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GENERALIZED INDICIAL FORCES ON DEFORMING
RECTANGULAR WINGS IN SUPERSONIC FLIGHT?

By Harvarp Lomax, FrRankrYN B. FuLLER, and Loma SLupeEr

SUMMARY

A method is presented for determining the time-dependent
flow over a reclangular wing moving with a supersonic forward
speed and undergoing small vertical distortions expressible as
polynomials tnvolving spanwise and chordwise distances. The
solution for the velocity polential is presented in a form analogous
lo that for steady supersonic flow having the familiar “reflected
area’ concept discovered by Ewvard. Particular allention is
paid to wndicial-type motions and results are expressed in terms
of generalized indicial forces. Numerical resulis for Mach
numbers equal to 1.1 and 1.2 are given for polynomials of the
Jirst and fifth degree in the chordwise and spanwise directions,
respectively, on a wing having an agpect ratio of 4.

INTRODUCTION

One of the basic problems arising in the analysis of wing
flutter boundaries is the calculation of the aerodynamic forces
on wings undergoing small but arbitrary spanwise and chord-
wise distortions. When the wing aspect ratio is large (actually,
when the distance between spanwise nodal lines is large),
these forces are usually estimated by some strip theory in
which the loading on each spanwise section is approximated
from that on a two-dimensional wing having the same chord-
wise distortion. This report is concerned with low-aspect-
ratio rectangular wings for which tip effects are important
and the full three-dimensional theory must be used.

The exact linearized solution for the forces on thin rectan-
gular wings (limited, however, to the range where effective
aspect ratio (JAf2—1 A4) is =1) traveling at supersonic
speeds has been presented by both Gardner (ref. 1) and
Miles (refs. 2 and 3) in terms of multiple integrals involving
arbitrary surface undulations. However, the use of such
golutions in evaluating, numerically say, the forces induced
by specific wing distortions still presents some difficulties.
It is the purpose of this report to discuss certain techmiques
that can simplify the labor involved in these calculations and
to present numerical tables for the forces induced by a class
of surface deformations, & class general enough to represent
the first few mode shapes of rectangular plates.

Mathematically the problem is to find and analyze & solu-
tion to the four-dimensional wave equation

1
¢u+¢w+¢u_a @rer=0 (1&)

(where a, is the speed of sound, # is the time, and z,y,2 are
space coordinates) that satisfies the appropriate boundary

conditions. The particular form of the solution to be
analyzed differs from those presented by Gardner and Miles
but its development is based on the method due to Gardner.

Hadamard (vef. 4) studied a generalized form of equation
(1a) in which the number of dimensions was arbitrary. His
solutions to these generalized equations are fundamentally
different, depending on whether the total number of dimen-
sions is odd or even. In fact, the methods Hadamard de-
veloped apply directly only to equations for which the total
number of dimensions is odd. Solutions for the even cases
(such as eq. (1a)) are determined by a “method of descent’’;
that is, the solution for the next higher odd-dimensioned
equation is found and then reduced by (made independent
of) one dimension. It is apparent, however, that such a
technique is in itself by no means unique. Thus, Hadamard
found the solution to equation (1a) by descending from a
solution to the equation

1
¢ﬂ+9"w+¢u+¢’££—a_0§ @1 r=0 (lb)

but there are many other partial differential equations and
groups of partial differential equations governing a five-
dimensional (z,y,2,¢,t) space all of which satisfy equation
(1a2) in a plane {=constant. Gardner discovered a set of
equations containing equation (1a) in a f=constant plane
which are simpler than equation (1a) in that solutions could
be found and adapted to the boundary conditions for time-
dependent motion by methods well known to aerodynamicists
who have studied the flow about wings in steady supersonic
flight. This is the essential part of Gardner’s contribution
and it represents the technique upon which the development
of the solution presented in this report is based. Actually,
Gardner first applied a Lorentz transformation to equation
(1a) and then used his method outlined above. The appli-
cation of such a transformation is unnecessary and has the
disadvantage that the resulting coordinates have lost their
direct physical significance. We will apply Gardner’s
method of descent directly to equation (1a) and then proceed
to analyze the solutions so obtained.

In order to simplify the analysis as much as possible, we
will limit solutions to the plane of the wing, and, further,
consider only indicial-type boundary conditions; in other
words, unsteady motions in which the wing attains instan-
taneously, at the time zero, & certain spanwise and chord-
wise distortion which is thereafter fixed. It is well known
that the transient responses to these indicial motions can be

1 Bupersedes NAOA TN 3286 by Harvard Lomax, Franklyn B. Fuller, and Loma Slucer, 1951.
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used, in & superposition integral, to obtain responses to many
other types of unsteady motion; in particular, responses to
the harmonic oscillations of nonrigid wings.

Finally, the principal interpretation of the results will be
made in terms of generalized forces, since these can be used
directly in either flutter or gust studies, and it will be shown
that the amount of labor required to calculate such forces is
reduced by using reciprocity relations derived from the
general theorems presented in reference 5.

LIST OF IMPORTANT SYMBOLS

A aspect ratio
I speed of sound
Qs amplitude of indicial-downwash distribution

(See eq. (22).)

B(p, q) beta function (See eq. (B15a).)
B,_22(p, q) incomplete beta function (See eq. (B15b).)
Clzi,n) influence function for effect of side edge (See
eq. (A10).)
C, lift coefficient, m;’,
C, indicial lift coefficient due to angle-of-attack
change, without pitching, 0L¢=%%1
Cr, indicial lift coefficient due to pitching for a wing
rotating about its leading edge, O, = bog
=0
Cn pitching-moment coefficient, positive when trail-
ing edge tends to sink relative to leading edge,
moment
¢oSe
Cn indicial pitching-moment coefficient due to
angle-of-attack change (without pitching)
measured about the leading edge, Oma=%l
-
0.,,¢' indicial pitching-moment coefficient due to
pitching measured about the leading edge for
a wing rotating about its leading edge, Cm,
_9C,
0g l¢=0
¢ wing chord
Fine) genera.hzed indicial force coefficient See eq.
(36).)
@) generalized indicial force coefficient (See eq.
(37).)
h(z,y,0) distance of wing camber line from z=0 plane
M Mach number
Ap loading coefficient (pressure on the lower surface
Qo minus pressure on the upper surface divided
by free-stream dynamic pressure)
<n> binominal coefficient, ( ) —_—
m m/) ml( —m)l
q dimensionless rate of pitching, ﬁg
0
% free-stream dynamic pressure, % plJ¢?
qr “generalized coordinate
Q. generalized force corresponding to the gener-

eralized coordinate g
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R.P. real part of

o v e—z)* 4 @—1)*

b1 -\/(17—31)24' (y+y)?

Te Ja—z) —Fy—n)

8 wing semispan

S wing ares

S, area of acoustic plan form

S. area of reflected acoustic plan form

t at’

v time

f t

¢

) :c—l;th

T wing kinetic energy

U wing potential energy

U, forward speed of wing

oY

W (b =0

w vertical veloclty

2,2 Cartesian coordinates, fixed relative to the fluid
at infinity

Z3,Y3,ls coordinates with origin on center of wing leading
edge (See fig. 13.)

24,94,k coordinates with origin on center of wing leading
edge at time zero (See fig. 14.)

z

T c

2 Mzt
B

5w =)

a angle of attack (angle between flight path and
plane of wing), radians

B M2—1

6 wing angle of pitch relative to horizontal, posi-
tive when trailing edge lies below leading
edge, radians

£ coordinate measuring fifth dimension

Po free-stream density

¢ velocity potential

o® portion of velocity potential induced by sources
in acoustic plan form

o® portion of velocity potential induced by presence
of side edge

¥ potential function in five-dimensional space

Subscripts
A,B,C regions in an z, £ plane (See fig. 7.)

% upper side of wing, z=0-
singularity (e g., source) position
III, ., VIII regions on wing shown in figure 4
STATEMENT OF THE PROBLEM
THE GOVYERNING EQUATION
Assuming & wing’s vertical motion is of such a nature
that the velocities induced in the fluid are small relative to
the magnitude of the wing’s steady forward motion, the
normalized form of equation (1s)

(1e)

oz ‘Pn+ Pz P14= 0
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where t=a,t’, can be used as the governing partial differential
equation of the flow field. This equation applies to the
determination of the velocity potential when the body or wing
in question moves through the fluid, the axes remaining
fixed with respect to the still fluid infinitely distant from the
origin. For convenience we place the wing leading edge
on the y axis at £=0 and the side edge on the z axis. The
wing flies at a constant forward (in the negative z direction)
speed so at subsequent times the leading edge lies along the
line z=—Mt, where M is the Mach number, and the side
edge moves along the z axis as shown in figure 1.

Lx=~M/
d

Figure 1.—Wing in fixed coordinate system.

THE BOUNDARY CONDITIONS

The fluid velocity normal to the surface of & solid moving
in o frictionless fluid must be zero. If the equation of the
solid’s surface is represented by

G’(a:,y,z,t’) =0

this boundary condition can be expressed mathematically,
in terms of the coordinate system used in equation (1c), as

DG+D¢DG ¢ 0@ |, 000G
ot "oz 0z 'dydy 'dz0z

Consider a thin surface near the z=0 plane. The equation of
the camber line of this surface can then be expressed in the
form

G(z:y:'z:tl)=2—h(z’y:tl)=0
and, assuming that thickness and lifting effects’ can be

soparated linearly, the boundary condition for the camber
line becomes

dh | dpdh , Dpdh g
off "oz 0oz dyoy Oz
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If the derivatives of & with respect to each of the coordinates
are small, the two middle terms can be neglected and the
expression for the boundary condition reduces to

oh bqo
X 02|,

We wish to simulate a rectangu]a.r wing deformed in-
dicially by bending in the spanwise and chordwise directions.
For this purpose, on the portion of the z=0 plane occupied
by the wing plan form, the verticel velocity, which determines
the wing shape according to the previous equation, is assumed
to have the form

0
“{ppa 20

where ¢ is chord length, a;, i&8 & constant and ! and » are
integers >0.

The expression (x4 t)* is used so that for />0 the tangent
to the wing camber line at the leading edge is tangent to the
flight-path angle of the leading edge. Consider, for example,
the case I=1, n=0. The downwash

=wy(2,y,t)

t<0

=20 (o M)
represents an infinite class of surface shapes having the form

Myt =5 3 )] @

where f(2,y) is an arbitrary function and % is, by definition,
the distance of the wing’s camber line from the z=0 plane.
Since, within the accuracy of linearized theory, the solution
for the flow about the wing depends only upon the value of
wy(z,y,t), the loading on all the wings represented by the
above equation is the same.

Let us inspeet the two special cases

@) fey)=—2
(i) fz,y)=0
For case (1)
h(z:y)t) 9.7, (2$t+Mt?)

and the wing is a flat plate pltching at & uniform rate about
its leading edge which is following the flight path

a M
2¢U,

Wrz=—
as shown ? in figure 2. Hence, at time ¢ the tangent to the
flight path of the leading edge is

dB)esldt! _ardt’
—Uo [

The slope of the leading edge of the plate at the same time is

<E):z: LB—

and the two slopes are seen to be eqmvalent

2 The z scale In both figures 2 and 8 I3 purposely distorted in order to make the drawings
clear. A baslsassumption used in setting up the boundary-value problem, by means of which
the loading wag determined, was that the surface of the wing must remain near the 2=0 plane,
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Fiaure 2—Flat plate pitching at uniform rate about leading edge.

For case (i)
@10

h(ﬂ?:‘.ll:f) =2GUO (3+Mt)2

and the wing is a plate which obtained a sudden parabolic
camber at =0, a shape it maintained thereafter as shown 2
in figure 3.

Az
t=0 fl fZ f3

i ﬂ]m]]h:. ﬂlIﬂ]m Eﬂmm::_dlstr:’zuhon
—

B T I
L | L~

A

_U‘7
dhy g
df

Fraurs 3.—Plate with parabolic camber.

=0 at leading edge

The problem is linear, so it will be sufficient to determine
& solution for arbitrary ! and », and then add results for any
combination of terms as desired. Thus,  the complete
boundary conditions to be studied are

wu(:v,y,f)=g—:|’_o=azn(z'l_Mt)l (%)u (28)

c

over the wing plan form, and, since the loading is zero over
the remaining portion of the plane

Op

> =0 off the wing 2b)

Im0

since the loading is given by

Ap_ 4 (¢

T\t )y
SOLUTION FOR THE POTENTIAL

Figure 4 shows the wing plan form on the surface of which
the potential is required, together with the system of axes;
also, traces in the z=0 plane of the wave system set up by
the indicial motion of the wing are indicated. The wave
pattern for only two edges is shown; the flight speed is super-
sonic so the trailing edge has no effect on the velocities in-
duced over the wing surface, and the results are. valid (in

REPORT 1230—NATIONAL ADVISORY COMMITTEE FOR ARRONAUTICS

their entirety) only for 84 >1, so the opposite edge either has
no effect or one that can be incorporated by simple super-
position.

The wave traces divide the wing area into several regions,
indicated by the Roman numerals, in each of which the
analytical formulation for the potential is different. Region
I consists of that part of the wing where the effect of neither
the side edge nor leading edge has yet been felt. .-In region
I, the side-edge influence is acting (the line y=t is the trace
of the starting cylindrical wave from the side edge y=0)
but not the leading edge. Region IIT is the part within the
starting cylindrical wave from the leading edge, but outside
the influence of the side edge. This region, and region V,
are further subdivided for reasons that will appear later.
Region IV is a compound region; potential there can be
found by adding the potentials for regions I and III and
subtracting the potential for region I. Region V consists
of the portion of the wing within the spherical wave origi-
nating at the wing corner. The flow over the part of the
wing comprising regions VI and VII has reached a steady
state relative to & point on the wing, and the potential there
is just that for the corresponding parts of & rectangular wing
with the proper downwash distribution in steady motion.
Finally, region VIII is again a composite region, its potential
being the sum of potentials for regions III and VII less the
potential for region V1.

All the regions just listed, with the exception of region
V, are actually governed by the three- (total) dimensional
wave equation and the potential therein could be obtained
by methods applicable to this simpler equation. However,
in this report we shall present & unified approach and the
problem will be solved by the same method in all regions.

Xa-Mt

L Leading edge at time #
~=y=(x+M1) /B
x2ey2:125
AR z aet
I yiip
ZA d Xa-t/M
z, m,
'mrn‘nmmr I”“““HHH“”T[T”l”l”Tr””“'“lﬂ””““”“l”””TTIT”””UT”””“7
/
/
174 1, /
£ Leading edge at time zero
|
Xt
/ /8 I
1 Yt
xY

Ficure 4.-—Regions used in the analysis of a rectangular wing in
supersonic unsteady motion.

REVIEW OF KIRCHHOFF'S FORMULA

The solutions developed in the subsequent sections are
more clearly interpretable if they are compared with certain
known results that have already been determined for the
indicial motion of nonlifting wings with symmetrical thickness
distributions or lifting surfaces with all supersonic edges.
The purpose of this section is simply to review briefly some
of these latter results.
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As in steady-state wing theory, there is a formula for
time-dependent flows that relates the velocity potential to &
distribution of time-dependent sources and doublets over a
certain region in the wing plane. This formula is due to
Kirchhoff, and some of its aerodynamic uses are discussed
in reference 6. Kirchhoff’s result is immediately applicable
in the study of unsteady lifting-surface problems when the
potential can be represented by sources alone, that is, when
the upper and lower surfaces of the wing do not interact, as
is the case in regions I, III, and VI of figure 4.

Kirchhoff’s formula for source distributions can be
written

ey 0= [ [ 2 dnay, ®
S,

where

roi=(@—r)*+ y—u)*

The brackets on w, indicate that the retarded value is to be
taken

[wu) =w. @,y t—70)

and S, indicates that the region of integration is the acoustic
plan form corresponding to the event (z,7,0,£). These con-
cepts are discussed at length in reference 6.

As has been pointed out, equation (3) holds for each of the
regions I, III, and VI, but the ares of integration S, differs
considerably from one of these regions to another. Consider,
for example, the determination of ¢ for region III, denoted
omr.  Part of the boundary of the acoustic plan form S,
is found by eliminating 7' between the equation of the
leading edge, 2;=—2MT, and the expression :

@—2)*+ y—y)'=(t—T1)*

which gives the outer boundary, at “time” ¢, of all the dis-
turbances that, operating at “time” 7', can produce an effect
at the point (z,5). This boundary is the ellipse

B :
(Mml mm> +y—w)* =ta’ (42)
where

Mzt tm_:v-l—Mt
B 8

If the point (z,y) lies within the cylindrical wave from the
leading edge, that is, —¢<{2<t, the ellipse of equation: (4a)

comprises only part of the acoustic plan form, the remainder
being bounded by so much of the circle

(@—2:)*+ y—y,) =1 (4b)

as lies on the wing at time zero. Figure 5 shows the three
possible acoustic plan forms for points in region III. The
limits for the three types are

@) t>2>0
(i) 0>z>—tM

(iil) —M>z>—t
413672—57——390
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Fiaure 5.—Acoustic plan forms for region II7 of figure 4.

and these correspond to the subregions III,, III,, and III,
identified in figure 4. Using equation (3), we can write the
potential in, say, region IT1, as

1 [rit 2+ VI (y—71)° [wa] d
P =5 y—t Y e o i+
1 (stVi—=2 Xi(y—m)
= b Bl g
27 Jy—vAsm z—+B=(@—m) To
where

Xl(y'—yl)=%[xm_'\/tn2-(y_yl)2l
GARDNER’S METHOD OF DESCENT

Equation (1¢) governs a four-dimensional 27,2t space.
Our object, of course, is to find for this equation & solution
that satisfies the boundary conditions in the z=0 plane as
specified in equations (2a) and (2b). Obviously, we can
always construct & space of more dimensions governed in an
arbitrary way except that it must satisfy equation (l1¢) in
an z,y,2,t byperplane. Then, if a solution in this higher
dimensional space which satisfies equations (2a) and (2b)
in the 2,y,2,¢ plane can be found, it represents for ¢ (the addi-
tional dimension) equal to some constant the solution to our
problem. This characterizes the method of descent. It is
not obvious, of course, that such & method leads to any
simplification; but, with a proper choice of the governing
equation for the new space, such a possibility always exists.

There are examples where various applications of this
method have proved to be useful. Hadamard’s use of the
method, mentioned in the introduction, is classical. A simple
application of his method is the derivation of the velocity
potential for a source in & two-dimensional supersonic flow
field. This potential field (which amounts to a step function,
the step occurring at the Mach wave) is easy to derive if one
considers a three-dimensional field with a line of sources
normel to the free stream and uniform in strength. The
two-dimensional field mentioned above follows immediately

by descent.
In other examples the additional dimension is measured

with imaginary numbers and the additional law for the ex-
tended space is the requirement that the functional depend-
ence on the resulting complex variable shall be analytic.
The method of descending in the latter case is associated
with the study of analytic continuation. In particular,
Riesz’s method (discussed in ref. 7) for solving equation (1c)
illustrates these concepts.
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Gardner’s method for solving equation (1¢) is to define a
five-dimensional space in which a potential function ¢ is
governed by the equations

Yie—Ym— =0
"beE-"I’n—Ebu: 0

and show that solutions to equations (6) in this space are
general enough to -contain general solutions to equation (1¢)
in o plane t=constant. We shall, therefore, proceed by ana-
lyzing these equations and eventually let £ approach a plane
in which the boundary conditions of equations (2a) and (2b)
are satisfied. For convenience, the latter plane is taken to
be the £=0 plane.

Since equations (6a) and (6b) are linear, a number of
possibilities exist for the choice of the dependent variable
¥(z, v, 2, 0, t). Aside from the more obvious choice
v(z, v, 2, 0, )=z, ¥, 2, t), where ¢ is the velocity potential
of equation (1¢); for example, one could let ¥ (z, ¥, 2, 0, )=
9’2(27: Y, 2 t) or ag&in, ‘I’E(x: Y 2 0, t)=‘19(x7 Y, 2 t)' These
various choices amount only to relatively minor differences
in the detailed technique of the subsequent analysis. If,
in imposing the boundary conditions of equations (2), one
is to use only source-type solutions for both equations (62)
and (6b), the last choice is sufficient. Therefore, set

|3 Hewatd) | —elepzd) o

(6a)
(6b)

Now differentiate equation (6a) with respect_to z and set ?
2=0.

Defining
Weowd=2y ®

equation (6a) can be expressed in the form
Wg;—Wu“—W&:O (9)

and the boundary conditions for equation (9) are given
directly by equations (2). Thus on the wing

2 —wuayh=an (Z2E) (1) oo

Q¢
=0 0z

2m0
and off the wing

oW
—5t— SnD— ‘Pl(:v:yaolt)_o

(10b)
Assuming equation (9) to have been solved for the bound-
ary conditions given by equations (10), we return to the
second of the set of partial differential equations (8), spe-
cifically,
Ya—Vy— V=0

From equation (8), it is seen that the solution to equation
(9) yields the result

31t can be shown that the solution satlsfies the equation
Jm { o [\ngzuﬂyl.m] }Ef_‘,‘; AR et { Jm [#g(r,ml.at):l §
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g—”: =known function of y, £ on the wing
zm0

Further, the boundary conditions for the original problem
in (z, v, 2, § t) space require that ¢ be an odd function with
respect to z, and continuous across the z=0 plane except
over the wing plan form. Thus ¢ must be zero for z=0
except over the wing plan form. The continuation of this
condition into (z, ¥, 2, £, t) space then implies, according to
equation (7), that off the wing

o _
bf 2-0—0

Hence, both the second partial differential equation and its
boundary conditions are identical in form to the first set
given by equations (9) and (10), respectively. Applying
equation (7) to their dual solution, we obtain the desired
result

I:% ,p(x,y,o,g,t)l_o=¢(:c,?/,0,t)

for the potential on a rectangular wing (with SA>1) in
gupersonic unsteady motion.

THE GENERAL EXPRESSION FOR THE POTENTIAL

The method outlined in the preceding section will now
be applied to obtain integral expressions for the potential
in any region of the rectangular wing shown in figure 4.
Consider first equation (9) for W(, =z, t). This equation is
the same partial differential equation as that which governs
supersonic steady flow. Further, the boundary values in
the £, z, t space are identical to those representing a thin
planar wing in a steady supersonic flow. Since the Mach

number in the steady-flow analog is-+/2, the equivalent
plan form of this wing (shown in fig. 6) is a sweptforward
wing tip having all supersonic edges (i. e., the component of
the free-stream velocity normel to all edges is supersonic).
Since all edges of the equivalent wing plan form aro
supersonic, the solution for W can be written immediately

Y4

Fraure 6.—Equivalent plan form in £z,! space.
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in terms of “sources” only, their strength being given by
equation (10a). Thus, by analogy with the well-known
results of supersonic wing theory, we have

__1 Wy(@+Mty,y) daydiy
W(E; x:t)_ W;J:f—\/(t—tl)z—?— (9.7'—'271)2 (1 1)

where 7 is the area on the wing cut out by the forecone from
the point (£, 2, {). The analytic form of W will differ con-
siderably in each of the three regions above the equivalent
wing shown in figure 7.

7 1 '\ X
7 AN
H2-Mh- yd N
/ \
\ V4 \\
/ N
A —- - - - —— - A
/ \
/ \
/ AN
/ AN
/ N\
7/ \
/ N\
/ \
4 ¥ 2
 Ngant x5t S
¥
Section AA

Froure 7.—Regions in which analytic form of W(tz,!) differs.

The value of W given by equation (11) now becomes a
boundary condition for the solution of equation (6b). Thus,
over the portion of the z=0 plane for which y>0, £>0,

is now lnown and for y<0, £>0

£=0

the variation of —gib

.. oY
the condition 3

=0 applies. (These conditions are

=0

still not sufficient to determine & unique solution unless
the further restriction is imposed that the loading falls to
zero as the edge y=0 is approached, i. e., as y—>0+.) Again
weo observe that these boundary conditions and the partial
differontial equation (6b) are identical to those studied in
connection with a stationary planar wing in a supersonic
stream. As shown in figure 7, solutions from the ¢, z, £ space
above the £=0 plane are referred to as W., Wj, and W,
depending on the relation between z and £ in a {=constant
plane. Figure 8 shows the five different boundary-value
problems formed by the various combinations of W,, Wy,
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and W, occurring along constant z lines in the z, £ plane
and the corresponding regions in figure 4 for which each
applies. Each of these five problems is directly analogous
to the boundary-value problem encountered in steady-state
lifting-surface theory, of & planar, rectangular lifting surface
in a steady supersonic stream. The “leading edges” of
these anal:/)gﬂs_ rectangular plan forms lie along the lines
El=t; EI= —

2 or f=t,, depending on the value of =,
7

/

/ / W ;

W) xzs f;rflregions Lo '
/ /////

// \‘ 1

(i) 05x5f;£lma,m,z,

g K

(i) -t/MSx<0; I,, X,

J

/s
/

| I =(x+M1)/B

S1%-x2
| .

(iv) -t <x<-t/M, IO, V., IO
&

/ - 1
/ We Im

n
V) ~Mr<sx<-t;, &I, 20

Figure 8.—The five different boundary-value problems in &, y1, 2
space.
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and the “side edge” lies along the line y=0. Hence, by
means of this steady-flow analog, we can immediately write
the solution to equation (6b) in the form

_.,_l W (z,1,81,0) dé dyy
V0,50 =—r f e S R

where only the area of integration ¢ must be discussed.

Two possibilities exist for the shape of o. First, if the
point £, y lies to the right of the dashed lines in figure 8,
which in the analogous steady-flow problem represent the
traces of the Mach cones from the leading-edge tips, ¢ is the
triangular area shown (for region II1,) in figure 9, part (i).
If however, £ ¥ lies between this line and the side edge,
=0, o is the trapezoidal area shown (for region V,) in figure
9, part (i1). The latter is & well-known result used in steady
supersonic lifting-surface theory and first developed by
Evvard (ref. 8). The division of the five kinds of problems
illustrated in figure 8 into the final twelve, represented by
the regions in figure 4, is brought about by the various
combinations of W, Wp, and W that can occur in the area o
as the point ¢, ¥ assumes all necessary values on the wing.

‘When y has been determined, the potential in the physical
plane is found by equation (7), or, combining equations (11)
and (12),

=.1_ 3 9_ dfldyl
Pl 0= 1 f f NE—EY—@—y)?

f J‘ W2+ Miy,y) dadh 13)

{x—x)?

VE—t)'—&—

(i) O<x</,

&

N/
L

{ii) O<x<y,

Ficurse 9.—Ares of integration o used in equation (12).

y,

y<J12_x2
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A detailed analysis of equation (13) for a point z, ¥, ¢ in
region V, of figure 4 is given in Appendix A, and a study of
this analysis enables one to write the results for all regions
without difficulty.

INTERPRETATION OF THE RESULTS

The results of the rather involved analysis given in Appen-
dix A can be interpreted in terms of the known solutions for
simpler boundary conditions. Thess latter solutions have
already been reviewed in a previous section in which it was
shown that the potential on a lifting surface with all super-
sonic edges can be written in the form

1 f [w] dzidy,
27 A 7o

4 (93,%0:0 =

From Appendix A it is found that the potential at a point
on a rectangular lifting surface can always be expressed as
the sum of two parts

¢(:B, Y, 0: t)=‘Pm (’.B, Y, 0: t)'—‘Pm (:C, Y, 0: t) (14)

f [w,] dzl [wy] dzydy,

where

(4 (%Z/: 0——21‘_ ! 58’)

and

0@ (2,3, ,g__ f Olenyy) dardy, (15b)

The value of C(x;, ¥:) is given by equation (A10) in Appendix
A and the areas of integration, S, and S,, are illustrated for
the various regions I through VIII in figure 16.

Let us first inspect equations (15) in light of their possible
analogy with the familiar solution for the steady-state, rec-
tangular lifting surface. If a rectangular wing having ar-
bitrary twist and camber is placed in & steady supersonic
flow, the solution for the potential on its surface can also be
expressed as the sum of two parts

oz, ¥, 0)=0¢®(z, ¥, 0)—¢®(z, ¥, 0) (16)
where, if
ré=(@—0,)*— Fly—y)?
oO@0=—1 [ [Lela (170)
8
and
o (ag0=—1 [ [ 2elady (17b)
Sa

These equations can be construed in the following simple way:
Equation (17a) represents the potential induced at z,y,0 by &
distribution of sources over the wing plan form, each source
having a strength proportional to the local streamwise slope
of the upper surface. The area S, as shown in figure 10, is
the portion of the wing within the Mach forecone from
2,4,0. Equation (17b) has a similar interpretation; it also
represents a distribution of sources over the wing, each
having a strength proportional to the local slope of the upper
surface. But the area of integration S; is now that portion
of the wing within the Mach forecone from the point z,—,0;
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Frourp 10.—Areas S; and §; used in equation (17).

that is, within the cone which forms a mirror image of the
physical Mach forecone in the vertical plane containing the
wing’s side edge. The potential ¢® (z,y,0) represents the
difference between the potentials for a wing with a vertically
symmetrical thickness distribution and a surface with no
thickness having the same shape as the upper surface of the
nonlifting wing.

Lot us return now to equations (15). Just asin the steady-
state case, ¢ (z,5,0,t) represents the potential induced at
z,7,0 by o distribution of sources (see eq. (3)) over the wing
plan form, each proportional to the local slope of the wing,
but now, since the wing is in motion, with the added con-
dition that they be local slopes at the appropriate time. The
area S,, shown in figure 11, is just the acoustic plan form
defined earlier in the discussion of equations (3) and (4).
Physically, S, represents those points on the wing from which
disturbances can, at the time £, influence the flow at z,5,0. It
is the generalization, in the stationary coordinate system, of
the wing area bounded by the Mach forecone.

The relation between ¢ (z,7,0,t) and ¢® (z,,0,£) is similar
to that between their steady-state analogs. Thus, again,
¢? (2,9,0,t) represents the difference between the potentials
for an uncambered nonlifting wing and a lifting surface
having the same shape as the top of the nonlifting wing. A
more striking similarity lies in the relation between S; and S..

We have already seen that S, is the acoustic plan form,
and, as it turns out, S, 4 the reflection of the acoustic plan form
in the vertical plane containing the side edge (see fig. 12)—a

< —_

\
/'-“——\i—( TB{XI —-xm)2+(y+yl)2- tm?

///

.

7
1////////

(x=)

Figure 11.—Acoustic plan form for point in region V,in figure 4.

situation identical to that existing between S; and S. in the
steady-state case. (In other words, S;is the acoustic plan
form for the event 2,y,0,, and S, is the acoustic plan form for
the event z,—y,0,t.) Physically S, represents the portion
of the wing’s lower surface containing disturbances which can,
at the time ¢, influence the flow at «,7,0 on the wing’s upper
surface. At this point the similarity between the steady and
unsteady solutions ends since the influence of the slopes in

.

.

Y

FiaurE 12,—Reflected acoustic plan form for point in region V, in
figure 4.

A=+ (y-p P12
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the reflected plan form is not the same as it is for the slopes

in the basic acoustic plan form; the influence in the former

case now being given by the integral C(zi,y:) defined in
equation (A10).

One can show, by simply referring the results glven in
equations (15) to a coordinate system fixed on the wing, that
equations (15a) and (15b) are identical, respectively, to
equations (17a) and (17b) when they apply to regions VII
and VT in figure 4; regions in which, for indicial-type motions,
the flow is steady relative to the wing. Hence, equations
(15a) and (15b) extend Evvard’s ‘“reflected area’ concept to
all parts of a rectangularwing in supersonic unsteady motion.*

THE GENERALIZED FORCES
BREVIEW OF LAGRANGE'S EQUATIONS OF MOTION

In order to define more clearly the subsequent concepts
and notation, we will briefly review Lagrange’s equations of
motion as applied to distorting wings and will examine &
simple application to & rectangular wing.

Lagrange’s equations are usually written

S 5e tao—ir=12, a8
where o .
T kinetic energy of the wing
U potential energy of wing -
Q. ageneralized (external) force
gr ageneralized coordinate

In the present &pplication gr is the amplitude at a given time
of a polynomial measuring k, the vertical displacement of the
wing’s comber line from, the z=0 plane. Thus, relative to an
23,3 coordinate system that is fixed on the wing, see figure 13

i h(l'ayya:t')-_—? q:(tI)P -(Is,?/x) (19)
| 7
t >0 c
}

Y3

X3
Ficure 13.—Wing in moving coordinate system.
4 It i3 of further interest to notice that cquation (15b) c¢an be reduced to a double integral

involving wa($,y1) by using, for example, the transformations §=z1+M{and r={—/ and
integrating with respect to .
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The wing’s kinetic energy can be written

T— f f & om(esga)deady, (20)
$
where m is the wing mass per unit plan form area. Using
equation (19), we find
d oT .
57 =20 s | | Prl@sys) Pa(a,ys)m(s,ys) dasdys
' oq, 5 . (21)
or_, -
Y

The potential energy is usually difficult to evaluate analyt-
ically. However, it can often be determined experimentally
(as will be seen) by measuring the frequencies of the free
vibration modes. For the present assume that the wing is a
homogeneous plate of constant thickness. The potential
energy for such a wing can be expressed as (ref. 9)

v=2| f {(V’h)z—fz(l—#) [ e ag;‘y)']} daxdy

(22)
which leads to the equation

"pXef f [vPvp.—20-0 (352 Si+

10%P, *°P, 0P, 0%,
2 ouf Op dmd; Seper) | deslts 29)

where u is Poisson’s ratio, V¥=0%0z,*+0%0y.?, and

__2(Young’s modulus) (plate thickness)®
3(1—x’)

Now, if the generalized coordinates have been normalized
so that each measures the amplitude of a free vibration mode,
all terms in equations (21) and (23) involving the integral of
the product of P, and P, are zero. Assuming, henceforth,
such normalization, we can write :

i [ [ P vmiesuddandyc+ Dy, ) [{wpr—

bsz bzPr D’P
e 3 (aes) | pmin=0s =12

21— y.)

(24)

Finally, dividing through by the coefficient of ¢, and ex-

pressing & generalized force as the integral over the wing plan
form of the product of the rth mode shape and the loadings °
Z(Ap), induced on the wing by each of the mode shapes
considered, we find

chffPf(xs,ya)( p) deesdys
.{;f P ’(fﬂsyya)m(ﬂ?a:ya)d%dy

it golt= (26)

where o, is the frequency of the rth free vibration mode.
¥ We will write (Ap)e=gu(Ap/go). where ¢v Is the free-strcam dynamlo pressurc. ‘This lg

possible without a confusion of notation since the generalized coordinates are expressed ns
a,g0. ., . and exclude the term ¢u.
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If the free-mode frequencies are experimentally deter-
mined, equations—such as equation (23)—giving the wing’s
potential energy, never have to be evaluated. Further, in
such cases, equation (25) applies to quite general wing strue-
tures with varying density. Usually in the application of
equation (25), one uses the actual frequency w, of the free
mode but, in evaluating the aerodynamic forces, uses an
analytical expression that only approximates the rth mode
shape. Let us examine the generalized force term in equa-
tion (25), taking, for simplicity, only one term of the sum:

Q=0 fs [P L) days o

According to what has gone before, the mode shape poly-
nomial P, (xs,%s) has the form

J
P.(ayo=(2) (L) @0

¢ ¢
while (Ap/go). is the loading coefficient corresponding to an
indicial deflection (see previous section on boundary condi-

tions) -
mrtz a0 (S [(E) (5 55)] o

which gives a vertical velocity distribution

w=Tog(1) (%)' (Ly 29)

Now a generalized indicial force coefficient can be defined as
follows:

=500 [[(2) (LY @otidady, @0
8 .

(The calculation of these quantities fi2(¢’) will be elaborated
in the next section.) Since the generalized force @, is
intended to apply to any motion, not necessarily indicial,
it is necessary to apply Duhamel’s integral to the indicial
force coefficient fi3(t’); thus,

P P 152G 4
Q*—Qosdt/j; at'—7')

X0} BL)

As an example, consider now a simple one degree of free-
dom vibrating plate. The plate is fixed to a wall and
restrained along its leading edge. The mode shape is as-
sumed to have the form .

h=cgit) (%)2 (%)2 (32)

so for a plate with uniform density and thickness

m (° dys [ dnPrep—322 (5)

Equation (25) now becomes

itola=me (£) @ 59)
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For this case,we have the generalized indicial force coefficients

JEWY), and FRE);

o [ {rur- 247

C s s J5 (TI)
7= Qit'—1")
U, I:U g (1)]} (39

Therefore, equation (33) can be written

e (4 e 7

’ fﬁ(.r
q - d+’
[U 9‘(1)]} "

THE GENERALIZED INDICIAL FORCE COEFFICIENT

It is clear from the previous section that a study of the
dynamic behavior of rectangular wings moving at supersonic
speeds can be carried out if one can obtain values of the
generalized force coefficient, f%2(#’), as defined by equation
(30). We will now show how these values can be obtained
from the solution to the aerodynamic boundary-value
problem represented by equation (14).

It was convenient in developing equation (14) to use a
coordinate system—z,y,2,t—which was fixed in space so that
the left edge of the wing moved along the z axis as shown in
figure 1. On the other hand, in studying the dynamic
problem it was more convenient to use an s,s,2,t system
which is fixed on the wing. In order to convert the results
in one coordinate set to the other, let us first transfer results
in the z,y,2,t set to the z,%4,24, ¢ sot (shown in figure 14) and
then, finally, transfer to zs,¥s,2s,f coordinates.

X2 Xq+ M}
}'3=}'4
23x 24
t =7

’>0

T -

V*"q

Ficure 14.—Transformations from moving to fixed coordinate system.
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The indicial force coefficient F33(t") is defined as follows:

R C (G O

In order to transfer the axes from the set shown in figure 1
to the more convenient set of figure 14, so that mode shapes
are symmetric or asymmetric about the wing’s spanwise
center line and the force coefficients denoted 2 can be deter-
mined, we proceed as follows. First, the loading coefficient
for a wing in the (z,y) system with downwash given by

wu_ x+Mt> (y——s>
(=) B (E)TE

is obtained. This loading coefficient can be written as a

sum
(&) =BG @)

Now the quantity fi* is defined in the 2,4, system as

= e L 2 ()
TG CDIC

This last integral can be written as

TR (C(CF

=y BEETA S oy (D) (%) H e ()

=0

@) sl o O G

By using equation (36) we find

-GS o (@)

(M) " e

where all forces are responses to a unit indicial disturbance.
Note that if equation (37) is applied in the case of a wing
cantilevered on o wall, both #» and g must be even in order
to satisfy the boundary conditions of reflection in the wall.

By superimposing boundary conditions and their result-
ing solutions, one can further show that the value of fi»
given by equation (37) is valid for all reduced aspect ratios
BA greater than 1 in spite of the fact that the value of Fi3
given by equation (36), as it stands, applies only to wings
for which BA is greater than 2.

Given fi2(¢'), one can determine the generalized force as-
sociated with the generalized coordinate g, by means of the
superposition integral as illustrated by equation (34).
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DETAILS OF CALCULATION

The details of actually evaluating the indicial force co-
efficients from the solution for the potential presented in the
first part of this report are discussed in Appendix B. Con-
siderable labor is involved in such calculations, and an
attempt was made to discover recursion formulas by means
of which certain derivatives, for the rectangular wing, could
be expressed as combinations of others. This attempt was
successful and yielded the following results:

Consider equation (36). Integrate the z integral in this
equation by parts, setting

e

Then, since by equation (B7) in Appendix B

-E_Apln lApl Ln
o @ ¢

dy(x)=(z}D)Idx

- 1>0
one finds

Fyp=rpy (B Fisis (389)

Inspection of equation (37) shows that the same relation
holds for the generalized indicial force coefficients f32; that is,

In—

1w ,']"I"l {f, lﬂ f1+1ﬂ

(38b)

From this relation, it is seen that only the forces F'jr need
be determined by integration; the forces for higher values of
the index I can be found by combination of results for dif-
ferent values of the mode shape index j.

As a simple illustration of the results presented so far, we
can calculate the indicial force derivative for the cases l=
n=g=0, =0, 1. The case j=0 corresponds to the indicial
lift coefficient for a flat, sinking, rectangular wing, and the
case for j=1 corresponds to the indicial pitching-moment
coefficient for the same wing. Since n=g=0, equation (37)
gives

f=Fi

Thus, with =0 and identifying —aw/U, as angle of attack
«, one finds from Appendix B

(M} oses i

Tm}—u‘oﬂ-ﬂﬁ% [1—2

=ﬂ—4z{%|:cos‘1 Mt:o—l +‘%4 cos™ (M —py)+

OL¢="""

VO |~ | g H2t (M—l)t&]};

1 1
MriShSg—g

S e
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Next with j=1, and using C, ' to designate the pitching
moment measured about the leading edge of the wing,

o~ e)-

to . 1
34 [3“(M+1)to’]}: OS%SH_ITI

A ()t

2 oos™ u—prg+ R ==y |-

1
o | 7 ot L0 | gy <<

ﬂ<1 3ﬁA; O

These expressions agree with those given by Miles in refer-
ence 2.

The above results can be used to demonstrate t.he useful-
ness of equation (38a). Taking j=n=g=0, =1 in that
equation gives

FR=Fg—FR%

or, for the present case,
Joo=rad—11%
which represents the equality
Cp'=C +Cp/

J% _ FR_ { M
Tum_ow M (A—Mt)—5 ¢
U U

4 (1 l—ﬂltg3 _  Mtg—1 lM
M{'[ & 38
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that is, the lift coefficient for & pitching wing equals the sum
of the lift and pitching-moment coefficients of a sinking wing
(primes indicate the wing is pitching about and moments are
measured about the wing leading edge). Hence,

M1

=ﬂ%{(1+étog)—%|:to—Mtos+——toa]}5 0St<g7r
Mot 1

2 (1 1,,
=M{;[ 1+‘szt°> 8
3—Mio 1 1
N IE || gy ST
. 1
(M“l)z“’]} <t Sp

2 1 . 1
~{-ma) o2

A further application of equation (382) provides the pitch-
ing-moment coefficient for a pitching flat rectangular wing.
Thus, with l=j=1, n=g=0, equation (38a) gives

Fi=3(Fg—FR)

cos™H(M—p%)+-

which becomes

=28

and so

RYA T >
qu _2 —‘aoo/Uo GLa
From equation (B21) in Appendix B it is found that

54 B M(M+3)to”]} 0<t< M T

o~ (M—ft)+

1+Mto+(M’+2)to m] %A[M Ty Hte— (M~ 1)%]} ST _Hsto_M_

41 1 . 1
=E{§‘m}’ b2gr—1

Combining, we find

r— 2+Mit?
Onf=—r{ 5o B GMrt MALH31] 5 0o

_ 2 1[2+Mt03 1M1, 2M
A to '3ﬁ

1 3 . 1
m[M——_H-I'&o—G(M—‘l)to"i‘(M—l)%‘:l}: M1 S%Sm

202 1 . 1
‘E{m}’ 25—t

413072—57——10

- M+1

cos @t —pfeg-+ SR Ty |-

1
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Another relation among the generalized indicial forces iz
can be derived by means of the reciprocity relations given in
referonce 5. The details of the derivation are given in
Appendix C and there results

> (D= e (D)1 (59

Equation (39) can be used in two ways; one, as 8 means
for checking the internal consistency of a set of calculated
generalized indicial forces, and the other, as a means for
expressing & given force in terms of a set of others.

Consider, as an example of the former use, the case for
which l=j=0. Then

JB§= 0%

From equation (37) we can express thls relation in terms of
the calculated quantities F§? thus

Ber(OErQE) -
Ser(EerCE)T

If now n=1, g=3 the following relation results

(F—F+5 (FR—F+3@8—F1+

3 (£ wa—ro-2 (£) ea-r—o

which provides a useful check on the computed quantities.
Next let us solve equation (39) for a given force. Perform

the sum operation
J
v (Y)
j=0 7

on both sides of equation (39), and reverse the order of
summation on the left side. There results
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(40)

The inner sum on the left can be evaluated. Thus one has

er=l1—(1~a)r=33 (~1» (V) —ap
S 5ev ()
=3 e (7)) (4)

BT

Equating coefficients of z,

2er (OOl

and equation (40) becomes
= v (1) 2 e (D)
TS i/ = p/ o

CONCLUDING REMARKS

A method is presented for evaluating the generalized forces
on a rectangular wing flying at supersonic speeds and having
an aspect ratio such that BA>1. The generalized coordi-
nates used to define the wing’s behavior are the amplitudes
of downwash distributions expressed in terms of polynomials
in z and ¥, the chordwise and spanwise directions, respee-
tively.

Numerical results are presented in table I for generalized
indicial forces on a wing having an aspect ratio of 4 and
flying at & Mach number equal to 1.1 and 1.2; the polynomial
coverage being 0 <I<1 and 0<n <5, where w~ziy".

AMES AERONAUTICAL LLABORATORY
NatroNaL Apvisory COMMITTEE FOR AERONAUTICS
Morrerr Fierp, Cavrr., June 30, 1964



APPENDIX A

EXPRESSIONS FOR THE POTENTIAL

In order to write the expressions for the potential in all
regions shown in figure 4, it is sufficient to derive in detail
only that for region V. Having carried out this analysis,
one can determine the expressions for potential in other
regions without difficulty.

Consider, therefore, equation (13) and let ¢ and = apply
to region V,. First, it is necessary to determine the poten-
tials W, and W in the {z,t space. From equation (11), in
conjunction with figure 7, it is found that

f f (z—.‘n)’+$l’ w,,(xl-I-Mtu'!/l)dtl R

X J-mar =ty =t —(—ay

1_ f_,_’_-,/p_e,: Iz ft—'\/(r—-fx)"l'f" ’wu(xl'i'Mthyl)dtl

7Ja *Jo Vet —E——x)
(A2)

where

Xl(sl)=%4 (zn—ii—E?)

With the values of W given in equations (A1) and (A2)

| (VR (=GR g, ,
Wi=—= —C 7 tw t(x;_l_ﬂ{tl’yl)dtl = it is possible now to solve equation (6b) for ¢, figure 8 giving
Ve =ty —h'—(—=) the required data in the £y plane. Thus, if R*=(t—&)2—
An | @y—wny
W, 1 (&t f t Wi 1 f Vi=7 We—W,
P _L d P Wa_
vEzy= -t lfs+(y-m~ "Row), Wty B R T eryvime P eriom B
1 (—trEVED R/ W.—W. ¢ 1 H“" J w.
1 ¢ f s Wa é f d f f dg, W
7"fr Y Jecmm h=p + trr—t ) erem El e E+(rm) At
1 VE—2  Wy—W, 1 [—trkVEE Vo2 W—W,
1 d f s Wi, 1 f a f d A3
7 Jerrvo5 Y et gy tr)o L (43)
Now apply the operation of equation (7) and the potential v, is given by
1 ’ t &WA f JC EW, EI(WB—WA)
Pry=—=
" 77{];—! dyljcl-n N Xl BT d —n) R B® r—w.'tl—zl J — “Rr T
AR &(WB EWa—WW)_ -\ f° Vo= e, BV W) ft 7 . Walse
_ d dy, —2Aacetn
f s JC (r—-m) ki r—t I—II ''R? y—o—z Y 7= a: T RF + vy
- Vi=r V-1~ w/:x-::
f‘ ydylf‘ dEl IWA_I_f e ﬂ—’ (WB WA)]EF'H'II -zt ’dylf £1(WB WA) } (A4)
0 rn -\/ 0 rtn
where I,?>=£2— (y—y:)* and the bars on the integrals signify | (A1), we can write
that the finite part of the integral is to be taken in the sense _
defined * in reference 10 and that the order of integration | r__ (¥ 4 _f_ £ty o+A-5
) 1 W E— =0T, 1
cannot, in general, be reversed.? v-t  Jy-nlE ke
For convenience set f,_ Jo—myTEs Wizt )
 t N (2
or=—t331, (A6) vy VW —emaih
1

where I, is the nth integral group on the right-hand side of
equation (A4).
Consider the first of these integral sets. Using equation

! For tho subsequent analysis to hold, the definition of the finite part glven In reference 10
i8 essontinl, ‘This definition differs from that given by Hadamard when it applies to multiple
Integrals,

1 8inco the order of integration plays an important role in the following development,
ntegration first with respect to z and then with respect to y will be denoted /'dy JSdz f(z, §)
while Integration first with respect to y and then with respect to £ will be denoted S'dx S/dy

(r, ). When the notation /S ./(z, y) dydz 13 used, the order of Integration is immaterial.

JIn order to simplify this expression, the order of these in-
tegrals will be rearranged so the integration with respect to
£ can be carried out first. The technique of changing the
order of repeated integrals with strong singularities set forth
in reference 10 will be used here. Consider the change of
order in the &,r; plane. Pretend for the moment, that the
i, integration has been carried out. Then the highest order
singularity (since w, is bounded) in the &, z; plane has the
order 3/2 which is weak in the sense that no residual ocecurs

609
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when the sequence of integration is reversed. The top of
figure 15 shows the area of integration, so immediately

(Y =G VE—G—my £dE
Il_L~t dylL—w’tT-m)’ dwlﬁ—rx [512_(21—’!/1)2]3;
w2 +-Mty ) dh

f:-m
o V)Y —(e—z)—&*
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figure 15. In this case an inherent singularity exists at the
confluence of the singularity lines of the integrand; namely,
where &=y—y; and t,=t— /@—2z)*+£&> The change of
order can therefore not be performed directly, but account
must be taken of the existence of a residual term (see ref. 10).
This residusal is defined as the difference between the two
integrals taken in different orders over a vanishingly small
region surrounding the inherent singulerity (the dotted

To change order in the #, #; plane, consult the bottom of | region in bottom of figure 15). The residual B, is then,
Jom { G o—G-=y £dE V=R (M, y)dh
g —
J;-—y, l '_(:ll_yl)g]w2 t—r0—e W/(t—tl)’—(x—:z:l)’—&’

£idE

t—re =) — @ —a)?
J;_n_‘ wu(%‘l‘Mtn’.l/l)dtxJC,_m r

&

&=

X=X X

1¢&

S /-

'
f
hat=(x—x) !

Figurs 15.—Areas of integration used in analysis.

—(y—yx)’]“”w/(t—tl)’—(x—xl)’—&’}

where ré#=(z—2,)>+ (y—1)*. The second integral vanishes
(see ref. 10), and, passing to the limit e—0 in the first integral
there results

R — T Wy (%-I-Ml-Mfo,’!h) _IM
t 2 To 2 To

where the square brackets again mean that the retarded
value is to be taken. Thus, the integral I; can be reduced to

x e L C2
[

8- (v—ﬂl)’ To

(A8)

=
In the same way, the mtegral I, can be reduced, and
v+t G- )s
LtL=—T f i fz—:—v " [’wu]

t1— (r—ﬂl)’ To

which is recognized as Kirchhoff’s formula, equation (3),
with an acoustic plan form bounded by the circle

@—)*+@—y)'=t

The reduction of the integrals I, I, I, and I is quite
gimilar, leading to the sum

8, . o =G | [w] 1 (rH/E-7
22 L= —ﬂ PR 3 P " am ) 1

S S W wd
fxl @—n) dxl To +§' 0 d f 13— (y—y,)3 dxl
(A7)

Examination of the limits on these integrals shows their
total area of integration is that shown in figure 11. But
this area corresponds exactly to the acoustic plan form S,
for a point in region V,! Hence, denoting the combination
of terms in equation (A7) by ¢® we can write simply

R f f [w4] derdy,

(Sa)v
1t now remains to calculate the integrals I; through Iy
Designating their total effect on the potential, go"’ one can
readily show (since no inherent singularities arise in these
cases) that

(A8)
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=1 Ny wa( My, ydt, 1

—t4- hh’_ 2
oV =_1§ f : dy i i da;
e 7 Je T—+3—(g+7,)3 0

[E—t)*—rdE—ty—r® ™

—y t’—:’d J‘O de
0 Y ). Ja—ggay ™

f‘-fl Vg wule My, y)dy, | 1 (/e y fo t=n Viyy wa(a M, y)di (A9)
o [t~ —rf NGt —r2 T Jo Jxew M [E—1) =7 (E—1) —r

where r?=(x—)*+ w+1)%. Now let
f t=re gy wue My, y) diy
—5[M [((—2)—ro"] E—1)*—n

t=ry 4y wu(z+Miby, ) diy 2 >0
0o E—t)—rel O—ty—r

In terms of this expression, equation (A9) can be written
simply

Y 371<0

Oz, Y= (A10)

GD%:% ff Clay, ) dndy (A1D)

) a) Va

where the area (Sc)y, is illustrated in figure 12.

In order to give expressions for the potential in every
region of the wing shown in figure 4, one can show that it is
only necessary to vary the areas over which the double
integration in equations (A8) and (A11) are carried out.
This is evident in connection with the source portion ¢®,
for in every case

and only the acoustic plan form S, changes with the region.
In the case of ¢, the part of the potential due to the exist-
ence of the side edge of the wing, equation (A11) can be
generalized and written

= [ o dnan A1)
S,

where the integrands are defined in every case by equation
(A10) and only the ‘reflected” acoustic plan form &S,
changes with the region. The region S, is always bounded
by portions of the “reflected” circle

@—z)*+ +u)’=
and the “reflected” ellipse

I r—

1 [wy] Figure 16 shows sketches of both S, and S, for all regions in
¢‘1’=—Eff . dady (A12) | figure 4. The absence of a sketch indicates that the corre-
S, sponding integral does not exist for that region.
APPENDIX B

THE GENERALIZED INDICIAL FORCES

THE LOADING COEFFICIENT

In order to determine total forces acting on the wing, it is
first necessary to obtain expressions for the loading coefficient
Ap/ge. According to the linear theory

Ap 4 Op¢

‘g0 UoMd ot
g0 it is necessary to differentiate each of the expressions for
potential. As an example, consider, as in Appendix A, just
region V, of figure 4. The loading coefficient will be divided
into two parts Ap® /g and Ap®@[q, to correspond to the po-
tentials ga“’ and ¢®. Thus, using equation (A11)

(B1)

{ —v+t V=Gt

( HUOM f W), sy O
—pt+/fi—23 0 2C
L e s~ E=GFay OF dmt

—ptVB=F 0 dC }

d f % g 2

ﬁ yl Xigta) at 1 (B )

since the derivative passes the z,, integration without

effect. Referring to equation (A10) for the function C(z;, ¥1)

we next find its derivative with respect to &. Write r=t—1#;
then for 2;<<0

Clari)= |

/M y'y1 wu(:rl +Mt'_'M T ,yl)d‘r

(7*—rd) 1/7_3:12

and
Véyy wu(O,y)
at <t+ >-—r.,:] t+ﬂ —r?

0
erryne VI 5 wﬂ(:cl—l—Mt—M-r,yl)}
J. (F—r) Vo)

Notice that if w, does not depend on (z;-+AM%) the integral
term in equation (B3) vanishes, while if it does, then the

dr (B3)

integrated term is zero. Next, for z;>0,
vy, Mt—Mr)
Oz , ____f 1 Wy Yl dr
(21,0 (P—r) [

and

¢V 4y aat{wu(xl"l"Mt—Mf,yl)}
(FP—r) P~

oC @wn(xhyl) I
A (B—rd)E—r2

B9

In this case, both terms exist unless w, is not a function of
(z;+2Mt,), in which case the integral vanishes.

Substitution of equations (B3) and (B4) into equation
(B2) will now yield an expression for the loading coefficient
corresponding to the influence of the side edge;
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@

(X.'-;v)

x)

Tx

X

Fiqure 16.—8ketches of areas of integration, S, and S,, for all regions

in figure 4.
ﬂ) da,, { f—m f:+1/t’—(v+m)’ Sy oy da
0o *UoMc " —VE=GFny (B—rd)/—r2
f‘_ﬁ‘l' Vit—1? dy, 0 V4y'y1 :tll’y;"d:rl
VB (1) VB —r?
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i f—ﬁ-md fo dr t—n1
0 U siwim T o o=t —re]

The explicit form of w,, given by equation (2), has been
inserted and it is assumed that 7> 1.

—p+ =1 0 t—1
M f d f dz f
0 L 1—VB=(g ¥ty ! 0

Vdyy (2 M)~y mdt,

(t—t,)’—rl

Region Se
mc
¢X|
I /i
(x)
X
.' t'7\ 7
¥ {x,-»)
Xy X
(x-) % %
T
X) X)
Fraurs 16—Continued
+Mf—p‘+t ’ FPERN/- un (r+m)’ t=n Jdapy, (2D =y dly _
! Jn—ii mom o o [(t—t)2—roE—t)T—nrt

Ny (m M)~y ndt,

[(E—t)*—rf] YE—t)*—r®

(B5)

The portion of the loading coefficient corresponding to

@ can be found readily and is

G P=G—y?)’ +(x—~/t§—<y——yo*)’

(1) 211/;. y+t
( T wMU J;

VE—@—y)*

VPG [ M @ —ro]

¥+t
Ml *d.
0 yrath r—E=G—p?

y+E=
&)

To

[+ M@E—rd]'™!

dxl'—‘

dz+

2' !dz' f
! t :_.‘/p_(ﬂ_ﬂ)i.
[Il (t D)]l : d:l?l—

To

y+ =5
Mj; dy

Xi(g—s)

. e—F=@—y))’

fyw—

R vy

To

)

dy+

(B6)
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Region Se . Sa
4 %
o] X
o
4
4
L )
T )
Y"'x N
i (x,7y) ?
l ’
A

Fiaurn 16—Concluded

It is clear that, even for small values of the indices [ and =,
the required integrations for the determination of total forces
on the wing pose formidable problems. There is, however,
a property of the loading coefficient corresponding to vertical
velocity distributions of the type chosen here (eq. (2)) that
will materially shorten the requisite labor. This may be
expressed as follows, adopting the convention that Ap**/qe
corresponds to a downwash distribution. proportional to
(@ DLy

a A In ZA I—-1n
5= ;’ < ”go , >0 ®7)
or
in l lln
o [ e myddn, 0 @9

DETAILS OF EVALUATING THE GENERALIZED INDICIAL FORCES

In calculating the generalized indicial forces by means of
equation (36), it has been shown that only the value zero
need be taken for the index . Thus we must find

613

2 c—Aft 3 Apon
Pi=greem |, @rayyas [0 @9)
The values of the loading coefficient Ap”"/go are found by
differentiating the expressions for potential given in the first
part of this appendix.

It is convenient, in evaluating equation (B9), to consider
the integration with respect to y first. Setting

] (1},
L= f (%)gA_p_ dy
0 o

it is found that L seems to have different representations
according to the interval in which z lies. These expressions
can, however, all be expressed by the same formula. The
portions of L corresponding to the parts ¢® and ¢? of the
potential are similarly signified, and we have

(B10)

L(l)_WUMcn+s{( Rl =y (n-l- = (Kol t 9+ Eufntgl -

(8)n+z+1 =]

n-0<21‘ ntgFi—2z [Ko@p— 1)+Ku(2y.—1)]} (B11)

L= Qox J(n,9)
1ll.U'OZMCH-T: onte

[Ko(n+g)+Eau(n+g)) (B12)

where

gos—i(—z/¢)

Kontg)=t*++1R.P. f sin™e+ g g
1]

Ku(ﬂ+g)=ﬂpfl t," TR P, j;ma—l Gmlt) gin*+e+ gdp

Jan, g)=72r 0‘ 1d—n1f f_’q(n—m)'(n+m)" JF=E

1""712

and [n/2] means the greatest integer contained in n/2. The
function J(n,g) may be expressed as summations, and it has
the property

J(n,g)=J(g,n)
The sum formula is, with g+p=n
—(— (D p—2i+1 2g+1
Tam=vr 2 (2) B (B2, 204

e E S

=0

(B13)

2_7—'—‘3 1) <p—2z+2j+‘3 29—2—1\_1
2 7 =0

2 2
(B14)

(213 (2.7+1 2y+3> B(p+29—2z+23+3 1
1/ =0
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Values of the function J(g,n)
n
X 0 1 2 3 4 5
0 —2
1,4
1 1 —-Zr'l"g'
2 5,_8 1 29 16
473 2 64" 15
11 21 ,8 1 32

3 3 5a" T3 3 256 35
4 | 189, 32 11 120 128 1 56329 2566 '

62" 5 15 256~ 106 1 16384~ 315

71 165 , 64 37 975 1 11801 , 512
5 5 —256* o1 E7 4006 ""63 5 — 85536 " T 603
where (2 > is the binomial coefficient Ko(v)—t""‘B( v—|-2 l
p .
(201(1’_2'5)1 ) 0<Lz<t,R.P.cos™? (—;— =cos™! (——; =x—cos~} (g—’)
and B(p, q) is the beta function
igut! v-|-2 1 v+2 1
1 —
B(’P,Q)=f a;"‘l(l-—:z:)q"da: Ka(l’) 5 [2B ( ) -Bl (ﬂl)’( 3 4] 2)]
0
B15a) () —t<x<0,RB.P.cos™! (-—E =cos™! (—?-)

=/3
=2f sin®*?~1 9 cos™~! 6d
)

=T (p/rip+9
The function J(g, n) has been calculated for g, n taken
0,1, 2 8,4, 5. Because of the property (B13), it is only
necessary to give a triangular array, which appears in the
above table.

Now consider the functions Ky(v) and Kar(v), defined after
equation (B12). It is convenient, for computational pur-
poses, to express these in terms of the incomplete beta
functions, defined as

Bi_=(p,9)=2 ﬁ 7 @ in®-1 g cos™1 4da
. (B15b)
= [T eru—pa

A tabulation of the incomplete beta functions is available in
reference 11. Note that when the symbol B is written
without a subscript, the complete integral is meant, that is,
in equation (B15b), z equals 0. It is necessary to exercise
some care when interpreting Ky(v) and Kx(») as beta
functions because of the upper limit. Thus, since

Ky()=tHR.P. f = sinr+ g
0
we have the following cases:

@ =z>t, BP.cos™! (-—-tf>=1r

Koy)=

[ (2]

: . 1 B\
iv) —Mi<Lzx<—t; R.P.cos™! ( t>_o
K(»)=0
A similar line taken with K,,(v) leads to
G >t Ku()=0
. 14
() —g<est Kub)=g bt [Bl~a..,:,)a (£23)]

v+2’ l

() —t<z<—ip KM(V)_- M, o [23

Bl“’-"-”< 2 )]

@) —Mi<e<—t, Kuly)= *fﬂr“B (y+2 1)]

The generalized indicial force F93 can now be expressed as

J@m) 4 o137l

Fon 8oy {l )
Jo 1‘.I‘d‘ijhﬂﬂ-l 4| o+ T (,n+ g_|_ 1)l
s!+n+l—2p

[#etmr+netm -2 () fars

[*Ia(zp—1>+*11,(2y—1>]} (B16)
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where

tior= [ ety rrp. [T snrioan]
(B17)

*(v)= f _::“ (e+-Miydz [%{ t rHRP. L e Gmli) m]

(B18)

It is convenient to express these forces in terms of dimen-
sionless quantities. Thus setting

Fa 1
= b=

we have

$T1 (ymgttrts [T i r+1
LiGy=c'tr+ | "Gk My dao | 5+ R.P.

c0573(—;
j; 20/lo) gin”+! 0d8:|=c’+’+’ I (,,) (519)

tymeron et [ () .5

Mzroto

Lcorlzri-ﬂlto ginr+! 9d3:l=c!+;+2 Ld () (B20)

and
=yt ot | A+ 2 i || 8 o+
<A)n+n—2p
I, (g+n)] ‘Lm (Hﬂ) R [Ig @r—1)+1; (2#_1)]}
(B21)

The integrals J{(v) and 4 (») can be simplified by reversing
the order of integration. This can be accomplished in &
straight-forward manner by merely inspecting the region of
integration in the 2o,0 plane. Consider first the integral
(). Depending upon the relation between the chord
length and the time, we see—from figure 17—that reversing
the order of integration results in three different possibilities
for the upper limit of the 6 integral. However, if we define
Xo such that

615

Xo Xo
'—Mlﬂ ] / g
¢ R TR
7/2 T 8
-4, < T~y
o wxy =y c05 8 X,=+1, cos 8
-M1, o
(i) O<3<1/(M+)) | M,"
]
Xo
% |
/ -y 4

() 1I/{M-1) <1,

/2 T 8
1-M1, 4 TSexp=—4, coS O

—’0

]
() 1/ (M+1)< 1< 1/(M-1)

Freurm 17.—Areas of integration used in analysis.

() xo=to; 0<to <M+1

1
(i) xo=1 Mtﬂ’M—l—l to<M_1

. 1
then, in every case, J{(v) can be written

r+1 Pcos (~Xofts)
b (”)=§‘3_F1'fo sinr+ do—

J+r+2 . cos~1 (~Xyts)
S oy () i [ g o

Vi +1 =0
(B22)
and, similarly, it can be shown that

o e
I )= ﬁﬁ,j +v = f sin+* do-t-

Mt jgtrt3 1(—Xaf%)
j-liov—l—z rﬁ_% (=1 <j> M owr sin"+1 9 cos’ 6d6
(B23)



APPENDIX C
DERIVATION OF RECIPROCITY RELATIONS

According to reference 5, the reciprocity relation for
general three-dimensional unsteady motion can be written

f f f éql:—l (zlyyl:tOM(xliyl’tl) dxldyldtl
/.
([ [2e2
"fﬂ o ErtdWi@yst) dedy,dts (C1)

where the volume of integration V is that swept outin z, ¥, ¢
space by the wing. The subscript 1 refers to the wing moving
in the forward direction and subscript 2 refers to the wing
moving in the opposite direction in the same manner. The
coordinate systems are related by

n=—xy+c—AMT
h=—Y2+2s8
=—t+ T

where s, ¢ are wing semispan and chord, respectively, and T

is some fixed value of time. These quantities are elucidated
in figure 18. .
4y
P T
XZIC—Mfz— 25
—=Xp= -MF> l
ft— C —
Ap -t~ B
;XI
X2 -Mi— S—X=e-Mh
a7
yz ’ ,I

Ficure 18.—Coordinate system in forward ‘and reversed flow.

Now let the wing associated with the subscript 1 have the
vertical velocity distribution

1 _ n
Wy (@1,21,0)= ﬁ%) (3__GZQ>

and that associated with the subscript 2 have

w:i(ﬂfﬂ.,yg,tx)=<xﬁ;_'_ci"{§>j<i—c_y_,>z
wl(:cz,y,,t,)=<1 %tMé)l <%c_ 8),,

E) —ao\f
'wx(ilh,yl, ¢ 1)=(1 a:l-l-th1> <'ylc 8>

Then
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Substitution of these results into equation (C1) ylelds

f fc md (1 :cl—l-M'tl f (ryl_s)lApln
Eald
e (e ()

Equation (C2) can be differentiated with respect to T,
yielding

f::rdxl (1 :cl-l—MT) f (yl_sy ap'
= f —wd (1_%+MT> f (y,_sy Ap*

The binomial expansion is now performed:

;-E\f"(_l)“ (D(_l)'f o 1E‘ji@)" j <8—z/1>' Aph

=,§1-:;<—1)"(“)(—1)~ f T iy <I:+MT> f ( _%>,, Ap,,

(bd)

(©2)

In equation (C3) the spanwise integration is carried ovcr
the whole wing, but it can easily be reduced to integration
over, say, the left panel by use of the factor [14-(—1)8+7)/2.
Thus, equation (C3) can be written

e o () S [ (kLY

I () B e 33 (e () BT

S 2 (Y [ () 5

By comparison with equations (36) and (37), it is seen that
the integral terms in the last equation correspond to the
generalized indicial forces fizand f74, so that the summations
can be written

e () =3 e (D)

where the quantity (g+n) must be an even number.

(o)
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