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TWO- AND THREE-DIMENSIONAL UNSTEADY LIFT PROBLEMS
IN HIGH-SPEED FLIGHT ‘

By HAEVAED LOMAX, MAX. .%. HEASLET, FEtANKLYN B. FULLER, and LOMASIJJLIER

SUMMARY

The problem oftransient lift on nro- and threedimemriona[
wing8$ging at high speed8 i8 dimmed a8 a boundary-calue
problem for the c[awical ware equation. A’irchhofls formula
is applied so that the ana[ysi8 ~ reduced, just a8 in the steady
state, to an in.reatigationof 8ource8 and dou61et8. The app[i-
ca/ion8 include the eraluatiw of india”ai lift and p.tching-
mmnent m.trre8 for twodimenm”onal tinh<ng and p.tching
u<nggjfying at Mach numbers equal to 0, 0-8, 1.0, 12, and
2.0. Re8u[t8 for the tinking ca8e are a!80 gicen for a Mach
number of 0.5. In addition, the indicial f unctionsfor 8uper-
wtcic-edged triangular uing8 in bothforuxzrd and rerer8ed$ow
are pre8ented and compared with the tuodimemional ra[ue8.

INTRODUCTION

The uswd idealizations introduced in the development of
linearized aerodynamic theory describe a frictionIess, per-
fectly elastic, model fluid. As is well known, the effect
of srnaH disturbances in such a fluid can be analyzed by
means of the famiIiar wave equation.

The solution to the wave equation known as Kkchhoff’s
formulu (see reference 1) is found to be of eonsiderahIe use in
imsteady-motion problems in~oIving thin wings with super-
sonic edges. The problem is reduced to one of summing
t’[wuentary solutions, analogous to sources and doublets
ill steady flow, over a region determined by the position of the
wing as weli ES its traversed path. The theoretical develop-
mmt leads naturdy to the concepts (defined later) of, fit,
inverse sound maws, which LMw a counterpart in the Mach
forecones used in steacIy+tate wing theory; second, acoustic
pIan forms; and, third, homogeneous flow, which reduces
ill part to the farniIiar conical flow as the wing approaches
u steady superwnic veloc=it.y.

There are several simpIe types of unsteady motion on
which the analysis can be based. The so-called indiciaI
motion, in which the \-elocity undergoes an initiaI discon-
tinuous change wtil be considered here. It is possibIe to
conceive the perturbation field due to the unsteady motion
in two slightly ditlerent ways. For one, it can be supposed
thnt. the wing has been traveling at the constant velocity
I “Ofor an infinitely long time and then, at time equak zero,
starts suddenly to sink without pitching (or pitch at a

constant. angle of attack) whiIe maintaining the forward
velocity l“.. On the other hand, the wing maybe considered
to be at rest in still air until at. time zero it starts suddenly
either to sink or to pitch and, at the same instant, attains
the forward veIocity ~“O. The latter physicaI picture will be
used in this report. ProbIems of unsteady motion can also
be approached with the initial assumption that the velocity
potential depends harmonically on the time. These two
approaches me quite compatible in that they can be reIated
through the use of superposition methods (Duhmne]’s
integral, Fourier’s integraI) of the operational calculus.

Detailed results for two classes of indiciaI responses (tune
response to u step input) will be given in this report. The
first of these is the compIete set of responses (cla, c~=, Clr, CJ

for two-dimensional wings flying at lfach numbers equal
to O, 0.8, 1.0, 1.2, and 2.0. In addition, results for cl= and

cm=are given for a Mach number equal to 0.5. The part of

the amdysis pertainkg to the response of wings traveling at
subsonic speeds is kn.gthy and somewhat tedious regardless
of the method of approach. With the use of indicial func-
tions, however, the cahxdations are reasonaMy s&aightfor-
mrd, especially for Mach numbers around O.~ to 1.0.
Further, the use of indiciaI functions sheds considerable
Iight on the .mt=mner in which Mach number wmiations
affect the section aerodynamic characteristics. The results
for the two-dimensional ~ings traveIing at supersonic speeds
are compared with the indicial responses developed by
rectangular wings of aspect ratios 2, 4, and 6, the latter
curies having been” presented by J. N-. lliles in reference 2.

The second class of indiritd responses considered is that
concerned with the forces,. and moments induced on sinking
and pitrhiug triangular wmgg. First, the loading on a flat
triangular wing with supermnic edges undergoing an indiciaI
sinking mot ion is determined. (See also reference 3.) Then
a simplified method is developed whereby totaI lift and
pitching-mornent coeflkieuts for the wing with supersonic
edges may be obtained. (See also reference 4.) Again i
complete set of indicial respo mes is presented for supersonic-
edged wings in both forward and re-rersed flow. LastIy,
the triangular wing with subsonic edges is partially analyzed,
and the indicial responses for a slender trian=tiar W@ are
given.

ISuPWsedesN-ACATX2X6,The IadIehl LKt and PltebInc Moment kwa Slnklng w PitehYngTwo-DbneMrmd VHnSFl@ng d Subsonicor Swwsonlc Speeds” by Harvard Lamas
M*x. A. Headet. sn.i Iama Slnder, Ml; NACA ‘EN 2?57,77hree.DimensloneIUrtmeady Lift Pmbkxa.sla HIgh4@ FNght-The Tr!angrdw WL@’ by Ihrvsrd hmaq M8L A. HemIe~
wui Fmnklgn B. F&, 1951;and 81wmntalm mnterbd from N.kC.i TX 2250,‘ThreG-DimensIor@ Unsteody-LUt PmbIems In High-%weclFIlgM-Basic ConeerJts”by Hsrrti Iame.q
MSX. A. Heastet,snd Frc B. FuIIw, 1%s1.

393

https://ntrs.nasa.gov/search.jsp?R=19930092122 2020-06-17T03:34:31+00:00Z



394 REPORT 1077—NATIONAL ADVISORY COMWM?EE FOR AERONAUTICS

(-’Jnl

c.=’

Cme’

c1

cm

m

i141J

r,

P,

Ap

K

qo

~

s
s
t’
t, to

SYMBOLS

speed of sound in the undisturbed fluid
chord of wing

lift

(. )

lift eoeflkient j--—
~ prJvow

indicird lift coeilicient due to angle-of-attack

( ac.
change, without pitching C’L== ~~ .-O1)

indicifd Iift coefhcient
wing rotating about

(c’”=%1.)
due to pitching for a

its Ieading edge or apex

pitching-moment coefficient, positive when trrail-
ing edge tends to sink relative to leading edge

\~ /
in dicial pitching-moment coefficient due to angle-

of-attack change (without pitching) measured
about the leading edge or apex; positive when
trailing edge is forced downward with respect

to the leading edge or apex
(

cm==~l -)
LY-o

indicial pitching-moment cocfilcient due to pitch-
ing measured about the leading edge or apex,
for a wing rotating about its leading edge or
apex; positive when trailing edge is forced
downward with respect to the leading edge or

-[C.,=*-]
t wo-dimensiomd lift coefllcicnt

two-dimensional pitching-moment coefficient

()

moment
1
~ pi)V02C2

cotangent of sweep angIe (cot A)

Mach number in the undisturbed fluid
M.
2 as–r

‘@dy ‘
. -8 qo

7ni140Vo

J
‘@dy—._

2682 -8 qo
Ioading coefficient (pressure on the Iower surface

minus pressure on the upper surface divided by
freu-etream dynamic pressure)

free-stream dynamic pressure
Gp’v$)

()cddimensionless rate of pitchhg ~

Iocal semiepan of wing - -
wing area
time
@’, aot’/c

u, v, w

Vo
x, v) 2

(m,. D.

r
a(f)

A

e

Po

TO

fP

perturbation vdocitics in x, y, z directions, rc-
spcctiveIy

free-stream yelocity
Cartesitm coordinates, fixed relative to tho fluid

at infinity
distance of center of pressure from Ieading edge

or apex, in percent chord
angle of attack (angle hehwwn flight path find

pIane of wing),. radians
da
P
Jirfim

.—

circulation
Dirac 8 function, normalixcd with respect to f’,

thus ~(t’) =0 for t’ #O, 3(0)= w, and

J

m
6(t’) d’ = 1

diec~;tinuity in the quantity in question across
the pIane of a wing

wing angle of pitch re.laLive to horizontal, posi-
tive when traiIing edge Iies Mow Ieading edge,
radians

()wing rate of pitch $

angle of sweep of Ieading edge, positivo for swccp-
back

free-stream dcmsity
VOJ’

()
chord lengths t.ravehx{ ~

pe.rturhtition velocity potential

SUBSCRIPT9

upper surface of a wil]g
Iower surface of a wing
indicate differentiation with respect to the vari-

abIe in question

PART I-THE USE OF INDICIAL FUNCTIONS
IN UNSTEADY LIFT PROBLEMS

In the fbt part of this report, a discussion of thrco un-
steady Iift problems wilI be given. The three pmblcms me:

(i) Determination of the indiciaI rcsponm in IifL m!d
moment on a sinking or rotating wing;

(ii) Dettirmination of frequency responso in lift and mo-
ment on a fluttering wing; and

(iii) Determination of frequency response in lift and mo-
ment on a slowly oscillating wing.

The method by which the latt+r two problems may be
salved with the aid of the scdution to the first is also dc-
scrilxxi, as well as the application of these results to the de-
termination of lift and moment on wings undergoing m%itra.ry
mancuvere.

THE INIMCIAL FUNCTIONS

By definition, an indicial function is the response to a
disturbance which is appIicd abruptly at time zero and is
heId constant thereafter; tlmt is, a disturbance given by a
step function. For exampIc, if the angle of attack of a wing
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varies with time as shown in figure 1, the corresponding re-
sponse, ako shown in figure 1, is designated as the indicitd
lift coefficient due to angIe of attack. Four such indicial func-
tions vd] he evtduatcd, nameIy, C%, ~~=’, ~L@’, Cmc’. The
primes on the coefficients indicate that the axes about which
pit< fting motion occurs and pitching moments are measured
t~ither coincide with the leading edge of the wing or with a
line through the apex normaI to the root chord of the w-@.

The equations which transform these functions to those
for a wing pitching about an axis a distance ac back from the
Iewding edge and having its moment center a distance lx back
from the leading edge are simply

( “’L==(’La

1

(1)

(“’ =(’ .,’+- b C=q’–a Cna’–ab CL=‘* J

“. t’

I%;I.EE I.—lndfcia] esdtathn and respon.f.f.

In linearized, thin-airfoil theory the boundary condition
that applies to the indicial functions due to angIe of attack
is simply

U*U= Wi= – V@ (2)

cwer a certain planar area in the ryz space at the time t’.

If we consider a coordinate system &ed relative to the fluid
at infinity and a Ming with span measured along the v axis,
moving away from the origin aIong the negative z axis with
a velocit.v ~1, then equation (2) applies to the area in the
Z= o plane Occupied b}- the wing at any given time. It is
further required that the w be continuous everywhere except
across the wing pIan form and wake. In the case of the
indiciaI functions due to pitch for a wing rotating about- its

Ieading edge or apex, the boundary conditions for a wing the
leading edge or apex of which is at the origin at. t’=0 are
that the upvmsh be given by the expression

over the same region in the z= O plane m for the m@-of-
attack case and, aanin, that P be continuous except across
the wing and its wake. The angle of pitch, 8, is taken as
positive when the trailing edge is lower than the leading edge,
and # is the t-me derivative, d8/dt’, positive when the tmil-mg
edge is falling with reference to the leading edge.

The ditTerence between 8 and a is illustrated in &ure 2 (a).
The angle of attack a is the angle between the flat wing
surface and the tangent to the f@ht path of some point
fi~ed at a distance ac back from the wing leading edge. For
example, in applications involving the dynamic behavior of
an entire airplane the distance ac -would usually be taken as
the distance back to the center of gravity of the airplane.
The angle 8 is the amgle between the flat wing surface and
the horizontal. F~e !2 (b) shows a TV@ undergoing a
sinusoidal angle-of-attack variation vrith a zero angle of

Direction of wiq mofion

/ca
Fl@hf pfh of reference

<

point on wing---
‘.

‘.
\\ ‘.

‘.
. .
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‘N- e=i=o
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(c) PIfohIng W*
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.

396 REPORT 1077—NA’I’H3NAL ADVISORY COMMITTEE FOR .4ERONAUITCt3

pitch throughout. For convenience and in order to dis-
tinguish from the pitching wing, such a wing will be referred
to as a sinking wing. F~ure 2 (c) shows a wing undergoing
a sinusoidal angle-of-pitch variation taken about the mis (ZC
back from the leading edge. In the c~e shown the wing has
a constant (zero) angle of attack.

The variable g to which the lift and pitching-moment
coefficients of the pitching wing are referred is equal to
tlc/VO,a dimensionless form of expression for rate of pitch.

.4DAPTATTON OF THE INDICIAL FUNCTIONS TO MANEUVERS

Since the theor,y is linear, the lift and moment on a wing
undergoing an arbitrary maneuver (in which ho t,h a find #
remain small) can be calculated from the -indicia.l functions
by the principle of superposition. For example, consider a
wing performing some arbitrary maneuver involving small
variations of both a and 8. Let a and 13be defined 2 with
respect. to the flight. path of a point ac back from the. Ieding
edge. The appropriate indicial functions can then be cal-
culated from those referred to the flight path of the leading
edge by mess of equations (1). (The moment center is
still arbitrary at a point a distance bc back from the leading
edge. Howover, for convenience, b is usually taken to be
equal to a.) Finallyl by Duhamel’s integral, the lift and
moment induced on the wing by the arbitrary maneuver are
given by the equations

r
d “[cLa(t-t,’) a (t,’)+ CL*(t’-t,q q (t,’)]Wc’L=@=~

}

(4a)
G=gf[cm= (t’-%’) CY(t,’)+ama (t’–t,’)q (t,’)](it,’

or alternatively

Whtre, for e~amph!, CL=(t’—tl’) means that the indicial

function CL. is to be evaluated at the time t’ –t,’.

THE FL13TTEB llEIUVATIVES

By defiuitiou, d flutter derivative is the response to a
hmmonic oscillation in vertical displacement (angle-of attack)
or pitch, such oscillation having continued so long that a.U
transient effects of its origin are damped out and the incluced
forces and moments are periodic. In the notation used in
reference 5 the inducecl responses me given in terms of the
flutter derivative Ll, L2, L’, L: and Ml’, M’, M’, M’.
The relation between tho indicial responses and the flu~ter
derivatives follows from equations (4) and can be written

---

}
(5)

2ikci,’(t’–t1’)] e$*’i’dt1’ “1

2ikc==’(t’ —tl’)]e*Wdtl’ J

where w is the frequency and k is the rcduccil frequency,
W/2 V. The primes on the qmmtit.ies again indirate that.
the wing is pitching about and tbc moments are measured
about the leading edge of the wing.

The responses in Iift and moment for harmonically oscil-
Iaiing wings can be expressed in termq of their absolll[ c
vahs and phase. shifts with reference to the period of the
forcing disturbance. Thus, if an angle of attack vnriation
given by the equation a=e ‘MC’is impressed on the wing, W
response in lift would be [cl [d ‘-”+ ~). In terms of the

indicial functions this can be ~tt en

which, by comparison with equations (5), can be rc-mprossed
in terms of the flutter derivatives as

.Similarly, each of the stability derivat iVQScan be cxprcssccf
in terms of the indiciaI functions and the tlut.tcr derivatives,
hence:

‘ Term

Cie

cm=’

Maximum value Phase angle

4k@7qz7 --tan-l ~ ‘

2k ~Afl’2+ .MZ’2 ‘“ -tan=’%
~

(c)

where it is assumed that unit absoIutc values of ang]c of
da/dt’attack and pitch are impressed and the term &= c —

1~”

9 Notfce tit If af snd @’ore the angle of cituok and pitch measuredwith respoet@ the tllght ~th o; t&%@ng edge, and u’smd@thecameanglesmamnredwT2hreg~ectto tho fllght path
of a pdnt as hwk horn the lw.dlns edge, the Ar@n betwem the two sati of angles (e siren, for smslI dofleet[ons,by

d
“’--E “

ff-e
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The boundary conditions for these prob~ems are exactly
the same as those used for evahmting the flutter derivatives,
ht’ing in fact a special case of the hitter when the frequency
of oscillation is ve~ lovr. This added simplification is im-
portant, however, because the frequency of angle of attack
nnd pitch oscillations for the entire airphme is, relative to
the flutter frequencies, very low. Further, special methods
based on the assumption that the wing is oscillating sIowly
have been devised. Thus, if the Iift and moment are ex-
pimded in powers of the frequency, sohtions for the eoeffi-
rients of the lowest-order terms have been found for both
triimguIar and rectangular winge-frying at supersonic spds.
(Sue, e. g., references 6, 7, S, and 9.)

For a gken set of indicial functions these expansions can
b(~ rarried out ~iith relative ease. Consider the case of LI
tmd ~ as given by equations (5). If the indicial curve for
r ~=(t’)contains no pulse funct-ion,3 the expression for LI+ L!i

cm be written

whtw Acl=(.t’)is the difference between the indieial Iift and

its asymptotic value, thus

Arla(t’)=cl=( m)–cl=(t’)

Sinr(~ Acl ( aJj is zero, it followse-

‘[ J
L+iL=~ ci=(~)–im ~“AC,a(tI’)@-’”’I’ dtL’

1

(n-, in terms of the reduced frequency parameter k=wc/2V0
tmd the number of chord lengths traveled To= Vot’/c,

‘[ J

m

L,+iL2=& c,a(m)–2ik
1

Lci=(ro)e--dro
o

in case the ffow is supersonic, these expressions can be
L*Ypanded in powers of k, thus

I

.E

s

.

4L1=2 JC~=(T@jdTO—4k*o T02AC1=(TO)dTO+. . . (7a)
.U

[

.
4kL:=c/a(m)—4k* T& J=(rJd To+ . . . (7b)

, 0

Similarlv, the expressions for the other coefficients become

r r
– 2.11,’=2 = &a’(ro)dro-4k’a OmTo’Acma’(To)dro+ . . .

,, [1
(7C)

J
–2k.112’=c_=’(~ )-4k2 := r& ma’(ro)cfn+ . . . (7d)

LII!T’ PROBLEMS LY E.I(3H-SPEED FLIGJYI’

J
2kL/=cla’( c=)— o“Ac@dnr2kz

J
m[2q4c,,’(rJ

—~o*icl=(dyfro+ .

397

. . of)

—ro2Ac~=’(@ire+ . . . (7h)

It is interesting to examine these equations briefly with
regard to the probIem of one-degree-of-freedom oscillatory
inat ability. & vms shown in reference 5, an oscillatory
stability boundary is given by the equation .lf~= O. Hence,
a wing pivoted about. its Ieading edge cm be neutraUy stable
if M4’=0. SuclI a condition arises only if the frequency is
very low i for which case the above e.spansion for k.M4’applies.
Hence, to a first order the stability boundary is giren by the
condition

C=c’(m)=
J

o“ Acm=’(rJdro

This leads to the interpretation of the indicial curves shown
in &ure 3; name]}-, an airfoil pivoted at its leading edge can

~.

———.——————————————-r ——————

$.%, 1

I

cm:

1 4
Chord Ienqthg traveled, r.

FtGL71tE3.-InterpretatIon of stngkiemec!f-freedom stability fxmndMY fn teiTIMor
Indkkd mqwmw curres.

-.4 PLse functhn 0CCM% @ fm tti CSS?.\fo=o. Its treatment ht expmssbm sach MSequatbms (5) fs disrMwI in a subsequentwctb.m.
* Tb.at k. thmmoment o! fnertfa k Isrge. EsperbnentaI ~fon of the edsteua of ttds type 0[ instabllky - be found fn referenceIO.
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have an oscillatory
cm ‘ is lees than the

c~l~ and its indic.ial

traveled.

instability if the steady-state value of
area between the steady-state value of

value when expressed in chord lengths

PAliT II—METHODS FOR SOLVING UNSTEADY
PROBLEMS

BASICEQUATIONS AND80LU’lTOfW

In tmna of the perturbation velocity- potential q,
equation can be written

1
V%+ Pw+%Z=~2%’t’

LIFT

the wave

(8)

where C20is the speed of pressure propagation, t’ is Lhe time,
and z,y,z are spatial coordinates. This equation applies to
a flow field which is staticm Wry at large distances from the
disturbance. region; furthermore, the coordimt.c system ia
stat ionary re.lat ive to the fluid infinitely distant, so that., if
a moving wing is being analyzed, the wing moves with
respect to the z,y, z axes. The last equation can be put in
a more convenient form by introducing the notation

t=aQt’ *

so that t,he dimension of t is length just as aro the dimensions
of the geometric variables z,y, and z. Equation (8),
together with this transformation, yields the canonical form
of the wave equation

$&+$% +%=bu (9)

and it is this form which wiII be considered.
The first task is to study the relation between the motion

of the wing and the coordinate system. As has ahvm.dy been
men tioned, equation (9) is valid for a flow field produced by
a wing moving reIative to a coordinate system fixed with
reapcct to the fluid at infinity. It is pertinent to consider
the possibility of tlnding a transformation which will fix
the origin of the coordinate system on the wing and, at the
satnc time, retain the wave equation as the governing equa-
tion of the flow. Certainly the first of these requirements is
simple to fulfill if the second is neglected.

The foIlowing transformation (known in relativity theory
as a IJorentz transformation)

_ t–M@

‘–-

(10)

where MO=%< 1, will satisfy both the almvc conditions,

For example, suppose that the wing ia moving along the x
axis with velocity Vo. Application of equations (10) to
equation (9) makes the origin of the new system of axes also
travel aIong the z axis ~~ith a velocity I ‘o, This is seen to
be so since & is always zero when t= T“#=MOf, Hcnrc,
the ~ axis is “fixed” on the wing. As to the second com.lition,
a straightforward exercise in partial different int inn yields

so that, in going from x,y,z to .f,q,( space, the wave equation
remains invariant,; conscqucmtIy, both tIN requirements
mentioned have been fulfilled,

It is instructive to cousider briefly the .couscquences of
applying the Imrentz transformation. AIthough the wave
equition remains invariant , such physical quantities as
length and pressure do not, For c.mm~)le, a wing with a
chord c in the x,y,z space has, according to equations (10),
a chord c/~~ in the f,v,~ spat.c, Ftrrthermorc, the
loading coefic.icnt which, on the basis of limarizcd theory,
is given in the x,y,.z,t space by

becomes for the f,q,~,r space

(12)

(13)

If the wing motiou is steady and there are no transient effects,
equations (11) and (13) are independent of time and, to-
gether with the resulting length tra.nsformat.ione, bccomc

(14)

These arc immediately recognized to bo I,aplarc’s equation
for inccunpressil.de flow and the fan~iIiar PrandtI-GIauert
compressibility corrections.5

The preceding discussion has an important qualification,
however, in the fact that the velocity of the moving co-
ordinate system cannot exc~ed the speed of sound. A glmwc
at equations (10) serves to verify this statement since those
equatio~ show MO must bc less than 1 in order that $ and ~
be real for real x and t. In fact, it has been shown that thero
is no transformation which will fix the moving system of rums
in a wing traveling at a uniform sttpmsonic speed away from
the original fixed axes and still keep the wave equation in-
variant. Therefore, for analyzing a wing in supersonic

. ..=- -- .-— ---- -.
J‘rile equation:-r/_ would tit regal+ &jJdc)/- wheretok a“&its&t re~iimthk & tfmercoufred for tti”motbm to math Itastmdv st8t&- IIotie-i%r.ther mord[~

mite mn always be translatedb any fwed pastttonwithout aIIe&g ~ of the equationsfor pots&kd, load-~, eta. Su& n trrmstatfontsassumedta have b&n mado In 04uationa(M).
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flight., it is necessary to abandon one of tbe tww proposed
requirements: 13ither the coordinate system camot be fi~ed
in the wing, or the field equation must be modified. The
Iattur of these two alternativ~ has been studied by severaI
authors (see references 2, 3, 4, 5) but it is the former which
dl be considered in the present analysis. Further, since
the axes cannot be made to travel as. fast as the wing, they
will not be made to move at ail and equution (9) VW be
tidopted thro@out as the basic equation.

IIaving decided upon the form of the pmtiaI differential
t’quation, we must next estabIish the boundary conditions.
For any given time these conditions me similar to those
studied in stead}--state thin-airfoil problems; namely, either
that the given slope of the wing surface is proportional to the
vertical induced velocity p= over the region occupied by the
wing in the 2=0 plane,s or that. the prescribed surface
pressure is proportional to the timewisc gradient pt in
veiocity potential o~er the same region. The addition of
t imp simply means that this region moves about in the
:= O pIane in conformity with the direction and velocity of
the wi~~.

The solution to equation (9), subject to the boundary
conditions just mentioned, can be expressed by a formula
which may be regarded as requiring either the evaluation of
a double integrtd or the solution of a double-integral equation,
{Icpending upon whether s boundar~--va.lue probIem of first
or second kind is considered. Tbk solution is known as
Kirchhofl’s formtia. (see reference 1.] It- may be written
in a form convenient for aerodpamic applications as foIIows:

where the A indicates the jump ( vtiiue on the upper surface
‘.

dy’
minus value on the low-er surface when applied to q or —

a~ )
of the function in passing through the z 1= O plane,

r=\~(x—rl)*+(y —yl)*+(z —zJ2, ro=\~zJ*+(y—@*+;*,
and where the area of integration S= wilI be discussed in
more detai~ later.

The terms in the integrand of equation (15) can be
shortened by int reducing the following not at ion:

In this notation, the subscript r in equation (16a) means
that r is to be held constant in the dii7erentiation, and the
prefix A obviates the necessity of indicating that the func-
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tious considered are to be ewduated for :1=0, since it in&l-
cates that the difference of the vahws of the function across
the Zl= O plane is to be taken. The right-hand side of
equation (16a) can be recognized as a term representing a
source located in the z1= O plane, and the right-hand side of
equation (16b) is seen to represent a doubIet Iocated in ancl
with axis normal to the Z1= O plane. The brackets [ ] about
the functions in equations (16a) and (16b) have a special
meaning which is defined in the following way: If ~ is a
function the value of which at a fixed point P dep.wds upon
the coordinates rl, vI, :1, t of a moving point Q, so that

.f=.f(%w,qo
then,

[fl=j(~hwt,f-r) (17)

where r is the.distance from P to Q. & an example, con-
sider the potential p at a point. P due to a mov-kg source,
the location of which at my time is Q. Then p satisfies the
condition just mentioned that it depends on the coordinates
r,, y,, z,, t of Q. The brackets [ ] indicate that the potential
[p] depends not upon the source strength now at “time” t,
but. rather upon the source strength that existed “time” r
ago? For convenience, [P] is referred to as the retarded
value of W.

The. expression for a doubIet (equation (16b)) is usuaIIy
expanded as follows:

FinaIly, equation (15) becomes

(19)

The application of equation (19) awaits only a discussion of
the area & over which the integration is to be made. This
discussion is important enough, however, to merit considera-
tion in some detail and will be given in the foIIowing section.

THEACOUSTIC PL.Ah- FORM

Suppose that a line of sources is pIaced along the yl asis
and that the strength of these sources is zero for t<O. &
t=O they are “turned on” and, at the same time, start
moving along the negative xl axis with the veIocity ~~.
After time i’ has passed, the source line has traveIed a
distance Md as shown in figure 4 (which is drawn for t-he
case Mo>l). Suppose next that there are two sensing
elements, or detectors, placed at the point ~(x,y) Iocated
somewhere ahead of the VI axis; one of these detectors is
responsive to Iight and the other to sound. ATOW,the light

~The z-O pbne b assumedto be the “pIenc of the wtag”; tit 1s,ifrhe 6.@e C4attack were zero and the wIq had m thkkness It wmdd lb entirely In the z-O phne.
r Quotesam + around tbe v7mdtime s!neethe dbmsion oft Is MueJly bmgtfs, not tkne. It b convmfmt, howerar, to refer b: as “time;’ I@ she the actual vdueoftbne fssImpIy

t divided by the cozmtantUC,thh shouldmuseno confusbn.
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cletwtor at any given time wiI1 show the sources lying in a
straight line just as they -would appear visually at each
ptirticuIar in9tant. The situation is entirdy different,
however, for the sound cletcctor. First it is necessary to
understand the nature of a spherical sound wave. Such a
wave travels outward from its origin at a velocity G, so that
in the time t’ it hM t,ravelcd a distance t. Before the wave
reaches a point, th point is completely unaware (unaware
is used in the sense tha~ an instrument will record no change
in any of the physical properties of the air at the point in
question) of its exiskmce and, further, after the wave has
passed, the point remains subsequently unaware of its
o.xistcnce. Hence the only points disturbed by the wave
are those momentarily on the spherical surface itself. (In
this connection soe reference 1, pp. 1-3.)

‘1’he sound detector, therefore, can only “hear” sources
which are so locrdml that their spherical sound waves are
just, at h given instant of time., reaching the detector.
The locus of all th~ points which, at a time. f ago, emitted
sound waves that are just now reaching the point P(x,w) is
it,self a sphere and for convenience this sphere will be rcferrecl
to as an” invwse sound wave.” 8 The traces of these inverse
suund waves in the z= O piano are drawn in figure 4 as
conmntric circles about tho point I’(x,&). The intcrsectiou
of MI inverse sound wave of radius t—r with the line. repre-
swntling the position of the sources at ‘a time t’ —r’ ago gives
the position of the sources which are just now signaling their
presence to the sound detector at I’. For example, when the

source Iinc started, it was Iying along the VI axis. WiLh
refcrencc to the present time t this was ad? removed. Henco
the intersection of the circle about P of radius t with the VI
axis fixes the two points A and A’, the sphwicaI sound waves
of which are now reaching P. A continuation of this procoss
yields, for the Iocus of rdI points from wKlch waves emanated
that am just now touching the point P, the part of tho
elIipse shown in figure 4.

In the sense that the light detector, because of t.hc very
large velocity of light, is “seeing” a straight line of sources,
tho sound detector, because of the relatively slow veloci~
of sound, is “hearing” an elliptic line of sources. Extending
this concept to includo a sheet of sources distributwl over
the sufiacc of the wing, one can refer to the outlinu of that
part of the wing which generates disturbances which can bc
measured by the light detector as thu plan form (i, e., the
visual plan form), and to the outlino of that part of tho wing
which affects the sound detector as tho ticoustic plan form.
In a mathematical sense, the acoustic plan form is the area
S’=over which tho integration of equation (19) is to be mark

The equation for the acoustic plan form can be formulated
by means of the two equations

(Z–X*)’+ (y–y,)’+&= (t–r)’ (20)

j(vl, %, ~)=o (21)

where .x, y, z are the coordinates of the point at which tho
induced effects are to be measured; z1, ~lJ the vmiablc points
of the sources; t, Wrne” now; and t—r, “time” ago. 13qufi-
tion (20) is that of the inverse sound waves rtnd cquat.ion
(21) represents the position of the visual plan form at a
“time” 7. It is nccmsary to includo the region behind tho
wing covered by the vortex wake as par~ of tho visual plan
form. k case the vorbicity in the wake vanishes, as in the
thickn= problem, the wake may still lw considered as part
of the visual plan form, but tho strength of the source-doublet
distribution over that p~rt of the acoustic phm form corre-
sponding to the wake will vanish. If P— 2<0, tho acoustic
plan form does not exist since, for such a case, no source
on the xl, yl plane has had ~imo to tranemi~ its effect to the
point z, y, z. On the other hand, if the circle (in the u YI
plane) gjven by the equation

(x–xl)’+ (y–y,)’=F–z’

lies eritirely within the area occupied by the visual phm
form of the wing at the beginning of the motion, the acoustic
plan form is just this circle itself. For any other situtition
the acoustic plan form is formed in part, or in whole, by hc
curve found by eliminating r from equations (20) and (21)
and in part, o~ not at all, by an arc of the circle (z—xJ*+

(Y–YJ’=tS-~. Onc of tl~~ prnncipfll advan~g~ Of the
acoustic-pIan-form concept arises in the study of problems
inroIving source or doublet distributions having constant
strength. In such cases, the retarded values of tho potential

~Thelnw.meoundwave hasfor Its emdoguein steady UW&mrfm theory the Muh fore.mne. IU that thmwy a dleturbaneaouts[de W Mach fwtwme cemmt aRwt the values of

the inducedveloo[tiw at the pint rvhcrethey em being menmred. SWly, In tbe present study, a smrresIocded outdde the lnverw wund wave of radhrnt cannot affeot tho vzducsof
any measurementmade at the point P.

--
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and its gradient appearing in equation (19) are constant
and can be taken outside the integrrd signs. The problem
is thereby reduced to the integration of a simple geometric
variable over Sa.

.! few examples will serve to fix the idea of the acoustic
plan form. ~onsider first a twodimensional, unswept. wing
moving at a constant supersonic speed in the negative rl
direct ion. At time zero the leading edge of t-he wing was
along the WIasis and now, at time equal to t’, the wing has
moved so that the leading edge coincides with the Iine
<1= –.llOt. Choose three points that are now Iying on t-he
wing. Let one point hare ita z coordinate in the range
c —%’t:—Zz2 z ZI!tz— z? (where c is the chord of the wing),
the second in the iuterwd #-22>x> —IW- 2s, and the
~Il~d in the mnge —if@—,# >Z > —Mof. Designating these

points by PI,PZ, and Pa (see fig. 5), it. can be shown that their
wmustic plan forms are, respect ively, a complete circle,
a part circle and part eIIipse, and a compIete ellipse. The
points P are at the centers of the circles and at focaI points
of the ellipses. Since, moreover, the circular plan form about
P, receives no signals from sources on the leading or traiIing
Wlge, conditions at F’1 are consequently completely inde-
pwdent of the actual (visuaI) plan form of the wing. Th&
elliptical plan form about Pa, on the other hand, depends
entirely on the shape of the leading edge; and finally the
mixed plan form about P? is in certain regions (the circdar
portion”) independent of the leading edge, and in other
regions (the elliptic portion) entirely dependent upon it.
Since the wing is travehng at supersonic speeds, the traihg
ellge and vortex wake can have no effect on the measure-
ments taken on the wing and, in the same viay, a Pint ahead
of the wing Ieading edge, P4 in figure 5, is undisturbed.

Xext consider a W&Z moving at a constant subsonic speed
in the negative xl direction. & before, the leading edge
was on the Y1axis at t’=0 and has traveIed a distance —Mot.
Choose now three points P,, P,, and PS on the wing and
m~atfected by the wing tips. The acoustic plan forma for
these points are combinations of circIes and hyperbolas as
rent rasted with the circle-ellipse combination in the super-
sonic case. Just as in the supersonic case, however, there

L--.——-————————— -~ --------- I

+
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Wing naw

FKWIM 5.–Acauf+tic vian forms for points on wing tiareIIng at snpxsonic speed.
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is a certarn region represented by PI in which the acoustic
phm form is a compIete circle and is independent of the -
visual shape of the wing (see fig. 6). Poinh Pz is surrounded
by a pIan form which is part hyperhoIic and part circular,
the point itseIf being the center of the circIe and the focus
of the hyperboIa. Point Pa is a Iimiting vaIue of P,;
it lies on the Ieading edge of the wing and the hyperbolic .—-
sides of its plan form htive &generated into straight Iines.
FmaIIy, Pt Iies ahead of the wing; its pIan form is still a
combination of a hyperbcda and a circIe, but P4 is now the
focal point lying ahead of the hyperbolic branch used.

Figure 6 was constructed so that the portion of the visual
plan form behind the trailing edge had no effect on the
potential at the various points PI, etc. If these points had
been chosen at positions where the wake cmdd signal its
effect, one of two acoustic configurations would result.
First, if the wing is symmetric about the ~=0 plane, no lift
is deveIoped and the vorticity in the wake is zero so that- the
v-iwd pIan form need not include the wake, but effectively
ends at the trailing edge. In this case, the leading edge of
the acoustic plan form is then determined as before, while
its modified trailing edge may be made up, in part, of circular
arcs formed by the prima~ wave and, in part, by an arc of “-
the hyperboIa formed by the (acoustic) intersection of the
straight visual trailing edge with the prima~ wave (such an
arc be&w identical with the Ieading edge of the acoustic plan
form but displaced backwards). On the other hand, if the
wing has no thickness but is incIined to the free stream, it
deveIops Ii.ft and the vorticity in the wake does not vanish;
the acoustic plan form has a traiIing edge made up entirely
of an arc of the prima~ inverse saund wave. The space
between this arc and the acoustic trace of the visual trmiling
edge is covered by a sheet of doublets, the strength of which
is determined by the vorticity distribution of the vortex
wake.

It is interesting to notice the conversion of terminology
which &ies in the analysis of unsteady lift probIems. ln
the study of steady=tate wings, it is customary (because of
the nature of the governing partial differential equation) to
speak of the subsonic problems as elliptic and the supersonic

P, P4
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problems as hyperbolic. Yet the acoustic plan forms just
presented involved ellipses for the supersonic wing and
hyperbolas for the subsonic case.

To compIete the remark, it can be observed that when the
velocity of the wing is sonic the steady-state partial cliffer-
ential equation becomes parabolic and, in this case, the
acoustic plan form of a straightdged wing also invoIves
paraboIas. When the Ieading edge is linear and normaI to
the stream clircction, the eccentricity of the conic sections
hound ing the acoustic plan form for a point on the wing is
equal to 1/MO. From this relation it is apparent that for
i140less than, equal to, and greater than 1 the sections are,
respectively, hyperbolas, parabolas, and ellipses. As might
he presurnecl, the value of the eccentricity satisfies shnpIe
sweep theory so that, for an infinitely long straight leading
edge, the eccentricity of the acoustic plan form is 1/.MOcos A
w-here A is the angle of swcepback. The principal axes of
the conic sections are always normal and parallel to straight
leading edges.

HOMOGENEOUSBOUNDARY.VALUEPROBLEMS

Kirchhoff’s solution to the wave equation can be applied
to arbitrary wing plan forms undergoing arbitrary maneuvem.
The bounda~ values for such general problems, however,
uswdlv lead to the development of double integral equations
w~ic~ are ditlkult to soIve. As is usuaI in such cases, tkre
are many special types of plan forms and maneuvers -which
Iead to boundary-value problems that are simpIer to analyze.
An important class of these simplified probIems is that
arising from homogcncoua boundary conditions.

Let p(z,y,z,t) be a solution to equation (9). In certain

()

Xyz
special cases this can be written p= (t)mw ~~~ ~ , in which

case P is called a homogeneous function of degree n. The
number of variables affecting ~ is only three as compared
to the four which are necessary to determine p. If, there-
fore, a partial differential equation can be set up for ~, it
will contain one less mathematical “dimension” than the
equation for P. FoIIowing this observation it is necessary
to proceed in two directions; one to find the partial differential
equation for ~, and the other to find the physical problem
and consequent boundary vaIucs leading to a homogeneous
flow field, The Iatter path will be first expIored.

First, consider an exampIe of a homogeneous boundary-
value problcmo Suppose that a rectangular flat pIate starts
suddenly from rest and moves forward at an angIe of attack
at a supersonic Mach munber MO. At ‘{time” tl the initia~
spherical wave generated by the forward righhhand corner
lMS traveled outward to a radius tl and, at “time” 2tl, to a
radius 2tl. F~e 7 indlcatw the traces of these spheres in
the z= o plane together with the original and present position
of tl~e wing leading edge. Let the points .PI and Pz be
locatid on the same rays through the origin of the circIes
and the wing corners. The probIem is to find the pressures
at PI and Pa.
It is apparent that, if every dimension in the figure involv-

ing Pa is divided by 2L and every dhcnsion in the figure
invoIving PI is divided by tl,the two” figures will be similar
in every respect and point PI d coincide with point Pa.

T
2’M0ti
1“

T
M. t,

-L “$Pi
T.—---. ——--- —- --- 3/t’

_ – - --Wing e
9

of time zero -
wing ge af tj ond $?ti

FIGUUR7.-OeometrIc reIatIonshlpfor homogoncouaflow.

Since the vertical -reIocity wOis constant over the plan form,
a simple change in scale hfis made the boundary conditions
for both problems idmtictd. But this means that tho solu-
tions at PI and P2 are identical since the wave equation is
invariant to change in scale. Hence, in regions of u rec-
tangular wing unaffoctcd by the waves from tho trailing
edge, the pressure can be written

(22)

and the prw.sure is a homogeneous function of degrco zero,
A generalization of this example is contained in tho folIowing
statement:

(1) The pressure in any region affected by onIy two
intersecting edges of a straigh~ided flat plate traveling
at a uniform subsonic or supersonic speed is homogene-
ous and of degree zero (i. e., satisfies equation (22)).
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Consider as another example the case of a flat- rectangular
wing traveling forward at. a subsonic or supersonic speed and
rolling about one edge, taken to be coincident with the x W&
The argument follows the same lines as before, and again a
rharige in scale, proportiomd to the. time, makes the geometry
of the wing-wave combinations identical (in regions affected
by onIy two intersecting edges) for diilerent times. The
boundary -raIues over the wings W not be the same, how-
ever, unless the slope of the WOdistribution is adjusted in
each case. But. U-Ocan be adjusted by reducing it an amount
proportional to the distance from the ati of rotation. The
boundary-value problems are then similar for different values
of time. FinWy, therefore, the pressure can be written

(23)

which is a homogeneous function of degree one. ~ general-
ization of this example is expressed as follows:

(~”) The pressure in any region affected by only two,-
intwwctirig edges of a straight+ided flat plate tra-reIing
at a uniform subsonic or supersonic speed and rotating
at a cxmstant rate of pitch or rdl is homogeneous and of
degree one (i. e., satisfies equation (23)).

It should be noted that both (1) and (2) are equally true
for the steady-stat e case when all transient effects have
disappeared. In supersonic wing theory they lead to conicaI
and quasi-conicaI flows, respecti~eIy vihiIe in the subsonic
case thvy Iead to flows about wings having infinite chordwise
extent. In general, homogeneous flow occurs -when the
boundary conditions after a change in scale are proportional
to their ori@al values.

~onsider next the modification of the basic partial differ-
ential equation (equation (9) ) under the assumption that the
nO~ is homogeneous. If the pressure is given by a function
that is homogeneous and of degree zero, then, by equation
(12), the velocity-potential function vdI be homogeneous
and of degree one, If the notation

(24)

is used, then equation (9) becomes

and a hear partial differential equation with three inde-
pendent variabks is therefore obtained.

In the general theory of partial differential equations of
second order, the character of an equation is determined from
the geometric nature of a related quadric surface. The chara-
cter of equation (25) can be shown from such considerations
to depend on the sign of the expression 1—z/—yo*—~2. It
is immediately apparent, how-ever, that within the unit
sphere in the ~O,Ya,zospace the sign of 1—zi—?-yoi—~z is
everywhere positive and outside the sign is everywhere
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negative. It follows that outside the unit sphere equation
(25) is hyperbolic and aide the unit sphere it is elliptic.

The character of equation (25) is of particular interest
since the difficulties inherent in the determination of the
solutions can be estimated without actually obtaining the
solutions. For example, consider the two con@rationa
shown in figure 8. These wings started moving at f=O with

the foremost portion of their Ieading edges on the go axis and
have by now trareled forward at a supersonic speed to attain
the positions represented by the figure, the unit circle being
in each case the trace of the primary wave from the vertex on
the z= O pIane. Outside the unit sphere, the govertig
equation is hyperbolic and the behavior of the flow is similar
to Lhat in steady-state supersonic-wing problems. Inside
the unit sphere, on the other hand, the character of equation
(25) is elliptic.

It is instructive to notice that this entire development has
a direct amdogue in the study of three-dimensional, steady-
sts,te, supersonic wings. In that case the ori@al equation
is the three-dimensiond wave equation

*—pm—p.=o (26)
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By considering the velocity potential to be homogeneous and
of degree one, Buscmann in reference 11 was aide to introduce
the transformations

~o=!! zo=:.–
z

q@f/,2)=2@ (y,, Z,)

and transform equation (26) to the form

(~ –!/0? %.,O+(l –209 %oso-%lozo%do= o (27)

which is the two-dimensional form of equation (25). Flows
governed by equation (27) have become known as conicaJ
flows. A study of equation (27) shows it to be elliptic inside
and hyperbolic outside the unit circle. In this case, however,
the equation has only two independent variables so .that
once the equation has been transformed (by means of the
Tschapligin transformation) to the twodimensional form of
IJRplaco’s equation solutions are not difficult to find.

The simplification of the fourdimcnsional theory brought
out by the introduction of homogeneous flow was more ap-
parent than real since the resulting partitd clifferentiaI equa-
tion, although containing one less dimension, was unwieldy.

BOUNDARY-VALUE PROBLEMS INVOLVING NONINTERACTING SURFACES

Another class of wing problems which is simplified both
in theory and in practice by reasoning from physical knowl-
c~~e of the flow behavior is that in which the wing has a
supersonic edge (i. e., an edge which is travehng with a
supersonic normal component of veloc.ity).

When the acoustic plan form is affected only by a super-
sonic edge, it is apparent that the flow on the upper surface
of the wing is independent of thnt on the lower surface.
Hence the solut.ion to such problems can always be written
in terms only of sources as follows:

‘=-HJ-E2Y
(28)

where bP/Z)zl=w. (zl,@ = VoL(G,yl), X. being the local slope
of the surface. in the direction of 170. Since the equation (28)
is equal~y valid for symmetrical nordifting surfaces and Iifting
plates, its value and simplicity are evident.

If the wing plan form is further specialized by having not
ordy supersonic leading edges, hut also having a straigl~t
trailing edge perpendicular to the direction of motion, addi-
tional simplifications can be used,e Consider, for example,
the two-dimensional wing (a) in figure 9. Let this wing have
an angle of attack a(t) which varies with time in an arbitrary
mamler. There results from such an angle-of-attack varia-
tion a certain Iift which also varies with time. Hence, if
L* represents the total lift on an airfoil of very high aspect
ratio and cla* represents the section lift-curve slope, then 1°

~= c cla*(c, t) (span)

Next it is clear by reason of symmetry that the total Iift on
wings (b) and (c) in the figure are equaI. Then, since the
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FIGURE9.—Dovelopmontof ehmwntnlffftlng strip.

rmalysis is heed on a linear partial diflwmtiaI equat.icm, by
superposition principle9 the tottil lift on wing (b] or (c) is
just half of that on wing (a). In another sense, the Iift
coeffkiimt for the whole wing based on the deflcctcd area is
the same for all three cases. A suittil]le superposition of
wings (a), (b), and (c) will give wing (d), which then has
the same Iift coefficient based on deflcctd area. Fimdly,
because of the supersonic stream, wing (c) can he obtained
from (d), hence it also has the lift coefkien t common to thr
other wings. It is, of course, necessaw that the variation
of a with tho time be the same in each case.

The preceding process can hc exkmded one step fart.ll(~r
to the de-rclopme.nt of the lift due to a sinde dcflcctcd
element. By ‘xmsidering figure 10, it can bc s~en that

L* C C~=”(C,t)–(C–AC)C~a*(C–AC, t) As
~=

Ac

where AS is the area of the. deflectul element and c is
distancefim the ccntroid of AS to the trailing edge.
the usual limiting process the latter equation becomes

:=: [cC,=*(C) t)] dS

the
By

I The kdlowhrgmethod simply extends,tu fnelnde the tiects of unsteadymotkm, a thearem gfven by Lagerstrom and Ven Dyke. (See referenca12.)
mThe asterfskaon quent[ths fndleate that twodlrnenslonalvalutmaretaken,or tbst a fdgh+mpect-ratiowingh mmdderedand t!p efle?tsarenegk?cted.
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FIGtmz lo.—Devefopment of ffftiug ekment.

J’inallY, if a wing is composed of a dMtribution of these
tknents, then, for a coordinate system centered at the
apex of the wing leading edge, there results

l’s
dL=–; s d~, d: [(CO — Z)C~=*(CO— z, t)]iiydr (29)

.

whe~e q is the maximum chord (see fig. 11). In the develop-
ment. of equation (29) each element is assumed to have the
same variation of motion with time.

I
+X

FnN’M 11.–EsaIIIpie of useof iiftlm?demerit.

Xotice that when the wiug is a flat plate fIying at a steady
speed so that. all transient effects have disappeared, CI=*is

independent. of t and of the chord length, being, in fact,
vqmd to 4/fl. Then equation (29) becomes

4 [s“=@. s ct(x,y)dxdy=~

where Z is the average angle ,.of attack of the wing. This
resuit has already beeu obtained in reference 12. ‘When
cdr, y} is independent- of z (as for a flat wing sinking or
rolling), equation (29) becomes

(30)

~vhtw c is the local rhord which is, in general, a function of y.
Equation (30) simply indicates that longitudinal strip theory
is (’xact for calculating the total lift on such wings.

Finally, notice tlmt the calculation of the unsteady lift on
three-dimensional wings with supersonic leading edges and
straight trailing edges perpendictiar to the fre~tream
(1irwt ion has been reduced to an integration involving the
rvlat ively simple results for a twodirnensional wing under-
going the same unsteady motion. For example, the lift
o~~ a fiat unya-wed triangular wing with supersonic leading
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edges rising and sinking with a harmonic motion can be
computed from a single integration of the results presented
in reference 5.

There is another simplitled method for obtaining the totaI
lift and moment on a wing with all supersonic edges and a
straight. trailing edge. In this presentation it wilI be assumed
that the traihg edge is normrd to the free stream. Hovr-
ever, since the wave equation is invariant to a rotation, it
will be apparent that the solution can be generalized to in-
clude n straight, supersonic trailing ede- yawed with respect
to the free stream.

Consider equation (9) and integrate each term with respect
to y between the limits minus and PIUS infinity.11 There
results the equation

If y=y,(r, z, t] and y=y,(z,z,t) are the equations of the 31ach
waves streaming back from the leading edges on the left and
right sides of the wing, respectively (see fig. 12), then, since
q is continuous across these waves but w., PH, q., and w
are not,

where Ur and
the right and

YaIues of the

al are the values of u on the interior faces of
left ~lach waves, respec.t-ively, and

s

Yr zpy
—,dy=nr–v,

11 a~

terms involving 9, and w are similar to those
involving p= so that finalIy, ii -

(31)

t
z

Ph7e
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_____

Plane

\

\
\

\
\

Wing Jeacfinq
e@7e

g=-m(x+.WOtj --

Truce of s far fing .@erim[ wove:’
in x= O plane

FIGCEr t2.-Forvmrd portionof Mach ww system fora supmonfe+dge.i, trfangdac wfng.
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The terms enclosed withii the parentheses in the last
equation combine internally so that each is zero. For the
case of interest here, this is not difhult to show. Consider,
for example, the hfach wave streaming from the right edge.
Then, since the equation of this wave is

y,= — z JmF=i+”mx +Vn Mot

and the value of the potential is the steady+tate two-
dimensional value given by the expression

.—
?n(z +M”t)-y - z~ipm~- 1 “’p,= —wu—-

m
.

the term

becomes

and this is identically zero. 12 Finally, therefore, equation (9)
has been reduced in terms of equation (31) to

The boundary condition in terms of @ for a triangular
wing with supersonic edges is given by

where WUis the vertical induced velocity in the plane of the
triangular wing. The derivative with respect to z can be
cmricd through the integral sign because the extra terms in-
volving the value of p at YI and VPvanish. In fact, since
equation (34) applies to the z= O plane, the limits YI and y,
can be replaced with the expressions for the left and right
leading edges of the triangular wing, respectively. The
boundary condition axprcsscd by equation (34), used in con-
junction with equation (33], suggests a problem exactly like
those pf2sed by lifting surfacca in steacly~tate wing theory;
in fact, the problem of a wing tip of specified camber in a free
stream at hlach number@. F@c 13 shows a lifting sur-
face in the z,t phme, The solution for the potential @in the
steady-state problem can be written

where a is the area on the wing plan form in figure 13 that is
included in the forecone (t—tl)2= (z— X1)2,

INow from equation (12) we have

I t

F1auKE13.—Reglonof m plane III whloh bxmdmy condltbmsfor # uro known.

whore s is tho local semispan of the triangular wing. This
equation shows how the solution to the lifting surface prob-
lem in@ will a-id in the solution of the unsteady problcm, for
the unsteady Iift on the triangular wing is given by

where S is the area of the triangular wing. It is t.hercfor~

seen to

by

be convenient to evaluate the quantity ~ o,
s-

M
& Jr ( )1z ..~——-.a-,.o=——: :t 6, ~(t–t,)’–(z–x,)’‘t’dx’—— -—.—

given

(35)

The pitching-moment coefficient for the triangular wing in
unsteady motion can be evaluated similarly. Specific appli-
cations of this method will be found in a subsequent section.

TWO-DIMENSIONALBOUKDAEY-VALUEPBOBLEMS

The simplification brought about when t-he flow is inde-
pendent of one dimension is obvious. In such cases, the
three-dimensional wave equation (9) reduces immediately to
the two-dimensional wave equation. Typical extimplm of
this typo of problem can be conatructod by considering fiat
plates which start suddenly at t=O and travel thereafter at
constant supersonic velocitiw. Two mamplas, or.m a corner
of a rectangular wing and the other a triangular wing, are
shown ti figure 14. After timo t=O, the dgcs of the wings
send out cylindrical wavm and the outer boundaries of thw
waves at time t are shown as dashed linm pmallcl to Lhoedges
in quation, Site points in regions 1 and 2 are affected only
by a single edge, the wave phenomenn in these regions are
cylindrical, and the physical quantities are in both cases
independent of distance parallel to the edge which acts as
their gener&or. Hence, the flow field in these rcgion9 is two-
dimensional. (Region 3, incidentally, is independent of
d~tance in both z and y directions and is, thoreforej onc-
dimensiomd.)

ISIt k not ~w~ h pWfW-Ma dti mlculatkm In order to prom the sbcweresult for ~bltrary plm forma. The terms In ~thcscs fn equntkm(S2) reprcsmt the dfrectkmal derlv8-
t!va of the wdcwfty @@rMal taken along tbo m-called “oonormol” of the fomma2tdisturbancesurface. Sfnm w fs @wtant on tbe mrfam, md slnm the conorrnallMI slong tho surface,the
t131m2hl par’enthfw am Zero.
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--Leadmq edge now---.z -

r r

F!,;rmc M-CMSS of tw-odimemionel IMw WIds.

Solutions to the twodimensional unsteady problems me
sometimes especially easy to find because of the anrdogy they
have With threedimensional, steady %ate, lift.ing+urftice
problems. For emmple, consider an infinitely long unya-wed
\ving which starts from rest and trayds forward at a velocity
1“0which may or may not be a function of time. The trace
of this wing in the x, t plane is like that shown in figure 15.
(In the @re shown, the wing velocity is varying and is
always Iess than the speed of sound.) The boundary condi-
tions are that q, is spccifie{l over the shaded area and the
loading Apt is zero everywhere except within the shaded
area. But if z is replaced bj- y and t by r, these boundary
conditions are exartly the same as those for a plate of known
camber and angle of atttick, with a plan form as indicated
by the shaded area, placed in a free stream directed along
the positive z axis at a lIach number equal to ,~~ The
solution for the one problem may be used, therefore, as a
solution to the other with only a change in notation.

~.- -- T-S of CLVrocft%-kfic cones
-.

. .

“:-Tree of I
koo’ing edge

it
FtG,.!?I Iil.-WemtIng wing In ai pIsne.

BOUNDARY CONDITIONS FOR WRY SL?WDER WI?+GS

‘iThen the wing plan form is slender in the sense that its
length in the streamwise direction is Iarge compared to its
span, an estimation of the loading on it can be obtained @
neglecting in the partial differential equation the gradient
of the induced wIocity component in the stream direction.
Thus, if the wing is moving in the negative z direction,
equation (9] reduc= to

%+%=% (36)

which is again the wave equation but in two space dimen-
sions. Since equation (36) is independent of z, study can be
made independently in each plane x= constant. This is an
extension of steady~tate sIender wing theory, see, e. g.,
reference 13. Figure 16 (a) shows a typical section in the yt
plane. If the Iving is a flat plate at a constant angle of attack,

A

I ‘‘x I

at
I i

station

/
n occupied
ing

A

I I

I xl I
I I

Section AA —-

(b)

(a) M fixedreIStlTe to SW alr at InnI!Jty.
(-b)AxeSExed OlllFfnlr

FIG~E M.-Hemler Kfng in unsteady Sow.
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the value of w, over the prirt of the @ plane occupied by tho
wing is a constant and the jump in p across the vortex wake
must be consistent with its value at the wing traiIing edge.
The analogy with three-dimensional, steady-stat,e, super-
sonic, lifting surface theory is apparent.

There is another way by means of which the effects of
unsteady motion on slender wing pressures can be estimated.
If instead of using the stationary wst coordinate system, the
reference axes are fixed on the wing by the simple set of
transformations

rl=z+A40t

tl=t

Yl=ll

21=2

equation (9) becomes

(1 —MO? $%l.l — 2340 @.l:l + %jul +Pzlr,+w,tl

Again, if the induced velocity components in the stream
direction are neglcctcd, the simplified equation

%lul+%,.l=%,rl

results. The latter equation is identical in form to equation
(36). However, now the axes are &cd on the wing and a
typical section in the yltl plane is similar to that shown in
f~re 16 (b). In this case, a flat plate wing is represented by
a constant value of W,lover the entire shaded area in the figure

FLnclelsewhere P must be contirmous.ls

TWO-DIMENSIONALUNSTEADYINCOMPEESSIELEFLOW

The analogy betmwen t.wo-dimcmsiomd unsteady and thrcc-
dimensional steady flow includes the case .of a twodimen-
sional, unsteady, incompressible flow field the analog of
which is a tlmec-dimensional, steady flow field having a
free-stream hiach number equal to 1. This can be demon-
strated by inspecting equation (8). Since the flow is two-
dimensional and since for an incompressib~e medium the
spwxl of sound ezois infinite, the basic equation governing the
flow can be written

%+%.=0

It must be remembered, however, that time still appears in
tho boundary conditions and in the equation for the loading
coefficient which, according to equation (1!2), can be written

Ap 4 ?@—.— ~. ., ..__ .
go Vcl’M

Hence, the basic partial differential equation and the expres-
sion for the loading cocfficicut are the same, except for a
change in notation, as those governing three-dimensional,
stetidy-state problems when i140= 1.

If a two-dimensional wing in an incompressible fluid
starts from rest and travels forward at a speed Vo, the trace
of the wing is as shown in figure 17. The essential difference

*e

sheet

t t’ i
I

FtaL,EE17.—Two-rl1mrnslonalwingInN pk+ne;Mo-O.

between this problem and the more general caso of Lwo-
dimcnsional compressible flow lies in the fact that in this
case the traces of the characteristic canes are normal to the
t’ axis, The boundary conditions are tberefom satisfied
aIong Iatw-al strips and, in Iifting-surfaco termiqology, the
analysis corresponds to slender-wing theory. Those latter
methods are weII estaldished and in reference 13, for example,
the manner in which the Kutta condition is imposed is dia-
cusscd in some detail. The trailing vorLcx sheet for the
lifting wing has the same distribution of vorticity thot exists
behind the unsteady twodimcnsional airfoil and the rolling

1up of the vortex sheet can be studied from eithers andpoint.

PART III—SOME APPLICATIONS OF THE METHOD

STARTING LIFT OF A WING

Ouo. of the simplest and yet most gcmral res~hs which
can be derived on the basis of tlw present theory ie t.hu initial
value of pressure on a wing surface starting sud~lenly from
rcs~ with a velocity ~~. The discussion will be rnado for a
wing without thickness although the method will be seen
to apply to the thickne5s case as well.

Consider a surface with a plan form as indicat{d in flgurc
18. T& acoustic plan form of a plint F’(x,y) on the surface
is a smd circle of radiue t. ,Since uo poim t m thiwing out-
side t&s circle can influence the presvmre at P, the upper
surface is independent of the lower surface, e~ccpt for a
Lund of width t around the edge of the wing, lt is, tllcre-
fore, evident that the boundary-value problem to IJCsolved
ha-s been treated in the section Boundary-Value Problems
Involving ~oninteracti.ng Surfac=. T1lu solution follows
directly from equation (28) and can he writteu

“=-H’L120[21rds

u The anelogoueproblemfn steady-stabwing thwry h thatof e.low-aa~ct-mtfo,rectanguhr,fit platehra freestreamhavhg a Maohnumbw equalto ~~



TWO- AND THREE-DLbIEXSIOISAL UIWTEAD1- IJliT PROBLEMS IX HIGH-SPEED FLTGHT 4.09

-- ---— Wing plan fbrm at’ t=o
/t7nq plan farm rww

1
~t

1’
, . .

/’ ‘.
‘.

-.
‘. \

.
\
\

./’ , ‘
/“” , ‘ :

,/
/’

/,

(’Q ;“!/,
// /’

;
/’/ i’

II /’* I‘t
w% ?/)

r
/

I
1

\
\ ;

1
\ --- 8
\ /’

‘. 8 I
---- ,1

‘4
/

/
AcousIVC ‘ ‘N. /_—_. -
plun fire-J’ ‘–-

FtGrETlS.-.Lcoust1cplanformat sw d mothm

using a polar coordinate system defined’ by

.c-ll=r C!ose
y—yl=r sin 6
d.rldy, = rdrd$

there results 14

so that

If a= —w&r;u)/l’o is the local dope of the wing, the expres-.
sion for load coefficient becomes

The starting wdue of lift coefficient
written

,-

can, therefore,

c.=~

where Z is the average angle of attack of the surface defined

1 1’
Jr‘=~ .9.

ctd.rdy

S being the area of the wing plan form.

be

by

NDICIAL FUNCTIONS FOE A TWO-DIMENSIONAL FLAT PL&T~ hh.0

The basic partial difTeremtiaI equation gommi~~ an
unsteady flow field in the twodimensional incompressible
case is LapIace’s equation in two dimensions

P=+Q.=o (37)

where z is distance R1o~m the chord and z is height abore the

plane of the w@-. It was also pointed out in Part I that
the boundary-value problems arisii in the study of the
unsteady, two-dimensional pIa te flying in an incompressible
medium were directly analogous to those which are studied
in threedimensional, steady-slate, lifting-surface theory” “-
under the ck&6cation %knder-wing theory.” This anaIoagy
is useful since mehstablished concepts in one field can be
immediately carried over into the other. It should be
mentioned, however, that the subsequent treatment of the
incompressible case is not intended to be an improvement
on wa=~er’s origirud deriwit ion (see reference 141 but
rather it is a rederi~ation alo~~ lines that \\ilI be used later
in the anal@a of the compressible case.

The initial puIse.-The first analogy with sknder-wing
theory which will be used concerns the initial palsies that
occur in the values of lift and pitching moment. It .is a
Weu-known rtmh (reference 15) that the to hd fift, as given
by slender-wing theory, on the wing shown in figure 19 (a)
is a function ordy of the rua-ximum span and the value of
w, along the section of maximum span (section AA). It k,
therefore,independent of the wing twist- and Ieading+dge
shape ahead of section AA. This concept has been extended
in sdender-wing theory to the extreme case shown in f@re
19 (b) of a rectangular wing. The lift on such a W@ is
concentrated entirely along the leadi~m edge and is a function
only of the span of that e&ue and the value of w- there. By
the analogy existing betweeu the two theories, therefore, it
is evident that the solution to the inclicial probIems in two-
dimensiomd, incompressible, unsteady flow (fig. 1!! (c)) vdl
contain a pulse at t’=0.

The evaluation of thi~ pulse will be treated briefly. A
solution to equution (37) for the vertical induced veIocity
in the z=O plane can be written in term of the jump in u
across the z=O plane (see reference 13); thus, for the shaded
area in figure 20 this is

(38)

The general inversion of equation (38) can be written

vihere

J
A= b Audx

-C

Hencerw tsp~hes O,t snd q apprrxchx md Jr reqwt!vdg.

272483-54 —27
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In the presonL case .4 is zero, since Ap is zero at x= –a and
J = h, and an integration of bath sides of equation (39) with
rapcct to x between the limita b and x gives

Adoption of the notation “ ‘“ “

J
z@’,rl)+constant = w(t’, Zl)dxl ~

and integration by parts leads to the equation (since

J

b
—--- g ._ vanishes if J>z>—a)

_=(z–z,)*’(b–z, )(a+z,)

(40)

ThEIloading can now be determined by using equrition (12)
(and diffe~entiaLing with respect to t’ratllor t@n f)

AP_ 4 ap
~—~~ - .

,..: -.. -=.

If the shaded are~ in figure 20 is nllowed to vanish, all tlw
loading’ accumulates along tho z axis in the region ()<z< c.
Therefore, the ini.egral of the loading with respect to t’ over
the shaded portion must he considered. The final rwult fou
the pulse ~oading (Ap/go)d at. t’= O can be eqmcsscd in terms
of the 8 function (seo list of symbols) m

Tbe bo@ary conditions for the sinking and pitching wing-
given by equations (2) and (3), wbcn inserted iuto equ~ t.ion
(41), yield

“()

Ap 45(t’) , -- --
—~l(c—x)x

~i ~
= ..17”

()

Ap 1 (42)
=(e#..)llc– x)x

Tl$a

After integration, the pulse values for lift and pitching
moment ma~: also be obtained. Ilcnco,

. ...,
.

(“.)6+0w’) ‘
(cma’)a=-~ w)

(cl;),=% 8-W)

(cm:),= +“%’(”)

(43)

wham tho prima indicate that tk wings arc pitchiug rihouL
ancl t.hc moments are measured about tho lending edge.
These expressions may be inserted in equations (4) and, sinm
the. inkgrand becomes zero mwrywhere cxccpt tit the point
fl’ =t’, the contributions of th initial wllse to tll~ ~~pre-$sio~
for the lift and pitching-moment cocfhrient dcvdopccl by ml
arbitrary Yariation of a and e with time are

where ~ i-id i are cvduahxl at t’.
....

., --—. It’
FIGTXE ZJ.-Undegenemte form O( [nltkd PUIW

h llft.
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The variation for t’>0.—The integd equ’ation (38) is still
perfectly -did when applied to the flovi field for t’>0.
It is convenient to rewrite the equation in this case, however,
so that the effects of the -rorticity on the wing and in the
wake are separated. Thus,

(,44)
.

where Au* (z1] is the value of Au in the starting vortex wake.
It is independent of t’ since its value at aII points along the
line ab in figure 21 is the same as at the point a.

1---1 .

it’

FIGmE 21.-Whg md haflhzg rmtes zlwt In Z’ pkne,

A reduction of equation (44) can be obtained for the case
of the sinking wing, where wM= — ~Oa, by using the inversion
given by equation (39). Thus,

A@’, r)l;(i + V&’)(c—V&’—r]= A—a-(2z +2 VOtr—c)T70a+

rc

[
Au”(q) 1 +

1
&+ v#)(zl- c + vr#’) dtl

~c-k-at’ (X–XJ

Since A is given by the relation

f

e- Votf sc

.1= A@, ZI)dq= — Au*(.@iq
- v~f’. c-v(Jt’

it foUows that

.iccording to the Kutta condition Au(t’#) remains finite as z
approaches c– Vd’; the integral equation for Au*(z,) thus
becomes

rT“oa=–+c.C-VQI’ ‘“*%LZK”l’46)
which was derived and studied orighdy by ~agner (refer-
ence 14).

The section lift and pitching moment can be derived in
terms of Au*(zI) in the folIowing manner. By defition,
the section lift 1 is

Site the value of AP is zero at the Ieding edge and at t~~ __

tmihig edge is equal to the total circulation r, two altema- .
t.ive forms for the lift can be written

(48)

and
d c-vet’

r
l=po(c– Vet’) $–PO ~& _l.d, ZAU(t’, x) dz (49)

By substituting equation (45) into (49) and integrating, it
can be shown that

spocvo c
l=rpoc vo’a+~

Au* (z,)
dxlc-VOZ’,;(rl+ Vet? (Z1—G+ Vet’)

(50)

Since the value of Au*(rl) has been determined by ~agner,.
equation (50) can be evaluated to obtain a solution for the
section lift. ~ P1OLof the section lift coei%cient is shown in
tigure 22. InitiaIly there is the puke ha~ing an intensity
defined by equations (43). After the puke at t’=0, the
~alue of the section Iift- coefEcient stqrta at ondudf its
asymptotic vaIue. It then increases, slovdy approaching its
asymptote of Zra. .

t

co

#-In IYialpulse

i

2K ‘ ——-——”.——-——.————————————— -- --

I I f

u 2 4
K tyc

FIGCRE22-KndkM IIft curre KmIncompt&szfMeflow.

By definit~on, the pitching moment can be written

(51)

where the moment is taken about the leading edge and is
positive w-hen the traiIiig edge is forced down. A de-relop-
rnent, similar to the one g+ren for the Iift, gives

41?n=-~ (52)
.
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This result, that for t>O the indicial center of pressure re-
mains constant at the quarter chord throughout the motion,
is classical.

.

If the boundary condition for a pitching wing,, w. = —
(x+ Vat’) 4, is substituted into equation (44) and the inversion
given by equation (39) is again used, it can be shown in the
same mannsr used in the derivation of equation (46) that for
z= c— VO t’ the relation

3 d
.-.

J

1,

z&j=-_ Au* (Xl)
r c- v~t’ .2P%’ ‘“

applies. This integral equation applies to a wing pitching
about its leading edge. If, instead, the wing is pitching
about the threequarter<hord position, an essential simpli-
fication is achieved. In this latter case, dowmvash is given
by the. expression

(W.=-$ X+vot’–; c
)

(53)

a~~clthe result.ing integral cqurttion I.wcornes

4
—..

fo= ‘ A%* (xl)
21+ Vet’

dx,Z1—c+vot’ (54)
● C-v(,t’

where AU* (xJ represents the vortic.ity in the wake following
such a mo Lion. The solution to equation (54) is simply

Aua*(X,)= O (55,

From equation (55) it folIows that the tottd indicial lift for
t’ >0 on a wing pitching about the threwqumter chord point
is zero, and that the wing wake is free of vorticity. Further,
it cau be ahowu that the total indicial pitching moment (still
measured about the leading edge) is

(56)

The transfer of equations (55) and (56) back to the case
in which the wing is pitching about its leading edge can be
readily accomplished by means of the boundary condition
shown in figure 23. Hence, if (cif)~l, refers to the lift coeffi-

cient on u wing pitching about the three-quarter-chord point
and (c~Q’)814refers to the pitching-moment coefEcient measu-

red about the leading edge of a wing pitching about the
theequarter-chord point, then

3
(clf)a,,=cl,’–~ cl=

}

(57)
3

(cm,’)a,,=cm:–~ CM=’

FmuBE?&–Clmnge in tmmdmy MOWUOJMcorrespondingto change!n pitcbhg 8x16.

By means of equations (52) and (57) the exprcasions of
the three indicia~ functions, Cn=’, Clc’, and C=m’,can all LW

written in terms of the indicial lift function for t>O. Hcnm,
. -—

1
cm ‘=—–cla 4a

., 3C{r’=– cl4.

}

(5s)

.
3Cmq’=—— cl —~16”8

The variations of the four indicial functions will be showI~

later in part 11~. For values of TO(= Vot’/c) larger than those
shown in figure 22 the approximate equation suggested in
reference 16 can be used, namely,

“a=’hkl
(59)

Tfi alternative result ~as, according to refcrencc 10, an

error of”2 percent or less for the entire range of time from
o+ to iifinity,

INDICIAL FUNCTIONS FOR A TWO-D”l TENSIONAL FLAT PLATE, ,!f~=O.6, 0.8

lf%en the hfach number is no longer small, the analysis
in the preceding section must be modilied, As an exa.mplc
of this modification, we shall evaluate the indirial response
on a sinking wing flying at a Mach number equal to 0.5 and
the indicial response on a sink;ng or pitching wing flying at a
Mach number equal to 0.8.

Since the wing is two-dimensional, the partial different.ia.l
equation governing the flow field (equation (9) ) reducm to

~here it mustj be remembered t~tit the axes are fixed wit,h
reference ti the still air at infinity and tlIe wing is moving
in the 2= O pIane. The equation for the Ioading coefficient
remaing as in equation (12). The analogy which existed in
the incompressible” case between the theory for the unstemiy,
twodirnensional wing and slender-wi~u theory exists in this
case between the theory for the uusteady two-dimensiomd
wing and the theory for a steady-state, three-dimensional
wing traveling at a supersonic speed. Thus, in the three-
dimensional, steady-state case the partial differential equa-
tion governing the flow is

and the equ~ tion for the loading coe5cient is

Ap 4 ?)P—.——
,~o v, ax (62)

The boundary conditions are in both cases LhnL p. k given

over a @rtion of the 2= Oplane. It is ovichmt by a compmi-
son of equations (60) and (61) and equations (12) and (6Z)”-
that results from the three-dimensional, supcrscmic, stcady-
state case (hereinafter referred to as the sknidy-state case)
can be transferred to the two-dimensional, unsteady case
(hereinafter referred to as the unsteady case) simply by
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replacing T, y, and 13in the former case by t, x, and 1, re-
spewt ivdy, rtml by dividing the result. for the loading coefficient
hy .110.

The m-dog to the boundary condition for the problem of
finding the indiciaI loading on a t.w-o-dimensiomd wing flying
at a subsonic lIach number (fig. 24(a)) is the boundary
r:omlition for the pmblem of finchng the loading on a constant-
vhi~rd, swept-forward wing tip with a subsonic trailing edge
such as that shown in figure 24(b). The lIach cones in the
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. (b) Steady+tateease..
FIGIm 24.-BoomIary condklrm for a tm-dIraerMmal rmsteo@ wfrkzmov-

tng at mhsonlc sx and the am.lmus three-dhqdmaf. steadr-state
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steady-tate case, traces of which are shown = dotted lines . .
in figure 24(b), become, in the unsteady+t ate analog, the
locus of the sound w:aves which started at t=O from the
leading and traihg edges of the two-dimensional wing.. _

(@. 24(a)). FinaLly, the analog in the steady-stute field—..
of the unsteady m“~m-ivouId be a flat plate for the unsteqdy
sinking -wing and a plate with a I@ear variation of twist for._ _
the unsteady pitchi~~ w&.

Just as in the section on incompressible flow, the analysis
will be divided into two pads In cases for which MO #O,
however, the indiciaI functions contain no p&e at t=O.
Hence, the first part of the study wiII be concerped with
the behavior of the indicial functions in an intervaI for
which t is small but finite and the second part, with their
asymptotic behavior.

The early stage.—The analog which mists between the
steady=tate and unsteady cases mny be utiIized to great
advantage since the special methods and techniques developed
for the solution of problems in the former case maybe applied
to the solution of the wdogoua problems in the latter
field. h this p.umner an exact solution for the load~cyr~
the first five regions shown in figure 25 was obtained for a
llach number eqmd to 0.S, and for aII the regions indicated
for a 31ach number equal to 0.5. Solutions for hwger
-dues of the time could also be calculated, but the labor
invcdved in computing such cases becomes prohibitive and,
as will be shown later, approximate methods can be developed
which exted the sdut ions for the indiciaI lift and pitching-
moment curve9 to their asymptotic values.

$-c--+

tt

FIGT:EKZ5.-Re@ons used fn am.lysdsOKsukmic UIMW,IY wfrrg.

The analysis used to calculate t-he Ioading over the regions
shown in figure 25 ~ outlined in appendi~ A. P1ots of the,
indiciaI loading on a sinking and a pitching plate flying at a
31ach number equaI to 0.8 are shown in figure 26. At
time equal to zero the Ioa&ng is constant for the s“mking
viing, and as time increases the Ioading-coeticient curve
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approaches the familiar tr~ro-dinlensioll~ll, stwdy-stute shape
given by the equation

r —...—
Ap 4a C–X ‘-—.— —

Bx
(03)

90

where r is distance from the lending edge whit+ is fit x= U. ..
Figure 27 shows the load distributions for Mo=U.5 rtnd 0.S

at the last value of time for which tlm exact. loading curve-
was cakulgited, Notice tht in each cnse the distribution is
e9sehti$l~ “the same as thaL obtained At time equal to infinity
(i.. e., @e agreement is good with the curve produced by
muItipIy&g the righL 8ide of equation (63) by a consttillt
factor).~s ~.~The use of” this “fact simplifies the sul.fsequcnL,
anaI@a concerning the asymptotic. behwvior of the irtdicial
curve.

$.1” ,~j

The ind.icifil lift ikt pikhing-mornen~ functions Were ~lso.
calcu]a~~.(see. appendix-A) up ti the time TO=2.333 for fic
w-kg flying at 31.=0.5 and 7.=4 for the wing flying at
ilfo=o.8. -” Their variation in this interval wiIl .be shown in n
subsequent figure (fig. 59]. It is evident from u glanrc at

/2

““[\ L ood distt7-bUtim of
.-. < r. -2.333

. .

.,

.<- X...
_.—

t=. /2-
id ditiibtim UJ’
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*
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4-=

m I
0 .5 /.0
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(d M*-O.6.
(b) MO-OIL

FIm.Irw 27.-M diatrfbutlon at end of early stsuv.
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lJA ,gfIIIjIWrfflultW~ noti ~ t~ study ~ ftb Id djatilbutbmon swept-back wfuga wfth subsmtfcleadingedged(roferwn0817).
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the figure that the cahmlatious must be extended beyond
this early stage since the asymptotic values are not even
vlosely approa.dw-l.

Before stud~-ing the nature of these curves for large values
of time, however, it is useful to esamine them with reference
to the discussion in the previous section on incompressible
flow. For example, it was- pointed out that the indicial
center of pressure on the sinking wing remained at the
quarter~hord point for time greater- than zero. Hence,
let us consider the location of the center of pressure on the
sinking wing when the lfach number lies between O and 1.
By means of the indicial curves for c’=and c==’ and by the
relationship

cm ‘= —(x/c)c.#.c,aa

the variation of l’z/c)c.P. is easily evaluated ((it/c)=.P. is the
distance between the Ieading edge and the center of pressure
divided by the total wing chord). This variation is shown
for the two Jlach numbers in figure 28. It is apparent that
the center of pressure is -iery close to the quarter-chord
posit ion for values of time greater than those for which the
exact ~aiculations were carried out. In other words the
significant effect of compressibility on the Iocation of the
{writer of pressure is limited to the inter-ml, 0<tO<2 for
J10=0.5 and to the interval 0<to<5 for ..JfO=O.S.

I.ikewise, it is apparent from the discussion of the incom-
pressible case tlmt the indicial functions for the pitching
\ving can also be expressed in a more convenient form by
shifting the axis of rotat-ion from the Ieading edge to the
three-quarter-chord point. The vaha of (ci,)afi and

(c-~)w for Jf.=0.S were calculated from the definitions
given in equations (57) and are shown in figure 29. In-
spection of this figure again shows that at a IIach number
“equal to 0.8 the compressibility effects are limited to the
interval 0<tO<5.

.5(

($)=PS!

(

,

\’
<,

---—. -

.

2 4“6 8
to

?-Ifimz z&-ceuter—of—Qmmremrfatlca on stukhg wingduring earIy stage.

The later stage.—It follows from the preceding discussion
that when tO is large, the values of the indicial functions
Cn=’, cl~’, and cm ‘ for compressible flow can be expressed in

terms of cl= by ‘equations similar to equations (58) which

were derived for incompressible flow. Thus, after several
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chord lengths have been trare~ed, one can write, on the
basis of the asymptotic values shown in figures 28 and 29, -” -

I_?% ‘= —cl=j4

}

,,

c4’=3cl=/4 (64)

cm ~e = –(3c,=/l 6)–(T/8fl)
.

It remains, therefore, b determine the asymptotic behavior -”-
of c1 . .

C&sider the-, steady-tate solution for the lift on a two-
dimensional, fiat lifting surface trave@ at a subsonic
Afach number. b was pointed out by ~ieghardt (reference
18), if the lift on such a surface is represented by placing at
the quarter<hord point a vortex which has the same circu-
lation as that developed by the wing, the angle of attack
measured at the three-quarter-chord point will be the s~”e
as that of the flat plate. Extending this concept -to include
the unsteady effects, an investigation will be made of the
variation with time of the vortex strene@h which will main-
tain a constant angle of attack at the threequarter-chord
station follow~~ an impulsive start at t’= O.

The amdogous probkn in steady+tate theory becomes cme
L... . . .

of finding the strength gf the vortex system, shown in figure
30, which gives a constant value of w along the line CD. -
In the vicinity of the origin, of course, this representation
gives a poor approximation to the original boundary-value
probk.m. On the other hand, in this vicinity the exact v@u&
of lift and moment have already been determined.

Each vortex composing this system Iies along the line A13,
extending from minus, infinity toward the origin, and trails
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back pmdel to the ~, axis Lo form the trtiiling vortex sheet.
IYote tht, for convenience, the origin of the wxis system has
been located at the qumter-chord point. Tl~c solution to
such a problcm in steady-stat,c, lifting-line theory would re-
sult from the solution of the integral cqua t.ion ‘t (for a CIC-
vclopnwnt. using the notation adoptwf here, see reference 19):

t

[f
‘i’ dy, MYl) dzl———

‘— 2iT, , [(z–xJ’–fP(y-yl)q’~’

-A(. t,

(a)

+C-----l

.,
‘ !fi

A

(b) -

(u) Unsteadyme.
(b) Hrmdy-te e.mdog.

‘IGI18E W.—Vortex systems for tw%WrnenslcmeJuuateudy ~d WIBIOgOUS
thme-dlmensfonnf,steady+tatewlngw.

where Ap is not a fuuction of XIsince Lhe strength of a traili-
ng vortex is, of coume, constallL. The area of int”cgmtion
r is the region withili tllo forccxme springing from the poinL
Z,y.

If Lhe above cquaticm is transformed by means of Lhc
analogy to represent LIWsolution of the unsteady prolJcm
(SCO fig. 30(a)), ~, x, and v are replaced by 1, t, nnd x, re-.
spect.ivcIy; and AP, the total jump in potcntid at a gi vcn
section, is repIa&d by the circu~at,ion 17. Hence,

Sf~ dxl
r(~l~______ dt

‘=—2T , , [(t–tJ’~(x-2Jq’/’ 1

the furc-
thc line

which, by means of the substiLut,ion Xl/c= —zg/2 bccomcs

–&talong the line r —

whxc ~=2il104—w, W=.Llfo/(l +..illo), M=21110/(1 —.II07,
w2=l/(1 +Jfo), tO=t/c, and where, of courm, w is a consttint
equal to —TToa.

A soIution for l?(~) in t,hc integral equa~ion (65) may be -
obtained by expanding r in a series of th form

Place equation (66) into (G5) and expand in po wcrs of l/~.
There remdts Llle expression

1
cl= k~+p

----, —-

Hence if a. and bl are chosen so that c1 is zero, an cxprwsion
for r will be obttiincd which represents the SOIULion tu the
integral equation (65) correct to the first order in I/t. (i. c.,
l/&) for large va1ue9 of & Furtherj if cquatio~~ ((36) is
expanded in powers of ~Z,there results

r(22)=
,y[’+w-%’)+ :1—

10‘l’h. symbrd,$$ &nd $ am mwd to tndicatc that tbe finite part Is tu h tekm. Tlma (SW refmuce 19 or 20),
H%+H%’f=” z

( ,b)-G(r, d) where G (x,v) Is the lndeli-
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which becomes, using the condition for c1and relating ZZand
t] by the equation of” the leading edge, m=2alo4r ~=
(2 T”J’/c) —1, ●

rc avo
r~TO)=—

[’
–~+. . .

B 1 ~P’ro 1

By choosing the dues of%, uI, and 61given

.110 q a, 6,=((zJ2)-(1/fP)—.
~$28 20.67

.S 36 27 15.22 I

ZUKI placing the resuIting expresion for r(~a)

(6S)

m follows:

(69)

as given by
equation (66) into equation (65), the values of —w/~~a
shown in figure 3 I were obtained. This figure demonstrates
the accuracy to which the flrsL two terms. of the series
expansion for rib) yields a constant due of m for the
{wmtants given in equation (69).

The relation between circulation and lift has been deriv~d
ad presented as equation (48). This expression can be
written ,

where ~=xle. In order to obtain n complete expression for
the section Iift, it is nece5sary to know the chordwise varia-
tion of Aw. Since equation (66) gives only the total vorticity
and not its chordwise distribution, some assumption as to
such distribution must be made. In lieu of this, the result
presented in figure 27 suggests that for large values of time
the vahe of AP( ro,rm) used in the equation for section lift

I
.

(*I MO-WI.
Ib) Mt=I).s.

Fuimr 3L-VarMon of downwnshat threqunrtw<hord position.

b

FIGmZ az-chordwk mi-ktkm Of&eulatIon w end ofeorbstage;-M9-O.3.

can be expressed by the product of AW(~ ,rO) and I’(rO)/r( a ).
In other words, for large values of ro, the shape of the chord-.
wise distribution of vorticity is the same as the two-dhnen-
sional, steady+ tttte vaIue. An indication of the accuracy of
sIIch an approximation is shown in figure 32 for a Mach
number equal to 0.8 where the precise vaIue of AP(rO,zO]is
compared with the approximation at 7.=4.

Since r(~) = iraT”oc/& the substitution of

Ap(~~, ~O)=A~ ~, ~O)r(~~~( ~)

gires for the section Iift coefficient

By means of equations (66) and (70) and the values. of the.
constants given in (69), an expression for cl= can be wit ten

which is did for Imge values of TO. This expression “is
somewhat cumbersome, however, and it is chflicult to apply
in subsequent analysis. Hence, it has been replaced by a
simpler equation that is equivalent 17to three decimal pIacea
for -mluw of TOgreater than about. 10 for both SIach num-
bers 0.5 and 0.8. These equations are given by the following:
for J10=0.5

[
Cl==* 1 —: ~–

~pl~

13 5+2ro (5 +2r~2
(71)

[
ct==~ 1 _ 1.736

70.83

111 +5 TJ4—(1 l+5rJ4)2
(72)

u h order tofeclUtntafshinzthefrithlportionofthefmifdalIllmm fntotheappmfmete ?alutbmobtafnedfir the sulwwrd variatii,theMter resdts wereshined sfkhcly iu terms
nf ~“ol’tc. This dfd not Sfket @ M}~ptOtfC tivbX OfW CULTS.
. 1s~ ~~u~ for CL &~ by tqutl*m ~ rffs3gremZl@tly wtth the vuflre gfwn h the Zu-ed TS - (- footnote 1). m meth~ ~r ~c~tb the -~ W ~mew~

dtffererm and the VSIuegivzn hue h m@dered Cohe more twcamte.

2iWS3-54——2S
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The equations for Cnc’, Clr’, and Cwa’ for TO> 10 can be

calcuIat.ed from these expressions by means of tlm relations
given in equations (64). Equations (71) and (72) will be
considered valid for values of rO greater than 10 for botb
Mach numbers. Values of tho indicial functions between
To= 10 and the highest To calculated by the exact method
were approximated by interpolar ing between the two results.
Tabular values of alI tlm indicial functions calcuhtt ed for
the interval 0< TOS10 are given in t.abla~ I and 11 and

TABLE 1.—INDIC1AL LIFT AND MOMENT FOR T’WO-
DIMENS1ONAL SINKING wING. lFIO=0.5

I ‘d’/c
——

0.0
.1
.2
.8
.4

::
.7
.8
.9

1.0

::;

;::

1.6
1. e

k:
1.9

20
2.6
a.o
%6 -
4.0

Lb
ho

::
6.5

curves arc given in Part. IV.

.-

7.0
7.5

::
9.0
‘J.5

10.0
1

‘ZU.?met[.

lam
1.w
L 032
L !446
. ‘a4

:g

.004

.%1

.MO

.540

.663

.672

. @Jo

.641
‘.siw
.05/
. 6S2
. Sal
.6Qa

.m

.m

.744

.75%

.77!2”

.784

.796

:R
..W

,.

.. -. .......

.

. . ..- .... .

TABLE 11.—INDICIAL LIFT AND MOMENT FOR TWO-
DIMENS1ONAL SINKING OR PITCIIING WING. MO=O;8

0.473
.4M
.454
;~.

.423

.426

.&
.:&44

.461

.Xn
;g

.610

.692

.052

.070

.697

.714

.738

. iea

.779

I: E

t’d’lc
. .

0.0
.1
.2
.3
.4

.6

.6

.7

.8

.9

1.0

1:
2.h
3.0

8.5
Lo
4.6
&o
6.0

7.0
8.0
0.0

10.0
m

,.
–UJcm=’fr. 2$cig‘p*

.. . .

0. QbJ
.WaJ

R“ils -
. S14

;g , .:&dl

. 75Q .W6

;%
.339
.356

.bm 3

~zri .
. 2S6

.615 .Wi

.fnl .4il

.Ola . 4n

.619 .626
. . .Xi6

.% .5W

.656 :026

.670 .643

. ea4 .m!l .’

.tKu .691

. 7rl .l’io

. 74a .736

.7m .760

:% ;%JJ
LOUO

-Wcmg’p

.
O.m-i
.614

.:%J

,.

.ml

.606

.em

. au

.ba8-

.644

.653

.716

.723

.737

.746

.755

.766

.m

.790

j~

:%
1. am

INDICIAL FUNCTIONS FOE A TWO-DIMENSIONAL FLAT PLATE, Mo= LO

The general results, obtained in the precwling section for
the early stages of the motion and presented in appendix A,
for the indicial loading over tho sinking and pitching wing
may be extended to the sonic case. Furthermore, the two
intervals for which analytic results in a closed form were
pr~ented in appendix A now cover the complote time range
since 0< ro<JiO/(l +lkfO] becomes 0< roS0.5 and JfJ(l +
i’%}< TO< Mo/(1 –Me) bccomm 0.5 S ro< w. Hence, by an
appropriate limiting process, equations (M), (A9), (A1O),
and (All) become for 0< To< 0.5 ~

CL==4:. -.’-.. .. .
.x

:. .:.-” G=’ =—.++ roz

Clqf=2+ Tog

cm,’=- (4/3) – (2/3) ~~

and for 0.5S To< .W.. -.., . .
,..

“(

.
–1

e1a=(4)T) 2~~+arc cos ~
To )

.
&o-3 T:, i~+

c~:=(4;3;j [ d

( )

–1

1
I -1# arc cos 70---

; +. To
-.,.

(73a)

(731))

S~ce tie” magnitude of the fun~tions in equations (73b)
grows indefinitely with increasing time, the assumptions of
linear theory arc eventually violated. However, for nlodm-
ate vahes of To, thew functions h~ve the same order of

“magnitude as;imiIai indicial curve-s for Mach numbers other

I tha; 1. These cffw%s me illustrated in Pmt IV.

INDICIAL FUNCTIONS FOE A TWO-DIMENSIONAL FLAT PLATE, .lfw12
-. -.--- —–. ..-. .. . ,. .. . .. —.- ..—.

The rnctho~ of obtaining solutions f?r t.ho indicial fu~lctions
at stipe~o~c Jlach numbers paralIels the development.
presented for ‘the sub~nic hlach nurnhcrs. The steady-. ...
8tate analog to the supemmic unsteady wing problein is a
constant-chord wing tip with a supersonic trailing edge.
(See &i. 33 (a) and 33 (b].) It is well known that the
problem of, finding the loading owy- wing phm forms with
all supersonic edges is onc of the sixnplmt. in three-dirnensional, “”
lif tin&sufiicc theory. In fact, since the upper and lo~ver ‘
surfaces ,arg noninteracting, tile soluLioll is dotmnincd by..-.
integrating source9 wit,hin the klach. forecone. The unalysis ~..
‘for cl= has aIready lxwn carried out in referent.c 21,

The an&ls used to calculate the Ioading in terms of --
~=x/c pnd fo=t/c over the three regions shown in figure 34 is
outhed. .in appendix B, An cxampIe of t.hc manner in which
the loading varies with time ovrw a sinking or piLching wing
traveling at a hlach number cquaI to 1.2 is given in figure 35.
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at supersonic speed and the on?.lamus threWqemIoMI, studYstate wing.

The expressions for the indicial Iifb and pitching-moment
coefhcients are gi-ren anaIyticsIIy in appendix B, and plotted
in Part. Iv. It can be shown that the remits given in appen-
{Iix B reduce to the expressions given by equations (73)
when .l~o is a.lIowed to approach 1, so that there is no dis-
mntinuity in the theory in passing through the sonic range.

SUPERSOXICSTBADY~ATELKP’Y

Since the next section contains a problem involving a
complicated acoustic plan form, it maybe heIpfuI to consider
firsL a problem involving a very simpIe acoustic pIan form
but otherwise similar to the subsequent timdysis. .Hence let
us itipect, using Iiirchhoff’s formula, the probIem of iimling
the steady~tate loading on a two-dimensional flat plate
traveling at a constant speed (equation (15)).

Since the upper and lower surfaces are nonintemct.ing,
we can use the speoial form of Kirchhoff’s formukt given as

.

—c--l
I

.-L*
t=&-.,

0 ,\

I
@

+t icv
FIGr.EE 34.-Re@om usedInacldyskofsu~cimdc ~y Wkt&

equation (28). In the plane of the wing this equation be-
comes

(74)

F~ure 36 shows the positions of the wing in the w pIane.
The v&g has constant speed for t>O. The point P(z,y)
is chosen on the wing and ahead of the wave which started
at time zero; therefore, P(z,y) lies in the region which has
att@ed its steady~tate value. Further, the vaIue of WS
is constant over the acoustic pIan form in such a region.
This constancy reduces the problem to one of integrating
[(X–ZL)’+ (y-yl)’]-’~z o~er the elIipse representing the
acoustic pIa.n form.

The equation for S= can be determined from equations
(20) and (21). In this case, equation (21) becomes simply

xl= —Mor

Wiminate r bt%}veen tiis equation “and equation (20) and
there results in the z=O pIane

()(X–d’+(y-gfl)z= t+fi ‘ (75)

That equation (75) is the equation ot an eIIipse with one focal
point’ at z,y can be re~diIy verified. It is more convenient,
however, to change to a poIar coordinate system with origin
at F’. Hence set

r—x~=r Cos e

g—yl=r sin 9

dy, dx,=rdrdfl
-,

Then equation (75) becomes

(76)
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steady WIIWflying at a supcreonlc epeed.
. . ,.

an~, th~r~lore, equation (74) becomes simply
~ .=* .. . ..-— t–’

The “integra\ is not difficult to cvtduate so

[ .
P (M+)L’–$(z+M& –-2!. .:---

and, filially, by equation (12)
.

. ~=+d-i%a=m+~=i‘7’).
+“ Ap “

Yhich k ,$@ f@Iiar Ackeret VUIUCfor thr loading on a,. .-
hvo-dimensional flat plata. ” The lift codlici~ ~.t,, of course,
folIows iminecliately as

: ..- :.
4&’.- ;. . cl=>= ““

.
-- (78)

..—
INDICIAL :L6AD1NG FOE SINKING TRIANGULAR WING WITH SUPERSONIC

EDGE9

The qey& regioqs,-The. unalytic expression for thu intli-
.cti loading over the triangular \ving has a cliffcrt’nt fOtvtl in -

each of” %vcn regions, These ~c@ona arc (Ictirmillc[] 1}~ “’ ““ -

the positions of t~: various Wave fronts relative tO tlkc lvil~ .

plan form=’ (fig. 3i’). For ~<0 the wing is motioI~lcss,. its

leading edge lying tdong lines represented @ the dashed
IiRcs in: figure 37, The trailing edge is co~idered to be _
supersonic and hence its position is immati”rial, since the
solution cal~ Iw cut off wherever desired. At i= O the wing
starts suddenly to move, and for t>O, travels forwtwd at ~
constant spcwd T;. After a ccrttiin tin~~ f has elapsed, tho
wing has travvled to a nav. positiou, also shown in the flgurc.
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In this same interval of time, prwure irnpuIses have trav-
ele(l out in spheric81 waves from every point of the region
which the wing has occupied. The trace on the wing of the
sphere starting from the wing apex at t= O forms the exter-
nal boundary of region 7. The area outside this circle and
withii the traces of the cyhlrical waves (the en~eIopes of
the spherical waves) generat~ by the Ieading edges at t=O
forms region 4. Region 5 is formed by the overlapping of
these cylindrical waves, and the solution for Ioading within
it can be found by a suitable superposition of the solutions
for regions 3 and 4. Region 1 lies between the cylinder
trwe on the w-@ and the leading-edge position at time f;
the loading in this regjon cannot be affected by the manner
in which the wing started its motion since “it lies outside the
starting cylindrictd wa~es. Hence, the Ioading in region 1
is the same as that on a swept wing ff.ying at a stewdy super-
sonic speed. The solution in region 2 can idso be obtained
from steady+tate lifting-surface theory, but, whereas in re-
giou 1 the tieId is two-dimensional (i. e., invariant with dis-
tance measured parallel to the leading edge), in region 2
the field is conical. Region 6 is formed by the overlapping
of regions 2 and 4. Finally, region 3 is that area com-
pletely unaffected by waves from the wing edges. In the
foIIowing subdivisions the analysis of each of the separate
rtgions d be discussed.

Region 1: The loadirg in region 1 of figure 37 is equaI to
the loading on a two-dimensional flat plate mo~~ at a
constan~ velocity gi-ren by the cwmponetit of streani veIocity
normaI to the leading edge of the triangular wing. Since
this component is supersonic, the loading is of the Ackeret
type and is given by

(%),=%

But since V.= V. cos A where A is the angle of sweep (see
fig. 3t?),

q.= q~cos~.1

CYm=Ci sec A

and

Fkxxz 37.–TM seven regionz used In the w.w.@ of the trianguhr wing w[th wpermfc
tmdinu .2chm2.

—
FinalIy, if ctn A=m

.()Ap 4a?n
< 1=@?712—1

(79)

where P =1~.lfo2— 1.
Region 2: TIM stemly+t.ate loadi~~ on a triangular -WLU

with supersonic edges has been giren by severaI authors (see,
for convenience, reference 22) so the expression for the load-
ing in region 2 can be written immediately for the coordinate
system shown in figure 38 as

.-J

Region 3: Since region 3 is dected by the edges of the
wing the solution for the loading therein can be writ teu as
in reference 21

(81)

Region 4: The solution for Ioading in region 4 can be
obtained from consideration of a two-dimensional u-iog
starting from rest and moving with ~elocity V? norrmd to
its Ieading edge. This probIem has been treated in refer-
ence 21 and the solution writ t-en there can lie written for the
right-hand side of figure 37 es

&)4=%[arcc0s::%+’’’Y(:+am17)l-
where the notation, as defined by figure 39, is

Z,=X cos L—y sin A

y,=i? sin A+y Cos A
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FmuEE 3+.-TIM rd. mordfnate system
.

ctm A=m, sin A=—====~i:m,

m
cos A==

~11+na~ ““-”
Then

~n== —, . .. .
Jl+m’

-.

The equation for loading now become% in the coordinate
system of figure 38,

Region 5: The soluLiou for loading in region 5 ‘can be
obtained by superposition of the solutions for regions 3 and
4. (See fig. (40].) If the solutions for the two sides tif
region 4 (obtained from equation (82)) are added, the r.em.lt
gives twice the required value of WMon the wing, as well as
undesirable pressures off the wing. Howevu, subtraction
from this sum of the solution for region 3 (equation (81))
reduces the downwash w. to the proper value, and also
~anccle the excess pressures. Tile resulting exprcmion can

be &ittcn

()
Ap 4am

[

*rc ~oa mil!fo(nn-y)+(l +mqt+

Z b= ~-~psmz— 1 &FXTmx-y+mAfOO

mitfo(mz+y)+(l+nt~t+

arc Cos JI +m’(mz+y+mMJ)

~~zm’–l ( “m=+arc sin ‘Sarc sin
t~l+m% )1

(83)
m i140 t%tl +m~

Region 6: The. loading in region 6 can also be calculated
by superposition. To find the loading in this case, add the

1 I b

[ \
.

a
Left edge T v

I ~Y*& 4
“--1 “ I

w
Ct’q. M atb I’+*-E”

I

-’-O’&==+z‘-
FIWBE m.-solutforis supsrimpn- to ofMn Muatlon(@U”.

solutious for regions 2 and 4 (equations (80)
subtract the solution for region 1 (equation
results

and (82) ) and
(79)). There

—
.—

.

Retion 7: The solutiou for the loading in rwion

—

(84)

7 Catl bc
obta&d by means of equation. (28). The an~lysh used in
finding the. solution in this region is not difficuIt but the..
algebra h rather invol veal. IL is useful at this point Lo inlro-
duce polar coordinates (seo fig. 41) such Lhwt

x—xl=r cos O

y-yl=r sin 191 (85)

&,dy,=rdrd.6

From equation (85), equation (28) can be wrilAen in the
form

T70a

SS
P== 8* drdd (SC)

The acousbic pIan form for points in region 7 is the region
bounded by t~~ce curves as indicated in figuro 42. The m!

between tl and t91is determined by eliminating T behvecn tho
cquatiom

P=(t– T)’
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(the equation for the inverse sound waves) and the eq uat ion
for the left Ieading edge

y,=–m(z,+..ilf,~

The arc between 8aand 01is found by determining the acoustic
inta-section (ehminating T) of the right leading edge with
the inverse sound ware; and, finally, the arc between & and 8*
is given by the equation r= t. The equations of these arcs

FIaun 41.-Tk i-t cwrdlute syetem.

A –––Wing m’ tw
— Wmq now

Fmmr 42.-&?ou2tIcph!JJ&m forpofnt bt refjon 7.

and taking the partial derivative with respect to t (to deter
mine the Ioading according to equation (12)) one finds 19

In evaluating this equation, the following inte~al is used:_
for —Tse<x .-

S do 2
ndfo+ m cos d& sin 13=%lfl~m~_~ ““

--->---—-

~rc tan m(a~o—1) tan W2) + 1 ,(88)
~~pZmz—1

Since equation (SS) is &Iid only in the interval-r< 6< ~,
care must be exercised in appIying it because the angle ~~
may be greater than u (as in fig. 42). k case r<d~, it M
convenient to introduce the angle 8s’=0s— 2T. The expres-
sion for Ap/% can then be written in two forms, according
h whether 6* is Iesa than or greater than r:
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... .. . .

(0<8,<??)

192=WCCos
?n(y+?nz)- J(l+?n~t*-(y+?nx)*

(l+m~i-’ ““” “- ‘

(o< f?,<u)

8*== arc Cos
—m(y—mz)—~(l+m~ t*—(y—mt)~

(l+?nyt”
..

eJ=t?*-27r(if T<8J

The. limitation on es can be given both an analytic and
geometric interpretation. Thus, equation (89a) applies for
OS m(%+t) S y and equation (89b) applies for O<y< m
(z+t). These regions are shown in figure 43. Because of
the geometrical symmetry about Lhc x axis, equations (89)
snflice for the determination of loading throughout region 7.

An isometric drawing of the load distribution on the right
panel of a triangular wing with supersonic edges is showm in
figure 44. The positions of the spamvise sections were
chosen so that each of the regions 1 through 7 is represented.
It is to be noted that the results fm region 7 show no unusual
characteristics and, in general, the distribution is simiIar to
the steady-sbte Ioading on a triangular wing.

/-
/

/’
\
\
\

\

--_. Wing at t=o
— wing now

FUJI RE 43.—Regkm8 in whkb equations (S%4 and @b) am Mid.

INI)ICJAL LIFT AND PITCHINCJ MOMENT ON A TRIANGULAR WfNG WITH
SUPERSOKIC EDGEs

The indicial lift and moment could he obtained, of course,
by integrating Ioad distributions calculated by the method
presented above. However, it is far simpler to use the
methods outlinml in the section entitled “Bmmdary-Value

. .. . . . . .. ___

,

W
I
I --–— Traces of re ions shown

in figuti 3 ?
/“

FmrxtE fi.-”Dfstribution of Indlcid Iondlng on right panel of mrpwsonbcdged, M.
angulru Whrg..

,

Problti” I.&olving FTonint.eract.ing Surfaces” in ParL 11.
In particular the second of tic Lwo methods outlined thwin
will be applied.

It was seen in the above-meut,ioncd section that the lift
an”d moment coefficients for a supmsonic-edged Lriangulti r
wing could bc found by soIving a related steady-state lift.ing-
smface problem. For the cases of indirial sinking and pitch-
ing, the boundary conditions for thk related problem can
be found readily from equation (34). Since y, an(l y,
become, for z= O, the right and Irft leading edges, rcspcctivcly
the boundary conditions are given by

M—, ()z ,.~= –2 T;am(x +M$)

for the sinking &g, and

@

()2G- =“-zl$m(x+.lfJ)’
z-o

(90)

(91)

for the pitching wing. In addition, it wus shown that [Ilu
lift and moment coefficients for the wing in unsteady motion
are obtainable @ integration of the quantity ZME/bt, For ‘
convenience, this qutint.it.y is csprwwd as a c.hordwisc load-
ing f~ctor in terms of the following not.ution:

hlo
f

8ApP~=— — dy (sinking wing)
28a, -, qO

(921L)
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ivl~ere

#=tIl(z+3@)

It is found that (equation (35))

~ = ~rn_a
[1

‘ (r~ +:110’,) Lfrdfl
‘) Ts a.. u. \.”(f—t,)*—(x—Xl)z&

4m* a
P,=-— rf(r, +wl)’dzdtl

i+t at. , \i.t—t,)*—{x —zl)*
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(93)

(94)

(95)

The lift and moment of sinking and pitcking wings will now
b obtained by the use of Po aid PI.

Wing with constant angle of attack (sinking wing) .—The
solution for the chord load&m on a flat, supereonic+dged,
triangular wing startkg from rest at t=O and flying at a
constant speed and angle of attack is given b; equation (94).

This integral can he evaluated and gives for x<t

P,= 4

for –tSz<t (region B)

(region A)

(9 f5t3,j

[

~ _ 4 ,F”=72
n- .+.w+arcCosn— ()–~++$’m-c cos 1:%;;(96b)

tmrl for r< —t (region C)

(96c)

wlwre the regions are shown in figure 13. h has been
pointed out, equations (96) can also be obtained by inte-
grating the equations for the loading given in the preceding
section. These integrations were carried out (in some regions
numericaIIy) and the results were found to aggee with those
of the presenf anfil@s.

It. is now possibIe to write the indiciaI functions CL=and
P=.’ in the form

(97)

-ivl]ere co is the root chord, S is the wing area (equal to mciz)
and the prime indicates that the pitching moment is measured
about the apex, the positive moment being one which causes
the trading edge to sink dative to the apex.

fnterml

Combining equations (96) and (97) one fiuds for the first
interval shown in figure 45

-.
•~

{r
“ ~ (r + I@)dz -i- -“-- ----CLm=&~ ~ –M: P

This equation integrates to gire, if fO=t/cO,

~ (first interva!)
‘or 0 ~f%o+ 1

~L==&(’+it”2)
(99a)

+ arc cos (.llo—tO&)+

1
and for —<tO (third interval)

.11”– 1 –

. . (99C)

h the same manner the values for em=’ ~ the ~arious

inter-rals can be determined by combinhg equations (96]
and (98). There results

for O<to~,& (first intervaI)

(loos]
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1
~ (second interval)

‘or ~~+ #tOSMo- 1

cm=J=–JL
[

~ (8–MOtO-M0’t02-2 t&&2-(1 –Mota’+
TMO

12 +38 arc cos (Mo-&tJ]g ( +J&JQ’) arc cm’~ ~

(loon)
1

and for ——
34,–1 ‘t” ‘third lntemal)

C.=f= –& (1OOC)

Numerical results wiIl be presented in Part 11~.
Wing with linear angle-of-attack variation (pitching

~) ,—Tho solution for the average load om a flat, suPer-
sonic-edged, triangular wing flying at a constant speed and
pitching at a uniform rate $ about its apex is given by
equation (95). l~ith t~e transformation

X—zl=a

t–tl=~

this equation become9

4m2 h
P,=—-

rs’ at

and the evaluation of
fig. 13)
for &t (rsgion A)

this give-s (for tho intervals defined in

“=4[’+KTW
(lOla)

for —t<r< i (region B)

[ ()

~ _~ 1 t’+(x+flfd)’ arc co~ –f +
l— u z (X+MJ)’

A<. arc ~~ t+ fifoz+l 3x+2M& ~=, ~lO1b)

# m 3 (z+ M”t)’ 1

and for z< —t (region C)

4.i14rJ
P,= T- “-’--- (101C)

The equationa for the indicial functions CL,’ and CM@’can

be obtainod from the equations,

c.’ ~- .M~t

“’c’u’=&

()
J

W@ +Mot)2PI dx (102)
–cod - .’vrJ

~

r
-QJ=c.,’= .-&., :’-:

()

m(z+Md)aPl (fZ (103)
o

E

where the primes indicate the wing is pitching about and the
moments are measured about the Ie.ading edge.

A combination of equations (101) and (102) gives for the
lift coe5cient

for O<t& ~* (firstintervaI)
f,

c.,’ =~
3MIJ (

1+: t$– M&l~
)

(104a)

?

$$ arc cos (.340-@J +

( ) 1
~to’++ .Mo’ty-; M’fo+; ~’t+ (1—Mota)’ (low)
.9

/

and for & <~ (third interval)

Simihdy a combination of equations (101) and (103) yields,
for the pitching moment about the wpm, the rwdts.

for O<to<& (first interval)

Cmq’=–$o
[

1+tJ–; to’(1+4.lfo’)
1

(105 EL)

2Mo
~ arc cos (Mo- pzt~+ —.

(105C)

NumcricaI results are presented in Part IV.

INDICJAL LOADING FOR SINKING TRIANGULAR WING wtTH sussoruc
LEADING EDGES

The six regions.-As in the study of supersonic-edged
triangular wings, them are also in the case of triangular wings
with subsonic leading edges ,various regions in -which the ana-
lytical form of the loading equation is diflmmt. Figure 40
shows the regions into which the subsonic-edged thngmlar
wing can be most conveniently divided, where thu trailing
edges are again assumed to be supersonic tind the solutions
are cut off appropriat.dy. AIost of these regions havo
counterparts on the supersonic-edged wing shown in figure 37.
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TII begin with, region 6 Iks w-ithinthe spherical ware which
started~at t=O from the wing apex. Region 1 is within the
cyhndrical wave which was started at t=O by one edge of the
wing, but ouhide the wave started by the other edge. Re-
gion~4 is the area formed by the overlapping of the two
cq-hndrical waves from the oppqsite edges, but outside the
region influenced by the reflection of one of these waves on
the opposite edge (secondary wave fronts shown in the
figure). Region 5 is the area between regions 4 and 6 where
the flow is influenced by secondary’ (and higher order) wave
reflections. FinaIIy, regions 2 and 3 are sirdar to regions 2
and 3 in the supersonic-edged case; region 2 being that. unin-
fluenced by, the starting phenomena and therefore having a
Ioad~lg already at its steady-state value, and region 3 be~u
that w~lch is unaffected by the disturbances emanating from
the edges.

wave from upex

- .-*econdt7ry wove
refiec tions

now
fff t -o

Region 1: The solution for the load distribution in region 1
is the same as that for a two-dimensional wing starting
sudderdy from rest and moving with a steady subsonic
vdocity ITSnormal to the Ieading edge. A solution to the
Iatter problem for the initiaI part of the motion is presented
M equation (A6 (b)) m appendix .& In terms of the normal
components of velocity and distance, therefore, the loacling
coefficient for the right-hand side of figure 46 can be mritteu
immediately:

LIFT PROBLEMS IN HIGH-SPEED FLIGHT 427

The eqnations which relate the normal components to
those in the free+ tream direction have already been given
in the section on region 4 of the supersonic-edged wing.
lke of these reIations leads to the following expression fo~’_
loading in region 1 (ii the coordinate system of fig. 47): ‘“

I&&r +M. t)//? -----

y“-m[r +AfJ) ---

m-ctnA

Pm

h’ ./--y-mr-t@
----

.

r

. .—

●

Region 2: The Ioading on region 2, being the steady+tate -
Ioading on a triangular wing with subsonic edges, is weIl
knova. The solution for region 2 of figure 46 is therefore
given by (see, for convenience, reference 22)

()Ap 4am’(2+MO~

~ z=E1’mz (x +M’t)z—y2
(107)

.

~~ere 1? is the complete elliptic integral of the second kind
with modulu~ ~~1—P*m2.

Region 3: The Ioading in region 3 foLIows from reference 21
and is

()

Ap 4(x
~ *=ZO

(10s)

Region 4: The loading in region 4 of figure 46 is calculated
by superposition, just as the solution for region 5 of the.
wing with supersonic edges w-as obtained. The scdution

.
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in region 4 is the sum of the solutions for the right and Ief t
halves of region 1, minus the result for region 3. Thus

Regions 5 and 6: In these regions the exact solution for the
Ioading has not been detmvnined. As was shown in the
section on homogeneous boundary-vaIue problems, such
SOIULions would require the solution of a three-dimensional
elliptlic.-type pmtial differential equation. A later section
will contain an approximate solution for these regions when
the wing plan form is slender.

Discussion.-An isometric drawing of the Ioad distribution,
for the regions in which it is known, is shown in figure 48.
Comparing the results for the loading on this wing to the one
with supcraonic edges (fig. 44), it is apparent that the prin-
cipal difference in the two distributions is in the behavior
around the leading edges; tho loading being finite at the
supersonic edge, whereas it becomes infinito at the subsonic
edge. In view of the known steady-state results this differ-
ence was to be expected. Elsewhere the loadings are quite
similar.

--- –- Truces OP reatons shown in
figure 46 -
(Pamm43rs chosen so region
5 is nonexistent]

/’”. Y

---
●

FIWI?E 48,-Distrlbutlon of hdfcfal loading on right panel of subsonl~ged trl-
P.nm2r VAg.

●

The resuhs prcscntcd in equations (106) through (109) wilI
next be examined in a different Iight. Choose a given sprm-
wise sqc~n on the wing and watch this section as time pro-
grcss~ fhm t=O. This amounts to fixing the a~is on tho
body and can be accomplished simply by using the quantity
s introduced in equation (93),

t?=?n(x+lllot).
.-

It is cIear that ~ is the semispan of a given spanwiso scctione
and that”fi equations (106) through (109) arc written in term,
of g, y, and t, for a fixed s they represent the variation of
loading on a given section as time progresses.

If the notation is further simplified by introducing the
parameter B. where

-(110)

equations (106) through (109) can bo written in the following
way:

(31=%(”’’4(7+
arwkai)

()Ap 4am8

G 2= E46Z-7 ‘ ‘

()

Ap 4a .
KTa ‘go

G94=%-(’”-’’W?9?9
d(~/PJ-Y-8+arctall

m Mofl,
fi+y

d

8+Y
a“rc t tin”

)(t/fl,)-y-8-;

., .. . . . . ----- -.:.

-- —

(111}

(112)”
i

(113)

. ..”.. .—. . . . . .

a+””” -”--
(114)

The load distribution across any sectiou is given by equa-
tions (111), (113), and (114) from the time t/19,=0 to (t/I’3,)1,
where the term (t/f16)1 is cqud tu 2s or @(.1110+1) I%,which-
ever is smaller. (At t/fla=28 the secondary waves shown in
fig. 46 nave jusL reached the sptmwi.sc section, and aL t/L?,= --
@n@@(illo+1) the spherical wave which started from the
apex has just reached the spanwise section.) From (t/Be)j
to (t/p,) 9=@n&(.A& I), the loading has not bwn ~lrt(’r[nill~’tl
and from t/11~=(f/A)ito t= m the loading is the stcacly-stat e
value given by equation (112). Figure 49 shows this init itil
and final load variation plotted as a function of the pa rmm’t er
t~fl~. At. tile beginning of the motion the hmding is const&mL
across tlm span, but this type of distribution is quickly
moditled and the shape of the curye tends toward the steady-
statc loading given by equation (112) and shown in the figure
as the distribution at t/19,= (t/&)2.In fuct, if the sptin is
crossed first by the secondary waves rather t.hun the sphericn 1
wave, w“hen this sptin INN traveled a distnncc such thnt
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FPiI:um W,-ymiatlon of CndlciaIIoadlng with LB. at a M s~wk section.

t/&=2s, the expression for the loading given by equation
(.114) becomes

(115)

which differs from the value given by equation (1 1.2) only by
a constant of proportionality. Both before and after the
time t/&=28 the shape of the loading cur~-e variesfrom the
simpIe type reprwent ed by equation (1 15), but the trend is
est ahlishecl.

The average chord Ioading factor PO, introduced by equa-
tion (!12a]. can now be determined for certain regions.
Hcm’e, if the notation

is adopted, there results for the early part. of the motion,
that is, for OS T/#c< (r/pc) I

1:,=2 f 2–;)+4m~,AfO(r/p,) (117)

Equation (117) was derived by integrating equations (111),

(113), and (1l-tj. For vahes ofr/B’21/19.~(~lc– 1)=(;,),

()
equation (112) is vaIid. Hence for ~ > ~

l%– B, 2
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F~ure 50 indicates the magnitude of this average Ioad for
both Iarge and small values of r/& Notice that for smalI
dues of r/19c it is sticient for the establishment- of the
curve to specify t%e parameter m..3I@,, but for large values
an additiona.I parameter must- be given (such as Jfo in the
figure). Notice, further, that in spite of the large variation
in the distribution of the loading, as shown @ the previoti
sketch, t lie average value P. varies linearly througho”ut’ the
intervals considered. This result is similar to the one
obtained for triangular wings -with supersonic edges. -.———

4-
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LNDICIAL ‘LOADIXG OX YEEY SJJGXDER TRIANGULAR WINGS

In Part II of this report it was pointed out that if the wing
is slender (i. e., has a smalI rat io of span to chordwise len@)
the governing partial differential equation simplified to the
form

vt#—%M- ~==”o (119)

where the independent variables refer to a coordinate systein
that is either tked on the wing or is flxwl with respect to the
still air at infinity. The boundary conditions that apply
when the axes are fixed on the w~u will now be considered.
hi some detail. (In Part II the variabIes z,, y,, z, and t,
were used - to denote this coordinate system. In order to
avoid a cumbemorne notation, however, the subscript 1 will
be deleted in the following.)

Just as in the pretious sections of this re~ort, consider a
tria.ngdar wing which is at rest for t<O, starts suddenly to
move at a forward wlocity equal to T; at f= 0, and continues
at this same ~elocity for t>O. In this case, the triananla~
v@ can be considered as having a flnit e chord, since span-
-wise sections act independently in sIender wing theory, and
the Ilnrd integration in the z direction can be stopped at any”
desired chord Iength. lt elmdd be emphasized that in this
case, 1“0may be either subsonic or supersonic. ~ section in
the spamrise direction, as for instance section AA in figure
51 has a trace in the u~ plane which is a narrow rectangular
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strip along t.hc t asis. Since equation (119) has been derived
on the assumption that the velocity gradients in tlm y, z,
and t directions are indepmclcnt of the gracIie.nL in the x
direction, the boundary conditions along the strip shown in
the figure are independent of those on other strips corre-
sponding to traces from spanwise sect.ions along the wing.
Hence, the problem is to find a soIution to cquat,ion (119)
which \viII make q, constant over the. strip (since a given
spanwise section experiences constant downwmh whethc.r tho
sh.nder triangular wing is undergoing sinking or pitching
motion) and at the same time will satisfy the other condi-
tions Estcd under cguation (2). In the Iifting-surface
analog this corresponds to the problem of finding the velocity
potential over a flat rectangular wing of Iow aspcc.t ratio
situated in a freo stream moving at a Afach number equal to
W. Solutions to the latt.rr probkvn can be obtained by
various techniques, and so the procedure wi~~bc &st., to find
the potential for t.hc st wdy-sf.at e, flat, rcctangulftr wing, slid
t.hW, by aualogy, to convert this to the solution for either the
sinking or pitching slender triangular wing,

The steady-state, lifting-surface problem, —I~ift :ng-surface
solutions for Lhe loading on a rcctangulm wing traveling at
supersonic speeds have been developed for regions 1, 2, and
:J of figure 52 (by Buscmann and otbws), and by means of
tliew solutions the load distrihut.ion on a spanwise scctio~ of
the Triangular wing can be determined to a time necessary
for sound to travel that span length. For t>28, however,
the solution becomes considerably complicated by the in-
creasing number of reflections from the edges. Reference 24
gives solutions for the loading on a rectangular wing in
region 4 and indicates methods for extending the solution to
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regions farther along the wing. Already in region 4, how- “
“ever, the expression is cumbersome and in higher-nufnlmwd
regions the exprcwions become difficult to manipulate,
These methods, therefore, wilI be discarded in favor of a
“more approximate but simpler analysis.

If z is t$e. distauce along the chord, y the distuucc ulong
the span, and s the swnispa.n, then the solution for regions,
1, 2, and 3 of figure 52 cm be written (for convenience, see
reference 22):

Region 1
Ap
——4;
!?0

[lzu&L)

Begion 2

4

_ -—. .-
Ap 8W arc ~11 8–IY] ‘—. ——

Z—e-l-lyl
.-. (;zo~)

Region 3

$’+(:’’a’:s~+ar’~’n=~-:)” ‘“-

(120C)
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.4s x increases (i. e., for higher-numbered regions in @. 52)
it is reasonable to assume that the spanwise variation of
Iomling is virtually invariant with x, that it is “smooth,”
nnd that it faHs to zero at the side edges. Assume, there-
fore, thtit the loading is given by the r~lation

Ap
(.)~1’-(;y~=–4:.f ~

~Spanwise, this has the variation s~ow~ in figure

(lq~)

53; chord-
&e it is as yet arbitrary. To fh~ the chord&se dist~bution
the value of .f(z/s) wilI be determined so that the vertical
induced relocity along the center line is constant and
eq uaI to w.

The solution to this somewht artificial problem approaches
the exact solution to the steady-tate liftingsu-face probIem
for o flat rectangular wing aIong sections far behind the Iead-
ing edge; closer to the leading edge it oily approximate es the
exact solution; and, of course, in the vicinity of the Ieading
edgo it wilI be least. representative. But., on the other hand,
the exact- solution is known in the vicinity of the Ieading
edge and it turns out that the solution of the problem posed
tibove forms a reasonable continuation over the remainder
of the wing.

The velocity potentiaI for the problem vrhkh has been set
can be readily expressed in terms of an iutegrat.ion of eI~
mentary horseshoe vortices over the plan form. Since the
31ach rfumber equaIs ~~ then according to reference 19,

\vhw-e .-i is the area on the wing within the forecone from the
paint P(z,y,z), at which q is to be determined (the shaded
mea in fig. 53)-

The simplification of the Iast expression is given iii refer-
ence 19. The result is the integraI equation

I =f(q)+:~f(dG(TI–IMm
,

(122)

k,=++.,=v-q, .
The modulus of l?l is ~, and the modulus of & and Z is kz.

The solution of equation (122) for f(q) is not dficult
when numerical tiethorh are used. For intervaLs of q, equal
to 0.2, the resuIt is given in tabular form. in table III, and
tiiso in figure” 54. .4s mentioned previously, the function
f(q) determined 3Y this approximate method will be Ieast
representative of the Lwact adution in the region near the

-s s

t--l “-i-
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,/

‘ I
m, ?/”2)

FIGIJEI!53.-SLMIMS lm.dfIIzand reghu of htegratkm I&I in tluanafysfs oftti Iow+s~-

. ~ ~ w-. .

Ieading edge. H.owerer, since the exact solution is knovvn

for x~s=q< 2, a comproinise can be effected. If the span-
wise average of the loading is calculated from equations
(120), it is” found to be a linear function of q, starting at
4/r for ~= O and falIing to zero at q=2. On the other hand,
the sprmwise average of loading given by equation (I21) is

—r~~(~),. Therefore, an improved solution for ~(~) consists
10

in taki~~(v) w the value given by

m=:(%)

in the region 0< q< 2, and then fairing this curve into

that given by the soIution of equation (122) for ~>2. The
two curves me shown in figure %.

By using the redts Iisted in table III, the loading over a
Iow-aspect-ratio rectangular wing flying at a Jlach number
equal to ~i~ can be estimated. Of particular interest is the
damped osriI1atory nature pf,tlw load, as shown in figtie 54,
fahg to zero at one span Iength behincl the leading edge
and taliing alternately negative and positive vahws beyond
this point. (See reference 25.) A somewhat diffwwnt
approach to this problem (reference 26) has Led to a solution
very Iilie the one gi~en here. .
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TABLE 111.—SOLUTION OF EQUATION (122)
. ..—

0,0
.2
.4
.6

1::
1.9
1.4
1.8
1.$

[ :;

2:8
2. s
3. (I
3.2

;:
. 8.s

. .

f(v)+

m

LOMO
.W22
~W&

. =56

.7%32

. ma

.4597

.3122

.12W

.0724
-.0245
-.1002
-. I&a
-.1919
-. m
-. 2E46
-. ml
-. 1s42
-. 16W
.—

j)(mh

0,mo
.1030
. a246
.5W2
.7552
. ma

L 2-452
1. lam
1.2300
1.2S07
1.3067
L ells

.1. 2a20
1. Zias
1. 2?S6
1.1289
1. MU
1.1146
1. 07m
I. 0414

. .
-. II?) “,
.,. .

-0.1337
–. 1Q32

,-.0716
–. 0446
–.oxn
-, 0m2

.0142
“.0!438

.0340

. 02iu
i

:E
. 02as
.0222
.0237
.0120
.0124

:$%
–. 0012

——,...

.$ f(~’k”””..

1.o124
.W29
.2720
. WK14

:E
.2531
.2E78
.=
. ‘mm
. ma
.WE8”

.:%

$g”.

1.o137
1.0146
1.0142

A F -- From emmtion ff201

k’
..’

, F--From equa ~i~ (122),
,’

.

[ 1 ~

o 2 ,, 6’
.. ....

v
FKWEE E4.-\ye.rfation of 17q)with a.

.

The unsteady-analog, sinking wing.-’lh fimt step in
deriving the unsteady-flow results for the sinking wing from
h. strudy solution is to replace. x with t. In equation (122)
this corresponds to replacing T with r where ~ is equal to
#/s (equations (116)). The second step “is to repIace w/VO
\vit h — a and to rcclerivc the expression for loading COOffI-

cit~nt since in t.l~c time-varying problem it is expressed in a

SOIIH!lVhtl~ different ~nmnnc.r t]ltUl in the Stcadj--state a~alog,

In t.1)(1unst cady case, as the triangular wing mmms through
a. fixed rcf cmnc.c plane the local span intemcrting this plane
grows as a function of time and. equation (12), which repre-
stwts the partial dcrivativo with respect to time with x fLKcd,
must be mpandr.d to the form

%=*O[%I==*O([%IS+[*I’2)

Wluw
[w and [%1[

indicate -derivatives taken at

constant 8 and t, rcspwtively.” Since 8 ia equal to m(z+i’iot),

t)sj~t equals m.llO, and thww results

%&o([%’ls+m’’’’[%%l) “23)

In the stead,v-etat.e problems an analog to the term

[1
bAp

involving —
as ,

is missing, and the loading coeflkient is

bAv

[1
givtm dnt.irely by an operation equivalent to ~ . It is

8

necew”ary, therefore, to operah! further on tllc solu~ion given
for the Ioading in the steady -atatu problem to obtain the
solution for the loading in the uns~wdy probIem. But -.,

,. ;.; ;. . a.

‘ [*I1=:IRKI$” -

:.

, :,....
.-

so tha~ r the notation
. . . ..

,.
~ ..: ,.

,:

()Ap
is adopted (where —

qo a
represents the loading in the unal-

ogous steady-state problem), then the expression for the

()

Ap
*O ,b~- the oqua-unsteady loading can be given in terms of —

tlion
Ap_ 1. [( ) ma’’”] “24):$’#+n-4Mo& o

. !70 MCI

By the application “of equation (124) to equations (120),
the loading for the various regions in the yt plaue of the un-
steady wing can be found. For region 2 in figure 55 there
results

+m

The loaning coefficient can ~c sinlilarl~ derived i~] the other

regions so thut fiuall~, for b~e regions show’n in I@re 55,

t~

\

.— —A

1.

/“
—Y\

A— -—

FIGURE M.—Regions uwd to express loadlng on section of unsteody, subimkalgml, trf-
angnlw wing.

Region 1
. .

Region 2

Ap ‘a—. —
!70 i’ltrJ

tan

(125a)

m . -- .--.-—

(125b)
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Region 3

/

——

‘–Y +arc tan
“’C ‘*’1 I t–x+y .

For the interval t Z2S equation (121)

J=%)
( 125C)

must be considered.
BJ-means of equation (12~), the expression for the loading
roefflcient can be writteu

o

which becomes

(l~(j)

fvhe~.t(r) is the solution to equation (122). A’otice that for

la~e r (~~en the loading has reached its stead~- sta te), J(T)

ris zero and ~rj(rJd~l is unit~-. (See
..

hmding is given hy the equation

Ap 4am8..=
q~ \@-.g2

table III.) Hence, the

Jvhich is tie stetid~-sta~e value “for a slender triangular wing
(equation (112 1 when 12=1).

It is now possible to derive the chord Ioading factor PO
m detined by equation (92a), thus

Placing eqmtions (125) and (126) in this expression, it is
found that for OS TS2

P,1=?(2-r)+4m310r (l~7@

and for TZ 2

P,}= dl – m MOrjj(~)+2 mMOr
I
‘rj(T,)dr, (127b)

_ f]

Since the values of POgi~en by equations (127a) and (Izib)

\vere ~erinxl using d ~erent methods, their maggit udes at
7=2- are not equal. The final curve for P. must be con-
structed I}y fairing the solution for ~< 2 into that for r>2.
Figure 56 shows these resnIts togetier -with the final curve
rhosen (solid line).

The unsteady-analog, pitching wing.-Wheu the wing is
pitching at a steady rate about its apex, the equation for
the vertictd induced velocity on the phm form is

‘W==.—(Z+Jfotp

●4

.

..—....-

t 1 I [0 2
;.

6 8 10--””
r

FIGCEE55.-WarLitIoaof PO w[th r.

so that —w/1-Zin the steady-state equations (120) and (121)
becom= d8/?Ybl’& Since the loading coefficient is stilI given
by equation (124), there resuhs for the conl-emion of equa-

tion (121) the expression

and this can be reduced to the form

-(128)

As in the discussion of equations (127), it can be seen that
equation (128] becomes for the steady state (r large)

.
and this can be shown to agree’ with the steady-state slender-
wing restdts given in reference 27.

It is now .possibIe to derive the chord loading factor PI
as defined by. equat ion (92b) ,

LTsing equation (128), one Ends for T>2

J
P1=3-(1 – mMoT)j(T)+3 mMo7i ‘f(rl)dr, (129a)

o

and a similar anuI@s based on equation (120) -yields for
0<,<2

( )
p~=~ 2 —r +4m-~or ‘$ ??l>~oT2 (129b)
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As in the case for PO, the two equations for PI do not join at
~=2 and the final curve must. be constructed by fairing the

soluI.ion for 7S 2 into that for r> 2 (see .&. 57).

\

,.-:-,
. . .. . . .-

1 I I I 1
2 4 6 8 “/0

r

FWURE57.—VcIT&tionof PI w[th r.

Discussion.-–It is now possibIc to assess the accuracy of
tho solution for very slender wings in the intwwI OS r< 2
by comparing LIMvalues of loading &-rcn by slender wing
t,llcorY (eqllations (125)) with the exact loadings given by
equations (111 ), (113), rmcl (114), and also by compming
the slender wing vahc of the chord Ioading factor PO (equa-
tion (127 a)) with the exact value given by equation (117).
It is .appmmt thut the approximtite solution differs from the-
exactr onIy by a stretching factor in the t direction. Hence,
if r is replaced by Tfb8 and m (note m is proportional t.o
y/t) by mB., where & is given by equation (1,1O), then equa-
tiom (125a), (b), and (c) are. identical with equations (113),
(111 ), and (114), respectively, and, of course, cquatioil
(127a) corresponds to equation (117).

This rather remarkable. result can bc enlarged upon from
another viewpoint. Suppose .thht in t-he steady-stat o analog
problem the wing had Lwen flying. at some hIach number
otl]f’r than ~~, say 314. The solution to such a new problem
could IN obtained from the old one merely by applying the
Prandt.1-Glauert correction, that is, by Wretchhg all dis-
hmc.cs in the x direction by the factor l/19, where p?= 11–
Jf:’1. Such a procedure would convert, for cxumple, cqua-
Lion (127a) to the form

Pofl.= 2 (2– T/P.) +4m %~~0 7/be

FinaIly, if POis adjusted so that P0=4 at 7=0, there results

PO= 2(2 —rf~’) +4tn3&

which is exactly the answer given by equation (117). It is
possible to simplify the s~te-ment of tlmproccdure by simply
remarking: The exact results for Ap/qOor POin the interval
O< T/&~ 2 can h obtiincd from the approximate results

for a very slender wing by making an effective ~Iach mmlber

correction Lo the right-hanil side of equation (125) or (127a),
respect.iveIy.

It iS interest.ing’ to pursuo this concept uvm furthrr,
Coneider a spanwim section of a triangular wing as tinily
increases from the. starting impulse. The primary wav c .
fronts. emanating from chh’r side pass across the scctiun,
forming the hIach lines in the skuly-st.at.c rectangular-wing
analogy. For very slender wings these Iincs make a 45°
angle with thu trace of the sid~ wlgc and ar,c used to divid c
tha pIim form into regions as in figure 58.. Nrow find thl’
actual position of these primary vmve fronts as t.huy form a
trace on the section in the VT plane. A ~t~’~tigl~tfor]vnr(l
crdculatio”n shows “that these lines rwtually make an nnglo
equaI to arc tan l/flc with the Lracc of the side edges. Hwl&
the effective 31ac.h number which is used to correct Lhc
shmder-wing rcsuhe in the interval 0< r< 29a is that whit.l;
m:akes the lla.ch lines of the steady-state anslogy coincide
witli tile actual trace of the pi.imnry “w%vrfronts.
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lNDICIAL LIFT AND”PITCHING MOMENT ON VERY SLEV”DE”R TRIANGULAR
WINGS

The lift cocfficiont for the sinking whg is given in lh!
notation introduced in equation (92a) by the cquatiou

where P. has lxwu clctmnincd in the lasL section as a fu m’Lion
of r= tja and co is the root chord. Coneidcr the situtition .
at a certain tlxcd time and let the z cocu-dinate in tbe rtbovc. –-
formula be fixed in the wing. Then set

~ :0 :Co ,. ......=—=_ (130)
.-.
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and as before

,o-fi’~‘—=mJ~~fT
CQ

whrre TOis the number of wing-chord lengths
this way it is possible to obt ain the ~xpresion

r (fi;d’~.3foe.== 2. *l(PO

(131)

traveIed. In

(132)

and similarIy

““CJ=-2JY’G%-J”“33)
The equation for the Iift and pitching-moment. responses

(where again the pitching moment is taken about the apex)
on a pitching wing are

and

The values of F’Oand P, were taken from curves sindar ~o
figures 56 and 57 in the Iast section (using the fair@ curves
in the vicinity of -2) and the resuhs for the indicid lift
and pitching moment in terms of T~, the munber of chord
hmgt,hs traveled. are shown in Part Iv. “

PART IV—RESULTS AND DISCUSSION -

TWO-DIMZ?4SIOY.AL ItZSL!LT!S

The methods presented in the previous sections have been
wed to calculate the indicial lift and moment w.rves for two-
dimensional wings flying at 31ach numbers equaI to O,
0.5, 0.8, 1.0, 1.2, and 2.0. These results are presented in
figm 59.

Figures 59 (a) and (b) show the variation of the indicial
Iift and moment on a sinking wing. The i@iaI due of the
Iift is given by the expression 4cY/J&. When the free-
stream JIach number goes to zero this expression still is
valid, the initial value being a pulse of force that occurs at
t= (). . The final vahws of the lift are simpIy the t.vrodimen-
sirmal, steady-state results given by the PrandtI-Glauert
rule. Figures 59 (c) and (d) show the lift and moment
variation on a wing pitching about its leading edge. These
functions were not computed for .3f,=0.5. The rwmIts are,
of course, subjec~ to the restrictions of linearized, com-
pressible-flow theory and, for example, the calculated
responses given in @ure 59 for sonic speeds must be con-
sidered as being outside the realm “of vaIidity within a few
chord lengths of tra-reI. In application to high-frequency
oscillations, however, the initial portions of the indiciaI
curves dominate the response characteristics of the airfoil
and calculations near fifo equal to one need not be invalid.
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~lore accurate values of the indicial curves are given in

tables I and 11 for the subsonic 31ach numbers 0.5 and 0.8.
These tables can be extended to Iarger vaIues of r~ by means
of equations (71) and (72). .
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TRIANGULAR WINGS WITH SUPERSONIC EDGES

Curves of the inclicial lifL and moment on sinking and
pitcling triangular wings with all supersonic edges are shown
in figures 60 and 61 for Xlach numbels 1.2 and 2.0, respec-

tively. For the purpose of comparison, the curves for a

~wodimensiona] wing flying at tile same N1ach number

ilavO I.)een included in each figure, as well as tile curves for

tl]e same. triangular wing in rc~erscd flow.

,Several conclusions can be drawn f roIIl thcsu results.

First, notice thaL the total .jndicial lift on the triangular
siuking wing is the same ut every instant as that on”the same
wing in reversed flow (both wi~s, of course, having started.
with the sti.me velocity at the samo Lime), and that the vaIue
of this lift is the same” as the total indicial lift on the two-

dimemionaI wing only at the beginning of the motion ad
again “when the steady state has been attwincd. .

Secp~ notice .~t., since aI1 the @ricteristics. for tll~
trian@l& wings are indcpen(lent of the an&J of sweep, they
me v~~ for an~ unyawed triangular iving as Iolig as the .._
edges:afii supcrsfmic.

Th~d~it is apparent, that the tra[~sit.iou of tile total inclirial
Iift fr@its initiaI M its fiuul value is Ie& abrupt for tl;c
triangular than for tile two-dimensional wing. The initial
and !iid values of CL=depend on l/JfO and l/~, respec.lively,

so that as the Mach number is increased tho variation dies
out nltO@ler since 19and Jfo approach one another. The
same iewark applies to all the other coc~cicnts,

,.i:.-.. -.
SLENDER “TRIA”h’GULAR WINGS -

: -—

The results for the lifL and moment 011a slemler t.riangula r
wing that is sinking or pitchi[lg about its apex are shown in
figure, 6?, The antil~~is by which the results were obtaillc{l
is vaIid ~vhen both m, the tangent of the senlial)ex angle, and
mill. Are small; the resuIts tire giwm for mfllo= 1/8. ” Tflo
curve$ q~.e d qu~ittitively, aIike, in each cam tho response
falls ffornr its high mitial v&lue to a mitlimum at tibout TO= lb .

and $@. recovers and practically att,ains its as~mpto t ic

.vaIue,a~{o=l.
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By means of the anaIysis and curves presented by J. ~.
lIiIes in reference 2, the indicial resuIts for a twodimensional,
sinking wing can be compared with those for a rectanguhm,
sinking wing flying at supersonic speeds. This comparison
is given in f@re 63 for kiach numbers equaI to 13 and 2.0
and aspect ratios equal to 2, 4, 6, and infinity. It can be
seen that the modi6eatiou in the shape of the inclicitd curves

Z7ZM3-56W

(c) Lut,M=2.O.
(cUPitdhu mm=t (abont IeadInr *), Md.o.

??Ioum Ot.-CondudwI.

brought about by the decrease in aspect ratio is similar to
that caused by a decrease in Mach number from supersonic
to subsonic nqnitudes.

A2dEs Aeronautical Luok4Towi
N.4TION-AL ADPLSOBY COWITTEE ROE AERON-AOTICS _

llOITFETT FIELD, CALIF., October IZ, 1950. -
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APPENDIX A

DETERMINATION OF WJBSONIC, lNDICIAL,
fJECTION LIFT AND PITCHING-MOMENT CURVES

THE LOAD DISTRIBUTION

The following results for the indicial load distribution on
sinking or pitching wings can be obtained in two ways,
One. of these methods will be outlined in the subsequent
paragraphs. The other is outlinod in references 28 and 29
and is referred to as the lift-cancellation technique. The
latter method has l.wen used to check the load distributions
originrdIy obtained by the former so that an independent
check of tlmw redts has been carried out.

It was show-n in Part II, Two-Dirnensiona.l Boundary-
Vslue Problems, that the Iifting-surface analog to the solu-

tion for load distribution over an unsteady, two-dimensional
wing traveling at a constank subsonic speed involved the
calculation of load distribution over a swept-forward wing
tip with subsonic edges. Figure Al indicates the geometry
associated with the boundary conditions. Solutions are
given only for the Ioading in the five regions shown. As has
been discussed in the text, for MO=O.8 this was wmsidered
adequate to detio the behavior of the indicial responses in
the early stage of motion. For M,= 0.5 the loading in regions
farther down the wing had to be calculated; and in all, for
this Mach number, the loading was annlyzed in the 11
regions shown in figure 25. However, the lattw analysis
was carried out by a numericaI application of the lift-
cancellation technique and nono of the details will be pre-
sented here.

In the notation of the unsteady problem the expression
for the veIocity potential can be written

SS

w,dtl dq
P—––: , ~i–t,)’–(x–zl)’ ““””-““’“““(A1)

where T is the. area on the wing plan form included in the
hfach foreccme from the point (t,z). Equation (AI) is
applicalde only for cases in which WWis Imown at all points
within the forccone, as is the case when the edge of the wing
within the forccone is everywhere supersonic (i. e., region 1
in fig. AI). However, Evvard (reference 30) has extended
the solution provided by equation (AI) to include cases such

A/
..\

x..~t. ./’ ~, i /’ -’\\// \/ \A//4
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S*.

as shown in figures A2 and A3 in which Lho forecone inter-
sects a subsonic edge and includes a region of unknown
upwash. & was pointed out in reference 30, equation (Al)
applies in these instsnccs if the area of integration ~ is limited
to the shaded regions shown in t.hc figures. It is apparent,
therefore, that thu potential (and thus the Ioading) over a
sinking or pitching wing can readily be determined for regions
1, 2, and 4, in figure Al.

Points in regions 3 and. 5 have forecones which intersect
two subsonic edges, and the method just discussed can no
longer be directly applied. In reference 30, however, a
mct~o~ was given of evacuating the up wash in the region
between the klach corm from the apex and the leading edge
(region 6 in fig. A4. Thus, the plan form has bcconm,

\ /

tt
FIOUBE A2.—Area of hte.gretton when Mach foreame lntasects sulnonla trdlhg cdgv,
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/ 1t
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/
A4.-Regfon 6, mea ktwwn wing Ieading edguand ham of fbremod Mn.ohUme.,



effectively, one such as shown in figure A5 in which onIy one
edge is subsonic. This reduces the problem of finding the
potent ial in these regions to the same problem as was invoIved
in region 4. The analysis used in finding the loading over the
various regions wilI now be considered.

r

Fw~E~A&-~~ of h~ti h M d and ~C la ~ and SUtSOlliC
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Fmrux A6.—RegIoDs of flgum 41 fn the r8 @6ne.

Fkst, int reduce a new coordinate system in which the lines
z = –t and z=t are taken as the r and s SXH, respectively.
(See fig. A6). This amounts to a rotation of the origimd
system of axes through an angle of 45°. The tra.nsfor-
mationa reIating the r,s to the x,y system are

r=+ (t—r) t=% (r+s)
?~

1,2 (s–r)S=-j (t+2!) x=-l

In the new-coordinate system equation (Al) is mitten

(A2)

The vertical induced velocity WWover the vring plan form
is given in equations (2) and (3) of the text for the sinking

LIFT PROBIJ3MS IN HIGH-SPEED FLIGHT 443

wing and pitching wing, respectively. The method deveIoped
in reference 30 was used to obtain the raIue of WUover the
area between the lines s=O and r=s(l +JfO)/(1 —A{J (region
6 in Q. A4). The results for the sinking and pitching wing

(A3)

In the r,8 coordinate system, if the subsonic trailing edge is
not included in the forecone from the point at which the loading
is being determined, the expression for the loading coe5cient
can be written

However, if the trading edge is included in the forecone,
and if the IIutta condition is to apply along such an edge, it
can be shown that the equation for t-he loading coefficient
assumes the form

SINKING WING

The preceding method can be applied to the sinking wing
k obtain the following integral relationship for the loading

()
Ap

over the \-arious regions. The subscripts on ~ indicate

I t.heregionforwhich t.heparticularequationapp~~~

‘lWO- AND THREE-DEvH3XSIONAL ‘UNSTEADY
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[J 28,
4

281

>$, II
(r,–sJ-A40(r1+sJ- arc ‘an (rl–@-MO(r,+sJ—-

JeR1

where

~lost of these integrals can be readily evaluated to give

(A6a)

(A6b)

PITCHING WING
●

~ similar fi.nalysiaof the pitching wing yields the following
results for the loading coefficient:

(A7@

(A;b)
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[ J=-ARJ-J(M&o+zo)arc tan

(A7c)

%)4=+{ 4’23--YJ-““‘“(M&+aJ arc tan

J(fo+G-.I) [1–(iwoh+zo)]
}

(Aid)

()

L AP =Af MO

[

-...—. .—
—

9 To 6 ~~fo(~h –M(J2
~ll–(fifdo+zo)+

‘–— _4(fa-xo)(fo+ro)+ ““(Mdu+%) tanh-’l/l-@4o&+%J 1 2

4

——-—.. .
—_—— —. L!o(l – 310) (to–zJ’

.Jf&+xo4(to-d (MA+ Zo) + ~(1 +3~J* -- ‘—

.
,,

(“’’o+’~[”r’’’”/E-’r’’:’’=+--

-—’an’hEiEm+%““)hfo

/1 –Azo’

whore

r~(l-M~)

4

[

x dq {( 28,

)[
—2il404G1--

–481(r+8,)+(rd+ 81)[r(l-MJ+8,(l+ 3&)+28,(l-.31Jl+~ _
G,=–— - arc tan

rzhfo , 0 43–8, +-+81 2~2S, (r+8,)(r–r,)[r, (l–fi~o)-Sl(1+~4~ 21
J

...—......— ..——.—.—.....
4Mofi6 arc tan

Z81
“:&& “(@@+, &]i,* --2f140T Jr (1 —.MO)-41(1 +.MO)+–

T.(1 –~0)–81(1 +f140)+l~ [

d

.-

}

.- .—- —
r~(l—~fo)—el(l +i%) :

arc tan (l–ikfo)(r-r,)
,-



TTVO- .4ND ~EE-DIMIZifSIOX.lL UNSTEADY LIET PROBLEMS Ill HIGE-SPEEI) FLIGHT 445

LIFT AND PITCHING-MO}IENT COEFFICIENTS

The Iift and pitching-moment coefficients may be obtained
hy suitabIe integrations of equations (.A6) and (Ai) and
arP @vtYI in the time intervals indicated in figure 34 by the
following expressions:

Sinking wing

(’1==3;0[l —fo(l —lilo)] (A8@

where
U

~“ ~ is given by equation (A6e)

(A9b)
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APPENDIX B

DETERMINATION OF SUPERSONIC, INDICIAL,
SECTION LIFT AND PITCHING-MOMENT CURVES

THE LOAD DISTRIBUTION

In the case of the unsteady supemouic wing the qression
for the velocity potential may be readfly obtained by placing
the values of w. given by equations (z) and (3) of the text
in the equation

1
SS

w.dxl~=—;
r ~(t–t,)’–(z–z,)’ “’‘

___(BI)

where T is the area on the phm form included in Lhe hlach
forccone. The loading may then be calculated from the
relationship given in equation (12).

SINKINGWING

The load d~tribution over the regions A, B, and c shown
in figure 34 are given by the following expressions:

-01 Lip
[

41 Mox,+tO+<~
~ ~ ~== ~ arc Cos*O+M& TMO

( )1
Xo

arc cos ——
to

-0

1 Ap 4

a z c=@i~

(B2b)

(B2c)

PITCHING WING

For the case of the pitching wing the

in regions A, B, and C are, respcctivcly,

(B3a)

(B3C)

LIFT AND PITCHING-MOMENT COEFFICIENTS

The lift and pitching-moment coefficients may be obtained
by suitable integrations of equations (B2) and (B3) and
are given in the time intervals indicated iu figure 34 by the
following expressions:

SINKING WING

o<t&J-
1 +Mo

-.

C“=+. ‘ (B4a)

&o(Z–t,qcm=’= —— (B5a)

1_<hs& “-
1 +Mo-

[

4 _l_ arc ~os M&o- 1+
c;a=-

U Mo LJ

1’ t
,~ 1

arc cos (tO+MO—GJ{07+&. @02-(1 —Moto)g”

(B41))

cmJ=<[&(l-$)arccos’’~~l+,,& -- __

‘(l+FA)’’’’-(’-’IJJ’I
arccos (L)+MO- h.nlo?+flfo

(B5b)

1’
—<to< m
Mo– 1

C’.=d& (B4c)

cm=’=— —
J&1

(B5C)

PITCHING WING

o<to<J-
–l+MO

2
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t
Czqf=— 1 +~

Mo 2
(B6a)
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‘-M’+%)

(B7a)
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