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TWO- AND THREE-DIMENSIONAL UNSTEADY LIFT PROBLEMS
IN HIGH-SPEED FLIGHT'

By Harvarp Losax, Max. A. HeasLet, FraNkLYIN B. FuLrer, aud Lous SLUbER

SUMDMARY

The problem of transient lift on two- and three-dimensional
wings flying at high speeds is discussed as a boundary-value
problem for the classical ware equation. Kirchhoff's formula
8 applied so that the analysis is reduced, just as in the steady
state, to an incestigation of sources and doublets. The appli-
cations include the evaluation of indicial lift and pitehing-
moment curres for two-dimensional sinking and pitching
wings flying at Mach numbers equal to 0, 08, 1.0, 1.2, and
2.0. Results for the sinking case are also given for a Mack
number of 0.5. In addition, the indicial functions for super-
sunic-edged triangular wings in both forward and reversed flow
are presented and compared with the two-dimensional values.

INTRODUCTION

The usual idealizations introduced in the development of
linearized aerodynamic theory describe a frictionless, per-
feetly elastic, model fluid. As is well known, the effect
of small disturbances in such a fluid can be analyzed by
means of the familiar wave equation.

The solution to the wave equation known as Kirchhoff's
formula (see reference 1) is found to be of considerable use in
unsteady-motion problems involving thin wings with super-
sonic edges. The problem is reduced to one of summing
elementary solutions, analogous to sources and doublets
in steady flow, over a region determined by the position of the
wing as well as its traversed path. The theoretical develop-
ment leads naturally to the concepts (defined later) of, first,
inverse sound waves, which have & counterpart in the Mach
forecones used in steady-state wing theory; second, acoustic
plan forms; and. third, homogeneous flow, which reduces
in part to the familiar conical flow as the wing approaches
a steady supersonic veloeity.

There are several simple types of unsteady motion on
which the analysis can be based. The so-called indicial
motion, in which the velocity undergoes an initial discon-
tinuous change will be considered here. It is possible to
conceive the perturbation field due to the unsteady motion
in two slightly different ways. For one, it can be supposed
that the wing has been traveling at the constant velocity
V' for an infinitely long time and then, at time equals zero,
starts suddenly to sink without pitching (or pitch at a

constant angle of attack) while maintaining the forward
velocity V5. On the other hand, the wing may be considered
to be at rest in still air until at time zero it starts suddenly
either to sink or to pitch and, at the same instant, attains
the forward velocity V5. The latter physical picture will be
used in this report. Problems of unsteady motion can also
be approached with the initial assumption that the velocity
potential depends harmonically on the time. These two
approaches are quite compatible in that they can be related
through the use of superposition methods (Duhamel’s
integral, Fourier's integral) of the operational calculus.
Detailed results for two classes of indicial responses (time
response fo a step input) will be given in this report. The
first of these is the complete set of responses (¢1,; tn,, €1,, Cx,)
for two-dimensional wings flying at Mach numbers equal
to 0, 0.8, 1.0, 1.2, and 2.0. In addition, results for ¢, and

¢m, are given for & Mach number equal to 0.5. The part of

the analysis pertaining to the response of wings traveling at
subsonic speeds is lengthy and somewhat tedious regardless
of the method of approach. With the use of indicial fune-
tions, however, the calculations are reasonably straightfor-
ward, especially for Mach numbers sround 0.8 to 1.0.
Further, the use of indicial functions sheds considerable
light on the manner in which Mach number variations
affect the section aerodynamic characteristics. The results
for the two-dimensional wings traveling at supersonic speeds
are compared with the indicial responses developed by
rectangular wings of aspect ratios 2, 4, and 6, the latter
curves having been presented by J. W. Miles in reference 2.

The second class of indicial responses considered is that
concerned with the forces and moments induced on sinking
and pitehing triangular wings. First, the loading on a flat
triangular wing with supersonic edges undergoing an indicial
sinking motion is determined. (See also reference 3.} Then
a simplified method is developed whereby total lift and
pitching-moment coefficients for the wing with supersonic
edges may be obtained. (See also reference 4.) Again a
complete set of indicial respounses is presented for supersonic-
edged wings in both forward and reversed flow. Lastly,
the triangular wing with subsonic edges is partially analyzed,
and the indicial responses for a slender triangular wing are
given.

I Suporsades NACA TN 2403, ““The Indiclal Lift and Pltehing Moment for a Sinking or Pitching Two-DImenstonal Wing Flylng at Subsonle or Supersonic Speeds’” by Harvard Lomax
Max. A. Heaslet, and Loma Sluder, 1851; NACA TN 2357, “Thres-Dimensional Unsteady Lift Problems in High-Spead Flight—Tha Triangular Wing™ by Harvard Lomax, Max. A, Heaslet,
and Franklyn B. Fuller, 1951; and also contains material from NACA TN 2256, “Three-Dimensional, Unsteady-LUt Problems In High-Speed Fllght—Basie Coneepts” by Harvard Lomax,

Max. A, Heaglet, and Frenklyn B, Fuller, 1051,
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SYMBOLS

speed of sound in the undisturbed fluid
chord of wing

lft coefficient (7o
G po V'S
indicial lift coefficient due to angle-of-attack

change, without pitching <CLQ=%% ) )
indicial lift coefficient due to pitching for a
wing rotating about its leading edge or apex

(CLG= bfz - )
G0

°7
pitching-moment coefficient, positive when trail-
ing edge tends to sink relative to leading edge

mp_r_nent
1 ,
5 Peo V QEGS

indicial pitching-moment coefficient due to angle-
of-attack change (without pitching) measured
about the leading edge or apex; positive when
trailing edge is forced downward with respect

to the leading edge or apex (Cm¢=%c;—"' o)
indicial pitching-moment coefficient due to pitch-
ing measured about the leading edge or apex,
for a wing rotating about its leading edge or
apex; positive when trailing edge is forced
downward with respect to the leading edge or

apex O,,;¢= Cn__°
allEncs

two-dimensional lift coefficient Tﬁ—
3 po Ve'e

two-dimensional pitching-moment coefficient

moment
‘;‘ poVilc?

cotangent of sweep angle (cot A)

Mach number in the undisturbed fluid

N

2as J—s Go y

mﬂfu | o * Ap

ot S g W

loading coefficient (pressure on the lower surface
minus pressure on the upper surface divided by

free-stream dynamic pressure)

free-stream dynamic pressure (% poVoz)

dimensionless rate of pitching (i—f
0

local semispan of wing

wing area

time

aot’, ait'fe

u, v, w perturbation velocities in z, y, 2 directions, re-
spectively
Vo free-stream velocity
%Y,z Cartesian coordinates, fixed relative to the fluid
at infinity
(x/e)e.,.  distance of center of pressure from leading cdge
or apex, in percent chord
a . angle of attack (angle between flight path and
plane of wing), radians
. da
@ ar
B V[T =327
T circulation
5(t) Dirac § function, normalized with respect to #,
thus 8(t")=0 for ¢'#0, 5(0)= =, and
f s dt=1
A discontinuity in the quantity in question across
the plane of a wing
6 wing angle of pitch relative to horizontal, posi-
tive when trailing edge lies below leading edge,
radians
T . de
wing rate of pitch ((—{?)
A angle of sweep of leading edge, positive for sweep-
"~ back
Po free-stream density
. V(}t,
0 -+ chord lengths t-ra.velcd( P )
@ perturbation velocity potential
SUBSCRIPTS
U upper surface of a wing
{ lower surface of a wing
z,y, 2, ¢t indicate differentiation with respeet to the vari-

able in question

PART I—-THE USE OF INDICIAL FUNCTIONS
IN UNSTEADY LIFT PROBLEMS

In the fivst part of this report, & discussion of three un-
steady lift problems will be given. The three problems are:

(i) Determination of the indicial response in lift and
moment on a sinking or rotuting wing;

(ii) Determination of frequency response in lift and mo-
ment on & fluttering wing; and

(iii) Determination of frequency response in lift and mo-
ment on a slowly oscillating wing.

The method by which the latter two problems may be
solved with the aid of the solution to the first is also de-
scribed, as well as the application of these results to the de-
termination of lift and moment on wings undergoing arbitrary

maneuvers.
THE INDICIAL FUNCTIONS

By definition, an indicial function is the response to a
disturbance which is applied abruptly at time zero and is
held constant thereafter; that is, a disturbance given by a
step function. For example, if the angle of attack of a wing
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varies with time as shown in figure 1, the corresponding re-
sponse, also shown in figure 1, is designated as the indicial
lift coeflicient due to angle of attack. Foursuch indicial fune-
tions will be evaluated, namely, Cz,, (s, Ci,’, Cn,/. The
primes on the coefficients indieate that the axes about which
pitehing motion occurs and pitching moments are measured
either coincide with the leading edge of the wing or with a
line through the apex normal to the root chord of the wing.

The equations which transform these functions to those
for a wing pitching about an axis a distance ac back from the
leading edge and having its moment center a distance be back
from the leading edge are simply

', =Cr,
Cry=Cn/+8 Cp,
(’L.‘= CLq’— a Cr,
Cn,=Cn'+bC'—a Cc’—ab Cp,

7\

Ci,

i

Fuivne 1. —Indicial excitation and response.

t:

()

In linearized, thin-airfoil theory the boundary condition
that applies to the indicial functions due to angle of attack
is simply

Uy=w=— Voa' (2)

over a certain planar area in the ryz space at the time ¢.
If we consider a coordinate system fixed relative to the Auid
at infinity and a wing with span measured along the y axis,
moving away from the origin along the negative r axis with
a velocity 1%, then equation (2) applies to the area in the
z=0 plane occupied by the wing at any given time. It is
further required that the ¢ be continuous everywhere except
across the wing plan form and wake. In the case of the
indicial functions due to pitch for a wing rotating about its
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leading edge or apex, the boundary conditions for a wing the
leading edge or apex of which is at the origin at =0 are
that the upwash be given by the expression '

wy=wy=—(z+Vet') ¢ (3)

over the same region in the z=0 plane as for the angle-of-
attack case and, again, that ¢ be continuous except across
the wing and its wake. The angle of pitch, 8, is taken as
positive when the trailing edge is lower than the leading edge,
and 4 is the time derivative, df/di’, positive when the trailing
edge is falling with reference to the leading edge.

The difference between 8 and « is illustrated in figure 2 (a).
The angle of attack « is the angle between the flat wing
surface and the tangent to the fight path of some point
fixed at a distance ac back from the wing leading edge. For
example, in applications involving the dynamic behavior of
an entire airplane the distance ac would usually be taken as
the distance back to the center of gravity of the sirplane.
The angle ¢ is the angle between the flat wing surface and
the horizontal. Figure 2 (b) shows & wing undergoing a
sinusoidal angle-of-attack variation with a zero angle of

Direction of wing moftion

Flight poth of reference
point on wing--~

\\
\\
N~ ——— ‘_‘___/
(8)
,—’—,-—-’—rg\\
~ -
—_—N a=sin wt
= N\
_—\‘T l
__\s.\_: ———’7.6—
— e 2
(b)
—=— s\
/ h 8=sin wt
a=0
~
\
~ /

(c)

() Angle conventipn.

(b) Sinking wing.

(¢) Pltching wing.

Ficure 2—Definltion of angles of attack and preeh.
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pitch throughout. For convenience and in order to dis-
tinguish from the pitching wing, such a wing will be referred
to as a sinking wing. Figure 2 (c) shows a wing undergoing
a sinusoidal angle-of-pitch variation taken about the axis ac
back from the leading edge. In the case shown the wing has
a constant (zero) angle of attack.

The variable ¢ to which the lift and pitching-moment
coefficients of the pitching wing are referred is equal to
ge/V,, & dimensionless form of expression for rate of pitch.

ADAPTATION OF THE INDICIAL FUNCTIONS TO MANEUVERS

Since the theory is linear, the lift and moment on a wing
undergoing en arbitrary maneuver (in which both & and §
remain small) can be calculated from the -indicial functions
by the principle of superposition. For example, consider a
wing performing some arbitrary maneuver involving smali
variations of both ¢ and 8. Let a and 6 be defined ? with
respect to the flight path of a point ac back from the leading
edge. The appropriate indicial functions can then be cal-
culated from those referred to the flight path of the leading
edge by means of equations (1). (The moment center is
still arbitrary at & point a distance be back from the leading
edge. However, for convenience, b is usually taken to be
equal to ¢.) Finally, by Duhamel’s integral, the lift and
moment induced on the wing by the arbitrary maneuver are
given by the equations

0,,-_-3‘% f 1Co @ —t") )+ Co, ¢ —t) g )] dty

(48)
Cumiir [} 1, € 1) )+ Can, € —t)g )t
or alternatively
d (¥ ,
CL=‘d.—£;" L; [CLa(tlr)a(t,'—tl’)—l'oLe(tl’)q(.tl—'tl’)]dtl
' (4b)

a’tlf [Cm el —t)+Cr )t — )] dt/

where, for example, (i, (#—~%') means that the indicial
function Cy,_is to be evaluated at the time &—4'.

THE FLUTTER DERIVATIVES

By definition, & flutter derivative is the response to a
harmonic oscillation in vertical displacement (angle’of attack)
or pitch, such oscillation having continued so long that all
transient effects of its origin are damped out and the induced
forces and moments are periodic. In the notation used in
reference 5 the induced responses are given in terms of the
flutter derivatives L;, L;, Ly, L/ and A/, M/, M/, A/,
The relation between the indicial responses and the flutter
derivatives follows from equations (4) and can be written

REPORT 1077—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
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—~{ut
ie i, =t )eter'dy

1+7,L2-— Ilm -—E—T

My +iMy =lim = ““_"" T f en, Wt )etehs 't

—iut

c’
Lg +‘1L4 ——hIE 4’Cz 'Etj'ﬁ [cl,a(f'_.tlf)+

- (5)
2zkc;q’(t’—tl')]e‘w‘x’dt_l’
-. . —eThett g ot |
My +id/=lim =5 J; [em, "€ —t7)+
2ikea (' —t) et dty! )

where w is the frequency and k is the reduced frequency,
we/2V. The primes on the quantities again indicate that
the wing is pitching about and the moments are measured
about; the leading edge of the wing.

The responses in lift and moment for harmonically oscil-
lating wings can be expressed in terms of their absolute
values and phase shifts with reference to the period of the
forcing disturbance. Thus, if an angle of attack variation
given by the equation a=¢**" is impressed on the wing, the
response in lift would be [e;[¢“'*¥. In terms of the

indicial functions this can be written

tl
e e = lime~t=¥ —7f e (' —t Yetetr'dty
0

t—w

which, by comparison with equations (5), can be re-expressed
in terms of the flutter derivatives as

oy et = dk(Ly—iLi)= 4k LFF Lt on ~Heuizo)

SimiIarly, each of the stability derivatives ecan be expressed
in terms of the indicial functions and the flutter derivativ es,
hence:

Term Maximum value  Phase angle
¢, 4kyLI+L7 —tan™? % )
’ 2
tm,’ 2kM P M, ;ttm‘_‘%é
. L ©
k(e e ') 2k Ly2+L? tan™! L:
th(Cn; +om ") AN AL MR - 'tan"‘%%
3 J

where it is assumed that unit absolute values of angle of

')
attack and pitch are impressed and the term é==¢ C—I—E{{-.-d—t

t Notfee that if a’ and ¢ are the anghk of attnck and pltch measured with respect to the flight path of Lhe leadf.ng edgs, and « ‘and 8 the same angles measured with respect to the Right path
of a polnt gc back from the leading edge, the relation between the two sets of angles {3 given, for small deflections, by

.
ﬂ—‘,
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A WING UNDERGOING SLOW HARMONIC OSCILLATIONS

The boundary conditions for these problems are exactly
the same as those used for evalueting the flutter derivatives,
being in fact a special case of the latter when the frequency
of oscillation is very low. This added simplification is im-
portant, however, because the frequency of angle of attack
and piteh oscillations for the entire airplane is, relative to
the flutter frequencies, very low. Further, special methods
hased on the assumption that the wing is oscillating slowly
have been devised. Thus, if the lift and moment are ex-
punded in powers of the frequency, solutions for the coeffi-
cients of the lowest-order terms have been found for both
triangular and rectangular wings.flying at supersonic speeds.
(See, e. g., references 6, 7, §, and 9.)

For a given set of indicial functions these expansions can
he carried out with relative ease. Consider the case of I;
and L, as given by equations (5). If the indicial curve for
¢ (t') contains no pulse function,’ the expression for Li+iLg
can be written

L|+1L,=hm Eﬂif‘:’[el (w)—Ac, (t')]e“'("_‘x"dfl’
o 1k dUJo b e

where Ac;a(_t') is the difference between the indicial lift and
its asymptotic value, thus

Aey (y=c; (@)—e, ()
Since Acg () is zero, it follows

L1 + iLg=4—}_' [Czc( @ ) - 'L.Cd‘f;’” AC:G (t[’)e —taly’ dt[,]

or, in terms of the reduced frequency parameter k=wc/2V,
gnd the number of chord lengths traveled r,="Vt'/e,

Litil=h [c,n(m)—sz ﬁ i A.c;a(ro)e‘”"'adro]

In case the flow is supersonie, these expressions can be
evpanded in powers of £, thus

4L1=2 l;=AC:Q(T@)dTQ_4k2ﬁ°T02Afgu(Tg)dTo+ e (75.)

-1-.('L-_-=c;“(m)—4k2[ To.i(‘;u(rn)dro-[- .. (7b)
J1
Similarlv, the expressions for the other coefficients become

—2M/=2 [:Ac,a'(ru)drn—‘ik’ l:‘ Toz.'_\cma'(ro)drn-l— ..

{3
Tc)

LY

— 2k My =cn (o) — 4k Jn role n (rddrot ... (7d)

2‘.2L3!=

1] =

61 () +2k? ﬁ T [ae ro—raber (roldrot - ..
(7e)

2.{‘L4,=Gl¢’(m)_ﬁw'ﬁcla(ro)dro_zszw [21’@6;"(1'“)
—rAc (rdldrot ... (7

—EM{ =L ca (=) 2k [ (Ao, (rd—ralen, (rodrut .
) _ 70

kM =cp(=)— f Acn/(rdro—2k? f [2roden (o
—rg’AL‘,.a'(ro)]dTo-i- ... (7h)

It is interesting to examine these equations briefly with
regard to the problem of one-degree-of-freedom oscillatory
instability. As was shown in reference 5, an oscillatory
stability boundary is given by the equation M;=0. Hence,
& wing pivoted about its leading edge cen be neutrally stable
if 3;=0. Such a condition arises only if the frequency is
very low * for which case the above expansion for kf,’ applies.
Hence, to a first order the stability boundary is given by the
condition

ul (=)= [ tom, (ridre

This leads to the interpretation of the indicial curves shown
in figure 3; namely, an airfoil pivoted at its leading edge can

L

Chord lengths traveled, T,

_ﬁ&c.i (T,)dr,-'\.

Chord lengths fraveled, 1o

Jsciltatory instabrlity passible if
en (0) < fAcal (Te)dT,

FicURE 3.—Interpretation of single-degree-of-freedom: stability boundary In terms of
indlelal respongze curves.

- A palse funetfon occurs only for the cace Mo=0. Its treatment In expressions such ss equations (3) is diséussed i & subsequent section.
& That is, the moment of inertfa ks large. Experimental verification of the existence of this type of instability can be found In reference 10.
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have an oscillatory instability if the steady-state value of
¢w ' 18 less than the area between the steady-state value of
¢m, and its indicial value when expressed in chord lengths
traveled.

PART II—-METHODS FOR SOLYING UNSTEADY LIFT
PROBLEMS

BASIC EQUATIONS AND SOLUTIONS

In terms of the perturbation velocity potential ¢, the wave
equation can be written

1
¢u+¢w+¢u=a—0§¢t'ﬂ 8

where a, is the speed of pressure propagation, ¢ is the time,
and z,y,z are spatial coordinates. This equation applies to
a flow field which is stationary at large distances from the
disturbanece region; furthermore, the coordinate system is
stationary relative to the fluid infinitely distant so that, if
a moving wing is being analyzed, the wing moves with
respect to the z,¥,2 axes. The last equation can be put in
a more convenient form by introducing the notation

t=agt’ .

so that the dimension of ¢ is length just as are the dimensions
of the geometric variables 2y, and 2. Equation (8),
together with this transformation, yields the canonical form
of the wave equation

¢u+?’w+‘?n=¢u ) ’ (9)

and it is this form which will be considered.

The first task is to study the relation between the motion
of the wing and the coordinate system. As has already been
mentioned, equation (9) is valid for a flow field produced by
a wing moving relative to a coordinate system fixed with
respect to the fluid at infinity. It is pertinent to consider
the possibility of finding a transformation which will fix
the origin of the coordinate system on the wing and, at the
same time, retain the wave equation as the governing equa-
tion of the flow. Certainly the first of these reqmrements is
simple to fulfill if the second is neglected.

The following transformation (known in relatlwty theory
as g Lorentz transformation)

p 2= Mo )
NI—=DM?
n=y
r , (10)
=2
t_Mox
Jl—Mo
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where Mo—-—<1 will satisfy both the above conditions.

For example, suppose that the wing is moving along the
axis with wvelocity V5. Application of equations (10) to
equation (9) makes the origin of the new system of axes also
travel along the x axis with a velocity 1, This is scen to
be so since £ is always zero when x=Vy'=Myt. Hence,
the £ axis is “fixed” on the wing. As to the second condition,
a straightforward exercise in partial differentiation yields

(11

so that, in going from z,y,2 to £,7,{ space, the wave equation
remains invariant; consequently, both the requirements
mentioned have been fulfilled.

It is instructive to consider briefly the consequences of
applying the Lorentz transformation. Although the wave
equation remains invariant, such physical quanut,n,s as
length and pressure do not. For example, a wing with a
chord ¢ in the z,y,2z space has, according to equations (10),
a chord ¢fy1— M2 in the ¢3¢ space. Furthermore, the
loading coefficient which, on the basis of linearized theory,
is given in the z,y,2,¢ space by

Pett Pont Crr =95

Ap 4 Q¢

Qo =Vu_ﬂfo ot ,(12)
becomes for the n,{,7 space
Ap 4 (_1_ Op O¢ (13)
Qo Vo\/].—ﬂ:fgz AIO or aE

If the wing motion is steady and there are no transient effects,
equations (11) and (13) are independent of time and, to-
gether with the resulting length transformations, become
Pet+ Poyt Prr=0
Ap 40,

do _VO\/T——T‘TD’ (14)
= ,1 A[o! =y, {==2

These are immediately recognized to be I.aplace’s equation
for incompressible flow and the familiar Prandtl-Glauert
compressibility corrections.®

The preceding discussion has an important qualification,
however, in the fact that the velocity of the moving co-
ordinate system cannot exceed the speed of sound. A glanee
at equations (10} serves to verify this statement since those
equations show Afy must be less than 1 in order that and
be real for real  and ¢ In fact, it has been shown that there
is no transformation which will fix the moving system of axes
in a wing traveling at a uniform supersonic speed away from
the original fixed axes and still keep the wave equation in-
van&nt Therefore, for &nalyzmg 2 wmg in supcrsonlc

§ The equation E-rN Mgt would first read ge= (v—Mote)/+/T— Mo whers fo is & oonstant representing {he ttme required for the motlon to reach Its steady stats.” Howaver, thez scordi-
nate can always be translated o any fixed position without affecting any of the equations for potential, loading, eto. Such s translation is assumed to have buen made in equations (14).
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flight, it is necessary to abandon one of the two proposed
requirements: Either the coordinate system cannot be fixed
in the wing, or the field equation must be modified. The
latter of these two alternatives has been studied by seversal
authors (see references 2, 3, 4, 5) but it is the former which
will be considered in the present analysis. Further, since
the axes cannot be made to travel as fast as the wing, they
will not be made to move at all and equation (9) will be
adopted throughout as the basic equation.

Having decided upon the form of the partial differential
equation, we must next establish the boundary conditions.
For any given time these conditions are similar to those
studied in steady-state thin-airfoil problems; namely, either
that the given slope of the wing surface is proportional to the
vertical induced velocity ¢, over the region occupied by the
wing in the 2=0 plane® or that the prescribed surface
pressure is proportional to the timewise gradient ¢, in
velocity potentisl over the same region. The addition of
time simply means that this region moves about in the
==0 plane in conformity with the direction and velocity of
the wing.

The solution to equation (9), subject to the boundary
conditions just mentioned, cen be expressed by & formula
which may be regarded as requiring either the evaluation of
a double integral or the solution of a double-integral equation,
depending upon whether 2 boundary-value problem of first

or second kind is considered. This solution iz known as .

Kirchhoff’'s formula. (See reference 1.) It may be written
in a form convenient for aerodynemic applications as follows:

——— I' f roA'a_.‘p(rhyI‘ht_rﬂ)_

a (P(Ihyh()t r)
'\B.. ———)a’S (15)

where the A indicates the jump (value on the upper surface

minus velue on the lower surface when applied to ¢ or —)

of the function in passing through the z,=0 plane,
r=ylx—r)+y—y)*+z—2)% Pn=\,(?:11)’+(’y—y1)’+z’,
and where the area of integration S; will be discussed in
more detail later.

The terms in the integrand of equation (15} can be
shortened by introducing the following notation:

bg,‘:lr
0z

A2 o <p(.t1,y1,0t _A(Or o] ga(.t;,’yl,[)f r))

dz, oz, Or
= a’“ I:] (16b)

In this notation, the subsecript r in equation (16a) means
that r is to be held constant in the differentiation, and the
prefix A obviates the necessity of indicating that the func-

1

—Ai.ﬁa(rhyhzlrt—rﬁ)=—A (16}1)
o B.;[
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tions considered are to be evaluated for z;=0, since it indi-

cates that the difference of the values of the function across

the 2z=0 plane is to be taken. The right-hand side of
equation (16a) can be recognized as a term representing &
source located in the z,=0 plane, and the right-hand side of
equation (16b) is seen to represent a doublet located in and
with axis normal to the z=0 plane. The brackets [] about
the functions in equations (16a) end (16b) have & special
meaning which is defined in the following way: If f is a
function the value of which at a fixed point P depends upon
the coordinates xy, ¥, =1, { of 2 moving point @, so that

f=f(xlryhzl1t)
[Al=f(x1,y1,21,f—r)

then,
-(17)

where r 18 the distance from P to Q. As an example, con-
sider the potential ¢ at a point P due to a moving source,
the location of which at any time is . Then ¢ satisfies the
condition just mentioned that it depends on the coordinates
Iy, %, Z, tof @ The brackets[]indicate that the potential
[¢] depends not upon the source strength now at “time’’ ¢,
but rather upon the source strength that existed *“time” r
ago.” For convenience, [y} is referred to as the retarded
value of ¢.

The expression for & doublet (equation (i6b)) is usually
expanded as follows:

bro a[ ]_ [A la)'o b( ) brc _b_(,_a_]
Plaz drg\ro/ 3z ro| “Or

s (18)
—__ Fo
- [ lP 07 >+)‘n oz [
Finally, equation (15) becomes
__1 ! L Oro[ 03¢
T Z;f {ro ]_HA“’]O (ro) Toa?-l: bt:l}ds
(19)

The application of equation (19) awaits only a discussion of
the area S, over which the integration is to be made. This
discussion is important enough, however, to merit considera-
tion in some detail and will be given in the following section.

THE ACOUSTIC PLAN FORM

Suppose that a line of sources is placed along the ¥, axis
and that the strength of these sources is zero for t<{0. At
{=0 they are ‘“turned on”’ and, at the same time, start
moving along the negative z, axis with the velocity 17%.
After time ¢ has passed, the source line has traveled a
distance 1f¢t as shown in figure 4 (which is drawn for the
case 1fy>>1). Suppose next that there are two sensing
elements, or detectors, placed at the point P(x,y) located
somewhere ahead of the y; axis; one of these detectors is
responsive to light and the other to sound. Now, the light

§ The 7= plane is assumed to be the “plane of the wing'"; that Is, if the angle of attack were zero and the wing had no thickness it would lie entirely In the z=0 plane,

T Quotes are used around the word time since the dimension of ¢ Is sctually length, not time, It Is convenlent, however, to refer ta £ as “time,’” and, since the actual valueoftime is simply )

¢ divided by the constant as, this should canse no confusion.
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FIGURE 4.—Acoustle wave pattern for & moving Iine of sources.

detector at any given time will show the sources lying in a
straight line just as they would appear visually at each
particular instant. The situation is entirely different,
however, for the sound detector. First it is necessary to
understand the nature of a spherical sound wave. Such &
wave travels outward from its origin at a velocity @y, so that
in the time ¢’ it has traveled a distance t. Before the wave
reaches 8 point, the point is completely unaware (unaware
is used in the scnse that an instrument will record no change
in any of the physical properties of the air at the point in
question) of its existence and, further, after the wave has
passed, the point remains subsequently unaware of its
existence. Hence the only points distwbed by the wave
are those momentarily on the spherical surface itself. (In
this connection see reference 1, pp. 1-3.)

The sound detector, therefore, can only ‘“hear’ sources
which are so located that their spherical sound waves are
just, at the given instant of time, reaching the detector.
The locus of all the points which, at a time { ago, emitted
sound waves that are just now reaching the point P(z,y) is
itself & sphere and for convenience this sphere will be referred
to as an “inverse sound wave.”’® The traces of these inverse
sound waves in the z=0 plane are drawn in figure 4 as
concentric circles about the point P(z,y). The intersection
of an inverse sound wave of radius {—r with the line repre-
senting the position of the sources at & time ¢'—7’ ago gives
the position of the sources which are just now signaling their
presence to the sound detector at . For example, when the

source line started, it was lying along the 3, axis. With
reference to the present time £ this was ¢¢’ removed. Hence
the intersection of the cirele about P of radius £ with the g,
axis fixes the two points 4 and A’, the spherical sound waves
of which are now reaching P. A continuation of this process
yields, for the locus of all points from which waves emanated
that are just now touching the point P, the part of the
ellipse. shown in figure 4.

In the sense that the light detector, because of the very
large velocity of light, is “seeing” a straight line of sources,
the sound detector, because of the relatively slow velocity
of sound, is “‘hearing” an elliptic line of sources. Extending
this concept to include a sheet of sources distributed over
the surface of the wing, one can refer to the outline of that
part of the wing which generates disturbances which can be
measured by the light detector as the plan form (i. e., the
visual plan form), and to the outline of that part of the wing
which affects the sound detector as the acoustic plan form.
In a mathematical sense, the acoustic plan form is the area
S, over which the integration of equation (18} is to be made.

The equation for the acoustic plan form can be formulated
by means of the two equations

E—=)+@—y)'+2=(—7)* (20)
JGn, @, 7)=0 (21)

" where 2, y, z are the coordinates of the point at which the

induced effects are to be measured; z;, 1, the variable points
of the sources; ¢, “time’”’ now; and {—r, “time” ago. Equa-
tion (20) is that of the inverse sound waves and equation
(21) represents the position of the visual plan form at a
“time’ 7. It is necessary to include the region behind the
wing covered by the vortex wake as part of the visual plan
form. In case the vorticity in the wake vanishes, as in the
thickness problem, the wake may still be considered as part
of the visual plan form, but the strength of the source-doublet
distribution over that part of the acoustic plan form corre-
sponding to the wake will vanish. If #—2?<0, the acoustic
plan form does not exist since, for such a case, no source
on the z,, ; plane has had time to transmit its effect to the
point , ¥, 2. On the other hand, if the circle (in the 2, ¥
plane) given by the equation

(r—z)*+ (y—y)*=0—2"

lies entirely within the area occupied by the visual plan
form of the wing at the beginning of the motion, the acoustic
plan form is just this circle itself. For any other situation
the acoustic plan form is formed in part, or in whole, by the
curve found by climinating = from equations (20) and (21)
end in part, or not at all, by an arc of the circle (z—x)*+
(y—y)*=#—2% One of the principal advantages of the
acoustic-plan-form concept arises in the study of problems
involving source or doublet distributions having constant
strength. Insuch cases, the retarded values of the potential

1 Tha verse sound wave hes for Its analogue n steady Lifting-surface theory the Mach forecone, In that theory a disturbancs outside the Mach forccone cannot affect the values of
the induced veloolties at the point where they are being meagsured, Bimilarly, In the present study, s source located outside the lnverse sound wave of radius ¢ cannot affect the values of

any measurement made at the polnt P,
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and its gradient appearing in equation (19) are constant
and can be taken outside the integral signs. The problem
is thereby reduced to the integration of & simple geometric
variable over S,. :

A few examples will serve to fix the idea of the acoustic
plan form. Consider first a two-dimensional, unswept wing
moving at & constant supersonic speed in the negative x;
direction. At time zero the leading edge of the wing was
along the ¢, axis and now, at time equal to £, the wing has
moved so that the leading edge coincides with the line
r=—J\ i Choose three points that are now lying on the
wing. Let one point have its z coordinate in the range
e—y 12— 2E>5>'—2z? (where ¢ is the chord of the wing),
the second in the intervel 2—z?>r>— #—2%, and the
:hird in the range —\#—2z2>x>—2Aft. Designating these
points by Py, P,, and P; (see fig. 5), it can be shown that their
acoustic plan forms are, respectively, a complete circle,
a part circle and part ellipse, and a complete ellipse. The
points P are at the centers of the circles and at focal points
of the ellipses. Since, moreover, the circular plan form about
P, receives no signals from sources on the leading or trailing
edge, conditions at P, are consequently completely inde-
pendent of the actual (visual) plan form of the wing. The
elliptical plan form about P;, on the other hand, depends
entirely on the shape of the leading edge; and finally the
mixed plan form about P, is in certain regions (the circular
portion) independent of the leading edge, and in other
regions (the elliptic portion) entirely dependent upon it.
Since the wing is traveling at supersonic speeds, the trailing
edge and vortex wake can have no effect on the measure-
ments taken on the wing and, in the same way, a point ahead
of the wing leading edge, P, in figure 5, is undisturbed.

Next consider 2 wing moving at a constant subsonic speed
in the negative r, direction. As before, the leading edge
was on the ¥, axis at #=0 and has traveled a distance — 34y
Choose now three points P,, P, and P; on the wing and
imaffected by the wing tips. The acoustic plan forms for
these points are combinations of circles and hyperbolas as
contrasted with the circle-ellipse combination in the super-
sonic case. Just as in the supersonic case, however, there

5
Y%
< >~
~ //
=~ <
1 [
e e e e e e e e e e o~ e — |
Y

— — — — Wing of time zero
Wing rnow

FIGURE 5.—Acoustie plan forms for points on wing traveling at supersonie speed.
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is a certain region represented by P, in which the acoustic
plan form is a complete circle and is independent of the
visual shape of the wing (see fig. 6). Point P, is surrounded
by a plan form which is part hyperbolic and part circular,
the point itself being the center of the circle and the focus
of the hyperbola. Point P; is a limiting value of Ps;

it lies on the leading edge of the wing and the hyperbolic

sides of its plan form have degenerated into straight lines.
Finally, P; lies ahead of the wing; its plan form is still a
combination of a hyperbola and a circle, but P, is now the
focal point lying ahead of the hyperbolic branch used.
Figure 6 was constructed so that the portion of the visual
plan form behind the trailing edge had no effect on the
potential at the various points Py, ete. If these points had
been chosen at positions where the wake could signal its
effect, one of two acoustic configurations would result.
First, if the wing is symmetric about the z=0 plane, no lift
is developed and the vorticity in the wake is zero so that the
visual plan form need not include the wake, but effectively
ends at the trailing edge. In this case, the leading edge of
the acoustic plan form is then determined as before, while

its modified trailing edge mey be made up, in part, of circular

arcs formed by the primary wave and, in part, by an arc of

the hyperbola formed by the (acoustic) intersection of the
straight visual trailing edge with the primary wave (such an
arc being identical with the leading edge of the acoustic plan
form but displaced backwards). On the other hand, if the
wing has no thickness but is inclined to the free stream, it
develops lift and the vorticity in the wake does not vanish;
the acoustic plan form has a trailing edge made up entirely
of an arc of the primary inverse sound wave. The space
between this arc and the acoustic trace of the visual trailing
edge is covered by a sheet of doublets, the strength of which

is determined by the vorticity distribution of the vortex

walke.

It is interesting to notice the conversion of terminology
which arises in the analysis of unsteady lift problems. In
the study of steady-state wings, it is customary (because of
the nature of the governing partial differential equation) to
speak of the subsonic problems as elliptic and the supersonic

A B

—_————_—Wing af ¥me zero
Wing now

FiaURe 6.—Acoustie plan forms for points on wing traveling at subsonie speed.
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problems as hyperbolic. Yet the acoustic plan forms just
presented involved ellipses for the supersonic wing and
hyperbolas for the subsonie case.

To complete the remark, it can be observed that when the
velocity of the wing is sonic the steady-state partial differ-
ential equation becomes parabolic and, in this case, the
acoustic plan form of a straight-edged wing also involves
parabolas. When the leading edge is linear and normal to
the stream direction, the eccentricity of the conic sections
bounding the acoustic plan form for a point on the wing is
equal to 1/M,. From this relation it is apparent that for
M, less than, equal to, and greater than 1 the sections are,
respectively, hyperbolas, parabolas, and ellipses. As might
be presumed, the value of the eccentricity satisfies simple
sweep theory so that, for an infinitely long straight leading
edge, the eccentricity of the acoustic plan form is 1/3£; cos A
where A is the angle of sweepback. The principal axes of
the conic sections are always normal and parellel to straight
leading edges.

HOMOGENEOUS BOUNDARY-VALUE PROBLEMS

Kirchhoff’s solution to the wave equation can be applied
to arbitrary wing plan forms undergoing arbitrary maneuvers.
The boundary values for such general problems, however,
usually lead to the development of double integral equations
which are difficult to solve. As is usual in such cases, there
are many special types of plan forms and maneuvers which
lead to boundary-value problems that are simpler to analyze.
An important class of these simplified problems is that
arising from homogeneous boundary conditions.

Let ¢(z,y,2t) be a solution to equation (9). In certain

special cases this can be written o= ({)* (%: %s —:), in which

case ¢ is called a homogeneous function of degree n. The
number of variables affecting ¢, is only three as compared
to the four which are necessary to determine . If, there-
fore, a partial differential equation can be set up for ¢, it
will contain one less mathematical “dimension” than the
equation for . Following this observation it is necessary
to proceed in two directions; one to find the partial differential
equation for ¢, and the other to find the physical problem
and consequent boundary values leading to & homogeneous
flow field. The latter path will be first explored.

First, consider an example of a homogeneous boundary-
value problem. Suppose that a rectangular flat plate starts
suddenly from rest and moves forward at an angle of attack
at a supersonic Mach number Af,. At “time” ¥ the initial
spherical wave generated by the forward right-hand corner
has traveled outward to & radius ¢ and, at “time” 2¢, to a
radius 2¢. Figure 7 indicates the traces of these spheres in
the z=0 plane together with the original and present position
of the wing leading edge. Let the points P, and P, be
located on the same rays through the origin of the circles
and the wing corners. The problem is to find the pressures
at Py and P,.

It is apparent that, if every dimension in the figure involv-
ing P; is divided by 2¢, and every dimension in the figure
involving P, is divided by £, the two figures will be similar
in every respect and point P; will coincide with point Ps.
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Fiqure 7.—QGeometrie relationship for homogencous flow.

Since the vertical velocity w, is constant over the plan form,
& simple change in scale has made the boundary conditions
for both problems identical. But this means that the solu-
tions at P, and P, are identical since the wave equation is
invariant to change in scale. Hence, in regions of a ree-
tangular wing unaffected by the waves from the trailing
edge, the pressure can be written

ry 2z

—y ==

Ap _Ap
qo (rfy!zlt)_qo £ttt

(22)
and the pressure is a homogeneous function of degree zero.

A generalization of this example is contained in the following
statement:

(1) The pressure in any region affected by only two
intersecting edges of a straight-sided flat plate traveling
at & uniform subsonic or supersonic speed is homogene-
ous and of degree zero (i. e., satisfies equation (22)).
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Consider as another example the case of a flat rectangular
wing traveling forward at a subsonic or supersonic speed and
rolling about one edge, taken to be coincident with the x axis.
The argument follows the same lines as before, and again a
rhange in seale, proportional to the time, makes the geometry
of the wing-wave combinations identical (in regions affected
by only two intersecting edges} for different times. The
boundary values over the wings will not be the same, how-
ever, unless the slope of the w, distribution is adjusted in
each case. But wy can be adjusted by reducing it 2an amount
proportional to the distance from the axis of rotation. The
boundery-value problems are then similar for different values

of time. Finally, therefore, the pressure can be written

ap s )y 2B (2 Y E)

QG (-‘rl yr "'lt)'—y qo t’ t’t (23)
which is a homogeneous function of degree one. A general-

ization of this example is expressed as follows:

(2} The pressure In any region affected by only two
intersecting edges of a straight-sided flat plate traveling
at a uniform subsonic or supersonic speed and rotating
at a constant rate of pitch or roll is homogeneous and of
degree one (1. e., satisfies equation (23}).

It should be noted that both (1) and (2) sre equelly true
for the steady-state case when all transient effects have
disappeared. In supersonic wing theory they lead to conical
and quasi-conical flows, respectively while in the subsonic
case they lead to flows about wings having infinite chordwise
extent. In general, homogeneous flow occurs when the
boundary conditions after & change in scale are proportional
to their original values.

Consider next the modification of the basic partial differ-
ential equation (equation (9)) under the assumption that the
flow is homogeneous. If the pressure is given by a function
that is homogeneous and of degree zero, then, by equation
(12}, the velocity-potential function will be homogeneous

and of degree one. If the notation
I ) 2
= Lgy %=ya, ?=Zu
(24)
&9(1.1 Y, Z;t)=t‘1’(l'm Yo, 20)
is used, then equation (9) becomes
(1—x5%) ‘1’:,,:,,"‘(1 — YD) Byt (1 — 207 D, 522 0¥ 0 Py —
2f020¢;n30—2y020¢,o,a=0 (25)

and a linear partial differential equation with three inde-
pendent variables is therefore obtained.

In the general theory of partial differential equations of
second order, the character of an equation is determined from
the geometric nature of & related quadric surface. The char-
acter of equation (25) can be shown from such considerations
to depend on the sign of the expression 1—x*—y—z® It
is immediately apparent, however, that within the unit
sphere in the zy,¥q,2, space the sign of 1—al?—yl—z® is
everywhere positive and outside the sign is everywhere
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negative. It follows that outside the unit sphere equation
(25) is hyperbolic and inside the unit sphere it is elliptic.

The character of equation (25) is of particular interest
since the difficulties inherent in the determination of the
solutions can be estimated without actually obtaining the
solutions. For example, consider the two configurations
shown in figure 8. These wings started moving at =0 with
the foremost portion of their leading edges on the g, axis and
have by now traveled forward at a supersonic speed to attain
the positions represented by the figure, the unit circle being
in each case the trace of the primary wave from the vertex on
the z=0 plane. Qutside the unit sphere, the governing
equation is hyperbolic and the behavior of the flow is similar
to that in steady-state supersonic-wing problems. Inside
the unit sphere, on the other hand, the character of equation
(25) is elliptic.

It is instructive to notice that this entire development has
a direct ansalogue in the situdy of three-dimensionsl, steady-
state, supersonic wings. In that case the original equation
is the three-dimensional wave equation

Prr— P — e =0 (26)
Yo
7
Yo
2
° r--Troce of
unit sphere
v, . *
’I
/I‘ -
Yo
| LN

Fieurr s.—Homo-zeneous flow flelds.
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By considering the velocity potential to be homogeneous and
of degree one, Busemann in reference 11 was able to introduce
the transformations

yo=%

‘P(ziyiz)=$¢ (yc;zo)

Y
Q I__

and transform equation (26} to the form
(1 —40") Bugry+(1—20%) Prgey—2Y020Py 2, =0 (27)

which is the two-dimensional form of equation (25). Flows
governed by equation (27) have become known as conical
flows. A study of equation (27) shows it to Le elliptic inside
and hyperbolic outside the unit circle. In this case, however,
the equation has only two independent variables so .that
once the equation has been transformed (by means of the
Tschapligin transformation) to the fwo-dimensional form of
Laplace’s equation solutions are not difficult to find.

The simplification of the four-dimensional theory brought
out by the introduction of homogeneous flow was more ap-
parent than real since the resulting partial differential equa-
tion, although containing one less dimension, was unwieldy.

BOUNDARY-VALUE PROBLEMS INYOLYING NONINTERACTING SURFACES

Another class of wing problems which is simplified both
in theory and in practice by reasoning from physical knowl-
edge of the flow behavior is that in which the wing has a
supersonic edge (i. e, an edge which is traveling with a
supersonic normal component of velocity).

When the acoustic plan form is affected only by a super-
sonic edge, it is apparent that the flow on the upper surface
of the wing is independent of that on the lower surface.
Hence the solution to such problems can always be written
in terms only of sources as follows:

1 1[ Q¢
o==zeo S lo5] e @9

where 9¢dz=w,(z,1) = Vora(z,11), M being the local slope
of the surface in the direction of 17, Since the equation (28)
is equally valid for symmetrical nonlifting surfaces and lifting
plates, its value and simplicity are evident.

If the wing plan form is further specialized by having not
only supersonic leading edges, but also having a straight
trailing edge perpendicular to the direction of motion, addi-
tional simplifications can be used.® Consider, for example,
the two-dimensional wing (a) in figure 9. Let this wing have
an angle of attack a(t) which varies with time in an arbitrary
manner. There results from such an angle-of-gttack varia-
tion a certain Iift which also varies with time. Hence, if
L¥* represents the total lift on an airfoil of very high aspect
ratio and ¢; * represents the section lift-curve slope, then *

—L—*—cc *(c, 1) (span)
dot fa \C, 1) (SPR

Next it is clear by reason of symmetry that the total lift on
wings (b} and (c) in the figure are equal. Then, since the

just half of that on wing (a).

|-

rotd(t)

a=0

(=)
Fiaure 9.—Dovelopment of elemental lifting strip.

analysis is based on a linear partial differential equation, by
superposition principles the totul lift on wing (b) or (c) is
In another sense, the Iift
coefficient for the whole wing based on the deflected area is
the same for all three cases. A suitable superposition of
wings (a), (b), and (c) will give wing (d), which then has
the same lift coefficient based on deflected area. Finally,
because of the supersonic stream, wing (e) ean be obtained
from (d), hence it also has the lift coefficient common to the
other wings. It is, of course, necessary that the variation
of e with the time be the same in each case.

The preceding process can be extended one step farther
to the development of the lift due to a single deflected
element. By considering figure 10, it can be seen that

L* ce (e, t)—(c—Ac)e ¥e—Ac,i) AS
Gox Ac

where AS is the area of the deflected element and ¢ is the
distance from the centroid of AS to the trailing edge. By
the usual limiting process the latier equation becomes

L*

EF&=% lee: *c,0)]dS

¥ The following method simply extends, to nclude the effects of unsteady motion, & theorem given by Lagerstrom and Van Dyke. (Sce reference 12.)
" The asterisks on quantities indleate that two-dimensional velues are taken, or that a high-sspect-ratlo wing is considered and tip effeots are neglected.
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- cl=dl(t) r-e=cl(t) reet-al(f)

FpirE 10.—Development of fting element.

D
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Finally, if 2 wing is composed of & distribution of these
elements, then, for a coordinate sysiem centered at the
apex of the wing leading edge, there results

A f f oz, 1) [(eo—2)er,*(co—, Ddydr  (29)
where ¢; is the maximum chord (see fig. 11). In the develop-

ment of equation (29) each element is assumed to have the
same variation of motion with time.

Ir -d-d('r! y )

) |

yr

FrsreE 11.—Example of use of lifting element.

Notice that when the wing is a flat plate flying at a steady
speed so that all transient effects have disappeared, ¢; * is
independent of ¢ and of the chord length, being, in fact,
vqual to 4/8. Then equation (29) becomes

4 4o

where @ is the average angle of attack of the wing. This
result has already been obtained in reference 12. When
alx, ¥} is independent of z (as for a flat wing sinking or
rolling), equation (29) becomes

| fF
=§f ha(y) ¢ ¢ *(e,)dy (30}

where ¢ is the local chord which is, in general, a function of .
Equation (30) simply indicates that longitudinal strip theory
is exact for calculating the total lift on such wings.

Finally, notice that the calculation of the unsteady lift on
three-dimensional wings with supersonic leading edges and
straight trailing edges perpendicular to the free-stream
direction has been reduced to an integration involving the
relatively simple results for a two-dimensional wing under-
going the same unsteady motion. For example, the Ilift
on & flat unyawed triangular wing with supersonic leading

edges vising and sinking with a harmonic motion can be
computed from a single integration of the results presented
in reference 5.

There is another simplified method for obtaining the total
lift and moment on a wing with all supersonic edges and a
straight trailing edge. In this presentation it will be assumed
that the trailing edge is normal to the free stream. How-
ever, since the wave equation is invariant to & rotation, it
will be apparent that the solution ean be generalized to in-
clude a straight, supersonic trailing edge yawed with respect
to the free stream.

Consider equation (9) and integrate each term with respect
to y between the limits minus and plus infinity.! There
results the equation

"%y +f Er"dy+f a2“’dy f e gy—o

—w br-

If y=y,(x, 2, {) and y=y,(z,2,t) are the equations of the Mach
waves streaming back from the leading edges on the left and
right sides of the wing, respectively (see fig. 12), then, since
¢ is continuous across these waves but ¢, ¢, ¢, and ¢

are not,
2t [ dyr, D 1%
32, v =ag g ut [ Shdy

where u, and «; are the values of % on the interior faces of
the right and left Mach waves, respectively, and

¥r azqa

-y L dy=10,—

Values of the terms involving ¢, and ¢, are similar to those
involving ¢ so that finally, if

o= f “ody 31)
¥i
_ then
% a«p Oyr,, 1+ OUr,, OV
:rz+ y '+ y Wr— b!’tl‘ P )_
) 1o
Se Uit pn v _éa%‘*"_”‘) ®2)
| = '
Plare
_ yey.(r.z,t): ¥
Plane
Y-y (x,z,8) - -\ -

Wing leading
eage
y=—-m(z+ My l)—~-

Iragce of starfing spherical wave-*
in x=0 plane

Frerre [2.—Forward portion of Mach wave system for a supersonfe-edged, trinngulsr wing.

it The basie idea for this solution was given by P. A, Lagerstrom in his Iectures at the Califarnin Institute of Technology.
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The terms enclosed within the parentheses in the last
equation combine internally so that each is zero. For the
case of interest here, this is not difficult to show. Consider,
for example, the Mach wave streaming from the right edge.
Then, since the equation of this wave is

yr=-—2+gmi—14+mzt+mM

and the value of the potential is the steady-state two-
dimensional value given by the expression

mz+Mb—y—zyfm—1

o= JBmi—1
the term
oYy, 4 OYr, O _ )
o7 ur"l‘ Az Wy Yr— Uy
becomes
m — mIM? 1
—w, | M——— Bmei—] ————-% —
(P ety

and this is identically zero.”? Finally, therefore, equation (9)
has been reduced in terms of equation (31) to

‘bzt—'q’u_q’u=0 (33)

The boundary condition in terms of ® for a triangular
wing with supersonic edges is given by

b@ __a_ ¥r . F"_af
&{.-u—bz i pdy= v 02

where wy is the vertical induced velocity in the plane of the
triangular wing. The derivative with respect to z can be
carried through the integral sign because the extra terms in-
volving the value of ¢ at y; and y, vanish. In fact, since
equation (34) applies to the z=0 plane, the limits y; and y,
can be replaced with the expressions for the left and right
leading edges of the triangular wing, respectively. The
boundary condition expressed by equation (34), used in con-
junction with equation (33), suggests a problem exactly like
those posed by lifting surfaces in steady-state wing theory;
in fact, the problem of & wing tip of specified camber in a free
stream at Mach number4/2. Figure 13 shows a lifting sur-
face in the z,f plane, The solution for the potential ® in the
steady-state problem can be written

__aI
lff — bz—t-o-—-
Dlymg=—= di,d
- TJe \”(t 8 —(z—z,) o

where ¢ is the area on the wing plan form in figure 13 that is
included in the forecone (t—#)2=(z—ux;)%
Now from equation (12) we have

¥
dy=ﬁl w, dy (34)

tAp .. 4 0P
f—a o dy_ VoL, Ot ls0
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t
FIGURE 13.—~Reglon of 2¢ plane In which boundary conditions for  uro known.

where & is the local semispan of the triangular wing. This
equation shows how the solution to the lifting surface prob-
lem in & will aid in the solution of the unsteady problem, for
the unsteady lift on the triangular wing is given by

. 1 Cp & AZ)_ _ 4 o .bj
Cﬂ"ﬁfn d”‘f_. PRSI T A VJo Y

where S is the area of the triangular wing. It is thercfore

dz

seen to be convenient to evaluate the quantity >l given
=0
by
b’b)
od 1 bf I‘ ox £m(
= =t =4 dtdr 35
ot =0 x ot oo _\/(t_tl)z_(x__xl)z 1ld ( )

The pitching-moment coefficient for the triangular wing in
unsteady motion can be evaluated similarly. Specific appli-
cations 6f this method will be found in & subsequent section.

TWO-DIMENSIONAL BOUKDARY-VALUE PROBLEMS

The simplification brought about when the flow is inde-
pendent of one dimension is obvious. In such cases, the
three-dimensional wave equation (9} reduces immediately fo
the two-dimensional wave equation. Typical examples of
this type of problem can be constructed by considering flat
plates which start suddenly at ¢=0 and travel thereafter at
constant supersonic velocities. Two examples, one a corner
of a rectangular wing and the other a triangular wing, are
shown in figure 14. After time ¢=0, the edges of the wings
send out cylindrical waves and the outer boundaries of these
waves at time ¢ are shown as dashed lines parallel to the edges
in question. Since points in regions 1 and 2 are affected only
by a single edge, the wave phenomena in these regions are
cylindrical, and the physicael quantities are in both cases
independent of distance parallel to the edge which acts as
their generator. Hence, the flow field in these regions is two-
dimensional. (Region 3, incidentally, is independent of
distance in both z and y directions and is, therefore, one-
dimensional.)

13 It is not necessary to perform a direct calculation in order to prove the above result for arbitrary plen forms, The terms in parentheses in equatlon (32} represont the directional deriva-
tive of the velocity potential teken along the so-called “conormal” of the foremost disturbance surface. Since ¢ Is constant on the surface, and sincs the conormel lies elong the surface, the

terms in parentheses are zero.
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_.-—-Lleading edge now-=

/////{/4\ . ~-Mach waves - ‘\‘

.~-Leading edge
! at £=0-~,

NS W

\\\\ \

Fuirre 14—Crses of two-dimensional fow flelds.

Solutions to the two-dimensional unsteady problems are
sometimes especially easy to find because of the analogy they
have with three-dimensional, steady-state, lifting-surface
problems. For example, consider an infinitely long unyawed
wing which starts from rest and travels forward at a velocity
Ve which may or may not be a function of time. The trace
of this wing in the z, £ plane is like that shown in figure 15.
(In the figure shown, the wing velocity is varying and is
always less than the speed of sound.) The boundary condi-
tions are that ¢, is specified over the shaded area and the
loading Ag, is zero everywhere except within the shaded
area. But if z is replaced by y and ¢ by ir, these boundary
conditions are exactly the same as those for a plate of known
camber and angle of attack, with & plan form as indicated
by the shaded area, placed in a free stream directed zlong
the positive z axis at a Mach number equal to 42. The
solution for the one problem may be used, therefore, as a
solution to the other with only a change in notation.

~ - --Traces of characferistic cones

Y

<_-Troce of
leading edge

FiGi'RE 15, —Decelerating wing In & plane,

407
BOUNDARY CONDITIONS FOR YERY SLENDER WINGS

When the wing plan form is slender in the sense that its
length in the streamwise direction is large compared to its
span, an estimation of the loading on it can be obtained by
neglecting in the partial differential equation the gradient
of the induced velocity component in the stream direction.
Thus, if the wing is moving in the negative z direction,
equation (9) reduces to

‘Pu+¢u=‘Pu (36)

which is again the wave equation but in two space dimen-
sions. Since equation (36) is independent of r, study can be
made independently in each plane r=constant. This is an
extension of steady-state slender wing theory, see, e. g.,
reference 13. Figure 16 (a) shows a typical section in the y¢
plane. If the wingis a flat plate at & constant angle of attack,

T%

(b

{a) Axes fived relative to still afr at [nfinjty.
(b) Axes fixed on wing.

FiGrrE 18.—Llender wing In unsteady flow.
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the value of ¢, over the part of the y¢ plane occupied by the
wing is & constant and the jump in ¢ across the vortex wake
must be consistent with its value at the wing trailing edge.
The analogy with three-dimensional, steady-state, super-
sonic, hftmg surface theory is apparent.

There is another way by means of which the effects of
unsteady motion on slender wing pressures can be estimated.
If instead of using the stationary ayzt coordinate system, the
reference axes are fixed on the wing by the simple set of
transformations

r=z+ Mt
t =t
h=y
2\1=2

equation (9} becomes

(1 —MOZ) ¢slzl_2M0 ¢=111+‘Pﬂ1ﬂ1+¢8111=¢11t1
Again, if the induced velocity components in the stream
direction are neglected, the simplified equation

¢v171+ P2, = Pyt

results. The latter equation is identical in form to equation
(36). However, now the axes are fixed on the wing and a
typical section in the f; plane is similar to that shown in
figure 16 (b). In this case, 2 flat plate wing is represented by
& constant value of @1 OVeEr the entire shaded area in the figure

and elsewhere ¢ must be continuous.!®

TWO-DIMENSIONAL UNSTEADY INCOMPRESSIBLE FLOW

The analogy between two-dimensional unsteady and three-
dimensional steady flow includes the case of a two-dimen-
sional, unsteady, incompressible flow field the analog of
which is a three-dimensional, steady flow field having a
free-stream Mach number equal to 1. This can be demon-
strated by inspecting equation (8). Since the flow is two-
dimensional and since for an incompressible medium the
speed of sound g, is infinite, the basic equa.tlon governing the
flow ean be written

@rz+¢u=0

1t must be remembered, however, that time still appears in
the boundary conditions and in the equation for the loading
coefficient which, according to equation (12), can be written

Ap 4 %¢
TVEo

Hence, the basic partial differential equation and the expres-
sion for the loading coefficient are the same, except for &
change in notation, as those governing three-dimensional,
steady-state problems when AM,=1.

If a two-dimensional wing in an incompressible fluid
starts from rest and travels forward at a speed V,, the trace
of the wing is as shown in figure 17. The esseanl deI'erence

~~Trailing edge
Leading edge-~,
~Vorfex sheet

’
3

e

Fiaure 17,—Two-dimenslonal wing In z# plane; Afo=0.

between this problem and the more gencral case of two-
dimensional compressible flow lies in the fact thal in this
case the fraces of the characteristic cones are normal to the
t’ axis. The boundary conditions are therefors satisfied
along lateral strips and, in lifting-surface terminology, the
analysis corresponds to slender-wing theory. These latter
methods are well established and in reference 13, for example,
the manner in which the Kutta condition is imposed is dis-
cussed in some detail. The trailing vortex sheet for the
lifting wing has the same distribution of vorticity that oxists
belind the unsteady two-dimensional airfoil and the rolling
up of the vortex sheet can be studied from either s{andpnint.

PART III-SOME APPLICATIONS OF THE METHOD
STARTING LIFT OF A WING

One of the simplest and yet most general resixlts which
can be derived on the basis of the present theory is the initial
value of pressure on a wing surface starting suddenly from
rest with a velocity Vy. The discussion will be made for a
wing without thickness although the method will be seen
to apply to the thickness case as well.

Consider s surface with a plan form s mdlcated in figure
18. The acoustic plan form of a point P(z,y) on the surface
is a small circle of radius ¢. Since no point on the wing out-
side this circle can influence the pressure at P, the upper
surface is independent of the lower surface, except for a
band of width ¢ around the cdge of the wing. It is, there-
fore, evident that the boundary-value problem to be solved
has been treated in the section Boundary-Value Problems
Involving Noninteracting Surfaces. The solution follows
directly from equation (28) and can he written

—_—_ f f o [621] ol

U The analogous problem In steady-state wing theory is that of a low-aspect-ratio, rectangular, flat plats in & free stream having s Maoh number equal to /2.
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—————— Wing plan form aof ¢-0
——Wing plan form now

1

t
S
Acoustic |
plan form--

FioCoRE 18.—Acoustie plan form at start of motion.

Using & polar coordinate system defined by

L—isy=r cos @

y—ih=rsin 8

dr, dy,=rdrdé
there results *

~—— f; dB‘ ndr-_. twu(x,y)

so that

(A_P = _..é_(b_‘!" 4w,y
. qo/t=0 Val"fo Voﬂfq

t=0

If a=—w.(z,y)/V is the local slope of the wing, the expres-
sion for load coefficient becomes

(ép =4a(z, ¥)
Jo /c=0 i,

The starting value of lift coefficient can, therefore, be.
written
da
CL—-E

where a is the average angle of attack of the surface defined by

S being the area of the wing plan form.
wa (E,7) a8
1 The mean value theorem gives =~ —5 s ;: erhere £ and y e somewhere n Se.

272483 -84 ——27
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INDICIAL FUNCTIONS FOR A TWO-DIMENSIONAL FLAT PLATE, My=g

The basic partial differential equation governing an
unsteady flow field in the two-dimensional incompressible
case is Laplace’s equation in two dimensions

Pt =0 . (37)

where z is distance along the chord and z is height above the
plane of the wing. It was also pointed out in Part T that
the boundary-value problems arising in the study of the
unsteady, two-dimensional plate flying in an incompressible
medium were directly analogous to those which are studied
in three-dimensional, steady-state, lifting-surface theory
under the classification “slender-wing theory.” This analogy
is useful since well-established concepts in one field can be
immediately carried over into the other. It should be
mentioned, however, that the subsequent treatment of the
incompressible case is not intended to be an improvement
on Wagner's original derivation (see reference 14) but
rather it is & rederivation slong lines that will be used later
in the analysis of the compressible case.

The initial pulse.—The first analogy with slender-wing
theory which will be used concerns the initial pulses that
occur in the values of Iift and pitching moment. It is a
well-known result (reference 15) that the total lift, as given
by slender-wing theory, on the wing shown in figure 19 (a)
is 2 function only of the maximum span and the value of
w, along the section of maximum span (section AA). It is,
therefore, independent of the wing twist and lesding-edge
shape ahead of section AA. This concept has been extended
in slender-wing theory to the extreme case shown in figure
19 (b) of a rectangular wing. The lift on such a wing is
concentrated entirely along the leading edge and is a function
only of the span of that edge and the value of w, there. By

- the analogy existing between the two theories, therefore, it

is evident that the solution to the indiciel problems in two-
dimensional, incompressible, unsteady flow (fg. 19 (¢)) will
contain & pulse at ¢'=0.

The evaluation of this pulse will be treated briefly. A
solution to equation (37) for the vertical induced velocity
in the z=0 plane can be written in terms of the jump in u
across the z=0 plane (see reference 13); thus, for the shaded
area in figure 20 this is

Au(x)

1
2rf_, r—xr

The general inversion of equation (38) can be written

(38)

wu(x)= d-rl

_ A "
Au(x)_ﬂ-\,’(m-I-a) (b—z)
2 b w2, Fo LN (h — \
T\I(x'l‘—m:?)- —aZ—171 '\(I[-[—G)(b 11) drl (39}
where

b
A=f Audz

Hence, as £ spproaches 0, £ and » apprach r and y, respectively.
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Fulse in lift along
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Ly
x
(b)
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af b~ O-

1
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FicuRrEe 19,—Lift pulses In slender-wing theory.

In the present case A4 is zero, since Ag is zero &t =—a and
a=b, and an integration of both sides of equation (39) with
respect to ¢ between the limits b and z gives

Aplt!, t)=—= f wit!, z;)
=R G T =2) ;-

V(z—z:)(@+b)

Adoption of the notation

Wt ) +constant = f w(t’, z)dx;
and integration by parts leads to the equation (since

fb ~£—— vanishes if §>z2>—a)
_¢(.°:-—9:1)\’(b 31)(““‘31)

2y/(b—2)(a+1) LW, z)d2,
T —a(z—a)Y(b—z)(a+z1)

(40)

Ap=—
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The loading can now be determined by using equation (12)
(and dlfferentlamng with respect to #’ rather than #)

Ap 4 0y
g0 Vool

If the shaded area in figure 20 is allowed to vanish, all the
loading accumulates along the z axis in the region 0<z<e.
Therefore, the integral of the loading with respect to ¢ over
the shaded portion must be considered. The final result for
the pulse loading (Ap/go)s at ¢=0 can be expressed in terms
of the § function (see list of symbols) as

(ﬂ_l’ __-_:%Et_z)‘l(c—_—ﬁ 0, x)dx,

q" (-3 231)\/(0'—551)-"-'1 - @)

The boundary conditions for the smkmg and pitching wing

given by equations (2) and (3), when inserted mto equation
(41}, yleld
7 Ap 4a(t') =27
Gox/s
( (c+2x)a<t') =—r
%9 R

After integration, the pulse values for lift and pitching

(42)
)z

moment may also be obtained. Ience,
(c‘a)t!:%% 6“’)
N T s
) (,fma )a— 4170 5((. )
(es )G=ZTf_ 8t')
r 9 ’
(end =57 77, 5)

where the primes indicate that the wings are pitching about
and the moments are measured about the leading edge.
These expressions may be inserted in equations (4) and, since
the integrand becomes zero everywhere except at the poini
#)’=t', the contributions of the initial pulse to the expressions
for the lift and pitching-moment coefficient developed by an
arbitrary variation of a and 8 with time are

we?
=37, et iy
r .1 9 Tcgé'
s L V& ]

where & and ¢ are evaluated at ¢’.

NPT - - Y

FIGURE m.—Undegerierate form of Initial pulse
In 1ift.

e R R i R
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The variation for ¢/>-0.—The integral equation (38) is still
perfectly valid when applied to the flow field for ¢>>0.
It is convenient to rewTite the equation in this case, however,
30 that the effects of the vorticity on the wing and in the
wake are separated. Thus,

Ay (J.'l) d

1 ["“o"Au(i' Il)dl 1 (¢
2r Je—vgrr r—2;

S &
¥ A2 Jorr  T—14

(44)

where Au* (2,) is the value of Au in the starting vortex wake.
It is independent of ¢’ since its value at all points along the
line ab in figure 21 is the same as at the point a.

—

Leading - 4,"
’~ ad
Troiling
eolge - -~
)
e

Fi:reE 21—Wing and trafling vortex shest in i’ plane,

A reduction of equation (44) can be obtained for the case -

of the sinking wing, where w,=—1«a, by using the inversion
given by equation (39). Thus,

MUt ENE LTIV — )= A— (22 + 2V —) Voot

¢ . @+ V' Yai—e+ Vi)
[:_W’ Aur(xy) [1 +Y G—2

di’1

Since A is given by the relation

e Vit
A= f
J-vot

it follows that

Ault’, ) day=— J;c_ Vot Au*(z))dr,

Autt, r)ym— i eZI A2V 0) -

AEF V) e—Vd —1) mE+V)e—Vd —z)
[0 ) AT Ve (45)

r—Ir;

According to the Kutta condition Au(t’,x) remains finite as z
approaches ¢— Vit'; the integral equation for Au*(z;) thus

becomes
v . L ¢ ar® 1‘1+Vqt’
I- = _‘A'C e Vot? Ay (Il) ‘\f r—ct Vo dx, (46)

which was derived and studied originally by YWagner (refer-
ence 14).

The section lift and pitching moment cen be derived in
terms of Au*(z;) in the following manner. By definition,
the section lift [ is

. =Vt A c—Vot’
z_—_%pnt-uzf “AP i, —pof LU

{ -
—Vet* Qo vetr Of 41)
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Since the value of Ag is zero at the leading edge and at the
trailing edge is equal to the total circulation T, two alterna-
tive forms for the lift can be written

T~ d [e=Vot’
I= oV + 1o 3 f Aol 2) dz (48)
and )
dr d ,
I=polc— Vot) 777 av —Po g7 v ) —vorr TA“ {,x)dr (49)

By substituting equation (45) into (49) and integrating, it

can be shown that

l=rpocVoza+P°—;ﬂf Au*(zy)

Vot’ ’(J.'[‘I' I’ t’) (271""C+ Vot’)

(50) |

Since the value of Au*(r;) hes been determined by Wagner,
equation (50) can be evaluated to obtain a solution for the
section lift. A plot of the section lift coefficient is shown in
figure 22. Initially there is the pulse having an intensity
defined by equations (43). After the pulse at #=0, the
value of the section lift coefficient starts at one-half its
asymptotic value. It then inereases, slowly approaching its
asymptote of 2xe.

| co

~Initial pulse
2x F——~ - -

] -
a 2 4
V. t/e

FiGrrE 22.—Indlcial IIft curve for Incompressible Gow.

By definition, the pitching moment can be written

1 o
m=—z po ¥ zf

e=Vet" OA
——o [ Vit ) S da

(Vo)A A" dr
51)

where the moment is taken about the leading edge and is
positive when the trailing edge is forced down. A develop-

ment, similar to the one given for the lift, gives -
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This result, that for t>0 the indicial center of pressure re-
mains constant at the quarter chord throughout the motion,
is classical.

If the boundary condition for a pitching wing,, w,=—
(x4 Vot') 4, is substituted into equation (44) and the inversion
given by equation (39) is again used, it can be shown in the
same manner used in the derivation of equation (46) that for
2=c— V,t’ the relation

E 1 u* rn+ Vit
4 2(;_— eV r' () '\/x —c-l-Vt’

applies. This integral equation applies to a wing pitching
about its leading edge. If, instead, the wing is pitching
about the three-quarter-chord position, an essential simpli-
fication is achieved. In this latter case, downwash is given
by the expression

W= —0 (x—l— Vot'—3 c) (53)

and the resulting integral equation becomes

O—f "‘,A’“@ (rl)\/ z‘j _l';i 7 (54)

where Auy* (1) represents the vorticity in the wake following
such a motion. The solution to equation (54) is simply

A’us* (2:1) =0 (55)

From equation (55) it follows that the total indicial lift for
¢’ >0 on a wing pitching about the three-quarter chord point
is zero, and that the wing wake is free of vorticity. Further,
it can be shown that the total indicial pitching moment (still
measured about the leading edge) is

Mm—=— ’”’“ Vob _ (56)

The transfer of equations (55) and (56) back to the case
in which the wing is pitching about its leading edge can be
readily accomplished by means of the boundary condition
shown in figure 23. Hence, if (¢; Jan refers to the lift coeffi-
cient on a wing pitching about t.he three-quarter-chord point
and (¢m/}ss refers to the pitching-moment coefficient meas-
ured about the leading edge of a wing pitching about the
three-quarter-chord point, then

(th)au=c‘¢’—% Gl
(57)

(en e =0m; =7 Cm,

e, - Koy = (€)n
w, " wu[

- . —Xe B
R i T
[ e B S

Fraune 23,—Change in boundary oonditions corresponding to change !n pitching axis.

By means of equations (52) and (57) the expressions of
the three indicial functions, ¢n ’, ¢/, and Cx,, COD all be
written in terms of the indicial lift function for t>0. Hence,

-

cma’=—zc‘ﬂ

Cg":% Cze > (58)
. ¢ ’—”_._3_0 _r

e 16 e 8

The variations of the four indicial functions will be shown
later in Part IV. For values of ro(=Vyt'/c) larger than those
shown in figure 22 the approximate equation suggested in
reference 16 can be used, namely,

(59)

This alternative result has, according to reference 16, an
error of 2 percent or less for the entire range of time from
0+ to infinity.

INDICIAL FUNCTIONS FOR A TWO-DIMENSIONAL FLAT PLATE, MmU.5, 0.8

When the Mach number is no longer small, the analysis
in the preceding section must be modified. As an example
of this modification, we shall evaluate the indicial response
on & sinking wing flying at a Maech number equal to 0.5 and
the indicial response on a sinking or pitching wing flying at 2
Mach number equal to 0.8.

Since the wmg is two-dimensional, the partial dtﬂ'erentml
equation governing the flow field (equation (9)) reduces to

Pert O = @1 (60)

where it must be remembered that the axes are fixed with
reference to the still air at infinity and the wing is moving
in the 2=0 plane. The equation for the loading coefficient
remains as in equation (12).  The analogy which existed in
the incompressible case between the theory for the unsteady,
two-dimensional wing and slender-wing theory exists in this
case between the theory for the unsteady two-dimensional
wing and the theory for a steady-state, three-dimensional
wing traveling at a supersonic speed. Thus, in the three-
dimensional, steady-state case the partial differential equa-
tion governing the flow is

et Pr=F0r (61)
and the equation for the loading coefficient is

Ap 4 %9

“V,or (62)
The boundary conditions are in both cases thal ¢, is given
over a portion of the 2z=0 plane. It is evident by a compari-
son of equations (60) and (1) and equations (12) and (62)
that results from the three-dimensionel, supersonic, steady-
state case (hereinafter referred to as the steady-state case)
can be transferred to the two-dimensional, unsteady case
(hereinafter referred to as the unsteady case) simply by
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replacing 7, », and 8 in the former case by ¢, z, and 1, re-
spectively, and by dividing the result for the loading coefficient
b_\' 3{0.

The analog to the boundary condition for the problem of
finding the indicial loading on a two-dimensional wing flying
at a subsonic Mach number (fig. 24(2)) is the boundary
condition for the problem of finding the loading on a constant-
chord, swept-forward wing tip with a subsonic trailing edge
stch as that shown in figure 24(b). The Mach cones in the
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1at Unsteady case.
(b) Steady-siate case.

Frarrre 24 —Boundary conditfons for & two-dimensfonal unsteady wing mov-
tng at suhsonic speed and the analogous three-dfmensiopal, steady-state
wing.
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steady-state case, traces of which are shown as dotted lines

in figure 24(b), become, in the unsteady-state analog, the

locus of the sound waves which started at t=0 from the

leading and trailing edges of the two-dimensional wing

(fig. 24(a)). TFinally, the analog in the steady-state field
of the unsteady wing would be a flat plate for the unsteady

sinking wing and a plate with a linear variation of twist for_

the unsteady pitching wing.

Just as in the section on incompressible flow, the analysis
will be divided into two parts. In eases for which 1{;70,
however, the indicial functions contain no pulse at t=0.
Hence, the first part of the study will be concerped with
the behavior of the indicial functions in an interval for

which ¢ is small but finite and the second part, with their

asymptotic behavior. _

The early stage.—The analog which exists between the
steady-state and unsteady ceses may be utilized to great
advantage since the special methods and techniques developed .
for the solution of problems in the former case may be applied
to the solution of the analogous problems in the latter
field. In this manner an exact solution for the loading over

the first five regions shown in figure 25 was obtained for &

Mach number equal to 0.8, and for all the regions indicated
for a Mach number equal to 0.5. Solutions for larger
values of the time could also be caleulated, but the labor
involved in computing such cases becomes prohibitive and,
as will be shown later, approximate methods can be developed
which extend the solutions for the indicial lift and pitching-
moment curves fo their asymptotic values.

7
x= —:‘[‘3 t- ‘/‘{

cefom
:t«y

Yt
FIGIRE 25.—Reglons used In analysls of sabsunic unsteady wing.

The analysis used to calculate the loading over the regions
shown in figure 25 is outlined in appendix A. Plots of the:
indicial loading on a sinking and & pitching plate flying at a
Mach number equal to 0.8 are shown in figure 26. At
time equal to zero the loading is constant for the sinking
wing, and as time increases the loading-coefficient curve
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F1oURE 26.—Varlation of two-dimensional indicfal Ioad dfstribution with percent chord
for & Macoh number equal to 0.8.

approaches the familiar two-dimensional, steady-stute shape
given by the equation
Ap 4da [c—=x o
! AT A . (63
g B (63)

where z is distance from the leading edge which is at z=uv,
Figure 27 shows the load distributions for M,;=0.5 and 0.8
at the last value of time for which the exact loading curve
was caleulated, Notice that in each case the distribution is
essentially the same as that obtained at time equal to infinity
(i. e., the agreement is good with the curve produced by
multlplvmg the right side of equation (63) by a constant

- factor).}s The use of this fact simplifies the subsequent

analysis concerm.ng the asymptotic behuvior of the indicial
curve. ¥ 1 5 ‘

The indicial lift and pitching-moment functions were also
calcuIated (see. appendix A) up to the time r,=2.333 for the
wing ﬁymg at My=0.5 and r,=4 for the wing flying at

- My=0.8." Their variation in this interval will be shown in a
" subsequent figure (fig. 59).

It is evident from a glance at

2

tood distribution at
Te = 2 3

—_— Exact

-~ H/ e a9 )

(&) o
a 5 10

N

Lood distribution ot
1.=4

Exact

~4/TEe, e, @)

(b)
a ) I/
1‘0
(&) Mam{.5.
(b) Afom0.8.

I-‘:oux.z 27 ~Load distribution at end of early stage.

W A similar result was noted In the study o fthe load dismbutkm on swept-back wings with subsoaie leadlng odges (reference 17},
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the figure that the calculations must be extended beyond
this early stage since the asymptotic values are not even
closely approacher.

Before studying the nature of these curves for large values
of time, however, it is useful to examine them with reference
to the discussion in the previous section on incompressible
flow. For example, it was pointed out that the indicial
center of pressure on the sinking wing remained at the
quarter-chord point for time greater than zero. Hence,
let us consider the location of the center of pressure on the
sinking wing when the Mach number lies between 0 and 1.
By means of the indicial curves for ¢; and c« ' and by the
relationship )

"ma,= - (x/c)c. ».C1,

the variation of (2/¢)..,. Is easily evaluated ((s/c).,. is the
distance between the leading edge and the center of pressure
divided by the total wing chord). This variation is shown
for the two Mach numbers in figure 28. It is apparent that
the center of pressure is very close to the gquarter-chord
position for velues of time greater than those for which the
exact calculations were carried out. In other words the
significant effect of compressibility on the location of the
center of pressure is limited to the interval K 0<f,<2 for
1,=0.5 and to the interval 0<¢{,<5 for 3£,=0.8.

Likewise, it is apparent from the discussion of the incom-
pressible case that the indicial functions for the pitching
wing can also be expressed in a more convenient form by
shifting the axis of rotation from the leading edge to the
three-quarter-chord point. The values of (¢ ), and
(c,")m for 1,=0.8 were calculated from the definitions
given in equations (57) and sre shown in figure 29. In-
spection of this figure again shows that at a Mach number
equal to 0.8 the compressibility effects are limited to the
interval 0<¢,<C5. .

a 2 4 6 8
t,
Fisrex 98.—Center-of-pressure variation on sinking wing during early stage.

The later stage.—It follows from the preceding discussion
that when 4 is large, the values of the indicial functions
ems c;", and c,,.e’ for compressible flow can be expressed in
terms of ¢; by equations similar to equations (58) which

were derived for incompressible flow. Thus, after several
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FiGURE 20.—Veariation of lift :u:d moment on pitehing wing during early stage; Ms=0S

chord lengths have been traveled, one can write, on the
basis of the asymptotic values shown in figures 28 and 29,

c,a’——é—c;‘,/‘i
C;"=3C;¢/4

€/ =—(3¢:,/16)—(x/86)

(64)

-

It remsains, therefore, to determine the asymptotic behavior

of cr - ) .

Consider the steady-state solution for the lift on a two-
dimensional, flat lifting surface traveling at a subsonic
Mach number. As was pointed out by Wieghardt (reference
18), if the lift on such a surface is represented by placing at
the quarter-chord point a vortex which has the same circu-
Iation as that developed by the wing, the angle of attack
measured at the three-quarter-chord point will be the same
as that of the fiat plate. Extending this concept.to include
the unsteady effects, an investigation will be made of the
variation with time of the vortex strength which will main-
tain a constant angle of attack at the three-quarter-chord
station following an iropulsive start at ¢ =0.

The analogous problem in steady-state theory becomes one

of finding the strength of the vortex system, shown in figure

30, which gives a constant value of w along the line CD.
In the vicinity of the origin, of course, this representation
gives & poor approximation to the original boundary-value

problem. On the other hand, in this vieinity the exact values”

of lift and moment have already been determined.
Esach vortex composing this system lies along the line AB,
extending from minus infinity toward the origin, and trails
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back parallel to the x, axis to form the trailing vortex sheet.
Note that, for convenience, the origin of the axis system has
been located at the quarter-chord point. The solution to
such & problem in steady-state, lifting-line theory would re-
sult from the solution of the integral equation® (for a de-
velopment using the notation adopted here, see reference 19):

W= A‘P(yj)dxl .
Y="2r f ”Uc[@ 2~ By —y

c |
y A ¥ l
K ‘c:‘-‘ c'_-{ ' 2z,
wea e
“neLoMt,
‘f’[ FeEEE
i
Vc:r;‘e'jc1 ‘ﬂs heet
4 !
(8)
‘ |
A‘ %e Kc {
; lh Y

Vorfex sheef
xy

A

() Unsteady case.
(b} Steady-state analog.

Fiu're 30.—Vortex systems for two-dimensional unsteady and analogous
three-dimensional, stead y-state wings.

W I"he symbals JC and § arv used to Indicate that the finite part I8 to be taken. Thus (see reforcuce 16 or 20), F a-pr- aT:

f(ﬂ‘) dy Jun
3N

. —y
nite Ditegral of £ (¥)/(z—uM. Y GF—gA— \/z—

Further,
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where Ag is not a function of #; since the strength of a trail-

ing vortex is, of course, constant. The area of integration

7 is the region within the forecone springing from the point
Y.

If the above equation is transformed by means of the
analogy to represent the solution of the unsteady problem
(sco fig. 30(a)), B, z, and y are replnced by 1, ¢, and «, re-
spectlvely, and Ag, the total jump in pntentml at a given
section, is replaced by the circulation T'. Hence,

F(II)
—arf i e =ty =G —z 5 9

where r, as indicated in figure 30 (a), is the area in the fore-
cone from the point P which lies always along the line
z=(1/2)c—Aft. Integration with respect to £ reduces the

last equation to
1 o I‘(Il)(t_i_xl) dr,

SR SN (=

‘which, by means of the substifution z,/6=—x/2 becomnes

along the line z=—;-—ﬂfot

1 _r» O\o‘{'#o z2) I'(xa)
CWﬁT (ﬂz—kn‘{‘l'z)z (7\0'—32)(7\04'#1 T3

where M=211fgtg—yo, po=4‘][o/(1 +.L,L{a), [J.|.=211I0/(1 —"1[02),
we=1/(142L}, ty=t/e, and where, of course, w is a constant
equal to —Ta.
A solution for T'(zg) in the integral equation (65) may be _
obtained by expanding I' in a series of the form
:| (Gﬁ)

P(_Iz)=%ﬂ I:\/_faﬁ— T \/(“1“‘2"' y

Place equation (66) into (65) and expand in powers of 1/X,.
There results the expression

drz (65)‘

czln(lf)\o) e e
| V 1+ ‘[' +7\_:’+f" . (67)
in which ' ' )
Cl—-b]_ 2+ﬂ12 - . C e o -

Hence if @, and b, are chosen so that ¢, is zero, an expression
for I' will be obtained which represents the solution to the
integral equation (65) correct to the first order in 1/, (i. c.,
1/%) for large values of &. Further, if equation (66) is
expanded in powers of 1,, there results

(ICO

°f(£v_) :)v =G (z.b)—G(2,a) where G (g,p) Is the [ndefi-

m:cﬂ

- T(x 2)_

Lrrundy_ ds_
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which becomes, using the condition for ¢, and relating x; and
{, by the equation of the leading edge, z.=23{ff—1=

OVt fe) —1, :
. :I 68)

rCaTy
Plr)=—g— [ "B’Tu+
By choosing the values of aq, ¢, and §, given as follows:

b1=(ay/2)— (llB’)}

qu dg El

0.5 56 28
8 36 27

26.67 (69)

15.22

and placing the resulting expression for T'(z:) as given by
equation (66) into equation (65), the values of —w/V,a
shown in figure 31 were obtained. This figure demonstrates
the accuracy to which the first two terms of the series
expansion for TI'(zs) yields a constant value of w for the
constants given in equation (69).

The relation between eireulation and lift has been derived
and presented as equation (48). This expression can be
written

I=poV 0P+p°cdfl r 1‘K’(“'n:n-l'o)a’-l'u

where zy=2xf¢. In order to obtain a complete expression for
the section lift, it is necessary to know the chordwise varia-
tion of Ag. Since equation (66) gives only the total vorticity
and not its chordwise distribution, some assumption as to
* such distribution must be made. In lieu of this, the result
presented in figure 27 suggests that for large values of time
the value of Ao(ry,x) used in the equation for section lift

L
el /
g (2) 1 ) 1 1 [ I
a 20 £ : 60 aa 10
ff—
g (¥) ] 1 1 ] I
a 20 40 &x . & 100
[
w1 Mom=U.5.
(b Mym=p.8.

FiGURE 31—V aristlon of d.ownwn_h at three-quarter<hord povition.
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FiGTAE 32.—Chordwise varfation of circulation at end of earfy stage; Mi=0.8.

can be expressed by the product of Ag( @ 2} and T'(re)/T( ).

In other words, for large values of =, the shape of the chord-

wise distribution of vorticity is the same as the two-dimen-
sional, steady-state value. An indication of the accuracy of
such an approximation is shown in figure 32 for a Mach
number equal to 0.8 where the precise value of Ao(r,x) is
compared with the approximation at rp=4.

Since T'( » }Y==a /B, the substitution of

Ap(Te, Tg)=Ap( @, T (rg)/T( =)
gives for the section lift coefficient

2r , 3 1 dr -
“Svetavedr (70)

By means of equations (66) and (70) and the values of the
constants given in (69), an expression for ¢;, can be written
which is valid for large values of r,. This expression is
somewhat cumbersome, however, and it is difficult to apply
in subsequent analysis. Hence, it has been replaced by a
simpler equation that is equivalent ¥ to three decimal places
for values of 7, greater than about 10 for both Mach num-
bers 0.5 and 0.8. These equations are given by the following:
for J[o= 0.5

o 2x[ £ 1 44218 :l 1
I 35+2r (5+2r)" ‘
and for 3,=0.8*®
2% 1.736 70.83 -
“=F 1= T4 5m (11+5r.,/4)=] (72)

I In order to facilitate fafring the mitial portion of the indicial lift curve Mto the approximate solution chtamed for the subsequent variation, the latter results were shifted slightly in terms

of Vol'fc. 'This did not affect the asymptotic behavior of the curve.

1 The value for ¢;_ given by equation (72) disagrees slightly with the value given In the superseded TN 2403 (see footnote 1}. The methods for caleniating the results are somewhat
e

difterent, and the value given here Is considered to be more accurnte.

272483 —54——28
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The equations for ¢x/, ¢i,/, and e, for 7> 10 can be

calculated from these expressions by means of the relations
given in cquations (64). Equations (71) and (72) will be
considered valid for values of 7, greater than 10 for both
Mach numbers. Values of the indicial functions between
70=10 and the highest 7y calculated by the exact method
were approximated by interpolating between the two results.
Tabuler values of all the indicial functions caleulated for
the interval 0<+<10 are given in tebles T and II and
curves are given in Part IV.

TABLE I.—INDICIAL LIFT AND MOMENT FOR TWO-
DIMENSIONAL SINKING WING. M,=0.5"

TABLE II.—INDICIAL LIFT AND MOMENT FOR TWO-
DIMENSIONAL SINKING OR PITCHING WING. M,=0.8

Val'te Bey of2x —28em, " [x ey’ f3x —2Bemg’ [r
= 5 -
0.0 0.478 0.955 ¢.318 0. 687
.1 . 468 - .814 .64
2 i 880 3% EE
.3 L442 . 830 216 . BBL
.4 -430 L750 .28 LE75
.5 423 .80 - 339 . 582
.6 . 426 - .ex 355 505
7 433 .632 4387 . 808
.8 .. 442 .62 .3Bb .31
9 .51 .615 .37 .633
1.0 . 361 -6 411 .044
1.5 . 507 .62 -478 . 688
2.0 . 546 . al% 825 JTES
2.5 . . 581 .828 . 566 )
3.9 . 610 .64l . 588 137
3.5 . 632 . 855 - 825 748
4.0 .652 . 670 . 848 ©.755
4.5 .670 .84 L0885 . 708
50 .G87 . 693 .08 .73
8.0 .714 .7 .70 -T90
7.0 . 738 . 743 L7386 808
8.0 .7 768 T80 521
9.0 719 782 TR0 835
10.¢ . 708 T8 Yy 849
@ 1,000 1.000 L000 1.000

¥t © Bog2 Z2Bém g’ [=
0.0 1.103 2205
1 1.954
2 gz 1.632
.3 73 1.348
4 &0l -b0s
.5 .656 768
‘8 N1 .663
i .618 .803
.8 504 -561
- 568 .50
1.0 .879 .540
11 -881 - 583
L2 87 .57
13 -e17 -800
1.4 .634 N7 -
1.6 843 852
1.8 gEo -667
L7 669 - 682
1.8 877 N
Le 685 .600
2.0 ] 708
2.5 724 TE
30 718 .74
38 765 .78
40 781 e
N .798 T84
50 -508 1785
5.5 ‘818 -808
6.0 \835 ‘815
6.5 .832 .82
7.0 .840 .882
7.8 848 1840
8.0 .854 <850
85 -880 T
9.0 -838 188¢
9.5 .871 .87
1.0 877 -875
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INDICIAL FUNCTIONS FOR A TWO-DIMENSIONAL FLAT PLATE, Mi=1.0

The general results, obtained in the preceding section for
the early stages of the motion and presented in appendix A,
for the indicial loading over the sinking and pitching wing
may be extended to the sonic case. Furthermore, the two
intervals for which analytic results in a closed form were
presented in appendix A now cover the complete time range
since 0< 7S My/(1434,) becomes 0 7,<0.5 and M/(1+
M) <1< My/(1—M,} becomes 0.5<57,< =. Hence, by an
appropriate limiting process, equations (AS8), (A9), (A10),
and (A11) become for 0<7<0.5 -

e ¢, =4
R R
- ~c;‘,’=.2-l—-n,"
Cem,=—(4/3)—(2/3) 7

(73a)

and for 0.55 < ©

L3

5
—(4]11-) (211‘2 To— -[-arc cos = 1)
3+T° V21— +<1———r)a.rc cos —-—£]
+(1 + ——z)mc cos °T'—1-]
To .
o )]}——ﬂ BT+
N (1 —l—%’) arc cos T‘!:!-:l

HE ‘ . To | J

Since the magnitude of the functions in equations (73b)

grows indefinitely with increasing time, the assumptions of
linear theary are eventually violated. However, for moder-

= —(2/7)

g =(2/1r) [57-“‘270 > (73h)

" ate values of 7, these functions have the same order of
magnitude as similar indicial curves for Mach numbers other

than 1. These effects are Hlustrated in Part IV.

INDICIAL FUNCTIOI\S l"Oll A TWO DIMENSIONAL FLAT PLATE 'l-le- 1.2

-

The method of obtalmng solutions for the mdwml funetions
at sipersonic Mach numbers parallels the development
presented for the subsonic Mach numbers. The stc.ad;-
state anelog to the supersanic unsteady wmg problein is a
conséant~chord wing tip with a supersonic trailing edge.
(See figs. 33 (a) and 33 (b).) It is well known that the
problem of finding the loading ov¢r wing plan forms with
all supersonic edges is one of the simplest in three-dimensional,
lifting-surface theory. In fact, since the upper and lower
surfaces .are noninteracting, the solution is determined b)
integrating sources within the Mach. forecone. The unalysis
for ¢;, has ah‘ead3 been carried out in reference 21.

The a_na,]ysm used to calculate the loading in terms of
ro=2z/c and fy=tfc over the three regions shown in figure 34 is
outlined in appendix B. An example of the manner in which
the loading varies with time over a sinking or pitching wing
traveling at a Mach number equal to 1.2 is given in figure 35.
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T~~uw, grven

£
(b)

{#) [‘nsteady case.
(b} Steady-state case,

FriurE 33.—Boundary conditfons for a two-dimensional unsteady wing moving
at supersonic speed and the analogous three-dimensional, steady-state wing.

The expressions for the indicial lift and pitching-moment
coefficients are given analytically in appendix B, and plotted
in Part IV. It can be shown that the results given in appen-
dix B reduce to the expressions given by equations (73)
when 1, is allowed to approach 1, so that there is no dis-
continuity in the theory in passing through the sonie range.

SUPERSONIC STEADY-STATE LIFT

Since the next section contains & problem involving a
complicated acoustie plan form, it may be helpful to consider
first a problem involving a very simple acoustic plan form
but otherwise similar to the subsequent analysis. Hence let
us inspect, using Kirchhoff’s formuls, the problem of finding
the steady-state loading on a two-dimensional flat plate
traveling a6 a constant speed (equation (15)).

Since the upper and lower surfaces are noninteraeting, -

we can use the special form of Kirchhoff’s formula given as

419

Y¢ f co

Frerex 34.—Regions used [n analysis of supersonie unsteady wing.

equation {28). In the plane of the wing this equation be-

comes
wedr,dy,

= '“%rf s f Va—z)+ly—y)*

Figure 36 shows the positions of the wing in the zy plane.
The wing has constant speed for £2>0. The point P(z,y)
is chosen on the wing and ahead of the wave which started
at time zero; therefore, P(x,y} lies in the region which has
attained its steady-state value. Further, the value of wuy
is constant over the acoustic plan form in such a region.
This constancy reduces the problem to one of integrating
[(z—z)*+(@—y)"* over the ellipse representing the
acoustic plan form.

The equation for S; can be determined from equations
(20) and (21). In this case, equation (21) becomes simply

(74)

= —'.ZL{QT

Eliminate = between this equation ‘and equation (20} and

there results in the z=0 plane
2 2 z: \! -
-+ y—y)'= 5 (75)

M,

That equation (75) is the equation of an ellipse with one focal
point at 2,4 can be readily verified. It is more convenient,
however, to change to a polar coordinate system with origin

at P. Henceset . . -
r—=r cos 4§

y—y=rsin
dy, d,=rdrde

Then equation (75) becomes

Myr=Mt+2r—rcosé
or
- _x4Mg

r_Ma-[-cos f (76)
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FiGURE 35.—Varlation of two-dimensfonal indicel load distribution with percent
chord for a Mach nurnber equal to 1.2
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FIGURE 35 —Emustlc plan !orm for point In steady-state region of twue-dimenslonal un-
steady wing flylng at & supersonle speed.

and, thprefore, equatlon (74) becomes mmplv

1 EE -
T _at A

do

= T or (Z M) ¢ Aytcos 8

T he'intégral‘ is not di_fﬁcult. to evaluate so

~ *’=;_(‘”+ °t)(\/M°' )

and, ﬁn:-a,lly, by equation (12)

'wu.M}, — 4&_

- Ap 4 _4a
VMi—1

g VoM yH7F—1

7

which is. the familiar Ackeret value for the loading on a
two-dimensional flat plate The lift coefficicr.t, of LOHI‘S(‘,
follows immediately as

T 4o .
= SRR

INDICIAL LOADII\G FOR SINKING TRIANGULAR WING WITH SUPERSONIC
: : EDGES

The geven regions.——The analytic expression for the indi-
cial loading over the triangular Wing has a different form in -

each of seven regions. These regions are determined by
the positions of th: various wave fronts relative to the wing
plan form (fig. 37). For t<0 the wing is motionless, its
leading edge lying along lines represented by the dashed

lines in. figure 37. The trailing edge is considered to be

supersoni¢c and hence its position is immaterial, sinee the
solution can be cut off wherever desired. At {=0 the wing
starts suddenly to move, and for {0, travels forward at a
constant speed V,. After a certain time ¢ has elapsed, the
wing has traveled to a new. position, also shown in the figure.
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In this same interval of time, pressure impulses have trav-
eled out in spherical waves from every point of the region
which the wing has occupied. The trace on the wing of the
sphere starting from the wing apex at {=0 forms the exter-
nal boundary of region 7. The area outside this circle and
within the traces of the ecylindrical waves (the envelopes of
the spherical waves)generated by the leading edges at =0
forms region 4. Region 5 is formed by the overlappping of
these cylindrical waves, and the solution for loading within
it can be found by a suitable superposition of the solutions
for regions 3 and 4. Region 1 lies between the cylinder
trace on the wing and the leading-edge position at time {;
the loading in this region cannot be affected by the manner
in which the wing started its motion since it lies outside the
starting cylindrical waves. Hence, the loading in region 1
is the same as that on & swept wing flying at a steady super-
sonic speed. The solution in region 2 can also be obtained
from steady-state lifting-surface theory, but, whereas in re-
gion 1 the field is two-dimensional (i. e., invariant with dis-
tance measured parallel to the leading edge), in region 2
the field is conical. Region 6 is formed by the overlapping
of regions 2 and 4. Finally, region 3 is that area com-
pletely unaffected by waves from the wing edges. In the
following subdivisions the analysis of each of the separate
regions will be discussed.

Region 1: The loading in region 1 of figure 37 is equal to
the loading on a two-dimensional flat plate moving at a
constant velocity given by the component of stream velocity
normal to the leading edge of the triangular wing. Since
this component is supersonic, the loading is of the Ackeret
type and is given by

._l-_p_' o
( I 1— B

But since V,=V, cos A where A is the angle of sweep (see

fig. 38), \
Ga=(g COS* A

ae=0o5ec A
J[,=ﬂ[0 cos .\
By I Cos AT

(._\p) {a
o "]l[o —secZ A

and

Figrre 37.—The seven regions used In the analysls of the triangular wing with supersonfe
lending edges. )
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y=—m@+Mot)~_
y=- (M t)/8 ~

tvifm'l 1’ 4 R
ye-mpp- ——)--4 T VirmE
-y=m(z+-—m—-—)
‘/ tVIrmt .
-y — )
FiGurk 38.~Equatians of ines used in the analysls of the triangular wing with super-
sonfe feading edges.
Finally, if ctn A=m
Ap 4am
)= 79
(Qo 1 4/gmi—1 9)

where f=+/33?—1

Region 2: The steady-state loading on a triangular wing
with supersonic edges has been given by several authors (see,
for convenience, reference 22) so the expression for the load-
ing in region 2 can be written immediately for the coordinate
system shown in figure 38 as

gimy—(x+ A )

(2 Fﬁ§ BTm T 3D —1]
rmy+(z 4+ ALd)
ﬁ[-m(z+Mot)+y1} 80)

Region 3: Since region 3 is unaffected by the edges of the
wing the solution for the loading therein can be written as
in reference 21

( Jfo

Region 4: The solution for Ioading in region 4 can be
obtained from consideration of a two-dimensional wing
starting from rest and moving with velocity V, normal to
its leading edge. This problem has been treated in refer-
ence 21 and the solution written there can be \mtten for the

right-hand side of figure 37 as
A z—7
(Ap —da [arc cos AaZatt VML ( 5+are sin —):I
4

" 7hx z,HAME 3,
where the notation, as defined by figure 39, is

are sin

(81)

T,=x cosA—ysin A

Y=z sin A+ycosd

#--arce sin -
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”
Ve
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»
Xy
 E
FI10URE 39.—The zu¥s coordinate system.
and since
¢in A=m, sin A=—— )
V1 +m’
cos A= _Z,n___ s
Vitm? '
Then
me—
£ = .
J14m?
Yo z+my
" -\-;1 +m’

The equation for loading now becomes, in the coordinate
system of figure 38,

m M o(mx—|y))+(1+m?
( oy ﬁ’m’—l [arc = MTtm (mr—lyl-!—mﬂfot)

vB8*m?—1 (—+ arc sin /_1;—:-2—)] (82)

m.ﬂf 0

Region 6: The solution for loading in region 5 can be
obtained by superposition of the solutions for regions 3 and
4. (See fig. (40).) If the solutions for the two sides of
region 4 (obtained from equation (82)) are added, the result
gives twice the required value of w, on the wing, as well as
undesirable pressures off the wing. However, subtraction
from this sum of the solution for region 3 (equation (81))
reduces the downwash w, to the proper value, and also
cencels the excess pressures. The resulting expression can
be written -

mMymz—y)+(1Lm}
( , TJB=m= [m O T mima—yLmi
mMymz+y)+ 1 +mi
e OO A mi(mz Lyt m Mo
JBtmi—1 E+-y —Yy
W(ucsmw +acs t‘f1+ )] (83)

Region 8: The loading in region 6 can also be calculated

by superposition. ' To find the loading in this case, add the
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(73]
! a
$ w,
1 Right edge v
w
i b
- w, $
Leftedge 1 ' v
' B o 4
1 c dq.; M,
¢ , $
sp 4 ' ap 4 Y
-— —E: . R . 1—-—2- —
dq. M, 4 | 1 awb dq. M,
—— = —
T y
w
-— —AE-U—. 1 . 4—:‘_‘2-0—,
aq. | a+h-p . qu-:
Wy
5 ”

" Fiourg 40.—Solutlons superimposed to obtaln cquatlon (83).

solutions for regions 2 and 4 (equations (80) and (82)) and
subtract the solution for region 1 (equation (79)). There
results

- Bimy— (:z:—{—ﬂf,,t)
( ) -n/B‘m’ {m sin BimzFMH—y]
Bimy (x4 M)
arc sin [m(s:-l—Mot)—l-o:tf]_l_
mMymz—|y)}+H1+m?)

L a'mcos(m:c—l‘yl+1'1'IMD‘)‘[1""m’

VBm =1 (x EIRY N
o (s in ——2%..
T (5 tJ1+m*)5 (84)
Region 7: The solution for the loading in region 7 can be
obtained by means of equation. (28). The analysis used in
finding the solution in this region is not difficult but the.

- algebra. is rather involved. It is useful at this point to intro-

duce polar coordinates (see fig. 41) such that
z—I,=r cos §
y—1y,=r sin @ (85)
dlldy1=rdrd_6

From equation (85), equation (28) can be wrilten in the

form
e f f drds - (80)

The acoustic plan form for points in region 7 is the region
bounded by three curves as indicated in figure 42. The arc
between 8; and 6, is determined by eliminating T between the

equations
| P=(—T)*
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(the equation for the inverse sound waves) and the equation
for the left leading edge

h=—m(+A,T)

The arc between 8, and 8, is found by determining the acoustic
intersection (eliminating T) of the right leading edge with
the inverse sound wave; and, finally, the arc between 6, and 8;
is given by the equation »=¢. The equations of these arcs
can be written in polar coordinates as

_ mx+MbHty
"= cos 0+ mMoFsim o 10t

r=tf; 6,<6<6;
m(z+AMl)—y | {0 <8<,

= m cos 8+mAMy—sin &

Y,

——— Wing at £~
Wing now

8,=6;-8x

»;

7

XX
M)

-
X

N\
NN

th

FiaURE 43.—Acoustic plan form for pptnt in region 7.

Using these expressions, equation (86} reduces to _

Vea (2 m(z+MP)+y L
= or o, mcos 6+ mM,t-sin @ dé-+ :

Irod o

2% Jog tdb+ ) -

Vaa (" mlx+Mg)—y d6

2x Joy mcos 8+ mbf,—sind

and teking the partial derivative with respect to £ (to deter
mine the loading according to equation (12)) one finds

(A__p_) _2am (% ds | 2a f"d0+
go/r w Jo mMytmcosftsing’ xAl ey

(87)

2am ™ da
r Joy maLy--mcos8—sin @

In evaluating this equation, the following integral is used:_
for —xr<8<r~ v

f . d6 2 ) -
mldyt+meosf+sing [gipi—1 ’ - s

m(AL,—1) tan (6/2) & 1

JFmi—1

arc tan (88)

Since equation (88) is valid only in the interval—x<6<r,
care must be exercised in applying it because the angle 8,
may be greater than x (as in fig. 42). In case »<84,, it is
convenient to introduce the angle §;"=8;—2x. The expres-
sion for Ap/g, can then be written in two forms, according
to whether 8; is less than or greater than «: :

for y20, ;,<~x

Ap\ __ 4om m(Mo—1) tan (6/2)—1
(_qa Syl [l N
m(Aly—1) tan (8,/2)+1 -
arc tan y’B’mTl_ +
m(f,—1) tan (6,/2)+1 }
arc tan W/ﬂ’mTl

arc tan
i

m(dLy— 1) tan (04/2)— 1:l+ 2

Tl 1, (0;— 62 (89a)

for y> 0, v<6,;

A-—p> —_dem [ iap M@L—1)tan (6/2)—1
0l w1 JBmi—1
m(),—1) tan (6,/2)+ 1 —
t -
arees vBiImi—1 T

m(},—1) tan (6/2)+1
=1
m(1f,—1) tan (6/2)—1
VP 1

arc tan

arc tan

]+ 7 @ —6k2n)
(89b)

¥The limits &, ¢, and & are all functfons of # but In. moving the partial derfvative through the Integral sign the terms Involufng 39/, %/H, and 3%y all cancel one another,
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where
(0<6,<7)
bimarooos U =VTERIEG TR
(0<8:<x)
8;=arc cos —m{y—ma)—(Fm)P—@y—may®

1+mht
8 =8y —2m(if = < 0y)

The limitation on 6y can be given both an analytic and
geometric interpretation. Thus, equation (8%a) applies for
0<m(z+t)<y and equation (89b) applies for 0<y<m
(z-+t). These regions are shown in figure 43. Because of
the geometrical symmetry about the z axis, equations (89)
suffice for the determination of loading throughout region 7.

An isometric drawing of the load distribution on the right
pauel of a triangular wing with supersonic edges is shown in
figure 44. The positions of the spanwise sections were
chosen so that each of the regions 1 through 7 is represented.
Itis to be noted that the results for region 7 show no unusual
characteristics and, in general, the distribution is similar to
the steady-state loading on & triangular wing.

r~Equation (89(8))
E valid

"~ -£quotion
57 (89(b) valid
// AN
/ \
py \
Vs \
Vs \
’ \
/ N
/ \
x
———_Wing of t=0
Wing now

Fig1 8E 43.—Regions In which equetions (8%a) and (89b) are vaiid.

INDICIAL LIFT AND PITCHING MOMENT ON A TRIANGULAR WING WITH
SUPERSONIC EDGES :

The indieial 1ift and moment could be obtained, of course,
by integrating load distributions calculated by the method
presented above. However, it is far simpler to use the
methods outlined in the section entitled “Boundary-Value

{Ap

G

—— —— Troces of regions shown
in figure 3

FiouRe 44.—Distribution of Indiclel Jonding on right panel of supersoniccdged, 1ok
anguler wing.

¢

Problems Involving Noninteracting Surfaces” in Part II.
In particular the second of the two methods outlined therein
will be applied.

It was seen in the above-mentioned section that the lift
and moment coefficients for a supersonic-edged triangular
wing could be found by solving a related steady-state lifting-
surface problem. For the cases of indicial sinking and pitch-
ing, the boundary conditions for this related problem can
be found readily from equation (34). Since y, and y,
become, for z=0, the right and left leading edges, respectively
the boundary conditions are given by

- (99) — —2Toam(z+Mg) (90)
az =0

for the sinking \'.;ing, and
g—‘I’) e 26m(z 4+ M)? (91)

2z T=Q
for the pitching wing. In addition, it was shown that the
lift and moment coeflicients for the wing in unsteady motion
are obtainable by integration of the quantity d®/¢. For

convenience, this quantity is expressed as a chordwise load-
ing factor in terms of the following notation:

M, (A L
P, —_—2?‘;. I‘_ '—f dy (sinking wing) (02a)
mM,Vy (* A N
P=" 28;’!& o B q’: dy (pitching wing) (92b)
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where

s=mr+ ALt {83)
It is found that (equation (35))

im 9 *{x A dxydt,

P=
s A ) - —G—z.)

(94)

(I1+qutl)2 d.tldtl

P im?d
=) —(x—x)?

L rs'bf

(95)

The lift and moment of sinking and pitching wings will now
be obtained by the use of P, and P;.

Wing with constant angle of attack (sinking wing).—The
solution for the chord loading on a flat, supersonic-edged,
triangular wing starting from rest at {=0 and flying at a
constant speed and angle of attack is given by equation (94).
With the transformations

S—r =Ly
I—h=1bk
this becomes
) X
-_.rn 1[01'2
p=2n2 fdt PP —
L Vi — Lo

This integral can be evaluated and gives for x<t (region A)

P,=1 (96a)
for —<r<t¢ (region B)
Py== 4 I::i:ﬁot—l-arc cos( t)+JB[° arc cos ti{{;& (96b)
and for r<—t (region C)
p=12le (96¢)
where the regions are shown in figure 13. As has been

pointed out, equations (96) can also be obtained by inte-
grating the equations for the loading given in the preceding
section. These integrations were carried out (in some regions
numerically) and the results were found to agree with those
of the present analysis.

It is now possible to write the indicial functions C_r, and

C .’ in the form

9 =
=gy f_ . " m(z+ A f)Podx ©7)
9

r co~ Mot 2
Cl == GorT] f e MEHMAPdr ©8)

where ¢, is the root chord, S is the wing area (equal to mcg?)
and the prime indicates that the pitching moment is measured
about the apex, the positive moment being one which causes
the trailing edge to sink relative to the apex.

Interval
N _?L_ L *
\, Co —Hch
~
@
L.
T Ce o~
®
e s

F1GrRE 5. —Time Intervals used in evpre'sing lift and moment on unsteady, super
sonfe-edged, triangular wing.

Combining equetions (96) and (97) one finds for the first
interval shown in figure 45

2 -t 43\
c,,,=Mcc°2{f_ (e Mzt e e

4 ., . \E—22 oz
= f_t(r—rﬁ[of) [.r-_—+jfot+arc cos( t)+

M, t4f,r
3 arc cos, +JI:|d —I—f

4(:c+ﬂfof)d.r}
This equat.ion integrates to give, if fy={/cq,

for 0 <f,<s+—— (first interval)

M+1 + 1
4
CL‘=E (1 +% fnz) (99&)
Similarly for = 3 fu 17 <t < 3 I (second mterval)
_ L Mefo—1 L
C’L‘—FU-T; - (1 +§ tul) arc cos —p + :
2 arc cos (Mqe—tefH1
=8
o 3=3Mds i i a1 (99b)
“x M, 0
and for <t° (third interval)
.'L[ o—
CL.=% - . (99c)

In the same manner the values for 0," in the various

intervals can be determined by combining equations (96)
and (98). There results

for 0 <ty <5757 i, + 1 (first interval)

Cu'= (1002)
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1 .
for 4 Mo 1 Lt < =1 (second interval)

8

Cn,'= g7 (8 —Mto— Mt — 24DV — (1 —Md*+
% (2 +-Mqt® arc cos M“i“ 1+§§° arc cos (M,— B’-to)]
Q
(100b)
and for Ho—l_fl-gto {third interval)
l__'__§__ .
Cn,/=—3 3 (100c)

Numerica! results will be presented in Part IV,

Wing with linear angle-of-attack variation (pitching
wing).—The solution for the average load on a flat, super-
sonic~edged, triangular wing flying at a constant speed and
pitching at a uniform rate 6 about its apex is given by
equation (95). With the transformation

E— Ty =3
t—ti=t
this equation becomes
— Myt
2 ( otz
p=im'2 f f ) dtydz,
71'32 bt _zﬂ

and the evaluation of this gives (for the intervals defined in
fig. 13)
for <1 (region A)

Pi=t[1+5 (x+Mot)] (101a)
for —t<z<t (region B)
£+ (z M)
=15 e e °°S( D
M, t+M},z 13z+42M¢
g are cos et MR Vt”—x’:l (101b)
and for 2< —¢ (region C)
PI_.‘L?EI“ (101c)

The equations for the indicial functions C; " and Cn can
e obtained from the equations

(coé
e

where the primes indicate the wing is pitching about and the
moments are measured about the leading edge.

2 cﬁ_Mof ]
=§coMo'f-w m(z+Md) Pidz  (102)

2 cq— Mot
T SeMM, f_w m(z+Mg) Py dz  (103)

. |
and for =1

lytical form of the loading equation is different.
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A combination of equations (101) and (102) gives for the
Iift coefﬁment

for 0 <t¢_ i, +1 (first mterval)

e 8 (143 ¢2—
Cu/=gar (145 6~ M) (104a)

for T3 Iol T lgt < T I (second interval)
Cr'= 73T [(2 tr— AI oo 3) arc cos AI"t‘; -4
% arc cos (AM,— 8%+

S Mt~ Mt 1 VE— (L= MEF | (104h)

v

<t {third interval)
C.'=8/38 (104c)

Similarly a combination of equations (101) and (103) yields,
for the pitching moment about the apex, the results -

for 0 <ty <57 (first interval)

M, +1 +1
0,,, = [1+tg—— e -{—4.71[02)] (1058)
for y :fol 1 << g :f 1 (second interval)
O’..":a {[2(1 +t02)——— EM1 -1—4111'9’)_] are cos:h{""'0 —+
21;10 s .
L 14292 Mo H @M B+ @M 18) M
«m} (105b)
and for T—i I <{, (third interval)
0,.,’=—-§ (105¢)

Numerical results are presented in Part IV,

INDICIAL LOADING FOR SINEING TRIANGULAR WING WITH SUBSONIC
LEADING EDGES

The six regions.—As in the study of supersonic-edged
triangular wings, there are also in the case of triangular wings
with subsonic leading edges various regions in wbich the ana-
Figure 46
shows the regions into which the subsonic-edged triangular
wing can be most conveniently divided, where the trailing
edges are again assumed to be supersonic and the solutions
are cut off appropriately. Most of these regions have

- counterparts on the supersonic-edged wing shown in figure 37.
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To begin with, region 6 lies within the spherical wave which
started’at t=0 from the wing apex. Region 1 is within the
cylindrical wave which was started at =0 by one edge of the
wing, but outside the wave started by the other edge. Re-
gion¥4 is the area formed by the overlapping of thé two
evlindrical waves from the oppasite edges, but outside the
region influenced by the reflection of one of these waves on
the opposite edge (secondary wave fronts shown in the
figure). Region 5 is the area between regions 4 and 6 where
the flow is influenced by secondary (end higher order) wave
reflections. Finally, regions 2 and 3 are similar to regions 2
and 3 in the supersonic-edged case; region 2 being that unin-
fluenced by. the starting phenomena and therefore having &
loading already at its steady-state value, and region 3 being
that which is unaffected by the disturbances emanating from
the edges.

- —-Sfa)'flhq spherical
wave from apex

—__ leading edge now
——— Leading edge al t=o

_.——Secondary wave
reflections

-Si‘ar'flnq cylindrical wave
from right edge

FrurRE

15.—The six regions used in the apalysis of the triangular wing with subsonie
leading edges.

Region 1: The solution for the load distribution in region 1
is the same as that for & two-dimensional wing starting
suddenly from rest and moving with a steady subsonic
veloeity V. normal to the leading edge. A solution to the
latter problem for the initial part of the motion is presented
as equation (A6(b))} in appendix A. In terms of the normal
components of veloeity and distance, therefore, the loading
coefficient for the right-hand side of figure 46 can be written
immediately:

Y
(==

- M i4x
Lare =8 tTR
-+arc tan —\ : N

8w, ( MM, t—z1,
w Ve M \1+ A, VM btz

127

The equations which relate the normal components to
those in the free-stream direction have already been given
in the section on region 4 of the supersonic-edged wing.
Use of these relations leads to the following expression for

loading in region 1 (in the coordinate system of fig. 47):

( ( m, \/t\'1‘+‘—mz+[-yl—m;L o
rMa mM,+y1+m? Y mdLi—ly[+mz ]

Mot—|yl 4
arc tan mi lyl+mr (106)
ViV mit{y|—mz
AJl f-éiz+M e
Y M) B~ ) .
omym{x ML t) -
y -m{x +M,t)-—~- Y d
oytaxemit Mt .
'}
~ymx+t ylem®
e y=~mxr + 1 flem?®
rry-mx-tylrm*
Yx
E1GERE 47.—Equations of Iines used in the snalysis of the ungular wing with
subsonie leading edges.

Region 2: The loading on region 2, being the steady-state _
loading on a triangular wing with subsonic edges, is well
known. The solution for region 2 of figure 46 is therefore
given by (see, for convenience, reference 22)

( ) 4am2(r+M'°t)
E ‘mt(x+ My b)—

(107)

where E is the complete elliptie integral of the second Lmd
with modulus 4/T—pg2m?. '
Region 8: The loading in region 3 follows from reference 21

Ap\ 4 | |
(q—f ﬂz (108)

.and is

Region 4: The loading in region 4 of figure 46 is calculated

| by superposition, just as the solution for region 5 of the

wing with supersonic edges was obtained. The solution
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in region 4 is the sum of the solutions for the right and left
halves of region 1, minus the result for region 3. Thus

( [ mbM, (\/t\."l—{—m’—y—mx_i_
. 11-2;{., mMy+1-+m? miMyt+y+me

t /l-l—m"—l-y—-m:c
\/m.Mnt——y+m:c +arcta.n tVi+tm —y mz

arc tan\/ mMyt—ytmz 5 o
. tf1+m2+y—mz 2

(109)

Regions b and 6: In these regions the exact solution for the
loading has not been determined. As was shown in the
section on homogeneous boundary-value problems, such
solutions would require the solution of a three-dimensional
olliptic-type partial differential equation. A later section
will contain an approximate solution for these regions when
the wing plan form is slender. _

Discussion.—An isometric drawing of the load dlStI'lbllthn
for the regions in which it is known, is shown in figure 48.
Comparing the results for the loading on this wing to the one
with supersonic edges (fig. 44), it is apparent that the prin-
cipal difference in the two distributions is in the behavior
around the leading edges; the loading being finite at the
supersonic edge, whereas it becomes infinite at the subsonie
edge. In view of the known steady-state results this differ-
ence was to be expected. Elsewhere the loadings are quite
similar,

_____ Iraces of regrons shown in
figure 46
(Parametfers chosen so regiorn
5 is nonexisfent)

Fieure 48,—Distribution of Indlefal loading on right pancl o! subsonie-edged tri-
angular wing,

TmMitysms

The results presented in equations (106) through (109) will
next be examined in & different light. Choose a given span-
“ wise seetjon on the wing and watch this section as time pro-
gresses, from t=0. This amounts to fixing the axis on the
body and can be accomplished simply by using the quantity
¢ introduced in equation (93),

s=m(z+ M.
Itis clear that & is the semispan of a given spanwise sections
and that if equations (106} through (109) are written in term,
of s, ¥, and ¢, for a fixed ¢ they represent the variation of
loading on a given section as time progresses. '
If the notation is further simplified by introducing the
parameter 8, where

I U
S By a0

equa-f-ions (106) through (109) can be written in the following

way :

\/m—ma

p
Qo M o(mM’oﬁ,

. s—|yl

Bt Y @B —e+ yl) iy
4ams

( ) E\/sz——y (112)

( =% i,o | . (113)

/(ﬂﬁ«_)JrH "

( 1 ‘ﬂ‘xfo<mﬂfmge —y +
/B)— y iy

mAfB8. \/ +arc tan (f/B.)+y—8+

8—I—y Ll
arc tan \/ @By—y—s 2)

The load distribution across any section is given by equa-
tions (111), (113), and (114) from the time ¢/8,=0 to ({/8:)1,
where the term (#/8,); is equal to 2s or 8/m(Afy+1)8,, which-
ever is smaller. (At ¢/8,—2s the secondary waves shown in
fig. 46 have just reached the spanwise section, and at /8,= -
8/mBs(M,+1) the spherical wave which started from the
apex has just reached the spanwise section.) Irom (¢/8.
to (¢/B.)a=8/mB,(Af,—1), the loading has not been determined
and from &/8.,=(t/8.)s to i= « theloading is the steady-state
value given by equation (112). Figure 49 shows this initial
and final load variation plotted as a function of the parameter
t/8, At the beginning of the motion the loading is constant
across the span, but this type of distribution is quickly
modified and. the shape of the curve tends toward the steady-
statc loading given by equation (112) and shown in the figure
as the distribution at §/B.={t/8,:. In fact, if the span is
crossed first by the secondary waves rather than the spherieal
wave, when this span has traveled a distance such that

R
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.

) ‘

t .
A
Frare 49, —Verlation of indiciak loading with 3, at a fixed spanwise sectlon.

t/B.=2s, the expression for the loading given by equation
(114) becomes
'=16mB.8&

Ap
— {11
(% 7 (115)

o _‘_2‘
which differs from the value given by equation (112} only by
a constant of proportionality. Both before and after the
time #/8,=2g the shape of the loading curve varies from the
simple type represented by equation (115}, but the trend is
established.

The average chord loading factor P,, introduced by equa-
tion (92a)., can now be determined. for certain regions.
Hence, if the notation

—=tf8

J[,,l‘ Ap dy

23

(£16)

is adopted, there results for the early part of the motion,
that is, for 0<r/B.< (/81
Po=2 ((2—5-)+4mB. M (r/B) (117)

Equation (117 was derived by integrating equations (111),
(113), and (114). For values of /8> 1/8.m(3f¢— 1)={ =

\39 2
. %) ; d. IS(T
equation (112) is valid. Hence for B‘_( 3 ),
2zm M
pﬂ:% (118)
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Figure 50 indicates the magnitude of this average load for
both large and small values of /8. Notice that for small
values of /8, it is sufficient for the establishment of the

curve to specify fhe parameter mlfy8,, but for large values

an additional parameter must be given (such as 1f; in the
figure). Notice, further, that in spite of the large variation
in the distribution of the loading, as shown in the previous
sketch, the average valué Py varies linearly throughout the
intervals considered. This result is similar to the one
obtained for triangular wings with supersonic edges.

4
mM.p, =}
Ber
|
1
|
| M=t M2
i [ ; —
[ | I
[ | [
[ i I
| | 1 | 1 | 1
o - 4 8 12 17 20
/8.

FIGURE 50.—Variation of P, with £, at a fixed spanwise sectlon.

INDICIAL LOADING ON VERY SLENDER TRIANGULAR WINGS

In Part IT of this report it was pointed out that if the wing

is slender (1 e., has a small ratio of span to chordwise length)
the governing partlal differential equation simplified to the
form _
e O @ua=0 (119)
where the independent variables refer to & coordinate system
that is either fixed on the wing or is fixed with respect to the
still air at infinity. The boundary conditions that apply

when the axes are fixed on the wing will now be considered .

in some detail. (In Part II the variables 1, 9, z; and &

‘were used-to denote this coordinate system. In order to

avoid & cumbersome notation, however, the subscript 1 will
be deleted in the followmt, )

Just as in the previous sections of this report consider &
triangular wing which is at rest for i<0, starts suddenly to
moveat a forward velocity equal to 17 at {=0, and continues
at this same velocity for £>0. In this case, the triangular
wing can be considered as having & finite chord, since span-

wise sections act independently in slender wing theory, and

the final integration in the x direciion can be stopped at any
desired chord length. It should be empha.51zed that in this
case, 1, may be either subsonic or supersonic. A section in
the spanwise direction, as for instance section AA in figure
51 has a trace in the y¢ plane which is & narrow rectangular
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Section A-A

Fleunk 61.-—8lender wing In ry plane end trace of sectlon In g plane.

strip along the ¢ axis. Since equation (119) has been derived
on the assumption that the velocity gradients in the y, 2,
and ¢ directions are independent of the gradient in the =
direction, the boundary conditions along the strip shown in
the figure are independent of those on other strips corre-
sponding to traces from spanwise sections along the wing.
Hence, the problem is to find a solution to equation (119)
which will make ¢, constant over the strip (since a given
spanwise section experiences constant downwash whether the
slender triangular wing is undergoing sinking or pitching
motion) and at the same time will satisfv the other condi-
tions listed under egquation (2). In the lifting-surface
analog this corresponds to the problem of finding the velocity
potential over a flat rectangular wing of low aspect ratio
situated in a free stream moving at a Mach number equal to
v2. Solutions to the latter problem can be obtained by
various techniques, and so the procedure will be first, to find
the potential for the steady-state, flat, rectangular wing, and
then, by analogy, to convert this to the solution for either the
sinking or pitching slender triangular wing.

The steady-state, lifting-surface problem.—Lift ng-surface
solutions for the loading on a rectangular wing traveling at
supersonic speeds have been developed for regions 1, 2, and
3 of figure 52 (by Busemann and others), and by means of
these solutions the load distribution on a spanwise section of
the triangular wing can be determined to a time necessary
for sound to travel that span length. For t>>24, however,
the solution becomes considerably complicated by the in-
creesing number of reflections from the edges. Reference 24
gives solutions for the loading on & rectangular wing in
region 4 and indicates methods for extending the solution to

FIGURE 52 —Reglons used In the discusslon of the low-aspect-ratio rectangular wing,

regions farther along the wing. Already in region 4, how-

‘ever, the expression is cumbersome and in higher-numbered

regions the expressions become difficult to manipulate.
These methods, therefore, will be discarded in favor of a

more approximate but simpler analysis.

If 2 is the distance along the chord, ¥ the distance along

the span, and s the semispan, then the solution for regions

1, 2, and 3 of figure 52 can be written (for convenience, sce
reference 22)

Region 1
aAp__ .
- qo 4 “ (Lzuy)
egion . e
Ap_ _ 8w =yl - o
. . A A t,an\/ m— (1 Ob)
eglon

Ap_ / +y_ 8-y T
e—-—;-(a1ctan +aretan poyt 8+y 2

(120¢)

e il
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As z increases (i. e., for higher-numbered regions in fig. 52)
it is reasonable to assume that the spanwise variation of
loading is virtually invarient with x, that it is “smooth,”
and that it falls to zero at the side edges.
fore, that the loading is given by the relation

=—4—,f( )\ 1—(3*’) (121)

Spanwise, this has the variation shown in figure 53; chord-~ -

wise it is as yvet arbitrary. To fix the chordwise distribution
the value of f(x/s) will be determined so that the vertical
induced velocity along the center line is constant and
equal to w. '

The solution to this somewhat artificial problem approaches
the exact solution to the steady-state lifting-surface problem
for a flat rectangular wing along sections far behind the lead-
ing edge; closer to the leading edge it only approximates the
exact solution; and, of course, in the vicinity of the leading
edge it will be least representative. But, on the other hand,
the exact solution is known in the vicinity of the leading
edge and it turns out that the solution of the problem posed
above forms a reasonable continuation over the remainder
of the wing.

The veloeity potential for the problem which has been set
can be readily expressed in terms of an integration of ele-
mentary horseshoe vortices over the plan form. Since the
Mach number equals 42, then according to reference 19,

(r— rl)(Ap/qu)drldyI
?ll"i‘zz)wl(l' ‘1'1)z yl_zz

where A is the area on the wing within the forecone from the
point P(zy,z), at which ¢ is to be determined (the shaded
arez in fig. 53).

The simplification of the last expression is given in refer-
ence 19. The result is the integral equation

1=f)+2 [ )G —nddm (122)

where y=z/¢ and @ is given by

E 1<np—mn
E,—(1—kHK,

C2

G(n—m)=

1—m<1
1
ky=——1 k=
1= 1~ =0T
The modulus of E; is &, and the modulus of K, and E; is k..
The solution of equation (122) for f(y) is not difficult
when numerical methods are used. For intervals of 4; equal
to 0.2, the result is given in tabular form.in table III, and
also in figure 54. As mentioned previously, the function
F1) determined by this approximate method will be least
representative of the pxact solution in the region near the

Assume, there- *

Ap
aq,

/////

“\--Moach forecone
frace

P(z,y2)

FIGURE 53.—S8panwise loading and region of Integration uSed in the analysfs of the low-espect-
) ratio rectangular wing. .

leading edge. However, since the exact solution is known
for z/s=7<2, a compromise can be effected. If the span-
wise average of the loading is calculated from equations
(120), it is"found to be & linear function of %, starting at
4= for y=0 and falling to zero at =2. On the other hand,
the spanwise average of loading given by equation (121) is

—'n‘%- F(x). Therefore, an improved solution for f(n) consists
]

in taking f(s) as the value given by
2
b (71)=; 2—mn)

in the region 0<9<2, and then fairing this curve inte
that given by the solution of equation (122) for n>2. The
two curves are shown in figure 54.

By using the results listed in table III, the loading over a
low-aspect-ratio rectangular wing flying at a Mach number
equal to 2 can be estimated. Of particular interest is the
demped oscillatory nature of the load, as shown in figure 54,
falling to zero at one span length behind the leading edge
and taking alternately negative and positive values beyond .
this point. (See reference 25.) A somewhat different
approach to this problem (reference 26) has led to a solution
very like the one given here.
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TABLE IIL—SOLUTION OF EQUATION (122)

] £ i g fowrdm 7 - f(n) : |, fou)dm
. 4 93 .
T i B 3 oE

0.0 1.0000 0. 0000 L0 | 01307 L0124
.2 . 0809 .1 42 —.1008 L0803
.4 . 0597 L3840 44 —. 0716 .73
.8 . 0087 . L6 —. 0445 . 9604
.8 L8356 L7582 48 —. 0207 . 0539
1.0 L7330 9122 5.0 —. 0008 9617
1.2 . 6032 1.0450 5.2 L0140 L9531
1.4 L4597 1.162 5.4 L0288 . .8E78
1.8 .3188 1, 2300 58 L0340 95338 |
1.8 L1880 1. 2807 5.8 .37 9705

120 L0724 1.3067 6.0 i L0388 L0782
2.2 —~. 0245 1. 8115 8.2 L0873 . URE8
2.4 —. 1008 |1,2090 8.4 . 0338 9020

| 28 —. 1582 1.2733 . 6.6 L0202 .. 9002

©ag —.1018 LBRE - 6.8 .0%7 1.%5_

i 3.0 —. 2088 1.1983 7.0 . 018D 1. 0087
3.2 —. 228 1.1561 7.9 Q124 Loy -
3.4 —. 2031 1.1145 7.4 0072 1.0137
3.6 —. 1843 1.0758 7.8 . 0026 1.0148

[~ 38 —. 1583 1.0414 78 —.0012 1.0148

f(m)

- ~-From equation (120)

" r-~From equation (122)

s

necessary, therefore, to operate further on the solution given
for the loading in the steady-state problem to obtain the

solutlon for the loadmo in the unsteady problem But

-2/ 0¥
80 that ﬁ" ?tl-le notation

‘ : : aAcp] (

is adopted (where (%—
. Y0

»

represents the Ioading in the anal-
4
ogous steady-state problem), then the expression for the

unsteady loading can be given in terms of (1%) by the equa-
0/

ap_ L [(5p
go A, [( Qo)s+ RIOb&f ( dt’]

By the application of equation (124) to equations (120),
the loading for the various regions in the yf plane of the un-
steady wing can be found. For region 2 in figure 55 there
results

tion
(124)

Fienre 54.—Variation of f(n) with ».

The unsteady-analog, sinking wing.—The first step in
deriving the unsteady-flow results for the sinking wing from
the steady solution is to replace r with . In equation (122)
this corresponds to replacing n with r where 7 is equal to
t/s (equations (116)). The second step is to replace w/V,
with —e and to rederive the expression for loading coeffi-
cient since in the time-varying problem it is expressed in e
somewhat different manner than in the steady-state analog.
In the unsteady case, as the triangular wing moves through
a fixed refercnce plane the local span intersecting this plane
grows as a function of time and equation (12), which repre-

sents the partial derivative with respect to time mth x fixed,
must be expanded to the form

Ap I:E)Aqa:l 2 ( bAga] + bA{o] os
QJIO ;. Vol e Os |, ot

hope | 08¢
where [ St 1

constant s and ¢, respectively.  Since s is equal to m(o:-{—M'ot),
dsjot equals mM, and there results

2 ([0 +man[29])
Go ~ VoM, ot =+ m Mo

In the steady-state problems an analog to the term

d I:%i—‘p:l indicate -derivatives taken at
t

(123)

involving [—baésf:l is missing, and the loading coefficient is
3 .

given entirely by an operation equivalent to bA¢] It is

Ap_ 1 .[8a s—jyl_ ([‘
™ I!:fo[ arc tan s+|y|+m‘u°bs 4adt1-+

¢ 8a ____I_?ﬂ_dt )]
j:_ o arc tan ‘H‘yl

which becomes

8a [ ar [i=8tll . o \/ s—|y l
_ﬂ—_-._ﬂ_ﬂ[mﬂioJ =Ty T{-a.rc tan oS

The loading coefficient can be similarly derived in the other

_regions so that finally, for the regions shown in figure 55,

T LA
Section AA N
Y —
i ’
N s
\’_/,
2 4 \\
. y “
v A 3|
/1N N
N e
Y
J ]
x . !
FigURE 55.—Reglons used to express loading on section of unsteady, subsonlc-odged, trf
angular wing.
Region 1
Region 2
AP 3+y \/—l?:).--_____,
o lrﬂfo(mA °\/ +are tanyf; PR
(125b)
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Region 3
Ap_ 8e s—l—y [—s—y
2 r(mie5 prmil

: 8=y / 8+y__z)
are tan »\/t_g_{_y+a.rc tan ey 2

1125¢)

For the interval {>2s equation (121) must be considered.
By means of equation (124), the expression for the loading
coefficient can he written

h(\f: 3L, | def)y _( )+"‘M°asf tafl ( )\/ 1"( )dt‘]

which beecontes

Ap da mlf,

““”M.,[“ m3Myrig/ 1 () fry4—T e /1 () f f(rl)dn:l

(126)

where f(r) is the solution to equation {122). Notice that for
large r (when the loading has reached its steady state), f(r)

is zero and [;r f(r)é7yis unity. (See table ITL.) Hence, the
loading is given by the equation

Ap__ 4ams
Ga ‘\,".82-_—?,’2

which is the steady-state value'for a slender triangular wing
{equation (112) when E=1).

It is now possible to derive the chord loading factor P,
as defined by equation (92a), thus

1".)=l[° r‘ Apd./

s Js Qo

Placing equetions (125) and (126) in this expression, it is
found that for 0<+<2

Py=22—1)+4mM,r (127s)

and for r=>2

Py=u(1—m Myr)f(r)+2mMor ] fr)dr  (127h)
J0

Since the values of Py given by equations (127a) and (127b)
were derived using different methods, their magnitudes at
r=2 are not equal. The final curve for P, must be con-
structed by fairing the solution for 7<2 into that for r>2.
Figure 56 shows these results together with the final curve
chosen (solid line).

The unsteady-analog, pitching wing.—I¥yhen the wing is
pitching at a steady rate about its apex, the equation for
the vertical induced velocity on the plan form is

wu=_(x+-f1-{ot)é

4

oM
Ny

~~FEquation (I27s
r r-Equaz‘fon 1er b;

I . Il
g 2 4 & & ’ {7
-

FiGrrE 58.—Varlstion of Py with r.

so that —w/V¥, in the steady-state equations (120) and (121)
becomes fg/fm1,. Since the loading coefficient is still given

by equation (124}, there results for the conversion of equa-
-tion (121) the expression '

it [
Jo m‘fut, AN

and this can be reduced to the form

f(f)-l—mlfoasw’;’_ f f(n)dn:[

2z v+

8
o minL T

%i ‘)8 — T)f f(Tl)dTI
)]

As in the discussion of equations (127), it can be seen that
equation (128) becomes for the steady state (r large)

m 1.[0T)\ 8’

(128)

Ap_ 46 /2s8°—y?

g Ve\yai—32
and this ean be shown to agree with the st.eady-state slender-
wing results given in reference 27.

It is now possible to derive the chord loading factor P,
as defined by equation (92b)

mJ[oIv ¢ Apd

28? - Go

1
Using equation (128), one finds for r>2

Po—=o(l —mMor)f(r)+3mMox 0' fryde,  (1208)

and a similar analysis based on equation (120) yields for
0<r<2

=§' (2 b AmMr —-217 mM.,f=) (129b)
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As in the case for P, the two equations for P, do not join at
r=2 and the final curve must be constructed by fairing the
solution for +<2 into that for r=>2 (see fig. 57).

~—--Equation (129b)
/. r—Equation (1293)

£
byl

1 -1 1 -~
g 2 4 6 &8 g
r

FiaUuRE St.—~Varlation of Py with r.

Discussion.-—It is now possible to assess the accuracy of
the solution for very slender wings in the interval 0<7<2

by comparing the values of loading given by slender wing -

theory (equations (125)) with the exact loadings given by
equations (111}, (113), and (1i4), and also by comparing
the slender wing value of the chord loading factor P, (equa-
tion (127 a)) with the exact value given by equation (117).
It is apparent that the approximate solution differs from the
exact only by a stretching factor in the ¢ direction. Hence,
if 7 is replaced by 7/8, and m {(note m is proportional to
y/ty by m8,, where 8, is given by equation (110}, then equa-
tions (125a), (b), and (¢) are identical with equations (113),
(111), and (114), respectively, and, of course, equation
(127a) corresponds to equation (117).

This rather remarkable. result can be enlarged upon from
another viewpoint. Suppose that in the steady-state analog
problem the wing had been flying- at some Mach number
other than /2, say M,. The solution to such a new problem
could be obtained from the old one merely by applying the
Prandtl-Glauert correction, that is, by stretching all dis-
tances in the x direction by the factor 1/8, where gl=|1—
M. Such a procedure would convert, for example, equa-
tion (1272) to the form

PoBe=2(2—r1/Be)+4m Btﬂ‘{o T/ﬁc
Finally, if P, is adjusted so that Py=4 at r=0, there results
Py=22—7/8,)+4mALlyr

which is exactly the answer given by equation (117). It is
possible to simplify the statement of the procedure by simply
remarking: The exact results for Ap/g, or Py in the interval
0<7/8,<2 can be obtained from the approximate results
for a very slender wing by making an effective Mach number

" makes the Mach lines of the steady-state analogy coineide

REPORT 1077—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

correction to the right-hand side of equation (125) or (127a),
respectively. .

It is interesting to pursue this concept even further,
Consider a spanwise section of a triangular wing as time
increases from the starting impulse. The primary wave
fronts emanating from efther side pass across the section,
forming the Mach lines in the steady-state rectangular-wing
analogy. For very slender wings these lines make a 45°
angle with the trace of the side edge and are used to divide
the plan form into regions as in figure 58.. Now find the.
actual position of these primary wave fronts as they form a
trace on the section in the yr plane. A dtraightforward
calculation shows that these lines actually make an angle
equal to arc tan 1/8, with the trace of the side edges. Henee
the effective Mach number which is used to correet the
slender-wing results in the interval 0<7<28, is that which

with the actual trace of the primary wave fronts, ~

r=--Actfual troce of
primory wave front

1
:
1
_ 1
: i
1
! .
! / y/s
“\u 7 :
\‘ //
\ /
N R
\\ S 45 *
N / .
AY //‘\‘ 2
N farn A
\‘! .
AN
N
/ \
/ N
/ \\
/ \
/ N\ .
/ \ ’
¢ \ —_
’ "
’ T
’ RN
' . . N\
Trace of primory wave L \
front obtained from | AN
slender-wing theory--i- - Y
T

Frourk 58, —Wave traces on spanwise seetlon of slender wing.

* INDICIAL LIFT AND PITCHING MOMENT ON VERY SLE}:‘I-DE-R TRIANGULAR

WINGS
The lift coefficient for the sinking wing is given in the
notation introduced in equation (92a) by the e¢quation

)
Comr2s L S Podr

megt)e M,

where Py has been determined in the last section as 2 function
of r=tfs and ¢, is the root chord. Consider the situation

at a certain fixed time and let the £ coardinate in the above.

formula be fixed in the wing. Then set,
I 8 . [,
= me, T
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and as before

My

To=c_o—m3[0§'1' (131)

where 1 is the number of wing-chord lengths traveled. In
this way it is possible to obtain the expression

My =2 f ¢P, (mM ;) d¢

=—2f fPo(mﬁor) @

The equation for the lift and pitching—moment responses
(where again the pitching moment is taken about the apet)
on & pitching wing are

=—2fen

The values of Py and P, were taken from curves similar to
ﬁgurea 56 and 57 in the last seetion (using the faired curves
in the vicinity of 7=2) and the results for the indicial lift
and pitching moment in terms of r;, the number of chord
lengths traveled, are shown in Part IV. -

(132)

and similarly

MCn (133)

(134)

and
JI .,

: r__ To
MCa'= ) (38)

PART IV—RESULTS AND DISCUSSION

TWOQ-DIMENSIONAL RESULTS

The methods presented in the previous seciions have been

used to calculate the indicial lift and moment curves for two-
dimensional wings flying at Mach numbers equsal to 0,
0.5, 0.8, 1.0, 1.2, and 2.0. These results are presented in
figure 59.

Figures 59 (a) and (b) show the variation of the indicial
lift and moment on a sinking wing. The initial value of the
lift is given by the expression 4ofldf,, When the free-
stream Mach number goes to zero this expression still is
valid, the initial velue being a pulse of force that occurs st
t=0. . The final values of the lift are simply the two-dimen-
sional, steady-state results given by the Prandtl-Glauert
rule. Figures 59 {c¢) and (d) show the lift and moment
variation on e wing pitching about its leading edge. These
functions were not computed for 34,=0.5. The results are,
of course, subject to the restrictions of linearized, com-
pressible-flow theory and, for example, the -calculated
responses given in figure 59 for sonic speeds must be con-
sidered as being outside the realm of validity within a few
chord lengths of travel. In application to high-frequency
oscillations, however, the initial portions of the indicial
curves dominate the response characteristics of the airfoil
and caleulations near 1f, equal to one need not be invalid.
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More accurate values of the indicial curves are given in
tables I and II for the subsonic Mach numbers 0.5 and 0.8.
These tables can be extended to larger values of 7, b_y means
of equations (71) and (72).
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(a) Lift on a sinking wing. -
(b} Pitching moment (about leading edge} on a sinking wing.
Ficcre 59.—Varlation of two-dimensional indfelal lift and pitching-moment coeMeients with
chord lengths traveled fors everal Mach nambers.
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(e) Lift on wing pitehing about its leading edge.
(d} Pitching moment (about leading edge) on a wing pitching ebout Its leading edge.

Fiaure 58.—Concluded.

TRIANGULAR WINGS WITH SUPERSONIC EDGES

Curves of the indicial lift and moment on sinking and
pitching triangular wings with all supersonic edges are shown
in figures 60 and 61 for Mach numbers 1.2 and 2.0, respec-
tively. For the purpose of comparison, the curves for a
two-dimensional wing flying at the same Mach number
lave been included in each figure, as well as the curves for
the same triangular wing in reversed flow.

Several conclusions can be drawn from these results.
First, notice that the total indicial lift on the triangular
sinking wing is the same at every instant as that on'the same

wing in reversed {low (both wings, of course, having started

with the same velocity at the same time), and that the value
of this lift is the same-as the total indicial lift on the two-

-
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dimensional wing only at the beginning of the motion and
again'when the steady state has been attained.

~Secpnd, notice that, since all the chamctenstlcs for the
triangular wings are mdependent of the angle of sweep, they
are v{ihd for any unyawed trmngular wing as long as the
edges are supersomc

Thl,[‘d 1t is apparent that the trausition of the total indicial
Lift, frpm its initial to its finul value is less abrupt for the
triangular than for the two-dimensional wing. The initial

.and final values of €y, depend on 1/3f; and 1/8, respectively,

so that as the Mach number is increased the variation dies
out aItogether since 8 and M, approach one another. The
same remark apphes to all the othex coefficients,

4T = SLENDER TRIANGULAR WINGS i

The results for the Iift and moment on & slender triangular
wing that is sinking or pitching about its apex are shown in
figure 62, The anslysis by which the results were obtained
is valid when both m, the tangent of the semiapex angle, and
mM, are small; the results are given for mAf;=1/8." The

_curves ave all quahlat,n ely alike, in each case the response

falls from its high initial value to a minimum at about r,= 1/3

and t‘.hen recovers and practically atteins its asymptotic
value at :u—l

G

3 - B - i _;._____.__..._‘..__J_' -
(8}
20 &

2 4 6
Chord lengths froveled, Vo t/e
(a) Lift on sinkIng wings.

FiGuRE 60.—Indleial acrodynamic charactaristics of trianguler wings with supersunie edges;
Miml.2,
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i Pitching moment (about leading edge or apex} on sinking wmes.
FiaURR 60.—Continued.
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M,=1.2

1.0

()

2 4 - . 6
Chord lengths fraovefed, Vo t'fe

(¢) Lift on wings pitching about thelr leading edge or apex.

F1oURE 60.—Concluded.

(d) Pltching moment (about leading edge or apex) on wings pitching
about thelr leading edge or apex.
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(d) Pitching monient (about leading edge or apex) on wings pitching about thefr leading

edge or aper.

FiGeek 81.—Concluded.
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(b} Pitebing moment (about leading edge or apex) on sinking wings.
FicURE 6L.—Ifdlclal aerodynamic characteristics of triangular wings with supersonic edges;
Mi=20,
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F16URE 62.~Indiclal aerodynamie characteristics of sinking and pltching iriangular wings with slender plan forms.
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(b} Pitching moment (about leading edge), Xfym1.2.
Froure 63.—Indlclal litt and moment on sinking rectangular wings fiying at supersonic
speads,

RECTANGULAR WINGS

By means of the analysis and curves presented by J. W.
Miles in reference 2, the indicial results for a two-dimensional,
sinking wing can be compared with those for a rectangular,
sinking wing flying at supersonic speeds. This comparison
is given in figure 63 for Mach numbers equal to 1.2 and 2.0
and aspect ratios equal to 2, 4, 6, and infinity. It can be
seen that the modification in the shape of the indicial curves

272483 54—20

24 T
M,=20
23 o
22 A
21 /, a6/ 4 7
o 7
20 / b4
\\J - A
19 A NN /
e
pd /
18
\\_//
(c)
I'70 4 8 12 '8 24 24
Chard lengths Fraveled, V, Efc
2 T
M0
£t '/
Edn
10 // - yd //
] -
o \\R i
e
9 \\\ AT AA4
- N~ L~
"B\ =
=
-8 N
=
d)
0 4 & 17 I7; 20 z4
Chord lengths fraveled, ¥, tfc
() Lift, Afe=2.0.

(d) Pitching moment (sbout leading edge), Me=2.0.
Frourx 83.—Concinded.

brought about by the decrease in aspect ratio is similar to
that caused by a decrease in Mach number from supersonic
to subsonic magnitudes.

AvEes AErRONAUTICAL LLABORATORY
NarroNaL ApvisorY COMMITTEE FOR AERONAUTICS
MorreTT FiELD, CaLrir., October 12, 1950.
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APPENDIX A

DETERMINATION OF SUBSONIC, INDICIAL,
SECTION LIFT AND PITCHING-MOMENT CURVES

THE LOAD DISTRIBUTION

The following results for the indicial load distribution on
sinking or pitching wings can be obtained in two ways.
One of these methods will be outlined in the subsequent
paragraphs. The other is outlined in references 28 and 29
and is referred to as the lift-cancellation technique. The
latter method has been used to check the load distributions
originally obtained by the former so that an independent
check of these results has been carried out.

It was shown in Part II, Two-Dimensional Boundary-
Value Problems, that the lifting-surface analog to the solu-
tion for load distribution over an unsteady, two-dimensional
wing traveling at a constant subsonic speed involved the
calculation of load distribution over a swept-forward wing
tip with subsonic edges. Figure Al indicates the geometry
associated with the boundary conditions. Solutions are
given only for the loading in the five regions shown. As has
been discussed in the text, for My=0.8 this was considered
adequate to define the behavior of the indicial responses in
the early stage of motion. For A4;=0.5 the loading in regions
farther down the wing had to be calculated; and in all, for
this Mach number, the loading was analyzed in the 11
regions shown in figure 25. However, the latter analysis
was carried out by a numerical application of the lift-
cancellation technique and none of the details will be pre-
sented here.

In the notation of the unsteady problem the expression
for the velocity potential can be written

ol

where = is the area on the wing plan form included in the
Mach forecone from the point ({,2). Equation (Al) is
applicable only for cases in which w, is known at all points
within the forecone, as is the case when the edge of the wing
within the forecone is everywhere supersonic (i. e., region 1
in fig. Al). However, Evvard (reference 30) has extended
the solution provided by equation (A1) to include cases such

(A1)

Frourx Al~Reglons used in snalysis of unsteady, two-dimensional wing flying at subsonic
spoed.

as shown in figures A2 and A3 in which the forecone inter-
sects a subsonic edge and includes a region of unknown
upwash. As was pointed out in reference 30, equation (Al)
applies in these instances if the area of integration = is limited
to the shaded regions shown in the figures. It is apparent,
therefore, that the potential (and thus the loading) over a
sinking or pitching wing can readily be determined for regions
1, 2, and 4, in figure Al.

Points in regions 3 and.5 have forecones which intersect
two subsonic edges, and the method just discussed cen no
longer be directly applied. In reference 30, however, a
method was given of evaluating the upwash in the region
between the Mach cone from the apex and the leading edge
(region 6 in fig. A4). Thus, the plan form has become,

\ ',/ "
’
W /

P

4
FIoURE AZ.—Area of integration when Mach forecone intersacts subsonis trafling edge.

Ve
p

&

P

/

t
FI10URE A3,—Ares of infegration when Mach forecone intersacts subsonic leading sdge.

-2

-,

t

Fiaorx A4, —Region 6, area between wing leading edge and trace of foremost Mach cone,
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effectively, one such as shown in figure A5 in which only one
edge is subsonic. This reduces the problem of finding the
potential in these regions to the same problem as was involved
inregion4. The analysis used in finding the loading over the
various regions will now be considered.

FirvRE AS5.—Region of tntgration for mived sonte and supersonic leading edge end subsonie
trafling edge.

’

g S(IsMe) VB
1-M, 1-M,

.
/
e e e e e e e ]
w
v

Figrex A¢.—Reglons of figure 41 in the rg plane,

First, introduce & new coordinate system in which the lines
r=—t and r=t{ are taken as the r and s axes, respectively.
(See fig. A6). This amounts to & rotation of the originsl
system of axes through an angle of 45°. The transfor-
mations relating the ¢ to the z, system are

l,_.

{t—ux) t—-— (r+3)

4
I.vl

= ({+2) a:—— (s—r)

tvll"‘

In the new coordinate system equation (A1) is written
wg(rl, 81)dr}_d81

__ 1
N ﬂ'\@-[ 1’("-—7‘1)—(8—81)

The vertical induced velocity w, over the wing plan form
is given in equations (2) and (3) of the text for the sinking

(A2)
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wing and pitching wing, respectively. The method developed
in reference 30 was used to obtain the value of w, over the
area between the lines =0 and r=s¢(1 M) /(1 —2My) (region

6 in fig. A4). The results for the sinking and pitching wing
are respectively,
2 I,oa [J )
(r—s)— ﬂfo(r'['s)
arc tan / 28
Y r—e)— MLt o)
26 1 28 28 |
w.——— {l:(r—s)—-ﬂfa(r-[—s) 3 \/(r_s)_ﬁfa(r-[-s)—
oMt e ey B
[(r—8)— 3 (r-+3)] arc a.n—\ r—9)— Mq(r+a) J

(A3)

In the r,8 coordinate system, if the subsonic trailing edge is
not included in the forecone from the point at which the loading
is being determined, the expression for the loading coefficient
can be written

( )ffwu(f'usl)dhdsl
qo ﬂoMo ar 38 ~r—r)(s—g)

However, if the trailing edge is included in the forecone,
and if the Kutta condition is to apply along such an edge, it
can be shown that the equation for the lcading coefficient
assumes the form

P o G )
Jo TI A‘[D r\T—rI a).1

SINEING WING

(Ad)

w:("h 31)d31
"8 —8;

(A5)

The preceding method can be applied to the sinking wing
to obtain the following integral relationship for the loading

. . . Ap\ . ..
over the various regions. The subscripts on <?p_ indicate
0

the region for which the particular equation applies.

( 4 )[‘ dr, f‘ ds,
Jr[g or b? —t ' r—ry _r_\.’s;.sl

ézg ( ) J" ds, J" dr,
do/2 Tﬂfo or r(1—My y8—8&, J-t Sr—p,
(1+Af}

n(l—M) y8§— 81

(1 M)

Ap 2 { r dr[ (
2o/y wM, Nr—nr brl

n(1-—2Afe}
T d ™

d , a) QFMY
0 \r—r; (arxl eld f -

{ 28 —are tan\/ 28, |
2d8 (ri—8)—Mqy(rts) (ri—8)—M(r1+-8) +
T ! 1v8—8;

dr;

ds,
J: 1,r—r1 (br1+bs) f—r: 1’3—81}
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T dry ( ) f _dsy 1 Ap ‘/ fo—zo —t{1—AL)
( . M, j w di=r \or T 08) Jor Jos, p -n—(}.-{-ll/[o) Mooz, -.rMD[‘”c sin=¢; HTQ)TTJF
i P { J rodry ( ) f ___({8_1___ arc sin 2(1_:73}1—___':3({1)_{-5{") (A6e)
o 5 ‘ﬂ‘ﬂfo Ta ‘/r——rl ory n(_li_—;{tl)n) \/8 81 ° >
"1 (] 1 (Ap . ‘/m . .
n : leap) 8 &TC 8IN 4/ — 5 - - (A6d)
J'r dﬁ ( ) f ((Il_l_;z)) a\ Go/¢ i, tn(-ﬂfo-—--l)
ta 7 ory ( 16 lo—zx [n- ,
a\r rI 1 222y = . o 12 _F 1y —
| | G~ F (T MGV Mgtz 2 FTED
281 281
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Ve % arc sin 2-I° ——————t°(1 —Mo)
where M, (1-+ M)t
8 (1 +MG}_ c i 32K ]._xq—z‘jigto - ~
re=——— i1, ¥ MV I— MGt
2 1+ AL
Most of these integrals can be readily evaluated to give 2T, M sin - fo(tf(-r_gfo) °)+ G, (AGe)
‘here
AP o W _ B
Go/1 Affo (AGa) k' =y1—k*
Apy_ 8 (Mo [ =, \/Moto+xo ¢ =\/l"‘_‘——
( 7o ﬂ_luo (1 +1uo \/m—l-arc tan —to_—xo-— (tu‘jl'xu)(l +ﬂlu)
(A6D) y=arc sinyzq+ Ml
f 1+M-|: _ds o sin {(r+s;)(1—]\fo) [(8—81)(1+Mu)—cx/—]+231[3(1+ﬂ[o) sz‘-f‘(l—ﬂfa)]} i
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PITCHING WING AL 7 LN
—(Myt10)__
A similar analysis of the pitching wing yields the following (Qo . nM, {(ﬂfot°+x° ) are t,an\/ fotxo—1
results for the loading coefficient: .
J&F Z= D=0, zg+z°)]} (A7d)

1 /Ap
E( Z) M (Moo - (AT7a)

L(ar) 8 [111.,(1—1110)(&—1:0)“ (to—xo)(ﬁfota+xu)+

g\ qo/s 370 (14 M)V Mootz

3(Mddo-+ o) are tan T_"*r‘—:’-"l (ATD)
1 1M1—My) [ (to—x0)
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LIFT AND PITCHING-MOMENT COEFFICIENTS

The lift and pitching-moment coefficients may be obtained
by suitable integrations of equations (A6) and (A7) and
are given in the time intervals indicated in figure 34 by the
following expressions:

Sinking wing

1
0<t,< FEyA

21—ty (1—31)]

€, =JI|) (ASIJ.)

AL e, g t2M,
"“«“.1{,,[5“5(1 Mo)+=7

(510—2)] (A98)

1
1+ 1{,,<t" 111,

__4__{4—31*,_,(_1—.1[.])
T2 LU 143,

1+3.11(0
’(’°_1+.1f0)+(1+3.fn)=‘

V o+

1431,
1-!-11 vig(1+3)—1+[2—4, (1434,

—Ay
-1 1— Mgty
arc tan —\/m} I‘ ( ) d.t'o (A.Sb)
1+ \-{0

—6(I=37) |
re tan / Va,arify—2 T

2141 2] 21— fH] +

where (%E) is given by equation (A6e)
[
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Pitching wing
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where G is defined under equation (A7e).
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APPENDIX B
DETERMINATION OF SUPERSONIC, INDICIAL, P @—ts) (B5s)
SECTION LIFT AND PITCHING-MOMENT CURVES ma M, °
THE LOAD DISTRIBUTION 1 1 o
g | TRE SRS T
In the case of the unsteady supersonic wing the expression .
for the velocity potential may be readily obtained by placing ¢ 1 [_1_ are Cos Mity—1 +
the values of w, given by equations (2) and (3) of the text « 7| M, . to
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o=t [ =l . (BY) (B4b)
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where 7 is the area on the plan form included in the Mach M, fo VM —1
forecone. The loading may then be calculated from the o 1 /14+M,
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