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A NOTE ON SECONDARY FLOW IN ROTATING RADIAL CHANNELS!®

By Jaugs J. Kramer and Joan D. Stawirz

SUMMARY

A general vector differential equation for the wvorticity com-
ponent parallel to a streamline is derived for steady, nonviscous,
and incompressible flow in a rotating system. This equation
18 then simplified by restricting it to rotating radial channels
and by making further simplifying assumptions. The sim-
plified equation is used to solve for the secondary vorticity, the
vorticity component parallel to the streamline, in three special
cases involving different streamtube geomeiries; the resulis are
presented in a series of figures. The secondary vorticity is
shown to decrease with decreased absolute angular velocity of
the fluid, decreased inlet total-pressure gradient, decreased
length of relative flow path, and increased relative velocity.

INTRODUCTION

When & fluid with a total-pressure gradient normal to the
osculating plane of the streamline follows a curved path,
velocities are induced in the surfaces normal to the irrota-
tional or “through’ flow direction. These induced velocities
or secondary flows are recognized as the source of several
types of loss in turbomachinery. For example, logses may
occur because of (1) boundary-layer separation caused by
the transfer of low-energy air to regions of decelerating flow,
(2) improper angles of attack in the blade rows of compres-
sors and turbines, and (3) viscous dissipation and unrecover-
ability of the kinetic energy involved in the secondary flow.

Because secondary flows are an important source of loss,
considerable analytic work has been done on this phenomenon
in stationary curved channels by Squire and Winter (ref. 1),

Hawthorne (ref. 2), Kronauer (ref. 3), and others. The _

general method used in these analyses is to compute the
vorticity component parallel to the actual streamline, the
secondary vorticity, caused by a variation in inlet total
pressure across the passage normal to the osculating plane
of the streamline. This secondary vorticity is computed
because it is an indication of the magnitude of the secondary
flow. In addition, Kronauer (ref. 3), using a similar method,
has computed this vorticity component in an axial-flow
rotating channel such as that in an axial-flow compressor.
However, no work has been done on radial-flow rotating
channels, such as in a centrifugal-type impeller.

This report extends the work of Hawthorne and the others
to a rotating radial channel. The results of the analysis are

indications: of the qualitative trends of variables which
affect the secondary vorticity and therefore the secondary
flow. The purpose thus is not to obtain exact data but
rather to obtain some insight into the problem of secondary
flows in rotating radial channels. It is hoped that deter-
mining the relative importance of some of the variables
involved will lead to a better understanding of the flow in
centrifugal-type impellers and similar flow machinery.
Calculations are carried out to show the effects of these
variables in several streamtubes with various geometries.

METHOD OF ANALYSIS

In this analysis the distribution along a streamline of the
secondary vorticity (component of the vorticity parallel to
the streamline) is computed for rotating radial channels. -

PRELIMINARY CONSIDERATIONS

For steady three-dimensional flow of & nonviscous fluid
with nonuniform total-pressure distribution through a
stationary channel, the streamlines and vortex lines lie on
surfaces of constant total pressure (vef. 4, p. 244) called
Bernoulli surfaces. The total-pressure gradient VP is neces-
sarily normal to the Bernoulli surfaces, and in general these

. surfaces are curved in space. The vorticity vector ¢, which

is tangent to the vortex line, is defined by
T=vXV

where Vis the absolute velocity vector tangent to the stream-
line. From the equation of motion the vectors V, t, and
VP are related by

VX=VP

Since VP is normal to the Bernoulli surface, this equation
shows that the streamlines and vortex lines lie on Bernoulli
surfaces. In general, the vorticity vector ¢ has components
tangent and normal to the absolute velocity vector V,  cos ¢
and ¢{ sin ¢, respectively, where ¢ is the angle between the
vortex line and the streamline (see fig. 1). The vortlclt.y
component tangent to V is the secondary vorticity, and it is
this component of vorticity that is an indication of the
magnitude of secondary flow. Between any two points on
the Bernoulli surface there exists a geodesic or path of
minimum distance. In general, the streamline is not a path
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of minimum distance on the Bernoulli surface, that is, the
streamline is not & geodesic; therefore the principal normal V
of the streamline is inclined at an angle ¢ (fig. 1) from the
normal to the Bernoulli surface VP.

If the streamline is not a geodesic on the Bernoulli surface,
the secondary vorticity increases in the direction of the flow
(ref. 2). This condition exists if ¢ is not zero, that is, if VP
has a component normal to the osculating plane of the
streamline, the plane containing the velocity vector V and
the principal normal V. If the streamline is a geodesic, VP
lies in the osculating plane and the secondary vorticity does
not change along the streamline.

-
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Figurs 1.—Vector diagram for statiopary channel.

The general assumptions and method used in the develop-

ment of the equations for secondary vorticity in a rotating

radial channel are outlined in the following sections.

General assumptions,—The flow is assumed to be steady,
incompressible, and nonviscous. Although the fluid is
assumed to be nonviscous in the region of the solution, a
gradient in inlet total pressure normal to the flow planes is
assumed that would have been caused by the generation of a
thick boundary layer by viscous forces upstream of the
region of solution, that is, upstream of the rotating channel.
If it is assumed, as will be done herein, that the boundary-
layer thickness is large compared with the passage height
(i. e., viscous shear forces are low), then the fluid can be
assumed nonviscous and the vorticity calculated from the
equation of motion for an ideal fluid. This assumption is
also made in references 1 to 3.

The flow entering the passage is assumed to be parallel
and uniform except for the thick boundary layer which
results in a total-pressure gradient normal to the osculating
plane of the relative streamline. In a centrifugal-type
impeller, this would be the boundary layer on the inner and
outer shrouds. Thus, initially, the vorticity component
parallel to the streamline is zero. A component of vorticity
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parallel to the streamline is generated when the streamline
turns from its initiel direction or is rotated in a rotating
system. ’

Outline of method.—In order to evaluate the secondary
vorticity along a streamline, the vorticity component
parallel to a streamline is expressed as a function of the
relative total vorticity and the relative velocity. This
expression is simplified using the fact that the divergence of
the total vorticity is zero. The total relative vorticity is
eliminated from the equation by means of the equation of
motion. The equation of continuity is used to express the
gradient along a streamline of the magnitude of the vorticity
component parallel to a streamline divided by the relative
velocity as a function of the relative velocity, the angular
velocity of the rotating system, and the gradient of the
Bernoulli constant in the rotating system. This is the
general vector differential equation for secondary vorticity
in a rotating system. This general vector differential
equation is then simplified by restricting it to rotating radial
channels and by making further simplifying assumptions.
In order to solve for the secondary vorticity by means of
this equation, it is necessary to know the streamline pattern.
As the actual streamline configuration is, of course, unknown
at the outset of the problem, it is necessary to assume a
realistic streamline pattern which from general considerations
would probably not differ greatly from the actual pattern in
order to obtain meaningful results. This assumed stream-
line configuration is based on a potential flow solution or
some other approximation, and a first approximation to the
secondary vorticity is-obtained by means of the simplified
differential equation for secondary vorticity. The secondary
vorticity is solved for in several rotating radial streamtubes
with various geometries using the simplified differential
equation.

GENERAL VECTOR DIFFERENTIAL EQUATION FOR SECONDARY
VORTICITY

The various steps outlined in the development of the gen-
eral vector differential equation for secondary vorticity are
now presented in detail.

Vorticity vector.—The total relative vorticity is first ex-
pressed as the sum of its components parallel and normal to

- the streamline. Let W be the velocity vector relative to

the rotating system and 2, the relative vorticity vector equal
to VXW. (All symbols are defined in appendix A and are
expressed in terms of dimensionless ratios.) The dimension-
less relative velocity W is a ratio of the dimensional relative
velocity to some characteristic speed of the channel wr,. The
angular velocity of the system is » and 7, is a reference dis-
tance from the axis of rotation to some point in the channel.
The vorticity @ and the magnitude of its component ¢ parallel
to a streamline are dimensionless, having been divided by w.

It can be seen from the expansion of the triple vector
product (WX Q)XW that

QW= WXQ)XW
W waw
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From the definitions of the dot and cross products it follows

that the terms on the right are equal to the components of -

vorticity parallel and normal, respectively, to a streamline.
Since ¢ is the magnitude of the component of the vorticity
parallel to a streamline, the preceding equation can be
written
= t= (WXQXW
Q W+-——=
4 wW
where the absence of the bar indicates a scalar quantity.

Because the divergence of the curl of any vector is zero, @
can be eliminated from the left side of equation (1) as follows:

@)

ve=v.(vXW)=0
so that equation (1) becomes

b WX(WXA)
V- =V ©

In order to simplify equation (2) the equations of motion
and continuity are introduced.
Equation of motion.—The equation of motion can be
written (ref. 5, eq. (15))
Wwxa=vE+Z2Y ®)
where H is the Bernoulli constant relative to a rotating sys-
tem, defined symbolically as

_plp W R?
H (WS,. 5 )

In equation (4), p/p is the ratio of the static pressure to the
fluid mass density, made dimensionless by dividing by
(wr)? and R is the dimensionless distance in the radial
direction expressed as a ratio of 7, as are all linear dimen-
sions. The quantity H is analogous to the total pressure P
in the stationary channel in that the relative streamlines lie
on surfaces of constant H in the rotating case (fig. 2) just
as the streamlines lay on surfaces of constant P in the sta-
tionary case (fig. 1). From equation (3) it can be seen that

WX (WXQ) =WXVH+M

=WXVH+2W* g—z i—"'—f—VW 5)

By means of equation (5), the right side of equation (2) can
be expressed as a function of W, @/w, and VH.
Equation of continuity.—In order to solve for the com-

ponent of the gradient of W parallel to the streamline, the
equation of continuity is introduced. This equation states

V. W=0
Hence,

v. -I%W=W-v %, (6)
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FIGURE 2.—Veoctor diagram for rotating channel.

and, from equation (5),

WXWWXS) _ WXVH —9%.-W
V=Y s FW.v 7 )

General differential equation for secondary vorticity.—
Equations.(6) and (7) are now substituted into equation (2),
and the following differential equation results:

£ WXVH —2%-W
WY =V~ + WV — ®)
The first term on the right of equation (8) represents the
secondary vorticity growth caused by two effects: (1) the
turning of the streamline caused by the rotation of the
system, and (2) the turning of the streamline caused by its
curvature in the relative system. In order to clarify the
physical significance of equation (8), the first term on the
right is expanded as shown in appendix B to yield

WXVH_ 2 @ , 2|VH]|

v W w3 VH: w' W ©)

where x, 18 the geodesic curvature of the streamline on the
Bernoulli surface. Combining equations (8) and (9) results
in the following general vector differential equation for
secondary vorticity:

=t 2 %, 2%VH] | & o —20-W
W-VW—WWH-;+—|W—+W-V 7 (10)

(5]

This vector differential equation relates the secondary
vorticity £ at a point along the streamtube to the angular
velocity of the system @, the relative velocity of the fluid W,
the geodesic curvature of the streamtube x,, and the gradi-
ent of the Bernoulli constant VH.
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Physical interpretation of general vector differential
equation,—The first term on the right of equation (10) is
influenced by the component of VH parallel to the -axis of
rotation, and the second term is influenced by the component
of VH normal to the principal normal of the streamline.
The third term on the right of equation (10) represents the
variation of the vorticity component parallel to the stream-
line caused by the rotation of the system, irrespective of any
variation of H. This type of secondary motion'is discussed
in reference 6 for an axial-flow-type channel.

From the first two terms on the right of equation (10), it
can be seen that in a rotating radial channel such as in a
centrifugal impeller, in which the osculating planes of the
relative streamlines are approximately normsal to the axis
of rotation, the only component of the gradient of A which
affects the generation of secondary vorticity is that parallel
to the axis of rotation. This corresponds to the component
of the gradient of H from the inner to the outer shroud. Thus,
the boundary layer on the blade surfaces with the concomi-
tant gradient of A normal to the blade surfaces does not affect
the generation of secondary vorticity.

The vorticity component parallel to the streamline induced
by the rotation of the system is equal to —2w cos «, where «
is the angle between the streamline and the direction of the
axis of rotation (see fig. 2). The applications in this report
are to rotating radial channels so that this term is. zero
because « is 90°. If the channel is stationary, that is, w is
equal to zero, equation (10) becomes

5o £ 2x|VH]|
w.v W W

where it is understood that the variables are in dimensional
form because w is equal to zero. This is the same equation
as that obtained by Hawthorne in reference 2 for a stationary
curved channel.

APPLICATION OF GENERAL VECTOR DIFFERENTIAL EQUATION TO

ROTATING RADIAL CHANNELS

In this section the general vector differential equation for
secondary vorticity developed in the preceding section is
applied to rotating radial channels similar to those in
centrifugal-type impellers, an example of which is shown in
figure 3, and further simplifying assumptions are made.
Numerical examples are solved involving streamtubes with
various geometries which follow logarithmic spiral paths,
including a straight radial path as a special case. A
logarithmic spiral path is similar to the streamlines in a
conventional centrifugal impeller and an analytic expression
is known for such a path.

Further assumptions.—A right-handed orthogonal curvi-
linear coordinate system with coordinates u;, u;, and u; is
chosen. The unit vectors in the u;-, uy-, and us-directions
are 7, 7, and £, respectively. The reference point denoted
by the subscript ¢ in the general analysis shall refer to the
tip of the rotating radial channel so that all linear dimensions
are expressed as ratios of the tip radius and all velocities are
expressed as ratios of the tip speed wr;.

Bernoulli surfaces
approximately
* normol 1o oxis

———
- g
Front view Side view

Figure 3. Front and side views of centrifugal-type impeller.
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Ficure 4.—Flow planes for simplified flow in rotating radial channel.

The flow surfaces on which the relative streamlines lie are
Bernoulli surfaces. These surfaces are parallel to the uu,-
surfaces and are assumed to be planes normal to the axis of
rotation (fig. 4). As a result of this assumption,

w=wk (11)
and o
1H .
VH———U-; % k (12)

where the U, for n=1, 2, 3 are the square roots of the
components of the metric tensor associated with the orthog-
onal curvilinear coordinate system employed and are given
by - '
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in which V is expressed in the coordinates in which the u,
are given. From this assumption it follows that the
Bernoulli surfaces are planes coincident with the osculating
plane of the relative st.rea.m]ine throughout the channel and

¢ i8 490° or —90° when o ? ) is positive or negative,

respectively. This assumption, which is usual in theoretical
studies of secondary flow, implies that the secondary flows
are small perturbations on the primary flow. Hence, if the
secondary flows are large, the results of this analysis are
qualitative rather than quantitative.

The orthogonal curvilinear coordinates in the wus;-plane
are selected so that lines of constant u, are streamlines

Hence, )
W=w: . (14)

It is not necessary for the application of the method that the
coordinate system be so chosen but is merely & matter of
convenience, As stated previously, it is necessary to assume
o streamline pattern in order to solve for the secondary
vorticity. The accuracy of the solution for secondary
vorticity is therefore dependent upon the aceuracy of the
streamline approximation. This approximation might be a
two-dimensional potential flow solution, a mean flow path
through the channel, potential flow through the stationary
channel, and so forth.

Although the Bernoulli surfaces are assumed to be essen-
tially parallel planes, the gradient of the Bernoulli constant
is allowed to vary inversely as the assumed streamtube
thickness ratio = in order to give a closer approximation to
conditions in an actuel passage. The streamtube thickness
ratio 7 is the ratio of the streamtube thickness in the
us-direction at any point to its value at the inlet of the
rotating radial channel. Thus,

1 0H_1/1 dH
Usdu; 7 \U; 0uz/s (18)

Simplified differential equation for secondary vorticity
in a rotating radial channel.—Under the assumptions and
definitions given by equations (11), (12), (14), and (15), the
differential equation (10) for secondary vorticity in & rotating
radial channel becomes

| U1 0 (‘W) o \T; 3 ), AP0

or along a streamline,

d <W>“Wr< aﬁ) (1+W) U‘dul (16)

The term &/W is proportional to the secondary circulation,
that is, the circulation associated with the secondary
vorticity, because £ is the secondary vorticity and 1/W is
proportional to the streamtube cross-sectional area normal
to the flow and therefore normal to the secondary vorticity
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vector. It can be seen from equation (16) that the differen-
tial change in seconda.ry circulation parameter d(¢/W) is

directly proportional to L —Eb ) » which is the Bernoulli

Us,

constant gradient. Also the chﬁerential change in the
secondary ‘circulation parameter is proportional to the sum
(1+4Wy) and to U,dw,/W. In the sum (14 Wk), the term W«
is the angular velocity about the axis of rotation of the fluid
relative to the rotating system, and the term 1 is the angular
velocity of the system itself. Thus, the sum is equal to the
absolute angular velocity of the fluid particle. Because the
factor U,du,/W is the differential element of time required
for the fluid particle to pass through the differential channel

length Udus, the product (1-+TWi) A9 g tho differential

absolute angle through which the fluid particle is turned.
In addition, d(¢/W) varies inversely with TW* so that large
values of d(¢/W) will occur for small values of W.

If the velocity W is constant, the secondary vorticity £
varies linearly with the secondary circulation parameter £/W.
If the flow is accelerating or decelerating for a given differen-
tial change in /W, the differential change in |¢] is greater or
less, respectively, than that for constant W, as can be seen
from the second term on the right in the following expansion
of d(¢/W):

de=Wd (I%)Jrv% aw an

However, because the differential change in secondary cir-
culation parameter d(£/W) varies inversely with W (see eq.
(16)), the tendency of the first term on the right of equation
(17) is to produce an effect opposite to that of the second
term; that is, accelerating and decelerating flows tend to
decrease and increase, respectively, |£. Thus, there is a
double effect involved so that it is not possible, in general, to
predict the exact effect of accelerating or decelerating flow.

Logarithmic spiral coordinates—A logarithmic spiral
curvilinear coordinate system is specified in the relative
flow planes and a rectilinear coordinate system normal to
the flow planes. Hence, the equations of the coordinates are

w;=In R+46 ten 8
uy=0—tan Bln R (18)
Uy=2Z

where R, 8§, and Z are the usual cylindrical coordinates
forming & right-handed system and g is the streamtube angle,
that is, the angle between the radial and u,-directions, posi-
tive when in the direction indicated by positive w according
to the right-hand rule (see fig. 4). For logarithmic spiral
streamtubes, 8 is constant along the streamtube.

The curvature « of a logarithmic spiral streamtube is
sin B/R, and the differential streamtube length is sec 8 dR.
Hence, along a logarithmic spiral streamline equation (16)
becomes

d (W)_z gec B( g) <1+Wsmﬁ) dR (19
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The following equation resulte from integrating equation (19)
along a relative streamline and noting that #; is equal to
zero because the flow was assumed to be initially parallel
and uniform except for a total-pressure gradient normal to
the osculating plane of the streamline:

s=Wseo8(33) [ (1 HREYar o)

where z is an arbitrary point along the streamline. This
equation can be used to compute the secondary vorticity at
any point z along the streamline from the known geometric
and flow conditions.

Case I. Constant r and WR.—In Case I,

.
B

(21)

and the streamtube geometry is similar to the channel in a
centrifugal impeller with constant blade height and blade
spacing. In this case the cenfral angle subtended by the
streamtube width A@ is constant. Because 7 is constant,
OH/[0Z is constant along the streamline. Integrating
equation (20) using W as determined by equation (21)
yields

t/(52) =5k [ @ -BO+eme@—ED | @2

Equation (22) gives the secondary vorticity £ at any radius
R for Case I. It can be seen that £ is directly proportional
to QH/[0Z), and that the change in £ between any two radii
is dependent on the value of R,.

Several special cases can be considered with this particular »

geometry. If R, is equal to zero, equation (22) becomes

£(35) =552 (3R sins) 23)

If the streamtube walls are straight radial lines, g is zero and
equation (23) becomes

)2,

Also, if the channel is stationary,  is zero and equation (23)

becomes
I

All the quantities in the above equation must be expressed
in their dimensional form because o is equal to zero.
The condition for # to be zero at some radius R is given by

3 2
B 2";,%2‘ +-sin $=0 (24)

as indicated by equation (22).
Case II. Constant 7R and W.—In Case I,

E,
=% (25)
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and the streamtube geometry is similar to the channel in a
centrifugal impeller with constant blade spacing (A6 is con-
stant) and constant flow area (blade height varies inversely
with radius). From equations (15) and (25), O0H/JdZ is
directly proportional to the radius B. Integrating equation
(20) using equation (25) for r yields

H(35) =225t s @—Ratein g @—R) | 20

Equation (26) is the expression for secondary vorticity at
any point in the channel for Case II. The change in &
between any two radii is inversely proportional to the value
of R{.

From equation (26) the secondary vorticity is zero at any
point in the channel when

(Z -5;323 @7

It is interesting to note from equation (27) that the second-
ary vorticity is zero at a point when the absolute angular
velocity (left side of eq. (27)) at the mean radius betweon the
inlet and that point is zero. In the previous discussion of
equation (16), it was noted that if W is constant, the differ-
ential change in secondary vorticity at a point is zero if the
absolute angular velocity of the fluid was zero at that point.

Case III. Constant W and r.—In Case III both the
relative velocity W and the streamtube height ratio = are
constants so that the streamtube geometry is similar to the
channel in a centrifugal impeller with constant blade height
and constant flow area (blade spacing A@ varies inversoly
with radius). Integrating equation (20), having noted that
W and 7 are constants, yields

(32) =2t B—Ro+snpE | @9

Equation (28) expresses the variation in £ along 2 streamline
for Case III. It can be seen that the change in £ between

any two radii is independent of the value of ;. The condi-
tion for zero { at & point is
W sin 8
1+t 5—% @—R) ln 29

The average absolute angular velocity between the inlet and
radius R is given by

FoF o () B R

so that equation (28) indicates that the secondary vorticity
is zero at a point when the average absolute angular velocity
(eft side of eq. (29)) is zero. This case corresponds closely
in geometry to that considered by Hawthorne and others in
stationary elbows. The condition for zero ¢ in Case III,
namely, that the average absolute angular velocity of the
fluid is zero, is analogous to the condition of zero turning
angle for zero secondary vorticity in a stationary elbow.
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Summery of equations.—A summary of the geometric
and flow conditions as well as the final equations for second-
ary vorticity and the condition for zero £ in each case is
presented in the following table:

Variable Case I Case 11 Case II1

Al Constant | Constant (49),
o 8 R
=.2
gE . I3
9 T Constant B Constant
&g R
ng

oH R/

57 Constant E(%) . gonstant

W,

- w 3 Constant | Constant
-5
g
2% E/ (EI) Eq. (22) | Eq. (26) | Eq. (28)
= | () | me0D | B -
ke s
S Cfg?dsl:%n Eq. (249 | Eq.(27) | Eq. (29)

RESULTS AND DISCUSSION

Standard conditions.—The final equations express the
secondary vorticity £ as a function of (0H/0Z);, W, R, R,,
and 8. As has already been noted, the secondary vorticity
is directly proportional to (0H[0Z);. The effects of the
other variables are presented in & series of figures in which
the variation of £#/(0H/0Z); with two variables is shown with
the other variables given their values at standard conditions.
These standard conditions are:

W; 04
B 0

R, 04
R 1.0

Case I,—The variation of the secondary vorticity para-
meter £/(0H/0Z); with radius ratio B for various values of
the inlet radius R; and the streamtube angle g is shown in
figure 5 for Case I. In figure 5 (a) the effect of the inlet
radius R; on the growth of the secondary vorticity in passing
through the channel is shown. The variation of the second-
ary vorticity parameter with inlet radius is small for this
case, 80 the choice of the value of the inlet radius for the
standard conditions will not affect the presentation of the
results to any considerable extent.

From the curve of ¢/(0H/[0Z), against B for various values
of streamtube angle g8 in figure 5 (b), it can be noticed that
the change in secondary vorticity at the tip radius for a
given change in streamtube angle decreases as the streamtube
angle decreases. This phenomenon is caused by the fact
that although the absolute angular velocity component
decreases as 8 decreases from 40° to —40°, the length of path
through the channel at first decreases as 8 changes from 40°
to 0 but then increases as f varies from 0 to —40°. As
discussed following equation (16), the change in secondary
vorticity varies directly with both the absolute angular
velocity and the path length so that when g decreases from 0

IN ROTATING RADIAL CHANNELS
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the effects partially cancel each other. For 8 equal to —40°,
the secondary vorticity parameter becomes negative over a
range of R follawing R, because the absolute angular velocity
is initially negative.

5

4
X J ﬁl’ e
\ A
' = g/’/
0 |/
{a)

-1

e/3%)

[=1
@ T
[f=

n

patyd X
|
/ -
s =
0
(b)
-lo 2 4 6 8 1.0
R
(a) Effect of R;.
(b) Effect of 8.

Ficure 5.—Variation of {/(0H/0Z); with R for Case I. Standard
conditions unless otherwise noted.

Figure 6 (a) presents the variation in the secondary vor-
ticity parameter at the tip £/(0H/[dZ)s; with tip velocity
ratio W, for several values of 8. The effect of W, is pro-
nounced, as would be expected from equation (16). For W,
equal to 0.2 and B8 equal to —40°, £, is greater than for W,
equal to 0.2 and B equal to —20° or 0, because the elongation
of the flow path more than balances the effect of reduced
absolute angular velocity of the fluid.

Cases IT and IIT.—The variation of £,/(QH/0Z); with T,
for several values of g8 is shown in figure 6 (b) for Case IT.
As in Case I, the values of £/(QH/[0Z); for W, equal to 0.2
and B equal to —40° are greater than the corresponding
values for 8 equal to 0 and —20°. The same reason men-
tioned under Case I applies here. Secondary vorticities
are, in general, much greater in this case than in Case I
because for the same value of the gradient of the Bernoulli
constant 0H/OZ at the inlet, the value of 0H/0Z at any
other point in the channel is greater in Case IT than in Case
I. Again the marked increase in secondary vorticity with
decreasing W, can be noted. Figure 6 (¢) presents the same
information for Case ITI as is shown in figures 6 (a) and
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(a)

% 2 4 3

(a) Case 1.
Fraure 6.—Variation of £/(0H/0Z); with W,.

R; equal to 0.4.

(b) for Cases I and II, respectively. Again the secondary
vorticity parameter increases rapidly for small values of W,.

This same trend is evidenced in the experimental results
reported by Spannhake in reference 7 (pp. 145-159). The
apparatus used for the experiment was an S-shaped tube
that was rotated about an axis as shown in figure 7. The
fluid, water, enters and leaves in the axial direction along
the axis of rotation. A loss coefficient A based on the total-
pressure drop from inlet to exit was computed. A range of
ratios of circumferential velocity of the pipe to through
flow velocity of the water, corresponding to 1/W, from 0 to
30 was used. The loss coefficient for flow through this
apparatus shows the same trend, that is, rapid increase as
1/W increases, as that of the secondary vorticity in the
theoretical case. Since the experimental work is only some-.
what similar to the theoretical work, for in a channel such
as the rotating pipe the streamline configuration is much
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more complex, and since viscous dissipation, not considered
in the theoretical work, is an important factor, the only
conclusion which can be drawn is that the trends are similar.

Comparison of Cases I, IT, and IIT.—A comparison of the
variation of ¢,/(QH/[0Z), with W, is shown by the solid lines
in figure 8 for the three cases. It is immediately apparent
that the secondary vorticity for Case I is less for all values
of W, than it is for Cases IT and III. If the secondary
vorticity parameter £,/(QF/0Z); were plotted against inlet
velocity W,, the curves for Cases II and IIT would be the
same since the velocity is constant throughout the stream-
tube. The curve for Case I is shown as the dashed line in
figure 8 for which the abscissa is W;. It is seen that the
curve for Case I lies above the curves for Cases IT and III.
As discussed following equation (18), the effect of decelerat-
ing flow is to increase the value of d(¢/W), because of the
consequent smaller values of W, and at the same time to
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decrease df for a given value of d(¢/W). Thus it appears
that of these two effects, that of increasing d(¢/W), and con-
sequently d#, predominates because £ is greater for Case I
than for Cases II and IIT when sall three cases have the
same inlet velocity, that is, when the velocity is less for
Case I than for Cases IT and ITI at all points in the stream-
tube other than the inlet. When all three cases have the
same velocity at the tip, as shown by the solid lines in figure
8, the velocity is greater for Case I than for Cases II and
III at all points in the channel other than the tip. Thus
d(¢/W) is smaller and also the flow is decelerating so that,
as can be seen from equation (17), these two effects com-
pound, with the result that the secondary vorticity param-
eter is smaller for Case I than for Cases IT and IIT.
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Fraurg 7.—Variation of loss coefficient A with velocity ratio 1/77
measured in rotating S-shaped tube as reported in reference 7.
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The secondary vorticities for Case II are larger than those
for Cases I and III because if (QH/0Z), is the same for all
three cases, OH[0Z at any other point is greater for Case I1
than for Cases I and III. The secondary vorticity, being
directly proportional to 0H/0Z, is therefore greater for Case
II. All three curves show the same pronounced increase in
secondary vorticity as W, decreases.

SUMMARY OF RESULTS AND CONCLUSIONS

A -general vector differential equation for the vorticity
component parallel to a streamline in a rotating system is
derived. This equation indicates that at a given point along
the streamtube the secondary vorticity ¢ is a function of the
angular velocity of the system @, the relative velocity of the
fluid W, the geodesic curvature of the streamtube «,, and the
gradient of the Bernoulli constant VH. ' This equation is
then simplified by restricting it to rotating radial channels
and by making further simplifying assumptions. This sim-
plified equation was used to solve for the secondary vorticity
in three special cases involving different streamtube geome-
tries, and the results are presented in a series of figures.
These figures and the equations from .which they were
obtained indicate that:

1. The differential change in secondary circulation param-
oter £/ at a point in & rotating radial channel is directly
proportional to the absolute angular velocity of the fluid,
the gradient 0H/dZ of the Bernoulli constant, and the differ-
ential element of time required for the fluid particle to pass
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through the differential channel length. The differential
change in £/W also varies inversely with the square of the
relative velocity.

2. The secondary vorticities are lowest for Case I with
constant streamtube thickness ratio » and constant central
angle subtended by streamtube width Ag because of the higher
fluid velocities upstream of the channel tip.

3. The secondary vorticities are highest for Case II with
constant 7B (where R is radius ratio) and W because the
decreasing streamtube thickness downstream of the channel
inlet results in increased 0H/JZ.

4. The secondary vorticity increased rapidly in all cases
as the relative velocity at the tip decreased because of the
inverse variation of df with the relative velocity.

5. The decrease in absolute angular velocity of the fluid
caused by a decrease in the streamtube angle 8 caused the
secondary vorticities to decrease except where the resulting
increased path length offset this effect.

6. The loss coefficient measured in an experiment with a
rotating S-shaped pipe showed the same trend, that is, rapid
increase as the relative velocity ratio W decreased, as ovi-
denced by the secondary vorticity parameter in the theoreti-
cal results.

Lewis FricET PROPULSION LLABORATORY
NATIONAL ADVIsOrRY COMMITTEE FOR AERONATUTICS
CreveELAND, OHr0, August 831, 1958
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- APPENDIX A

SYMBOLS

The following symbols are used in this report:

S ~ m'a NU leﬂ'\\.lea m

UQ; U3

Up, Ua, Us

W

Ab

Bernoulli constant relative to rotating system,
dimensionless, eq. (4)

unit vector in u;-direction

unit vector in us-direction

unit vector in u;-direction

principal normal of streamline

total pressure of fluid in stationary channel

static pressure, dimensional

radial length, dimensionless

radial length, dimensional

square roots of components of metric tensor
asgociated with orthogonal curvilinear coordi-
nate system, eq. (13) ’

orthogonal curvilinear coordinates, eq. (18)

fluid veloeity in stationary channel

velocity relative to rotating system, dimension-
less

axial distance, dimensionless

angle between tangent to streamline and
direction of axis of rotation

angle between radial line and streamline, posi-
tive in direction indicated by positive o

total vorticity in stationary channel

coordinate in right-handed cylindrical coordi-
nate system

central angle subtended by streamtube width

K

545

curvature of streamline
geodesic curvature of streamline

Ke

N loss coefficient

2 vorticity component parallel to streamline,
dimensionless

P fluid mass density, dimensional

T . ratio of streamtube height in axial direction at
any point to that at inlet

@ angle between principal normal of streamline
and normal to Bernoulli surface, positive when
indicating positive rotation about streamline
according to right-hand rule

v angle between vortex line and streamline in
stationary channel

Q total relative vorticity, dimensionless

2 angular velocity of system, dimensional

v vector operator

Subscripts:

n index equal to 1, 2, 3, denoting components
in -, Us-, usg-directions, respectively

% inlet

t characteristic point in channel which is tip in
case of rotating radial channel

z arbitrary point along streamtube

Superscript:

vector quantity
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APPENDIX B

EXPANSION OF v.

In order to simplify equation (8) and bring out its physical

W%éy H is expanded as follows:

significance, the term V-

v. WXvH —VW?

= WXVE)+3 VE- 8 (BD)

This expression is further simplified by expressing the first
term on the right as

W XVHy= 2 (.YW)W X VE)+ (7 X0)-(7 X VED)

Since the streamlines lie on surfaces of constant H (see fig. 2),
VH is normal to W and the preceding equation becomes

:%@.(vam=% WVl (WX VE)+WVH - 9] (B2)

Equations’ (1) and (3) and the fact that VH is normal to W
are used to simplify the term VH - © as follows:

- £ 2(‘—"XW)><W+VH><W _
VH.-G=VH-| 3 W+ = =_2VH.§

w.w
B3)
Combining equations (B1), (B2), and (B3) yields
V-W%<VZH=% (W-VW)-(WXVH)-I—%} VH-g (B4)

The first term on the right of equation (B4) involves a triple
scalar product in which the term (W.VW) represents the
relative acceleration of the fluid particle. This acceleration
has two components, one tangent to the streamline and the

WXvH
w2

other along the principal normal equal to W3, where « is
the curvature of the streamline. Hence, the triple product
is equal to —W?3|VH|« sin ¢, where ¢ is the angle measured
from the principal normal of the streamline to the normal
to the Bernoulli surface (in the direction of the gradient of
H), positive when indicating a positive rotation about the
streamline according to the right-hand rule. The quantity
k sin ¢ is the geodesic curvature «, of the streamline, so that
this term is-zero when the streamlines are geodesics on the
Bernoulli surface. Hence, equation (B1) becomes

v WXVE_ 2 op .8 26|V (9)

Equation (9) is used in the simplification of equation (8) to
clarify the physical significance of the various terms of
equation (8).
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