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THEORETICAL STUDY OF THE TRANSONIC LIFT OF A DOUBLE-WEDGE PROFILE WITH
DETACHED BOW WAVE 1

By WALTERG. VINCENTIandCLEOB. WAQONDR

SUMMARY

A theoreticalstudy b dewribed of the aerodynamic chumcter-

titic.-sal small angik of attack of a thin, double+mzigeprom in
the range of 8uper80nizj?ight 8peed in which the bow wave b
detached. The an.alyti h carried out within tifianwwork of
the tran80nic (noni?inmr) small-disturbance theory, ad b
effects of angli of attuck are regardedw a wnuli?perturbation on
the $ow previously culcututed at zero angle. . Z%emti @w
about the jront half of the projile is ca&w?utedby relaxation
solution of a MLitablyde$ned boundary-vak problem for the
transonic smaUdi%turbance equation in the fi.odographpihne
(i. e., t.lwTricomi eguution). The purely wpersonic$mo alind
the rear half h jownd by an mm-on of the wual numerid
method of churactitti. Anulytid remdi’.sare do obtained,
within thejramework oj the 8anw theory,jor the raqe of speed
in which t?Mbow wave ti atiached and the J70Wis complitdy
Wpersonic.

T/b ca.hdatti provide, jor vanishingly small an@ of
attak, thejollowing information w a junction of the tran.sonic
simi.kzrity parameter: (1) chordun%elijt dtitribw.tion, ($) lijk
curve dope, and ($ podion of c-interof lift. A8 in previowe
8hfdie8, h aerodynamic characteristic of a projile of giwm
LMckn488ratw show WlL8vuriution wii!hfree-8trea?nMach num-
ber w the Mach number pm8e-s through i’. A the Mach
number h incremed to higher vidwx, however, the lift-curve
8hpe n%%?to a pronounced maximum in the &n@ of 8hock
atihment and thendech-a. Corrmpondi@y, the center of
lift movesforward toward the leading @e and i%.imretwrn8aft.
l’he8ejinding8 are in marked contnmt to the bebi.or of tlw drag”
coejici.ent ~ zero angk of attuck~which w found in earlier
work to decreme monotonically w i%eMach number increuwd
above1. At Mach number8 abovethatjor 8hockat.!achment,the
re8ult8 of the pre8& cm?cw?ation8tend toward thosu p“ven by
ci’asical linmr theory.

INTRODUC!ITON

The theoretical problem of the transonic flow over a thin,
double-wedge pro~e at zero angle of attack has been treated
in several papem in recent yeara. These papers have in com-
mon that they employ the simplifying concepts of the
transonic srnalldisturbance theory and utilize the hodobgaph
transformation to linearize the resulting mathematical prob-
lem. Following this approach, Guderley and Yoshiham
(ref. 1) began by solving the problem for a free-stream MrLch
number of 1, using analytical methods for the mixed flow
over the front wedge aid the method of characteristics for
the purely supersonic flow over the rear. Somewhat later,
the present authors, using a combination of relaxation
methods and the method of characteristics (ref. 2), extended
the results to free-stream Mach numbers greater than 1,
where a detached bow wave occur-aahead of the proiile. At
about the same time, Cole (ref. 3) obtained an analytical
solution for the flow over the front wedge at subsonic flight
speeds, utiliziig, in effect, the special assumption of a vertical
sonic line horn the shoulder of the wedge. More recently,
Trilling (ref. 4) has been able to remove this special assump-
tion and, with the aid of less stringent approximations re-
garding the flow over the rear wedge, to extend the solution
for the subsonic case to include the complete proiile. As a
result of these investigations, the problem of the double-
wedge profile at zero angle of attack may be regarded as
substantially solved within the limitations of the tiansonic
.m@klisturbance theory. The experimental studies of
Liepmann and Bryson (refs. 5 and 6) and Griffith (ref. 7)
indicate that the theoretical hl.ings are in fundrtmental
agreement with the physical facts.

In a recent paper (ref. 8), Guderley and Yoshihara have
continued their invwt’wations of the double-wedge protile at
Mach number 1 by qnaidering the influence of a vanishingly
small angle of attack. The basic idea in this later work is to
regard the effects of angle of atta~k as a first-order perturba-
tion on the nonlinear flow previously calculated at zero angle.
This approach leads to a linesx boundary-value problem in
both the physical and hodograph planes. The calculation for
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the front wedge is still carried out, however, in the hodograph
plane, since the basic procedures can then be taken over
directly from the previous work. By this means, Guderley
and Yoshihara obtain results for the lift-curve slope of the
profile at zero angle of attack and for the corresponding
distribution of lift along the chord.

The aim of the present paper is to extend the _resultsfor
the double wedge at angle of attack to the case of supersonic
flight with detached bow wave. The fundamental ideas of
Guderley and Yoshihma are followed in reducing the calcu-
lations for the front wedge to a perturbation problem in the
hodograph plane. The detailed formulation of the problem
is, however, necessarily diflerent in the present case. The
boundary conditions for the problem appear in terms of the
results already obtained at zero lift (ref. 2), and the solution
is carried out by numerical methods which diiler only slightly
from those devised for the earlierwork. The lift on the rem
wedgo is calculated by an extension of the method of charac-
teristics. The body of the paper is devoted to the detailed
formulation of the boundary-value problem in the hodograph
plane and to a discussion of the final results. IWoteworthy
diihrences between- the numerical procedures used in the
present work and those already described in reference 2 are
treated in appendices at the end of the report.
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b

c,

1.
k,
M
z

P
AP

!l
t
v
x, y
.X,Y

dcru
()z ..0

PRIMAFCYSrhmow

critical speed (i. e., speed at which the speed of
flow and the speed of sound are equal)

numerical coefficient
(See eqs. (39) and (40).)

airfoil chord L
~t ~efici.t lift per tit span’ -

J (7.C-—
moment, coefficient for moments taken about

leading edge,
moment per unit span
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pressure coefficient,’~

integral defined by equation (45)
numerical constant (See eq. (10).)
Mach number
slope of segment of Mach line in characteristics
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static pre9sure
local lifting presare (i. -e., difference between

static pressureson upper and lower surfaces)
dynamic pressure - -
airfoil thickness
speed of flOW

Cartesian coordinates
generalized Cartesian coordinates

(See eq. (43).)

chordwise position of center of lift

slope of curve of Iift coefficient versus true
angle of attack evalfiated at zero angle

slope of curve of moment coefficient versus true
angle of attack evaluated at zero angle
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normalized angle of attack; also denotes true
angle of attack when used in derivatives

absolute value of q at left-hand limit of lnttice
ratio of speciiic heats (7/6 for air)
basic lattice interval
function of q and 0

(See eq. (A6).)
normalized speed of flow

(See eq. (la).)
special values of q

(See fig. 20.)
normalized inclination of flow; 0 also chmotes

true inclination of flow in equation (lb)
(See eq. (lb).)

normalized half-angle of wedge -
transonic similarity parameter

(See eq. (13).)
fluid density
stream function
incremental values of stream function

(See eqs. (A9) and (All).)

WmJscmm

points in chracteristica net
(See fig. 19.)

components of total stream function
(See eq. (39).)

conditions in free stream
singular solution

(See eqs. (A6) and (A7).)
value at a prescribed lattice point
conditions at critical speed

suPEEscruPTs

quantities determined at zero angle of attack
derivative with respect to normalized nngle of

attack evaluated at zero angle

BOUNDARY-VALUEPROBLEMIN HODOGRAPHPLANE
DESCRIPTION OF PLOW PIELD

Figure 1 is a drawing of the idealized, inviscid flow which
may be espected about a wedge proiile when tho angle of
attack is sufficiently lessthan the semiapex angle of the wedge,
Figure 2 shows the corresponding hodograph representation
“of the flow over the front wedge, which is the region of prime
theoretical ccncerm 13Xcept for the substitution of the
detached bow wave in place of the intlnitefree stream, these
representations follow the lines assumed by Guderley and
Yoshihara in reference & The corresponding drawings for
zero angle of attack, -which are fundamental to the present
case, have been described in detail in reference 2,

In the present example, the path of the central streamline
in the physical and hodograph planes is briefly as follows:
The streamline leaves the bow wave in the physical plnne
(or the shock polar in the hodograph plane) at point A. It
then proceeds with decreasing subsonic speed to a stagnation
point O on the underside of the profile. At O the streamline
branches. The lower branch runs downstream along the
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lower surface of the profile with fixed inclination but in-
creasing speed. The sonic speed is reached at the shoulder
L, where the speed then increases discontinuously in accord
with the Prandtl-Meyer relations. The shoulder itself maps
in the hodograph onto the upgoing characteristic LM.
The upper branch of the central streamline proceeds from O
upstream along the surface of the proiile. The inclination
here is again fixed by that of the surface, and the speed
increases to the sonic value at the lead.iw echzeJ. At this
point the flow is characterized
expansion to supersonic speed.

by anotb& l%ndtl-Meyer

I
-1

I

Fmwm2.—F1owaboutfrontwedgein hodographplane.

The flow configuration which shodd be assumed on the
upper surface near the leading edge is open to conjecture.
Since t~e geometrically available angle of turn will, for any
thin airfoil, be greater than the 130° penpkible for expansion
to a vacuum, a region of separation is to be expected. If the
angle of attack is not too great, this region will probably
be closed, with the central streamline reattaching to the
upper surface a small distance behind the leading edge.
This reattachment will be followed by a compression of the
flow through a system of shock wavea whose arrangement is
sketched only formally in the physical plane (and not at all
in the hodograph plane, where the correct representation
would probably lie on several sheets). The effects of the
flow near the leading edge will be mentioned later, but the
exact process will remain undeiined. Whatever the details,
tho speed on the upper surface will return to a subsonic
value at some point K just downstresn of a terminating,
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normal shook wave. From K the central streamline con-
tinues at tied inclination downstream along the upper
surface, the speed increasing once more to the sonic value
at the shoulder B. At- this point another expansion takes
place, similar to that which occurs at the corresponding
point on the lower surface. In this case the shoulder is
represented in the hodograph by the downgoing character-
istic BG.

The supersonic expansion fan from the shoulder at B (and
similarly at L) is discussed in detail in reference 2. SufEce
it here to say that the supersonic flow field, of which the
expansion fan is the initial part, is separated into two regions
by the Mach line GE, which runs from the shoulder to the
sonic point on the bow wave. (This line vms termed the
“separating” iMach line in reference 2.) The supersonic
flow in the region upstream of the Mach line GE is interde-
pendent with the subsonic field between the bow wave and
sonic line. To obtain a solution for the front wedge, a prob-
lem in tranzonic flow must therefore be solved for the
subsonic field and the interdependent portion of the super-
sonic expansion fan. Conditions in the supemonic flow
downstream of the Mach line GE have no influence upon
the subsonic field. The continuation of the flow beyond GE
can be accomplished by purely supemonic methods once the
solution of the tmnsonic problem is known.

Aside from the obvious lack of symmetry in the present
case, the main dMerenm between the flow here and that
previously studied at zero angle of attack is the existence in
the present problem of the localized supersonic region in the
vicinity of the nose. & pointed out, conditions in this
region are difiicult to formulate. The problem has been
considered by Guderley and Yoshihara (ref. 8) in the comae
of their work at Mach number 1. They fmd that, if the nose
region is disregmded in the hodograph and the boundary
condition along KB is fulfilled all the way in to O, then the
influence on the lift of the resulting fictitious flow at the
fiose is of somewhat higher than the second order in the
angle of attack. This suggests that the effects of the real
flow at the nose may be neglected in a first-order analysis
such as the present. In the work which follows, as in the
calculations of Guderley and Yoshihara, the supemonic
region at the leading edge will therefore be disregarded.

FOEMULA’IYONOFBO~ARY.VM.U2PROBLEM

As is reference 2, the analysis is based on the equations of
the transonic smalldisturbmwe theory with the stream func-
tion # as the dependent variable. If the effects of the flow
at the nose are ignored, the problem of the wedge at angle
of attack a is then readily formulated as a boundary-value
problem in the hodograph plane. To solve this problem for
vanis~ly small a, it will be awuned that the solution #
at angle of attack can be expressed as the sum of the basic
solution ~ previously obtained at zero angle plus a perturba-
tion term o#, where +’ is a function which does not itself
involve a. By consideration of the difhrence between the
boundary-value problems for * and ~, a problem for the
perturbation function ~’ can be formulated. The boundaries
for this problem turn out to be the same as those for the
problem at zero angle, and the boundary values themselves
appeax in terms of ~. The details of these mattem will now
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be given. The reader who is interested only in the results
can proceed directly to the later section on Chordwise
Distribution of Lift.

Basia equations.-The basic equations will be taken in
the form given in reference 2, that is, in terms of small dis-
turbances from tbe critical speed Q? The independent
variables are the formalized speed ~ and the normalized
inclination ~ as deiined by the relations

(la)

(lb)

where
v local speed of flow
o local inclination of flow relative to direction of free

stream
v. free-stream speed
% critical speed (i. e., speed at which the speed of flow

and the speed of-sound are equal)
7 ratio of specific heats
Use of these variables is equivalent to introducing the rules
for transonic similarity. In terms of the foregoing hodograph
variables, the diHerential equation for the stream function
# as given by the transonic smalldisturbance theory is

This is essentially the linear diilerantid equation first studied
by Tricomi (ref. 11). It is elliptic for ?<0 (subsonic speeds)
and hyperbolic for 5>0 (supersonic speeds).

The transformation from the hodograph to the physical
plane is governed by the di.flere?tialrelations

(3bj

where x=z(ij ,~) and y= y(fi,~) are physical coordinates
(horizontal and vertical, respectively), corresponding b a
given velocity t,~ The symbol P*denotes the fluid density at
the critical speed ae. Within the approximation of the
transonic small-disturbance theory, the pressure coticient
CPs (p-pm)/q= can be calculati from the relation

cp=-2v-v-—=–2(vm/~-l)(ij-1) (4)
%

The local Mach number is related to the speed of flow by the
equation

w~= v ~
7+1 r

(5)

For simplicity of notation, the tilde will be omitted from
the symbols ~ and ~ in the remainder of the development.
It is to be understood, unlessstated othertie, @at the quan-

$

titim n and 0 are themselves the normalized quantities
defined by equations (l).

Problem at zero angle of attack,-When the angle of
attack is zero, the localized region of supersonic flow at the
leading edge disappears horn figure 1, and the flow field
becomes symmetrical about the chord line. The corrwpond-
ing boundary-value problem in the q,Oplane has been set
forth in reference 2. It is restated in figure 3, where both
the upper and lower halves of the flow field are now included.
In this representation, the surfaces of the wedge appear as
the semi-iniinite horizontal lines OB and OL, and tho sub-
sonic portion of the shock polar appears as the curve NAE.

-1

{

_ qi-o
t

-- o=f(l-~)~’
for ~—-co I

‘-l
1

N-1

J8778(w) ~el. o__\T7(0,0)+ k2
-19w(8-81)~

FIGUCIG33.—Boumlary-value problem at zero augle of attaok in q, 8
plane.

If the stream function for zero angle of attack is denoted
by ~=~(q,O), the differential equation to be satisiled here is
given by equation (2) as

j&21&o=o (6)

The requirement that the flow shallbe tangent to the surfaces
of the wedge provides the boundary conditions

-where 19Wdenotes the normalized half-angle at the leading
edge. The stagnation point at the leadimzedge is represented
in the present theory by the condition t~at -

&3 for p– CV,–0wS050w

Along the shock polar NAE, the relations for
shock wave require that

- mfi ~,=()
$’T3+611

(8)

an oblique

(9)

:Tbehory cmddeqnal lywellbformohtdfn ternrzofdfdmlmwzfromth h3—drwn LTMSIV. (a e. g., refs.9 and 10). Fors dfamcslonof the refathddp btweon UILSL3UOT
fcmnrdatfrmandthatrud fn tie -t ~1=, - *m la
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for
0=+(1—?))&, —Is?j’so

Along the sonic line, boundary conditions are prescribed
which represent the inffuenw exerted on the subsonic field
by the interdependent portion of the supersonic expansion
fans, On the basis of the procedures given in reference 2,
this influence can be represented completely by the require-
ment that

(lo)

where the upper sigg apply for 1s 0s Omand the 10WWsigns
for -L sds —1. The constant kz which appears here is
given by

where I’(1/3) is -the gamma function of the argument 1/3.
The use of the relations (10) as boundary conditions along
the sonic line reduces the transonic problem of the flow over
the front wedge to a purely elliptidproblem in the hodograph
plarm

In addition to the foregoing conditions, a further condition
is necessary to assure that the &Jution for # will give the
proper scale when transformed to the physical plane. Thfi
is furnished, for example, by the following expression for the
half-chord of the profle, found by integrating equation (3a)
over either OB or OL: .

_ 2 (7+1)(vm/Q—l) ‘/2 0 -c
2* [ 2 IS mh(q,+fto)rh (U—.

If the chord of the proille is given, this condition, together
with the previous conditions (7) through (10), is .MIicient to
determine_a urtiquesolution to the problem.

It is obvious from the nature of the boundary-value prob-
lem (and rdso from considerations of symmetry in. the phy-
sical plane) that the solution for ~ must be antisymmetric
with respect to 6. The problem can be simplified, there-
fore, by discarding the lower half of the hodograph and
replacing it by the condition

#(~, 0)=0 for q~ –1 (12)

The remdting problem is readily solved with numerical
methods by assuming an arbitrary value of 7 at some point

(as, e. g., point E), solving for ~ in the upper half of the
hodograph subject to the conditions (7), (8), (9), (10), and
(12), and then adjusting the solution to satisfy condition (11).

It is apparent from the boundary conditions that the
solution of the foregoing problem will depend on the value
of the parameter 19U,which defines the position of the upper
and lower boundaries in the hodograph. This parameter is

related to the more familiax transonic similarity parameter
$= by the relation

21/3

‘“= [(7+1-&j&c)]’137
(13)

where t/c is the thickness ratio of the complete double-wedge
proiile.3 In reference 2 the solution of the foregoing problem
has been carried out for four values of da.

Problem at angle of attack,-11 the supersonicregion at the
leading edge is ignored, the boundary-value problem for
the wedge at angle of attack appears in the q,6 plane as
shown in figure 4. The primary difference between this and
@e previous @we is that the lines OB and OL, which repre-
sent the surfaces of the wedge, have each been displaced
downvnmd by an amount a, where a is the angle of attack
normalized in the same manner as the other angles of inclina-
tion (cf. eq. (lb) ).’

8
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Fmmm4.—Boundary-valueproblemat angleof attaokin ?,0plane.

The stream function at angle of attack will be denoted
here by #=~(@;a), the latter notation being used to indi-
cate the dependence of # upon the parameter a. The
“function * must satisfy the d.itlerentialequation (2), which
is now written.

+w–2~,,=o (14)

The boundary conditions at the surface of the wedge now
require that

#(% *%-a;a)=O for tlsO (15}

while the condition at the leading edge becomes

#+41 for *–=, –l?m-aSOSOw-a (16}

.
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The shock polar NAE is unaltered from the previous prob-
lem, and the condition on this boundary has the same form
as before. The conditions along the segments BE and LN
of the sonic line are now

Jwv;a)+kz ‘ 40(0,W4 &l=o

,s=-. [+ (el—ey~
(17)

where the lower limit of the integral has been changed in
accord with the displacement of the points B and L. The
upper signs in equation (17) now apply for 1S 0s 0=—a
and the lower signs for —t?.-a~l?~-l. An exprewion

. for the half-chord of the profile can be found aghin by inte-
grating equation (3a) over the line OB or OL, which givbs

_ 2 (7+l)(vm/%-1) ‘1’0c
2 p*$ [ 2 IS _m@e(n,M+a;i)h (18)

If the chord of the airfoil is spec~ed-say the same as at
zero angle of attack—then the foregoing conditions are
sufficient to determine a solutiom IXTOsimplification based
on symmetry considerations is possible in the present case.

Perturbation problem.—The problem of the preceding
section could conceivably be solved by numerical methods-
though with great labo~for arbitrary values of a. Efforts
in this direction would h~dly be justified, however, inwiew
of the fundamental omission of the localized supersonic
flow at the leading edge. It is more reasonable to examine
the problem for vanishingly small a, where &ii ommision
is valid and where- there is hope that the amount of labor
might be reduced.

To proceed along these lines, it is assumed that #(~,O;a)
may be expanded in a power series of the form

#(tbe;4=+(%e;o)+~ i.(%e;o)+o(d

where, for present purposes, only terms to order a need be
retained. The first term on the right represents the solution
at a= O and is thus identical with the function 7(7,0) pre-
viously introduced. The second term will be abbreviated
by means of the notation #(7,0) =#=(~,O;O). If terms of
O(~) are discarded, the expression for Y can then be written

i4@;4=Zq,0)+a *’(7,8) (19)

By comp&_on of the previous boundary-value problems
for 4 and i, a problem for the perturbation function #, -
will now be formulated.

The differential equation for # follows at once from
the differential equations (6) and (14) and the substitution
(19). It is obviously of the same form as the previous
equations, that is,

+’m–2q +’60=0 (20)

The boundary conditions appropriate to the surface of
the wedge are established as follows: The boundary condi-
tion (15) for 4 is first rewritten, with the aid of the substitu-
tion (19), in the form

. By espanding in Taylor’s series about the lines 0= +tla, the
functions # and ~’ can be written

~ these expansions arQsubstituted into equation (21) and
X(q,+L) set equal to zero in accord with the boundary con-
dition (7), one obtains finally for vanishingly small a

,

This is the boundary condition for #’ appropriate to the
surface of the prcdile. It will be noted that the condition is
applied in the hodograph at the original, undisplaced loca-
tion of the surface (i. e., 0= + Ow). The condition depends for
its application on a lmowledge of the basic solution ~.

The boundary condition for ~’ at the leading edge follows
directly from the conditions (8) -md (16). It is tho samo M
the corresponding condition for #, that%,

$’+() for q+— ~,—OWsOSOm (24)
.

As was indicatad, the functions # and ~ ~oth mtisfy tho
same lineaq homogeneous boundary condition on the shock
polar. It folows, as in thb case of the differential equation,
that the condition for #’ on the polar is again the same, that
is,

(26)

for
0=+(1 —q)m, —1s??s0

The treatment of the boundary condition along the sonio
line is complicated by the fact that the parameter a appeara
in the condition (17) as a term in the lower limit of the inte-
gral. For simplicity, the details will be confined hereto the
upper segment BE of the sonic line. For this segment,
condition (17) becomes, after substitution from equation (19),

sW@tw’q(o,e)+h ‘ MMl) ~,+
O.-a ti=itw

all,
:-awa ~1=0 (26)J

applicable for 1s 0s f).—a. To simplify this equation, the
first integral is rewritten

J
a

J
~e(o,(?l)@,= :pJ3 a-

S
‘“-a ;#(o,el)

,.-=(0,–tp 0“
(Ol_021,ah (27)

[t can be shown from Guderley’s analysis of flow at a convex
:orner (ref. 13) t~at, for vanishingly small values of (0s—0),
the variation of # along the sonic line must be of the form

7(0,0)=17(e.-oy’ (28)

ivhere~ is a constant for any given value of Ow. Diilerm-
tiating this relation, one obtains

70(0,01) - (etO-el)l*

Substitution of this result into the second integral”of equa-
tion (27) yields the fact that this integral must be propor-.



THEORETICAL STUDY OF _ TRANSONIC IXFT OF A DOUBLE-WEDGE PROFILE TVTTH DETACHED BOW lVAVE 553

tional to a’~. The first integral in equation (26) can thus
be written

The second integral of equation (26) can be treated similarly
by fit rewriting it as

To deduce the variation of #’ for wmisbingly small (o.–o),
it is tit noted that a result similar to equation (28) must
also hold for the variation of # relative to the displaced
location of the shoulder, that is,

.
#(o,e)= c(e.–a–e)~

The quantity C= C(a) is a differentiable function of a
which reduces to ~ when a=O. Since a will eventually be
made less than any assignable value of (0.— 0), this expres-
sion-may be expanded in the form

[
#l(o,e)=c(e.-e)’/’ 1–; fio+o(cg)1 (31)

u

Now it follows from the definition of # that

#/(o,6)=h +(0,0) –J(O,O)

a+ CY

Substitution from equations (28) and (31) thus gives for
the variation of +’ in the vicinity of the &ouIder

+’(0,0 =l& [Q# (fk–fw3–~ C(Ow–0)’/3+O(a)
1

or

MO,O)=C’(0.–O)43–; C(o.–O)’/’ (32)

where C’ =C=(0). This means that for vanishingly small
(8.–0)

‘ #’@(o,e,)= (eu.-t?,)-’/3 “

On the basis of this result equation (30) can be written

If equations (29) and (33) are substituted into equation (26)
and the boundary condition (10) is taken into account, one
then obtains for vanishingly small a

WM+h J
e“0(0’0’)de,=o.9W(01—0)U3 (34)

where 1S 0S 19U.The boundary condition for #’ along the
upper s@_ent of the sonic line is thus the same as the con-
dition for +. The same result can be shown to hold along
the lower segment.

It remains to impose the condition that the chord of the
airfoil must remain unaltered during charge in angle of
attack. To express this wmiition in terms of +’, equation
(19) is tit substituted into equation (18) to obtain

_ 2 (7+ l)(Vm/a*-l) II*c
2* [ 2 1

J
o

7[ie(~,+om–a)+aVe(q, &Ow–a)]dq (35)
-.

As in the treatment of the boundary conditions along the
upper and lowwrboundaries, Taylor’s expansion gives

~e(~,+o~–a)=&(~, +Q-&8(~, *&)+ LX@ (36a)

+’o(q, jzo~-a)=l’o(~, +6~)–@’oe(q, +OtJ+O(@ (36b)

It can be inferred directly from the boundary-value problem

for ~ that &(q, +Om)=O, so that the term involving this
quantity may be dropped from equation (36a). Substitution
of equations (36) into equation (35) and application of the
previous expression (11) leads, for wmkhingly small a, to the
condition that

J

o
?#’d(%*L) dn=o (37)—.

The boundary wnditions (23), (24), (25), (34), and (37) are
snflicient to determine the solution for ~’ in the hodograph.

& with ~, the boundary-value problem for #’ can be
simplified from considerations of symmetry. Since ~ is
antisymmetric with respect to 6, the nonhomogeneous
boundary wndition (23) which is imposed on # along the
upper and lomr boundaries must be symmetric ia this
vtible. The remaining wnditions, which axe all homo-
geneous, are also symmetric. It follows that # itself must
be a symmetric function of 0.6 The problem can therefore
be simp~ed by again eliminating the lower half of the
hodograph and substituting in this case the condition that

#’8(@3)=0 for q~ –1 (38)

The problem which is finally to be “solved is thus as sum-
marized in figure 5. The boundaries for this problem are

e
,-0 A

+;.0 A
.

0+
-1

-7

FICHJRFI5.—Perturbation problem in q, 0 plane.

JThb mmlt cm m be ergnd dfrmtIYfrom cmdd-tim fn w phyefmlP- It h n=s=ry te make two 0b9mv3tlcm os fOROwr (1) Sfnm the pmedeMelf fs eymmetrfoabout the
chod Mnqthe flowMd at a negntfvo@ of atfackmust h tie IWW@ fmagoof me Sow deld at an equalpositiveangle. (3) To be mufstent wfth the tmdomatnrbatfonassamptfon,it
mueth presnmd thatalf dmnmsfn theIIOWSeldaresmooti fanetfoneofangleof attackat U4 Tk atabmmntetaken togdmr fMPIYtit tie vertfmldl@nce lmtweenanYtwo Mfafs
of oqmdnandmrrmmndlngpmftfveendnwstlve 0@ to a flintorder,mmffded by angleof atfaak It fo).lowethaLforawllolmtlyexaalfq thefncmmantafn # and # Mween the two potnta
meeqti and hen% on the Mle of eqnatfon (19), that tbe value of # Wthetwof.wfnteiethecame.
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identical with those used to obtain ~. The boundary con-
ditions are also identical iusofar as the shock polar and sonic
line me concerned. The only differences between the two
problems are in the conditions imposed along the boundaries
OB and OA. As was the case with ~, the solution here must
be a function of Ow. .

Because of the nature of the integral condition along the
upper boundary OB, a direct solution for ~’ is not feasible by
numerical methods. To obtain a solution, therefore, the
problem is broken down into two subsidiary problems by
means of the substitution

$’=#’d+b+’B (39)

where b is a constant whose value is to be determined.
Boundary-value problems for #’. and ~’. are-then defied
m shown in figure 6. In boih problems the integral condi-

FIGURE 6.-Subsidiary perturbation probloms.

tion along the upper boundary OB is ignored for the time
being, and an arbitrary condition is introduced instead at
the point E. In the problem for #’*, only the nonhomoge-
neous condition (23) is imposed at the upper boundary, and
the condition at E is the homogeneous one that #’4=0.
In the problem for +’~, the homogeneous condition #’.=O is
imposed along OB, and the condition at E is that +’B has an
arbitrary value $’~~ #O. The conditions at the remaining
boundaries are the same as in figure 5 and are therefore not
repeated here. It is apparent that a superposition of #’*
and ~’~ will constitute a solution of the original problem pro-
vided the value of b is adjusted so that the integral condition
(37) is satisfied on the upper boundary. The necessazy
equation for b is found by substituting the expression (39)
into condition (37) and is

Relations for quantities in physical plane.-To complete
the fundamental analysis, relations must. be established
between +’ and the relevant quantities in the physical plane.
Let it=5(~, 0) and ~=fl(w3) denote the coordinates at which
a give~.velocity T,flis found in the physical plane when the
profile ~ at zero angle of attack. As shown in reference 2
(pp. 22-23), the tramformation equations (3), when applied
to the c-we of zero angle of attack (and written in the present
notation), can be put in the generalized dimensionlessform 8

*.%?9fmdmota3.
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o
d : =$ (2&dq+7#e) (410)

=

(41b)
where ~. represents the integral

1.=
J:ji4&)& (42)

By taking the origin of the physical coordin~tes at the lead-
ing edge and introducing the notation X=f!/a and ~=
[(’r+ l)-kf~ (t/c)]’13(fl/c), equations (41) can be integrated to
give

%0=-&~o(2&dn+~@) (43n\
w .

(43b)

The integration in equation (43a) is performed in the holog-
raph over any curve C which begins at q=— co and ends at
the point 7,13. The generalized coordinates X and Y at
which the same velocity 7$3is to be found when the airfoil
is at angle of attack are given correspondingly by

x(q,e;a)=.&
J

:2~#,d~+#@9) (Ma)

(2eJ/sY(q,8;a)=~ #
to

(44b)

The integration in equation (44a) is considered to be taken
over the same curve C as before.’ The integral lti is now
given by

J
I’w= 0 tj#e(q,Ow-a)dq (46)

-.

It can be shown from equations (19), (36), and (37) that for
vanishingly small a

I.=?. (46)

Equations (44) can now be specirilizedin the light of the
basic perturbation assumption. This assumption iIIIpliM
at once that the coordinate X and Yin the physical plane
must be expressible in the form

X(@;a)=Z(q,6) + ax’ (q,f?) (47a)

Y(q,0;a)=7(q,0) +ciP’(q,O) (47b)

where X’(~,0) =Xa(q,O;O) and Y’ (q,tl)E Ya(q,O;O). If ex-
pressions (19) and (47) are substituted into equations (44),
and equatiom (43) and (46) are taken into account, the
following relations are finally obtained for X’ and Y’ in
terms of $’:

J
X’(q,6)=-& ~(2q#’odq+y@) (48a)

w

Y’(7?,t&& #
41.

(48b)

Ylf Cllm311ghUyonMdethedemaIn lnwh@#Ied@ned—as Wmbethe’- foremmp4 when the fntcgratbn h taken orcr the UP- .mrfamof thewedgeInlb undlsplwcd pcdtf4m-
+Istotmthonghtof eahfnglxmtmed m81yUdb mfdide the bomdary.
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The foregoing equations (48) give the initial rate of move-
ment with angle of attack of a point of fixed velocity @
One requires for practical application, however, the rate of
change of q and oat a point of fied location X, Y. Equations
relating the two sets of derivativea can be obtained as
follows: If ~ and o are regarded in the physical plane aa
functions of X,Y, and a–that is, n=~(X,~a) and
o=o(X, ~a) —then the corresponding total di&entials are

dq=n&X+m-dY+ wia (49a)

d8=OxdX+&dY+ i9@?a (49b)

Consistent with the basic pert&bation assumption, q and 6
can be written

q(X,Y;a) =fi(S?,F)+cr#(~,Pj (50a)
_——

O(X,Y;a)=f?(X,Y) +f@(~,~ (50b)
——

where 7 and ~ represent the conditions at a given point X, Y
at zero angle of attack and q’ and 0’ are defined by
q’ (XjF) EVa(X, T,O), O’(Z,T) = O.(X,fiO). In view of equa-
tions (50), equations (49) can be written for vanishingly
small a

dq=y.4X+~&Y+ ~’da (51a)

d6=&dX+~&Y+6’da (51b)

Similarly, from equations (47), one can write for the differ-
entials of X and Y as functions of n, 0, and a

dX=~&+~8d8+X’da

dY=~&q+ ~d9+ Y’da
from which

~&V+~&O=dX– X’da (52a)

~~q+ ~tiO=dY– Y’da (52b)

Solution of equitions (62) for dq and @ and comp-fion of
the results with the alternative expressions (51) gives finally
for q’ and #

(53a)

+Xx’:; (53b)
Q ~

These equations can be put in more @ectly useful form by
mmluating the derivatives of ~ and Y horn equations (43)
and substituting for X’ and Y’ from equations (48). There
results finally

By means of these equatiom the initial rate of change of
~ and o at some tied point in the physical plane can be-
calculated corresponding to any chosen location in the ho do-

graph. The coordinate at which these derivatives apply
are found from the solution at zero angle of attack by means
of equations (43).

The foregoing equations are considerably simplified when
applied at the surface of a wedge profile. Here the boundary
condition is that ~ is constant on a line of constant 6 (cf. eq.
(7)), with the result that ~,=0. Equation (54a), for ex-
ample, can thus be written as simply

1

J
q

#(z,+o)=-
de(%’,*L) -m~#’d~,*L)d~ (55)

where the upper signs pertain to the upper surface and the
lower signs to the lower surface. The corresponding rate of
change of pressure codicient is found by differentiating
equation (4) with respect to angle of attack. If a is used
now to denote the trub angle of attack (related to the previ-
ously used, normalized angle of attack by an equation like
(lb)), such differentiation then gives

Here q’ is still the derivative with re-spectto the normalized
angle as given by equations (54a) or (55). Wkh the aid of
equations (5) and (13), this result can be rewritten

()[(7+ l) M.’(t/c)]’/’ g =—2(2e.)%’ (f16)
a-o

It can be seen from equation (55) and the symmetry prop-
erties of v and #’ that # must be of equal magtitude but
opposite sign on the upper and lower surfaces of the profile.
If the local lift coefficient is represented by Ap/q. = (pl~~—
P.DP,,)/g., it then follows from equation (56) that

[(Y+ l) Mm’(t/c)]l/’
P(AY)I..O=4(MW)11aT’(X,+O) (5~

where the notation q’ (%,+0) indicates that the value is to
be taken on the upper surface of the profile. Substitution
from equation (55) give9 finally

By means of this equation, the initial rate of growth of lift
at any chordwise station can be obtained. Since 7 and +’
are both functions of the parameter Ow,the generalized
quantity which appears on the left-hand side of equation
(67) is also a function of this parameter. These resndtsare
in conformity with the rules for transonic similarity (see,
e. g., ref. 10).

?@THOD OF SOLUTION

As in the previous calculations of ~, the boundmy-wilue
problems for Y’4 and ~’~ can be solved through the use of
finite-dtiwence equations and relaxation techniques. A
detailed description of the general method has been given in
reference 2 and need not be repeated here. Most of ‘the
necessary finitedii7erence equations-notably the tedious
ones along the shock polar and sonic line—can be taken over
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directly from the previous work. The only equations which
need be altered we those directly influenced by the change m
boimdary conditions on the upper boundary and on the
horizontal axis. The only real diflicmlty from this source is
encountered in the solution for ~’~ in the vicinity of the
shoulder (point B in fig. 6). At the shotider itself, the
boundary conditions require h singularity in the first deriva-
tives of *’A, mhich means that any purely numericil treat-
ment would be of doubtful validity in the vicinity of this
point. This difficulty is overcome by subtracting out an
analytical solution of the proper singular form and then
vrorking locally with the difference between this solution
and the desired &own. The singular solution is obtained
from the general results of Guderley (ref. 13) a~d is e.spressed
in terms of hypergeometric functions. The details of this
and other matters regarding the numerical calculations for
the tint half of the prdle are given hi Appendix A.

‘iVit!hthe solution known for the front half of the proiile,
the calculation of the lift on the rear half is a simple matter.
The computations are carried out in the physical plane and
are based on the chmacteristics net previously constructed
for the flow over the rear wedge at zero angle of attack (see,

e.g.,fig.27 of ref. 2). Starting from
+’, one first employs equations (48)

the known solution for
to compute the initial

rate of movem~t of th~ points it &hich the Mach lines of
the basic characteristics net meet the sonic line. l%ing them
results and the known slope of the segments of the basic net,
one then proceeds stepwise along consecutive downgoing
Mach lines, calculating the initial rate of movement of suc-
cessive intersection points on each line. By application of
the proper boundary conditions at the surface of the wedge
the value of # at the surface is finally determined, and from
this the initial distribution of lift is calculated. The details
of the procedure are given in Appendix B.

RESULTSAND DISCUSSION
Calculations of the lift have been carried out, following

the methods just outlined, for the same values of 0. USOC1in
the work at zero lift, namely, 1.3, 1.6, 2.4, and 4.2, Them
values correspond, respectively (see eq. (13)), to values of
the similarity parameter ~. of 1.058, 0.921, 0.703, and 0,484.

To illustrate the results for the front wedge in tho hodo-
graph, figures 7 to 9 have been prepared showing tho vari-
ation of #’*, ~’~, and ~’ for OW=1.6’. The results for

: For tid~tinof$’BhW~p4mw@eof~ lattica@nbd hbfbntedesshewnfor Tfn@nm 22of roformw 2 For #’~,?SO@nta werousedwith a dlrtributlonnppro.
prbtc to & olterd behvior of the depimdontvariable.

I

.

~GURD 7.—The variation of ~’~ as a function of q and 0 for 8.= 1.6(cO=0.921).
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IMwm 8.—The variation of +’4 M a function of q and 0 for 0.= 1.6(.&, =O.921).
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#’. (fig. 7)_are only slightly dii7erent from those previously
shown for # in iigure 23 of reference 2. As before, a rapid
(but regular) variation is apparent in the dependent varia-
ble in the vicinity of the point ~=0, e=l. The results for
X’.i (fig. 8) show a rapid variation near the point T=O,
9=0.. This is a consequence of the previously mentioned
singularity in the first derivatives of #’* at that pornt. The
values of #’ (fig. 9) are found in the present case horn the
equation #’=#’d— 0.5348 ~’~ (cf. eq. (39)). They exhibit
the same behavior m does $’* in the vicini~ of the singular
point but differ markedly in other parts of the field. For
reference, the numerical values from which figures 7 and 8
were plotted are given in tabular form at the end of the
report.

The complete results for the lift of the profle are given in
figures 10 through 13. These results will be discussed in the
following paragraphs.

0HOEDv71sEDISTRIBUTION OF LIFT

Figure 10 shows the calculated lift distribution, in tmmsonic
similarity form, for the four values of ~. considered in the
present work. Also included are the rem.dts for fm=O
(hf.= 1) given by Guderley and Yoshihara in reference 8.
b can be seen, the same general features are apparent for
all values of the similarity parameter.

At the leading edge of the profile, for example, the calcu-
lated lift tends in all cases toward infinity. This physically
impossible result is, of course, well known horn the linear
theory of airfoils at subsonic speeds. It is a result of the
obvious failure of the small-disturbance approximations to
conform with t~e actual phenomena in the vicinity of the
leading edge. This local failure of the theory is known in
the linear, subsonic case to be of little consequence insofar

l\ \,1

1’
II \

L-1_
l’\~\ ‘\ I -\

I I
o .2

as the over-all lift is concerned. It may be preaumecl that
a similar situation exists here.

As one proceeds rearvvardfrom the leading edge, the lift
distribution falls more or lessrapidly, reaching a value of zero
directly forward of the shedder. This latter result could have
been foreseen, since the speed on both the upper and lower
surfaces has a fixed (i. e., sonic) value at this location,
Directly to the rear of the shoulder, the lift distribution
starts anew from zero. This must obviously be the case,
sincethe expansionfrom sonic speed is, tiPrandtl-Meyer flow,
a unique function of the local turning angle, which is tho samo
for both surfaces. Rearward from the shoulder tho lift
increaw monotonically to a relatively small, finite value
at the trailing edge.

Ov~ the front wedge, the four curves of the present study
exhibit a uniform progression with respect to L. The curvo
of Guderley and Yoshib ara, however, crosses the present
curves at severil points. The reasons for this are not ckmr,
though it is highly unlikely that such a result could be in fact
correct. The observed behavior may be due to sbmo con-
sistent inaccuracy in the present numerical approach or to
the appro’kirnationsintroduced by Guderley and Yoshiham
in satisfying the boundary conditions for the interdependm t
portion of the supersonic expansion fan. Over the rear wedge,
the present computations give virtually-a single curve for the
four values of g.. There is again, however, a small incon-
sistency with the results given by Guderley and Yoshihara.
This is as might be expected if the calculated flow ovor the
front wedge is in error in either case.

LIFT-CUEVE SLOPE

Figure 11 shows the generalized slope of the lift curve at
zero angle of attack plotted as a function of the transonic

M2-I

qpz%izp
———— 1.058
-—--— 0.921
-—. — 0.703
—————– 0.484

0.000

\
.\

Guderley and YosJihora ( ReL8)-T
,--si~le Urw fm all vOluesco # O ~

// I_
——

/ ~

/-

.4 .6 .8 I
x/c

FIGURE 10.—Chordwise distribution of lift.
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o Present numerical analysis —Transanic small-disturbance theary

o Guderley and Yashihara (Ref.8) - —Linear theory

6

\

t-

Lawer limit far completely supersanlc flaw (~m=L260)

\

+- APProx”rmate lower limit far constant speed aver rear wedge (.$m4.2871

i\

\

\

4

\ ,

Complete _/
- profile

\ .
\

\
‘x /“

‘x-Front__ _ ,~’
wedge

2 \

Rear_
/ ‘wedge- ,,

/
/ \

/

/’1,

!
0 .5 1.0 L5

FIGURE 1l.—Generalfzed lift-aurve slope as a

similarity parameter. Results obtained on the basis of the
trrmscnic smalklisturbance theory are shown by three
solid-line curves. Each of these curves consists of two
segments sepmated by a gap within which the curve cannot
bo defined on the basis of the available results. The upper-
most of the three curves gives the lift of the complete proiile;
the other two show the division of lift between the front
and rear wedges.

The loft-hand segment of each of the curves in figure 11
shows the variation of lift-curve slope over most of the
rrmge of flight speed in which the bow wave is de.hmbed,
which is the range of primary concern in the present analy-
sis. The calculated points horn which these curves mre
drawn are shown in the figure. The points denoted by
squares wero obtained by mechanical integration of the M&
distribution curves of figure 10.g The circled points on the
vertical axis were located on the basis of the work of Guderley
and Yoshihara.*O

The right-hand segment of the curves in figure 11 shows
the variation of lift-curve slope in the range of flight speed
in which the bow wave is attached and the flow is com-
pletely supersonic. To the order of accuracy of the present
theory, this condition exists for the double-wedge profile at
zero anglo of attack when g. a 2’fi= 1.260.11 Above this
valuti, results completely consistent with the fundamental

2.0 2.5 30

.

function of transoniu similarity parameter.

assumptions of the trmsonic small-disturbance theory cm
easily be obtained by analytical methods. To this end, one
need only presume that the speed is constant on each str@ht-
line portion of the airfoil surface, a condition which is actually
fulfiiled over most of the pertinent range of t.. The neces-
sary procedures are outlined in Appendix C. To the wcu-
racy of the tramsonic small-disturbance theory, the results
provide an exact solution for the lifkcurve slope of the front
wedge for all values of :. in the range of completely super-
sonic flow. For the rear wedge-and hence for the com-
plete profile-the solution is exact down to a limiting value
of ~. somewhat greater than 1.260. Below this limit the
interaction of the shock wave from the bow and the expan-
sion fan from the shoulder influences the flow over the rear
wedge, with the result that the condition of constant speed
is not satisiied. The position of this limit is difticult to
determine exactly. & shown in Appendix C, however, it
must lie at a value of &. less than 1.287. The curves for
the rear wedge and complete profile are thus approximate
for at least a portion of the interval from 1.287 to 1.260 and
are therefore shown dotted in this r~ge. It can be demon-
strated that inclusion of the interaction eflects in the analy-
sis would cause an increase in the computed lift for the rear

‘ wedge. ‘Exact results would thus lie somewhere above the
dot~d portion of the curves in figure 11.

$As Lnthoearllarcnlcmtrtfansofthedraga@Ment atzeraengle(cf.PP.9snd 24ofrot.2), theintemtian over a smallfntervalnearthe Ieadfngedgema mrrledontardytkally on the his

ofon asymptatiorame@n@tfonof thesdntfon In thehodographplum
n In tlgnre11,u la tlguro13thatfollows,timordlnetesfor.E.. LOS9bsve ban ohangad.mmerrhatfromthevahrmglvurfa an wlbr pnbllcation(H fmtnote 1). TM ma done to mrrect

m mar madeIn theorisinrdfntemntbnof tbaIfftdlstdbntfonon thefrontwe%
11A~@~t of tbe wsvo h~ ph at themmgwbatIOWW value af E. d,l(4)Yt.L19L Far 1.191Q. <123) the wave Is attachd but the flo~ hbfxid it k SW SUIE.CIIIIII

.
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The most interesting aspect of iigure 11 is the behavior
of the lift in the vicinity of shock attmhment. Despite
the gap in the curves in this vicinity, it is obvious that the
lift-curve slope of the complete profle must attain a maxi-
mum somewhere in the range from ~.= 1.058 to .fm= 1.287.
This is in marked-and somewhat surprisii contrast to
the previous resukfw the drag coefficiat at zero angle of
attack, which was found (ref. 2) to decrease monotonically
as the similarity parwneter increased above zero. The peak
in the curve in the pr~ent case is accompanied by a similar
variation in the lifticurve slope of the front wedge. The
rwults for the rear wedge may or may not pass through a
minimum in the same range of f=.

A determination of the exact shape of the curves in the
vicinity of shock attachment is not feasible on the basis of
the present laborious methods. The @ting curve for the
complete profile does show a maximum in the range of com-
pletely supersonic flow, but this is in the portion of the
range in which the computed curve is known to be errone-
ously low. If exact results were available for all values of
f., the mtium would undoubtedly be somewhat higher
and displaced somewhat to the left. The infinity which
rLppewsin the slope of the curve at ~.= 1.260 (see Appendix
C) would probably disappear as well. The lift of the rear
wedge, whi& now goes to zero at .$-= 1.260, would pre-
sumably remain finite throughout.

Within the transonic range itself, the curves of figure 11
show little variaticm for some distance above a similarity
parameter of zero. This is in accord with Quderley’s ana-
lytical study of two-dimensional flows m“th a free-stxearn
Mach number close to 1 (ref. 14). Guderley’s work shows,
in particular, that the curves of figure 11 should have zero
slope at t~=O. The figure has been drawn to coniorm
with this requirement. It appeam from the present work
that, for practical purposes, Guderley’s result may be taken
as valid in the ~~e of & up to about 0.5. The same
result was found in reference 2 with regard to the drag
coefficient of the complete profile at zero angle of attack.

Over most of the range of completely supersonic flow, the
lift-curve slope of the complete proiile exhibits the type of
variation well known bm linear theory. This latter theory
gives for the lift-curve slope of all thin proiiles

dct_ 4
az-(bz.~— 1)1/2

(59)

which can be written in terms of the transonic similarity
variables as

[(7+l)Mm’(t/c)]’~ g=+
m

(60)

The dashed curve in figure 11 is based on this equation.
There k“ considerable quantitative difference between the
linear and nonlinear results for values of := just above
1.287. As Emincreases, however, the curves given by the
two theories appear to conve~e. This latter behavior is in
accord with Spreiter’s considerations (ref. 10) regarding the
basic relationship between the linear and nonlinear theories.

To put the results in more familiar form, the lift-curve
slope of the complete profile has been replotted in figure 12
as a function of Mach number for y= 1.4. The results of

.
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FIGURE 12.—Lift-curve slope as a function of Maahnumberforsword
thiolzwaratios(7=1.4)

linear theory give a unique curve defied by equation (69).
The nonlinear, transonic theory providw Q family of curves
with thickncs-sratio as a parameter. As would be m-poctocl,
the range of Mach numbers over which the linear thooly is
a poor approximation becomes smaller as the thickness rotio
is reduced. It ,can be rensoned, in fact, that the nonlinoar
results must tend toward the results of the linear thory m
t/c+o.

CENTZR OF LIFT

Figure 13 shows the chordwise position of the contw of
lift (x/c)l as a function of the transonic similarity pamnmtw.
The arrangement of the figure parallels that of figure 11.
As before, the indicated points were calculated on tho basis
of the lift distributions of figure 10. The curve in tho range
of completely supersonic flow (t. ~ 1.260) WM obt~~ed by
means of the equations of Appendix C. Only results for tho
complete profle are shown.

The movement of the center of lift with increasing & is of
some interest. At ~.=O(IM.= 1), the results of Guclorley
and Yoshihma indicate a position about 29 percmt of tho
chord aft of the leading edge. As the value of L is inoreamd,
the center of lift first moves forward, slowly in the initial
stages and then more rapidly as tho condition for shook
attachment is approached. In the completely supersonic
range, this trend is reversed; the center of lift then moves
aft toward the midchord location given by linear theory.
Apparently, the reversal of the direction of motion must
take place rather suddenly in the vicinity of shock attach-
ment. The limit of forward movement cannot be specified,
except to say that it must lie somewhere ahead of 25 percent
of the chord (and probably aft of the leading edge). The
dotted (i. e., inexact) portion of the curve passes precisely
through the quarter-chord point at f.= 1.260. (The cor-
responding lift distribution is one of uniform lift on the front
w-edgeand zero lift on the rear.) Because of the interaction
effects previously discussed, an exact result would lie somo-
w-hatabove the dotted curve.

CONCLUDINGREMARKS .

The prwent calculations add support to the growing con-
clusion (see refs. 2, 5, 6, 7, ml 14) that no marked changes
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FIGUEH 13.—Center of lift as a funation of transonia similarity parameter.

tako place in characteristics of airfoil sections as the free-
strmm Mach number passes through 1. The establishment
of this conclusion must be regarded, in fact, as one of the
m~jor successes of recent research in transonic flow. In the
present case, as in the previous study of the drag coeiiicient
at zero lifb, the variation of the aerodynamic quantities with
free-stream Mach number is most rapid in the vicinity of
shock attachment. Unlike the behavior of the drag co-
efficient, however, the variations here are large and charac-
terized by a sudden reversal in the sign of the derivative.
In drawing conclusions from these results it must be remem-
bered, of course, that the theory assumesan inviscid medium
and an airfoil of small thickness and infinite span. It also
rwmmcs, in effect, that at a given Mach number the angle of

o

attack is small compared with the difference between the
actual wedge angle aad the wedge angle that would provide
shock attachment at zero lift. To what extent the results
will be valid for viscous flows about ~te-span airfoils at
practically usable values of the thickness ratio and angle of
attack is dificult to say. The effects of finite span, for
example, will surely cause a reduction in the variations near
shock &tacbment. In the present state of theoretical
development, the study of these effects is a task for experi-
ment.

Aims AerOnaUtiC.4LL.moruToRY
NATIONa ADVISORYCo afaIrrrEEFORAERON.4~c3

Momwm FIELD,CALrF.,Aug. 1, 1952



—.— —.. ——. — _-— —____

APPENDIX A

SOLUTIONOF BOUNDARY-VALUEPROBLEMFOR FRONT

The solution of the boundary-value problems for #’* and
~’. was accomplished by tite-difference methods similar
to those developed for the calculation of ~ in reference 2. The
dacription here will be limited to the few features wherein
the present work departs from that disc~ed in the WUfim
paper. (See general remarks under METHOD OF SOLU-
TION.) The notation and sketches follow the conventions
used in reference 2.

FINITE-DIFFERENCE EQUATIONS COMMON TO BOTH PROBLEMS

The only ihite-difference equations common to the prob=
lems for *’A and Y. but not found in the problem for #
derive from the boundary condition on the horizontal axis
(see figs. 5 and 6). This condition is given for both problems
by equation (38) and is 4’e(~,O)=O for qs –1. k the
previous work, the flnit@ffer6nce equations for lattice
points located on a boundary were obtained by approxima-
tion to the boundary condition itself. In the present case,
the appro.xinmtion to the differential equation will be
employed, “md the boundary condition incorporated through
use of the equivalent symmetry property.

Consider a typical point Oon the horizontal axis as shown
in figure 14. Point 3 is a fictitious lattice point located

I

1-

‘-J+-
1
IA
I
J
3

FIQUBE 14.—Point on horizontal axis.

below the horizontal asis at 0= –A, where A is the lattice
intervid. The iin.ite-differenceapproximation to the dMer-
ential equation (2o) of the present text is given by equation
(37) of reference 2 as

#’J+#’r%o(#’1+ i’s) –2 (1 –27?0) Y’o=O (Al)

where qO is the absicissa of point O. The symmetry property
lending to the boundary condition (38) requires that +’s=+’1,
so that for points on the horizontal axis equation (Al)
reduces to

#’A-g’r4voti’~-2 (1–270M’0=0 (A2)

The point at the intersection of the horizontal asis and the
shock polar needs special consideratio~ Figure 15 shows
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FIQUEH 15.—Point at intersection of horizontal axis and shook polar.

conditions at this point. Here, as before, point 4 is a
fictitious point located below the boundary symmetrical to
point 3. It follows from the boundary conditions (25) ond
(38), both of which must be satisfied at the point O, that tho
fit derivatives in the coordinate directions are both zero
at that point. On the basis of this fact, if the function
~’(~,e) is e.spanded in a two-dimensional Taylor’s series
about point O, the following finite-difference relations for the
second derivatives are easily obtained:

AJ&lo=4@ tir~ VO

A~+’@@[o=2*’3—2+’o–PA~+’mlo

Here the symmetry property about the horizontal am has
been used to equate +’1 to $’S. Substitution of theserelations
into equation (20) for m= —1 leads to the following finite-
difference equation for the point O:

4(1–2P)#’l-; (l–2F)#’9+!lw8–
[

4+ (1–2L?)] #’o= O (A3)

HNITE-DIFFEJIENCE EQUATIONS SPECIAII TO #’s

The only fl.nite-differenceequation special to the problem
for ~’~ is the one used to terminate the field of computation
at some vertical @e on the left. As in the corresponding
work for ~, this equation is derived from an asymptotic
solution of the boundary-value problem valid for lmge
negative values of q. The derivation is paralhd to that
described in detail on page 16 of reference 2.

The boundary conditions -which must be satisfied by l’.
at large negative values of ~ are shown in figure 16. The
shaded section shows the anticipated variation of #’E for
constant ~. A solution of the differential equation which
satisfies the given boundary conditions is



TKl!lORETICALSTUDYOR THE ‘PR-KNSONICLTFPOF A DOIJBLE-~D~El

{

$; —0
‘+

for q —–03

r $$@o)=o
8=0

FIcmnE lf3.-Boundary conditions on #’E at Isrge rqative q.

where ~lfl is the modified Be&el function of the second kind
of order 1/3 and the C%are appropriate constants. II only
the lmding term of this solution is used and the Bessel
function is replaced by the first term of its asymptotic
e.spansion, there results

l/B(T@)=c Cos() [ 1g x(–n)-”4q –&m(–%)’”w

& in the earlier work, let A denote the lattice interval and
# some large negative value of ~ such that A/11<1. It then
follows from the foregoing solution that, to a fit order and
for a given value of 0,

WA-B-M)=
#’B(-~,e) (l-$j)ew(-~@) (A4)

By substituting this relation into equation (Al), a iinite-
ditTerenceequation can be obtained which is valid for points
on the line q= —B and does not include any points to the
left of this line (cf. eq. (39) of ref. 2).

FINITEDIPFERENCE EQUATIONS SPECIAL TO WA

The only equations special to the problem for #’* arise as
a consequence of the condition along the upper boundary,
where the values of ~~ are prescribed as a function of ~.
Along most of the boundary, this condition can be met by
substituting the prescribed values directly into fin.ite-difler-
enca equationa of the type (Al) for points one intervrilbelow
the boundary. Because of the nature of the boundary values
near v=O, however, some change born previous procedurw
is necessary in the vicinity of the shoulder. Modification is
also required in the equations used to terminate the field on
the left.

Points near shoulder of wedge.—l?rom the known behavior
of ~ in the vicinity of the shoulder (see Guderley’s results,
ref. 13, for the flow around a convex corner), it can be shown
that the variation of #’A ilong the upper boundary near
q= Omust be of the form

#’A(%%)=%(%ee)‘D(–dl/2 (A6)

where ~ is a constant of proportionality. A singuk solution
of the differential equation (20) which is valid in the vicinity
of the shoulder and which satisfies the boundary condition
(A5) is also obtainable from Guderley’s results. This
solution is, in the present notation,

tid,(%

0

PROFILE WITH DETACHED BOW WAVE 563 “

t?)=D(-#ql-ly6F
(

111 ~

)—G’rz;m
(A6)

where F is the hypergeometric function and ~= ~(q,d) is
defied by

Equation (A6) is suitable for use near the upper boundary
(Ogem,r=o). FTear the sonic line (–~~0, t~–m) the
following alternate form is available:

{[ 1(fd~% ‘)=9 (–7)3+;6%+2 % 112 1

)–G’zs; iq +

(–T)W

(

~ 12,4. 1
2~13(l_{)V6

)}6 3 3’ l–~ (A7)

If equation (A7) is evaluated on the sonic line, there results

This result is in agreement with equation (32), which was
developed from other considerations. It is apparent from
equations (A5) and (A8) that a solution for #’d will have a
singularity in the first derivatives at the point ~=0, d=d~.

Because of tho foregoing singukmity, a direct numerical
calculation of #’d might be expected to run into &flicuhy
in the vicinity of the shoulder. Attempts along these lines
led, in fact, to the unlikely result of negative lift over a
small region of the profile just forward of the midchord.
Reductions of the lattice interval to quite small values
served merely to decrease the extent of this region. This is
in contrast to the previous work for Z (and for #’B as Weu),
in which the singularity at the shoulder appesm in the
second derivatives. In that case, a suiliciently accurate
solution for the unknown function could be obtained by
direct calculation. In the present work, it was found
necesshry to subtract out the singularity in the first deriva-
tives according to the following procedure: ,

Let a function b~’d be defied such that

where ~.4, is a singular solution of the type given by equations
(A6) and (A7). II the actual, numerically determined
values of $’A on the upper boundary are examined, it is
found that for a small length of the boundary near the
shoulder these values can be replaced to a good approximation
by a %power variation of the form given by equation (A5).
~bis is done, and the constant D is determined such that
within this length of bound~ ~’d.(~, 19u)= #’d (q, Ou) or
6~A=0. On this basis, a boundary-value problem for
w’* cm be defined for a small region nmr the shouldm as
shown in iigure 17. The problem for 6#’d within this region
is solved jointly with the problem for +’.4 in the remarndarof
the field. The two regions are fitted together by the use of
overlapping latticea, much as is done m the case of a graded
mesh (see ref. 15). The oply difference is that equation (A9)
must now be utilized to make the @msition between the
two lattices at all their common points. It is seen born
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)?IGcmn 17.—Boundary-value problem for 6+’A.

figure17thatconditiom for 6#’. on both the upper boundary
and sonic line are identical to the corresponding ccmdit.ions
for ~. The llnite-difbrence equations for the calculation of
84’4 can therefore be taken over directly horn the previous
work. ,-

& nearly as one can judge-from experience with various
lattice spacings, results obtained by the foregoing process are
quantitatively as well as qualitatively reliable. The primary
source of error is in replacing the actual vfduw of *’* along
the upper boundary by a ~power variation. Since the re-
gion over which this is done in the hodograph corresponds to
~ very small portion of the chord in the physical plane,
errors from this source are probably small.

Points far to the left,-The boundary conditions for IJ’A
at large negative vahms of T are shown in figure 18. From

. ,/

t-i
8=t?w

yJ%@J=@7,qJ

-{

*; ●--o

for q —.0)

812’ (9,8) -–

4’&,o)=o
8=0

I?rmmm 18.—Boundary conditions on ~’d at large negative q.

the asymptotic solution for the basic problem (eq. (38) of
ref. 2), the expression for #’A along the upper boundary @
found to be

(A1o)

where E is a constant.
Because of the nature of the boundary condition (A1O), it is

not possible to write an asymptotic solution for #’4 for large
negative q in a single term. I?or this reason, the procedure
used previously to terminate the field of calculation at some

location on the left cannot be applied in the present cam.
An alternative procedure, more arbitrary in nature, can be
devised by writing +’~ in the form

+’A(%@ =#’A(%Q +64’A(l@) (All)

where &#’4 k now defined by 6#’4(@) = VA(q)O)—#’A(q,O@)
(see fig. 18). The attenuation of #’A in going from a point
at q= —/3to a point at q= —j?-A isthen found by treating
each of the terms m equation (Al 1) as an independent
quantity. The attenuation of W4(q,oW)is found from equa-
tion (A1O) by a procedure similar to that used in obtaining
equation (A4). The result is ●

To obtain a corresponding equation for 8ti’Alit is assumed
that for a given value of o this quantity attenuates in the
same manner as was previously found for *’B. one thus
has from equation (A4)

Substitution of these expressions in equation (All) for
q=—f&A gh%%iildy

Since #’~(–~,OW) is a known quantity for any given value of
& this equation can be used to terminate the field of calcula-
tion in the same manner as was done with equation (A4).
The considerable element of arbitrariness in the derivation
of equation (A14) can be tolerated since the over-rollsolution
is insensitive to changes in the left-hand portion of the field,

SOLUTIONOFFINITE-DIFFERENCE EQUATIONS

The techniques used to obtain a solution of the finite-
di&rence equations for t’~ and i’~ were the same as those
described in reference 2 for the basic solution ~. In general,
the graded lattice used for ~ (see fig. 22, of ref. 2) ma suit-
able for the sOlutiOnof #’~. l?or #& how-ever, diffment
gradations were necessary with the smallest lattice spacing
being used near the shoulder (point B of fig. 6). The value
of ~’~ at the intersection of the shock PO]ar and the sonic
line was chosen as 10,000 so that the previously obtained
values of ~ could be used to provide the initial guess for ~~,

In the course of the present work, a useful technique was
found for locating regions of relatively large error in the
numerical solution. By use of one form of Green’s theorem
plus the differential equation (20), it can be shown that
around any contour enclosing a region in which equation (20)
is satisiied the following relation must hold:

$
(2#dll+##@=o (A16)4
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k a numerical solution the line integral in equation (A15)
will not, except by rare coincidence, be precisely zero around
any given contour. The amount by which it differs from
zero may be taken as a rough measure of the adequacy of
the numerical solution over the region within the contour.
If the entire field of calculation is subdivided into a number
of contiguous regions, it is thus possible, by evaluating the

The procedure
wedge has been

ihtegralaround each of the enclosing contours,
gions within which the error is relatively high.
in these regions can then be improved-by ~dvancing locally
to a finer mesh. This technique was found to be of great
help in the present work. It would probably be useful in
other elliptic boundary-value problems for which a relation
analogous to equation (A15) can be obtained.

APPENDIX B

CALCULATIONOF FLOW OVERREAR ‘iVEDGEIN PHYSIC.&LPLANE

used to calculate the flow over the rear
outlined in the section METHOD Ol?

SOL-UTION. The fundamental operation is to determine,
by steptise methods, the initial rate of movement of the
known intersection points in the basic characteristics net.
The methods which are used depend on the fact that these
points are, by virtue of the basic characteristics construc-
tion, points of tired q,0 (cf. eqs. (69) and (71) of ref. 2).

The first step is to determine the initial rate of movement
of those points at which the Mach lines of’ the basic charac-
teristics net meet on the sonic line. I?or this purpose, con-
sider equations (48), which give the initial rate of movement
of a general point of fixed q,t9. If these equations are spe-
cialized to apply to points on the sonic line, the following
relations are obtained:

x’(o,e)=~
J47= :+”d’

(2$=)’/’Y’(o, e)=—
4.7. f

@la).

(131b)

To write equation @la) the path of integration in equation
(48a) is taken along the upper boundary from O to B (see
fig. 5) and thence downward along the sonic line. The con-
tribution of the portion from O to B is zero by virtue of con-
dition (37). In applying these equations, the value of ~. is
known from the basic solution. The integral in equation
@la) is evaluated by mechanical integration of a curve of
numerically determined derivatives. Proper allowance is
made for the singularity at the shoulder by integrating the
singtdar solution analytically. The component rates of
movement of the sonic point at the shoulder are both seen
to be ZeXO.

The nest step in the solution is to calculate the rate of
movement of intersection points downstream of the sonic
line. This is done by proceeding stepwise along consecu-
tive downgoing characteristics.

Consider three typical net points as shown in figure 19 (cf.
also fig. 27 of ref. 2). The dashed lines represent the origi-
nal position of the Mach lines through points a, 6, and c, and
the solid lines represent their displaced positions correspond-
ing to a small, finite a@e of attack a. Since the intersection
points in the Mach net are points of flied q,o, the components
of their displacement are given by aX’ and aY’. The slope
of each segment of Mach line is taken, in accord with the
procedures of reference 2, as the average of the slopes calcu-
lated at the two end points. The slope calculated at each
end point depends, in turn, only on the value of q at that
point (cf. eq. (68) of ref. 2).

TVAVIIl 565

to locate re-
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FIGURE 19.—Typical points in oharacteristi~ net.
,

It is desired now to determine X’ and Y’ at point c in
terms of X’ and 37’ at points a and b. since the value of ~
at a given net point is the same in the displaced and undis-
placed positions, it follovm from what has been said above
that each segment of Ma&”line must retain its original slope
after displacement. If this slope is denoted by=, the follow-
ing relations are then readily obtained:

(B2a)
x, =Y’a–Y’+zi@7b-zi~a

c ?iib-?itu

Y,C=Z%Y’.—L-L.Y’,+-ziJii.(xfb-x’J
?iih-ziw (B2b)

‘With these relations, it is a simple matter to calcuIate the
initial rates of movement of succcwive net points on consecu-
tive downgoing characteristics. For the first characteristic to
be considered, point b is taken at the shoulder of the proiile,
where X’ and Y’ are both zero. Thus, X’. and Y’. for net
points on this characteristic can be determined solely in
terms of X’= and Y’a and the slopes ?iia. and ?ii~.. I?or the
remainder Of ih dowugoing ChmaC~tiCS, X!b and Y’b are
lmown from calculations along the characteristic immediately
preceding. The actual calculations can be carried out in
straightforward tabular form.

The foregoing procedure enables the calculation of X’ and
Y’ for all net points except the ones originally at the surface
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of the rear wedge. I?or thes~ points, consideration must be
given to the required boundary condition at the surface.
This boundary condition is

O(x,+o;a)=–(e.+a) (J33)

from which it follows that

@’(x,+O)=-l (B4)

The problem now is to deternine X’ and Y’ at the surface
of the wedge in such a way that equation (B4) is satisiied.
To do this equation (53b) is first specialized to the surface
of the wedge, where it is readily shown that ~o = ~~=0. In’
vie-ivof condition @4), there resmlts

Y’ (?),- 0.) =YO(?I,-L) (335)

The value of Y’ at points originally on the surfam of the
wedge is thus fixed directly by the basic solutiom The cor-
responding value of X’ can be found from a construction
analogous to that of figure 19 and is

x, =Y’a–Y’=–7iiza
c —Z& (336)

The point c is now the point originally on the surface of the
wedge (i. e., Y’O is as given by equation (B5)), and the re-
maining notation is the same as in figure 19.

_Application of equation @5) requires the knowledge of
Ye(qL–o=), which in the case of the wedge profile is equal
to 1/8=. Evaluation of the latter derivative can be carried
out directly from the basic Mach net, but the procedures are
cumbersome and inaccurate. A better method is to use the
equations of motion (cf. eq. (6) of ref. 3) to express ~y in
terms of ijx. FoIIowing this procedure, one obtains findy

(!wuy~z(@’)=2~(z,o) ~x(x,+()) (m

The quantities ij and TX which appmr hwe are easily evrd-
uated from the basic solution for the chordwise distribution
of ij.

The preceding equations enable the calculation of the initial
rate of movement X’ for points originally on the surface of
the rear wedge. The lid step is to determine the cor-
responding distribution of lift. For this purpose, equation
(53a) is specialized to points on the rear wedge to obtain

––x’(q,–ew)/X;,(7,-Q# (z+o)-.
which, in view- of the=boundary conditions, can be
be equivalent to

?f(x,+o)=—x’(q, —ew)ix(x,+q

shown to

@s)

The distribution of lift is then obtained from equation (67),

APPENDIX C

SOLUTIONOF PROBLEMFOR COMPLETELYSUPERSONICFLOW
CALCULAITON 03? 13FT-CURYE SLOPE AND

CZNTEIZ OF LIFT
I

If conditions are such that f. 221~=1.260 (corrwponding
to O.s 1; cf. eq. (13)), then the basic flow over the profle at
zero angle of attack is completely supemonic. The solution
for the lift-curve slope and center of lift at a vanishingly small
angle of attack can then be carried out analytically as follows:

Shock wave-,

o

Fmwm 20.-Conditions on airfoil

Consider a completely supersonic flow about the double-
&edge profile at a small angle of attack. In the physical
plane the flow field has the well-known appearance shown on
the left in figure 20. The corresponding hodograph of the
flow along the upper surface, in terms of the normalized
small-disturbance variables ~ and 8, is
The quantities 19wand a are, aa before,

o

shown on the right,
the half-angle of the

I ,--Shock polar

t

81 .8w-a

I

.

0
7, \ 72 >7

I \
\

\

\
I \

82=-8W-a +2

\

in completely suponwnio flow.
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wedge and the angle of attack (also normalized).

LD?I’ OF A

Except
for ~ small range if ~. just above 1.260 (see below), fl&
conditions must be constant along each of the segments 1
and 2 of the upper surface. In the hodograph each of these
segments is thus represented by a single point located as
shown. It is apparent that for a given value of Om,the
speeds ql and qz, which are the primary unknowns in the
problem, are functions solely of the angle of attack a.

To find the lift-curve alope and center of lift it is necessary
first to find the derivatives ~’1= (dq@z)..O and ~’a=
@V2/da)=.0. This can be done with the aid of the equations
for the shock polar

e=(l–q)~

and for the downgoing characteristic lx

tl=constw.lt-y @f’

To fmd q’,, one must utilize the boundwy
6,= oti-a. Substitution of this condition into
(Cl) provides the following implicit equation for v,:

ew– a=(l—m)w

Differentiation of this equation gives

I?rom this it folloms that

(cl)

(C2)

condition
equation

(C3)

(C4)

where, aa in the main text, the bam denote the value of
ql at a=O. The value of ~, can be found in terms of the
parameter 13Wby solving equation (C3) for V, with a set
equal to zero. The result, obtained through standard
methods for the solution of cubic equations, is

(C5)

whore .-

“=accosw)
To find v’2, equation (C2) for the downgoing character-

istic is first specialized so as to pass through the point 1.
This giVeS

e=(eu—a)+g (?lls’z-ll’q . .

Substitution of the boundary condition o*= –ore-a then
provides the result that

‘=(’13’’+W’”
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Takihg the derivative with respect to a, one obtains finally
at A

“2=(’’32’”)’3’” (C6)

w-hereq’l is “givenby equation (C4). and ~1by equation (C5).
Since the value of n‘ is constant on each segment of the

prolile, the lift-curve slope is easily found from equation
(57) and is

()[(7+ l)M.’(t/c)]~3 g =2(2Lyq??’1+#9)
. a-o

Substitution from equation (C6) gives

()[(’Y+l)Mm’(t/c)]’/’ * a-0=2(wm
(C7)

The momenticurve slope, for moments taken about the
Ieadingedge, is found to be .

()[(7+l)M=’(t/c)]’~ ~ o= –; (2ewy~(Tj’,+3#,)
a-

or

()[(’Y+l)Mm’(t/c)]l~ ~ =
a-o

[ (~3’’%“’+.%)%’,1+

The position of the center of lift is given accordingly by

In equations (C7) and (C8), the fit term inside the braokets
represents the contribution of the front wedge, the second
term that of the rear.

Equations (C7) and (C9) are the basis for the cnrvea
shown in figures 11 and 13 for values of & a 1.260. The
re&lts show certain curiow feqturea when the flow over the
front wedge is just sonic, (i. e., ~1=0, da= 1, ~~= 1.260).
‘l?hea~eare a9 follows:

(a) The lift contributed “by the rear wedge is zero (see
eq. (C7)).

(b) The center of lift is at the quarter-chord point (follows
hm statement (a) plus the condition of uniform lift on the
front wedge; see also eq. (C9)).

(c) The nite of change with respect to $= is infinite both
for the lift-curve alope of the complete profile and for tho
position of the center of lift (follows from differentiation of

1: Compare eqn3t10n(07)of ~ 2

S08GGW~7
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eqs. (C7) and (C9)). These results we associated in every
case with the behavior of the lift calculated for the rear
wedge.

E51’llrATION OF LOWER LIMIT ROB CONSTANT SPEED
ALONQ REAR WEDGE

Tho features just enumerated, though having a certain
curiosity in themselves, cannot be accepted as completely
correct. Because of interaction effects between the shock
wave from the bow and the expansion frm from the shoulder,
the fundamental condition of constant. speed at the surface
of the proiile will not be satisfied alQngthe rear wedge until
the value of L is somewhat greater than 1.260. Until then,
disturbances reflected from the shock wave will reach the
rear wedge and cause a slight decreaae in speed toward the
trailing edge. This effect will cease when the forwardmost
reflected Mach wave just touches the trailing edge. The
exact value of $. at which this condition will be met is
diflicult to determine. An upper bound can, however, be
estimated as follows:

Consider the basic flow field (cz=O) over the upper half of
the profile when the first reflected Mach wave just strikes
the trailing edge. Figure 21 shows such a flow- fieId as it
would appear in transonic similari~ form (cf. pp. 5-6 of ref.
2). III drawiog the iigure a special assumption has been

/

Shock wave——.
-.\ . ,\

Ii
I /.

/k
First Mach wave -_ , ~,1 ~J
of expansion fon ‘.=

’7’
1//
1/

Y 11/

x/c

Frcwrm 21.—Maeh-line pattarn assumed ta @t when &at refleated
Maoh wave strikes tmfling edge.

introduced beyond those implicit in the small-disturbance
theory; namely, that the fit reflected Mach wave is straight
and has an @e of reclination A equal to that of the first
wave in the expansion fan. .With this aemmption, the cor-
responding value of L is easily determined. Since the
reflected wave must actually be curved downstream, the
vrdue so determined wilI be greater than the correct value
for the required condition.

On the basis of figure 21, the following equation can be
written between the shock angle ~ and the Mach angle g:

tall x=;tan p (Clo)

A relation between the shock angle A and the sped ~l~j~
region behind the shock can be obtained bwm equatigq {Q@
and the known properties of the shock polar. The -~~

~ ~_ (%)”3
ml

An analogous eqmmion for the MaclI
equation 768) of ~eference 2 and is

tan.=Q&

Substitution of these relations into
solution for 71 gives

angle ~ is given by

The accompanying value of eu, found
with a=O, is

0W=0.9685
.

This corresponds, acco~ing to equation

~==1.287

equation (010) rmd

from equation (03)

(13), to

(011)

Thus, for values of ~= betweea 1.260 and some limit lees
than 1.287, the results of equations (C7), (C8), and (C9) me
not exact insofai as the contribution of the rear wedge is
concerned. It can be reaaoned that in this range an exact
solution would indicate more lift for the rear wedge than
does the prwent analysis.
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TABLE IL—VALUES OF #’d FOR t9.=1.6 (&= O.921)—Cormluded
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