &$)I, + 

at+2* 
o,, 

These integrals may be easily evaluated because the inverse 
t.rigonomctric functions all enter into the computation of 
(pi(e) and have been calculated in the determination of k. 

A possibilit,y for making small adjustments in Re H(e@) is 
to USC a multiplier t.hat is a simple function of 0, such as 

k(e) =K(e) e- (a+b COB Q+C ah 0) 

then 
af b cos e+c sin e A(Refr>=- _-- .._ __ _ 2 COST 2k-2 cos 28 

and 

ca (1 - tan11 k) A (Re H) sin 0 de= ---+--- 

A (Zje II) cos 0 de=ti(1?!!+ ‘) 
2 tanh 1~ 

Various combinations of these methods for atljustmcnt of 
ReH(eis) have been used in the illustrativr esamplcs of this 
rrport. 

After t.hc adjustments in He H(eio) lmvc hen rnotlc, the 
final valws shoulcl be cl~cclrccl in equations (23), (24), ant1 
(25), as indicated in table II, lines 42, 43, and 44. At this 
time, &S) should be computed in order to clctrrminc whcthcr 
Z?(0)<2, as required by part (d) of cqualion (5), rcfcrcncc 1. 

If Z?(e) dots not satisfy this incqua,lity, a tliflwcnt~ motlifi- 
cation of Re II is ncccssary. 

L41 I I I I i 1 I I I I I I I I I I 

, 
-A(ReH)cos 6 

.---A(ReH) sin 8-- 
I I I I I 

h 

G-/ 3 80 -90 90 I80 

I ; IGCRE i.--Products A(Rc II) cos 0 nnd A(Re II) sin 0 fos 1;=0.20 md for ~(o~/I;(o)=O.95o. 
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The final vducs of Re H(eia) and F(e) should bc plotted in 
order to insure that no excessive fluctuations have been 
introduced. At t,his time, t(0) should be compared with t,hc 
original q(0) to make certain that the velocity has not been 
changed bcybnd nccrptablc limits. Because the potential 

If .> .~ range is fixed, these chqnges will change. the arc length. 
desired, z(6) may bc obkncd as a function of tdlc new a.rc 
lcngt,h T by 

;(e)=;?[e(T)]=Ij(;) 
and 

X(e)= ___ 
[ 

0 i ‘0 69 I tle 
. oI F (0) etleie;f2?r 

IV 631 The values of --p arc given in tabla II, line 50. 
n(e) 

Computation of Im %(e@).-When Re J?(e(o) satisfying all 
rcquircmcnts has bcc>n obtained, the computn.tiou of thr 
conjugn.tc fun&on Imfi(e@) is done by dirrot numcricnl 
intt~gration of Poisson’s int.cgral 

on lhc SO basic* points using ail c~stc~lAon ol lhc inctliotl 
dcvclopcd by Dr. Glenn H. I’cc~l~l~s. ‘JJhc> intcgrntion is 
ncc~omplislic~tl by rc+cGn g ReZ?(eiO) by 40 parnl~olns on t.11c 
SO basic points :ii1d intograting nnnlylically the> protluc.1 of 
t11r pnrnb01:1s mtl t11c c’otnngcllt tcvm. 1‘1lC t\vo sets 01 

SO c~ocflic~ic~iits so obt,aincltl for the intc~gration :Lr(\ given in 
tables VII ant1 VIII. (SW nppcndis A for tlrrivntion.) 
Thcl set in tnblr VII is usrtl for the computn.t ion of the con- 
juptc~ at the end points of thf parabolas; tlinl is, at the cv(‘n- 
numl~~~~l points 0, 2, 4, . . 78. Thcl ~1 in tsblc VlIl 
is lisc~l for tli(> c~on~put~:~tion of tlic conjugntr $11 the ocltl- 
nuinl~rc~l poin(s 1, 3, 5, . . 70. Thus, to obtain I?n fi(eisj 
at, one ol t,hcb basic poiuts, for csainplc, point 7, the value ol 
Re fi(eio) at this point is n~u1Liplirtl by tlic first corfhcic~ut 
(0.000000) it1 table VIII, t#lic ncsl. va.luc of ZIefi(eie) (at 
point 8) is multiplied by tbo nest coefkicnt, (0.412363). 
and so forth, and the sum of t,hrsc SO pr0duct.s is t.hc dcsirctl 
vnluc of Im H(eiS) at that point. Hcncc to obtain Im g(eiO) 
at the SO points rcquircs SO such nccumulativc multiplicn,- 
tions. This caomputation is dona very cfficicntly on an clcc- 
t,roni(: calculating punch using only 415 cards and taking 
nppi*osimatcly 2 hours, includin, 0 11~ timr for 1rcl.y punching 
a,ntl verifyins. 

When IkZI(eiO) has large fluctualions so that some of the 
SO bn.sic intcrv_als arc divided by half-points, t,hc preceding 
vslucs of ImH(e’0) must bc corrcct.cd to take into account 
the diffcrencr between the values of ZZeI?(e”O) and the basic 
parabolas at these ha.lf-points. The correction to be added 
to thr calculation is the harmonic conjugat,c of these diffcr- 
cnccs. The coefficients for computing the value of the con- 
jugatc (at the SO basic points) of these cliffcrenccs are given 
in table IX. (SW appcndis 13.) This computation has been 
arranged on two concentric disks-the coefkicnt~s are carried 
by the outer disk and the diflerencrs (denoted by 6) are 
entered on th(f inner disk in the proper places (fig. S). It is 

c’:lsy t,o see \vlirrc t licsc difTcrrncts will malrc :i significant 
c~onlributiorl to ZW Z?(piO) and t,o obtain the cont.ribution by 
ac~~umrila tivc iilrillipli~at,ion. This correction is thou added 
to hr. cnl~!ul:ltc~tl lYFJlllts. 

COMPUTATION OF BLADE COORDINATES 

After the c.orrcc.tc~tl values of the conjugate have been 
ol)taiiic~tl, the blatlc c~oortlinalcs arc given by equation (17), 
wliicsli for (*onvciiicn(~c of computation may bc written in the 
pa txin~~t rio form 

.I’ (e) = C siu 28 
cos ef5+ga (e)--trill-1 cos 2%B-2k 1 de (27) 

I= (e)-t,all-l -sin 2e 1 ros 2eye2k de (28) 

g?(e)=,1. (-~-+~_‘)+lm(l(r’O)+(Z cash 2k- 

2 cos 2e)ImN(&@) 

These integrals are evaluated by Simpson’s rule. In order 
to obtain sufficient accuracy, use of at least the same number 
of points as were used in the evaluation of Re 12(eie) is 
advised. Because the values for Im Z?(eiO) were calculated 
at the SO basic points only-, interpolation of s*(e) is necessary 
when half-points arc usccl. The values of z(0) and y(B) arc 
given in table II, lines 70 and 7 1. 

EXAMPLES 

Several examples have been computed to illustrate some 
of the variety of conditions to which the method may be 
readily applied. No attempt has been made t#o pick the 
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best velocity distribution or to obtain the most desirable blade through the stagnation points. In this example, the expres- 
shape, as t’o do so would lead to many considerations far sion for r (equation (4)) is indeterminant and the value of r 
beyond the scope of the present investigation. was obtained by taking the limit as (Y* approaches 225’. 

In these examples,, the adjustment of the prescribed veloc- In this example, complete adjustment of Re H(eie) was made 
ity altered the arc length slightly. For uniformity, figures by multiplying the velocities on the upper and lower surfaces 
9 to 12, which show the final velocity distribution and blade by constants. The resulting blade shape and velocity dis- 
shape, were therefore scaled to give an arc length of 2~. tribution are shown in figure 10. A smaller nose or tail 

Example l.-For this example of a cascade blade with radius of curvature could be obtained by increasing the slope 
low turning and a cusped trailing edge (e=O), the free-stream of the velocity distribution through the nose or the tail, 
c.onditions were taken as respectively. 

u,=O.488 011=170° 

u,=O.478 a~=180° 

The velocity distribution prescribed on the blade was the 
velocity distribution for an isolated Joukowski airfoil. Ad- 
justments to Re H(e”) altered this distribution somewhat 
and the resulting blade (which is very similar to a Joulrowski 
airfoil) and velocity distribution a.re shown in figure 9. 

Example Il.-For an example of an impulse-type blade 
with rounded leading and trailing edges (E=T), the free- 
stream velocities were assigned the values 

Example 3.-The free-stream velocities chosen for this 
exa.mple were represcnt.ativc of a compressor stage with 

u,=o. 555 (Y,=135O 

u,=o.555 az=225' 

and the prescribed velocity distribution on the blade was 
constant over most of t,he upper and lower surfaces with 
different values on the two surfaces and varied linea,rly 

u1=0. 583 q=135O 

f&,=0.417 (r2=155° 

In order to keep the changes in the prescribed velocity to a 
minimum, three ratios of lower surface length to upper surface 
length of 0.95, 0.90, and 0.85 were used with the same pre- 
scribed velocity distribution (but, of course, different circle 
flows) and the integrals in equations (23), (24), and (25) were 
quickly approximated using only 20 points. By use of these 
results, a ratio t,hat would give the smallest integrals was 
chosen (a ratio of 0.93) and the blade shape with rounded 
trailing edge (E=T) was computed in the usual manner. 

I 

d-325 /--a,=! 70” 

l.O- 

u .5- 

1 
0 n 227 

s 
FIGURE 9.-Final velocity distribution and blade shspe for Exnmple 1. M1=0.500; t=o 

(cusped trailing edge). 

A 

I 
d=2.64 

I 

FIGURE IO.-Final velocity distribution and blado shape Ior Esamplc 2. .Ml=O.573: C= r 
(rounded trailing edge). 
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The blade shape and the velocity distribution are shown in 
figure 11 (a). By use of the same circle flow sad a change 

in q(O), a blade having a 10’ trailing-edge angle 
( > 

E=$ and 

similar velocity distribution was obtained (fig. 11 (b)). 
Example 4.-In this example of a highly loaded cascade K, :..- bEGdee’with a rou@led trailing edge (E= A), the free-stream 

velocities were 

u1=0. 579 (Y1= 135O 

u2=0. 369 cyz= 180° 

The prescribed velocity distribution, which was similar to 
the distribution on a Griffith airfoil, had an abrupt decrease 
in value on the upper surface for use with suction. The 
blade and velocity distribution are shown in figure 12 (a). 
By USC of the same circle flow and a change in q(O), a blade 
having a cusped tail (e=O) and essentially the samr velocity 
distribution was obtJnincd (fig. 12 (h)). 

DISCUSSION 

Sprcificat,ion of tbc trailing-cclgc angle of the blaclc rcquircs 

that q(s) have a zero of order 2$1-i at s=O and s=2a. If the 

prescribed velocit,y dots not go to zero in the proper mann(lr, 

‘i 

. u, = 0.583 

v- s  

0 iT 2.T 
S 

(a) e=?r (rounded trailing edge). 

Re H(eto) will be infinite at 8-0~. Fairing Re H(e”“) smoothly 
through 8=01 and keeping the values finite will, however, 
insure obtaining the specified angle at the trailing edge of the 
blade. The shape of the blade in the immcdiatc vicinity of 
this point will depend on the velocity prescribed in this 
vicinity. If desired, the bladn shape at the tail can easily 
be modified by changing Im H(e@), which changes the angle 
of the tangent .to the blade (tho angle in equations (27) and 
(28)). The corresponding change in Re H(efs) is computed 
from Poisson’s integral with the constant term zero, and 
the modification in the velocity is obtained from this change 
in Re H(e@). The change in Im H(e@), denoted by A (Im H), 
should bc chosen to satisfy the following conditions: 

.I’ ii A(Im,H)cose de=0 
-7r 

s n A(ImH)sine clb’=O 
. -iT 

For n prcscrihccl velocity distribution requiring only mod- 
crate changes, tdlc blade sbapc can be obtained in appros- 
imatcly 50 computing hours using 80 poink and $-decimal 
accuracy. The time depends, howcvcr, on the degree of 
familiarity with t,be method and on the extent of the pcrmis- 

(b) e-F3 (lOa trailing-edge angle>. 

FIQURE Il.-Final velocity distribution and blade shape for Example 3. .M1=0.604. 

- - --- .- 
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. 

siblc modification to thv velocity. w11cn scvcral csnmplcs 
have the same free-stream conditions ant1 cxscntlr spacing, 
the time is consitlcrnbly rctluccd bwnnsc~ tbr cirrlc flow ncrtl 
bc computrd only once. 

With the calculation bawd on a spac+ig of SO points with 
half-points around the now ant1 the tail, the mc~thotl giws 
accurate results in all caws in which thv paramctrr k is not 
less bhan 0.10. Espcricncc has shown that for cascades of 
moderate stagger and turning k will usually bc grcatcr than 
0.10 when the solidity is less than 1. In csamplcs 1, 2, 8, 

and 4, the valws of k ~wrc 0.2600, 0.1100, 0.2008, and 0.2S51 
and the solitlitics wcrc 0.91, 1 .Ol, 0.92, and O.i4, rcspcc~tiwly. 
In applxyinp the mrthotl to other casts, n finer point spacing, 
which woold rccluirc ncu- codFricnts for the intc>grations, 
slloultl lw 11sctl. 

LkwvIs PLIGHT PROPULSION hBOK;\?.ORY 
S.\TIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

CI,~XEL.~ND, OHIO, August 25, 1960 
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APPENDIX A 
COEFFICIENTS FOR DETERMINING CONJUGATE FUNCTION 

The coefficients for determining Im H(e@) are obtained 
by considering the contributions of one of the parabolas to 
the conjugate at one of the basic points. The contribution 

s .I of trhe -(k+l)th parabola through ‘the points Re H(ei%), 
Re H(e%+l), and Re H(e%+z) to the conjugate at any 
point 0=0, is given by 

( >[ tan i 
( > 

tanh 2 
v,= h -L1-+ 

c2.7+11 &j 32 - 
h 4 ( > tan 2 h o 

&I 
( > 

tan z 

5 .+&7-- 

in equation (Al) and cspanding in scrics, equation (Al) cm 
bc integrated to give 

and 

tan S 
L=- 

tan @  
2 

11 

(2.7.t- 1) c2.j: 3) --3- 2 + 

23 

563(tm ;y 

& -1r- . . ’ 

] 

When l=O, 
so=0 

,+4 
( 

L-K- h’.._ -----_ h” I1 y 
T 2 36 1350 26,460 425,250- .’ ) 

7’,+ (g+2L+5;;o+2i;g,+ . . .) 
d, u* 

ancl RI is undrfinetl bccausc the intcgrand bccomcs infinite. 

N 
The final integration coefficients, denoted by N,,, N,, 

2, . . . 
and I’,. 

are obtained from the preceding values of R,, S,, 
When em is an end point of a parabola (m is even), 

then 

No=0 
N,=S1 

N,=T,SR, 
. . . 

where No is determined by Cauchy’s principal value, 
8, is a midpoint, of a parabola (m is odd), then 

WI 

When 

. . 
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No=So= 0 
NI=To-t& 
Nz=Sz 
. . . 

N~i--1=T~j-rl-& 
hTzj=Szi 

(A3) 

APPENDIX B 

COEFFICIENTS FOR CORRECTION OF CONJUGATE 

Integration of equation (Bl) by series expansions gives 

where 

E,= 

The coefficients for 80 points given in tables VII and VIII 
were obtained from equations (A2) and (A3) using h=2?r/80. 
The coefficients for other point spacings can be obtained from 
equations (A2) and (A3) by using the proper value of h. 
Because of the symmetry of the coefficients, only half of 
them need be calculated. 

The coefficients used in the wheel correction are obtained 
by determining the contribution of one of the half-point 
differences to the conjugate at one of the basic points. 
Denoting the contribution of the difference &++ (the dif- 
ference at B=&+$) to the conjugate at 0=6, by 1, then 

which, on substituting 

s,,,=s,,L+;+lh 

becomes 

(Bl) 

tan ; 
G=---. 

tan (2Z+ I) : 

When l=O, 

I=6,++ p (&g&&38&o- . . .) 
7 , , 

Consequently, the coefficients for the wheel correction 
denoted by N%, Nl+-;, nT2++, . ., are 

h6 ___- 
3,386,880- ' ' ' > 

sin (I+ I ) S 
-------2(E,G+E,G3+E,G5+. . .) 

lh sin - 
2 I 

The coefficients in table IX, which arc for 80 points, mt:re 
obtained from equation (B2) using h. = 27/80. By use of 
other values of /t in equation (B2), the coefficients for clif- 
ferent point spacings can be obtained. Because of the sym- 
metry of the coefficients, only half of them need be computed. 

REFERENCE 

1. Costello, George R.: Method o? Designing Cascade Blades with 
Prescribed Velocity Distribution in Compressible Potential Flows. 
SAC.4 Rep. 978, 1950. (Formerly NACA TPU’ 1970.) 

T:iBLE I-OUTLIIUE FOR COMPUTATION OF k 
.---~ .-. 

Line 
_____ ---- ---. 

Assums a wlnc al I: 
sioh (1) 
COSll  (1) 
tan11 (1) 

Im tR;R 13x (4) 

tsn-1 (5) 
set (G) 

(Im A+h B) (2) - 
2Re A --X5 

sin-1 (81 
(9) - (6) 
-(lo)-2(O)-180’ 
(II)+3600 
sill (10) 
cm (10) 
tan (10) 
sill (12) 
em (12) 
tan (12) 
(lti) + (2) 
(13) f (2) 
(17) G(3) 
(14) + (3) 
(18)-e(4) 
(15) t (4) 

tar (19) 

tan- (20) 

tallh-~ (21) 
tmlr~ (22) 
tan-’ (23) 

(II/L A-Im ZS)X[(25)-(2(i)] 
-2Re AX[(2i)-(281 
(Im d+m B)X[(29)-t30)] 
(31)+(32)+(33) 

-. ---_--__--------___ 

(0) is X; express in degrees; -90°<h<900 ~ 

- 

(9) is X+0.: -90”~x+s.~90° 
(10) is 8. 
(11) is 81 

Express in radians; -$<(25)<-t 

Express in radians; -+<(20)<$ 

Express in mdinns; snme yuiidrant and 
sign as 81+2n 

Express in radians; same qundrant and 
sign ns 8. 

Must cqunl ‘pr (2a)-coG(S”) for conwt 
value or I: ! 
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TABLE II-OUTLINE FOR COMPUTATION OF BLADE COORDINATES 

41 

42 

45 

:; 

48 
49 

50 

57 
58 
59 
60 
01 
62 
03 
64 

65 
66 
67 
;; 

in 

il 

Re”&ks Remarks 

Assign values of e at 4.5O 
beginning at e= -a. 

2 (1) 

%%-(3) 
y&x" COSh I; se0 X)i(4) 

gpf c.+x, 

sin (1) 
em (1) 
tan (1) 
(IO) +sinll I; 
(11 

I 
icosh I: 

(12 itnnil I: 

tan-1 (13) 

tanh-1 (14) 
tan-1 (15) 

Half--points may be added later to these 
basic 80 points where necessary 

A(Re M 

(36)+(40) 

S" 
(41) de 

--* 

S” 
(41) sin 0 de 

--* 

S (41)cose do 

--;4oMo9~ e w 
(46)x(23) 

:#;48) 

I(Q)l+(49) 
(Ca-CWX(11) 
(c3-cr)e~x(lo) 
KCa+Cd+W-$W+2 
Uncorrected Im IfW) 

Changes in Re H(e’a) to make integrals 
sero;seetext 

(41) is Re i&a) 

Must be zero sac A is line 7, table I 
A is line 6, table I 

,._,_~. 
Sin (e. 

t 
X) 

(9) is v e) 
is line 8, table Must be zero 

Must be zero 

(47) is &) ; must have &?) <2 
(equatioq (5d), reference 1) 

(49) is ij (0) 

Express in radians;-:<(lO) <; 

Express in radians; same quadrant and 5 

D=-(Im A-h B) tan-l s+ 

2Re A tnnh-1 ;fes- 

(Im A+Im 13) tan-1 s 

Obtain by mntchi”g pot~ontials 

(23) is (he distorted v&city K(e) 

Omit these lines when n=O 

1L= (1-t) 

(28) = (23) when n=U 

(Im A-h B)X(16)- 
2Re AX(17)+ 
(Im A+Im B)X(lS)+D 

dE 
(50) is S 

(53) is Im CW) 
Obtained from machine calculation “sing 

coefficients in tables VIII and IX 
Obtained from differences between Re !?(eq 

and parabolas “sing coefficients from 
table IX 

(50) is Im Z(elo) 
(57) =0 when a=0 

P (0) 
1+(20)2 
1+Jrn 
2 (2O)G(22) 
%-(1) 
30s (24) 
2-2 (25) @9)X(56) ‘ 

57.29578 [(58)-l-(53)1 

.nn-1 (63) 

(26) "12 
(60) is y%(e) in degroes fy )X (23) 

,ew 
(9)1X(30)+@) 

1" (31) 
[Ca-Ce)ekX(lU) 
(CrC,)e~X(ll) 
(Ca+Cr)+(33)+(34)1~2 
(32)3-(35)+83+(2Q) 

Express as a positiw angle in degrees; 
quadrant chosen so that sin (64) and cos 
(64) have same signs as (61) and (62), 
respectively 

:l)+(GO)fw-@54) 
xx (65) 
:in (65) 
'50)X(66) 
:50)X(67) 

(35) is Re C(G) 
(36) is Re ?I@~~) 

Evaluate by Simpson’s rule 

Evaluste by coelTWe”ts in tables III and 
V 

Ernlunte hy coefficients in tiibles IV :r”d 
VI 

f T(36) de 
--* 

I" 
(30) sin e de 

F (:3(i) cm e de. 
--I 

f w de 
--Y (7CIIt z(S); evalwte integral by Simpson’s 

(7;?;; y(B); evaluutr integral by Simpson’s f" (~9) da 
-r 

Ii 
TABLE III-WHOLE-POINT COEFFICIENTS FOR SINE TABLE IV-WHOLE~POINT COEFFICIENTS FOR COSINE 

INTEGRAL INTEGRAL 

T 10 20 
----- -__ 

-0.03707 0. ouoou 
-.06707 .OO821 
- .030x1 
-.0546R :Z% 
-. 023x0 .01&l 
-.04005 .04005 
-. 0162n .02380 
-.02443 .05468 
-.0082U .03081 
-.00821 .00797 

0 
- ----- 

0 0. ooinx 
1 -.W821 

i- 
--.ooam 
-.02443 

i --.04005 -. 01620 

0 -. 02380 

i 
-.0546R 
-.03081 

9 -. 0679i 

I ’ 00 70 
-__-- 

iU 20 30 
__.. 

-0.05242 -0.03707 
--.10433 --.06797 
--.05178 -.03081 
-.10176 -.05468 
-.04986 -. 02380 
-.09669 -.04OO5 
-.04671 -.01620 
-.08923 -.02443 
-.04241 --.CKJ820 
-.07958 --.00821 

40 ii0 
‘- 

0.05242 0.03707 

: I%: .06797 .03081 
: I%2 .05468 

.0238u 
.09669 .04cnl5 
.04671 .0162U 
.08923 .02443 
.04241 .0082U 
.07958 .00821 

0 
--__ 

0 -to5242 
1 -_ 1043.3 

i -. -. 05178 10176 

i -. -. 04986 09669 
6 -. 04671 
7 -. 08923 

: -. -_ 04241 OiQ58 

30 40 

0.03707 0.05242 
.07958 .lU433 
.04241 U51iR 
.U8923 .04671 : mm& 

09009 . 00669 
.04986 .04671 

.10176 .05178 : kE4": 

.10433 .U7958 

10 
--- 

-0: g;; 
-. 04241 
-.08923 
-.04671 

1: :Ei: 

1: ;::;: 
-.I0433 

xl 

0.03iOi 
.00797 
.03081 
.U5468 

:zE 

: ~;:~ 
.OO82iJ 
.00821 

04 
-__ 

0. oouoo 
--.00821 
-.UU820 
--.(I2443 
-. 01620 

1: %!2 
- .05468 
-. 03081 
-. 06797 

-0: WI;; r 
-, 04241 
-. 08923 
-. 04671 
- .09669 
-. 04986 
-. 10176 
-. 05178 
-. 10433 

FOR COSINE 

0. occw 0.03707 
.00821 .07958 
. UU82U .04241 

.02443 .0162O : i%t 

.04005 

.02380 : 2%: 

.05468 

.03081 : I%:: 

.06797 .10433 
- 

TABLE V-HALF-POINT COEFFICIENTS FOR SINE TABLE VI-HALF-POINT COEFFICIENTS 
INTEGRAL INTEGRAL 
- 

20 
-- -_ 
-0.02619 - 
-. 05231 
-. 02611 
-. 05199 
-. 02587 
-. 05135 
-. 02547 
-. 05039 
-. 02491 
-. 04912 
-. 02419 
-. 04754 
-. 02333 
-. 04563 
-. 02233 
-. 04353 
-. 02119 
-.04111 
-. 01991 
-. 03844 

- 

40 

0.00000 
.00206 
.00206 
.offi15 
.00410 

01021 
: 00611 
.01421 
.00809 
.01812 
.01002 
.02192 
.01189 
.02558 
.01368 
.02908 
.0X39 
.03241 
.01701 
.03554 

20 

0.00000 
.00206 
.00206 
.oc!615 
.00410 

01021 
: oU611 
.01421 
.00809 
.01812 
.01002 
,02192 
.01189 
.02558 
.01368 
.02QO8 

: !E 
.01701 
.03554 

40 

0.02619 
.05231 

02511 
.05199 
.025?37 
.05135 

: E% 
.02491 
.04912 

: :e::: 
.02333 
.04563 
.02233 
.04353 
.02119 
. 64111 
,01991 
.03844 

60 
_- 

0.02619 
.05231 
.02611 
.051QQ 
.025!3i 

: Ei’:: 
.05039 
.02491 
.04912 
.02419 
.04754 
.02333 
.04568 
.02233 
.04353 

: %“4::! 
. 01991 
.03844 

- 

50 

O: %E 
.019Ql 
.04111 
.02119 
.04353 
.02233 
.04568 
.02333 
.04754 
.02419 
.04912 
.02491 
.05039 
.02547 

:~~.:: 
.0519Q 

- 

_- 

- 

- 

( 

- 

- 

- 

- 

TO 10 
-- 

-0.01852 
-.03844 
-.01991 
-. 04111 
-. 02119 
-. 043.53 
-.02233 
-.0456&l 
-.02333 
--.04754 
-.02419 
--.04912 
-.02491 
-.05039 
-.02547 
-.05135 
-.02.%37 
-.05199 
-. 02611 
-. 05231 

30 
--_^ 

-0.01852 
-. 035.54 
-. 01701 
-. 03241 
-. 01539 
-. 02908 
-. 01368 
-. 02558 
-. 01189 
-. 02192 
-. 01002 

I: o”gg 
-. 01421 
-. 00611 
-. 01021 
-. 00410 

1: Egg 
-. 00200 

30 

O: EZ 
.01991 
.04111 
.02119 
.04353 
.02233 
.0456-s 
.02333 
.04754 
.02419 
.04912 
.02491 
.05039 
.02547 
.05135 
.02587 
,05x%9 
.02611 
.05231 

0 

0 0. ooooa 
?5 -.00206 

:u -.002O6 --.00615 

2 2% 1: i?li% 
3 -. 00611 
3% -.01421 
$4 -.01812 -.01002 -.00809 

5% -.a2192 
6 --.a1189 
y I: o"f@ 
7% -.02QO8 

8 
y2 -. 1: 01701 

ET 

9% -.035&s 

70 

0.01852 
.03554 
.01701 
.03241 
.0x39 
.02908 
.01368 
.02558 

01189 
.02192 
.01002 
.01812 
.00809 
.01421 
.00611 
.01021 
.00410 
.cuxl5 
.00206 
.002w 

10 

-0.01852 
-.03554 
-.01701 
-.03241 

I: ;g; 
-.01368 
-.02558 
-.01189 

7: g;:; 
-.01812 

1: ",:;y 
-. 00611 
-. 01021 
-. 00410 

3% 
. -00206 

0 

-0.02619 
-. 05231 
--.02611 
-.05199 

1: ,"k% 
-.02547 
-.05039 
-.02491 
-.04912 
-.OWlQ 
--.04754 
--.02333 
--.04&a 
--.02233 
--.04353 
-.02119 
-. 04111 
-. 01991 
-.03844 

50 60 
___-- 

I. 01852 0.00000 
.03554 -.00206 
.01701 -.00206 
.03241 -.00615 
.01539 -.00410 
.02908 -.01021 
.01368 -.00611 
.02558 -.01421 
.01189 -.00809 
.02192 -.01812 
.01002 -.01002 
.01812 -.02192 
.00809 -.OllSQ 
.01421 -.02558 
.00611 -.0136E 
.01021 -.02%x3 
.00410 -.0x39 
.oc4315 -. 03241 
.00200 -. 01701 
.002uo --.03554 

-0.01852 
--.03844 
-. UlOl 
-. 04111 

1: gg 

I: gg; 

z: ;z: 
-. 02419 
-. 04912 
-. 02491 
--.05639 
--.02547 
--.05135 
-.02587 
-.051QQ 
-. 02811 
-. 05231 

- 
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TABLE VIII-COEFFICIENTS FOR CONJUGATE AT ODD- 
NUMBERED POINTS 

TABLE VII-COEFFICIENTS FOR CONJUGATE AT EVEN- 
NUlMBERED POINTS I 

20 

- - 

-- 

0 ~.008323 
.015415 
.007110 
.01314G 
.006049 
.011141 

: HE!: 
.004;43 
.00X86 

50 GO 70 30 40 
-__ 

I. 003449 0.000000 
.006151 -. OOOG55 
.002iOfi -_ 000855 
.004702 -. 001973 
.001999 -. 001319 

OO331G ’ -. 003316 
.001319 -. 001999 

0019i3 -. 004702 
OOORM -. OOZiOF 

.000655 -. 006151 

-_ 

0 -0.003449 
-. 007GSG 
-_ 004243 
-. 009338 
-_ 005102 
-. 011141 
-. 006049 
-. 013146 
-_ OOTllfl 
-. 01.5415 

-0.008323 
-.OlSO42 

1 -. 009i43 
--.021159 
-. 011449 
-. 024968 
-_ 0135tB 
-. 029i99 
- 016305 
-. UG21i 

-0.020031 
- .O45294 
-. 025472 
-_ 059345 
-. 0342ii 
-, 084480 
-_ 050944 
-. 144119 
- ,0503511 
- .636402 

-0.016G77 -0.040322 
-. 009002 -. 02246i 
-. 019528 -. 051462 
-. 010554 -_ 029282 
-_ 022960 -. 069820 

0.0069Oti 
.003072 

: E29' 
.004003 

: o"i%: 
.000986 

001312 
.00032i 

0.000000 
-_ 000327 
-. 001312 
-. 000986 
-. 002641 
-, 001657 

0.040322 
.018011 
.032759 
.014841 
.027228 
.012446 
.0229Go 
.010554 
.0195x? 
.009002 

0 0.000000 
1 .412”368 
2 .22.3706 
3 .OG5520 
4 .106592 
5 .041111 
6 .059820 

i; :z% 
9 .02246i 

.014242 
owl63 

.012115 

.005563 

.010218 

.004663 

: %% 

-. 0055133 -. 012446 -.041111 
-. 012115 -. 027228 -. 106592 
-. 006563 -. 014841 -. 065520 
-. 014242 -. 032759 -. 2237706 
-, OOiG94 -, 018011 -_ 412368 

-. 004003 
-. 002349 
-. 00‘5417 
-. 003Oi2 

TABLE IS-COEFFICIESTS FOR CORRISCTIOS TO (‘OS- 
JUGATF 

T _- 
.060198 
.0467X2 
.035045 

0319i4 
.02i49G 
.024049 

021m4 

019061 

: K2: 
.014222 
: gg:, 
.011011 
.010156 

0093in 
0086li9 

-0. OO31i45 
-_ 004042 
-. 004455 
-. 004885 
-. 005335 
-. 005809 

-0. 008669 
-. 009379 
-. 010156 
--.01mi 
-.0119G" 
-. 013021 

-0.021304 
-. 024049 
-_ 027498 
-. 031974 
-. 038046 
-. 046782 
-. 060498 
-. 08~301 

i0 

-. oolxo9 -. 014222 
-_ 006840 -_ 01 M9G 
-, 007401i -. 017186 
-. OOR014 -. Ol9OGl 


