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REPORT 1232 

A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE LIFT AND DRAG 
CHARACTERISTICS OF HYDROFOILS AT SUBCRITICAL 

AND SUPER CRITICAL SPEEDS 1 

By K EKl\ETH L. " 'ADLI K, CHARLES L. SHt:FORI), JR., and JOHN R. :\fCGEHEE 

SUMMARY 

A theoretical and experimental investigaiion at subcavitation 
speeds was made oj the effect oj the jree-water surjace and rigid 
boundaries on the lijt and drag oj an aspect-ratio-l0 hydrojoil 
at both subcritical and s1J,percritical speeds and oj an aspect­
ratio-4 hydrojoil at upercritical speeds. For the aspect-ratio-
10 hydrojoil, tests were made in L angley tank no. 1 and Lamgley 
tank no. 2 at 0.84 and 3.84 chords submergence at subcavitation 
speeds jrom 5 to 45 jps corresponding to Reynolds numbers 
jrom 0.18 X 106 to 1.64 X 106• For the aspect-ratio-4 
hydrojoil, tests were made in Langley tank no . 2 at 0.59, 1.09, 
2.09,3.09, and 4 .09 chords submergence at sub cavitation speeds 
jrom 15 to 35 jps corresponding to R eynolds numbers jrom 
0.873 X 106 to 2.04 X 106• 

Approximate theoretical solutions jor the effects oj the jree­
water surjace and rigid boundaries on lift and drag at super­
critical speeds are developed. An approximate theoretical solu­
tion jor the effects oj these boundaries on drag at ubcritical 
speeds is al 0 presented. The agreement between theory and 
experiment at both supercritical and subcritical speeds is satis­
jactory j or engineering calculations oj hydrojoil characteris­
tics jrom aerodynamic data. 

The experimental investigation indicated no appreciable 
effect oj the limiting speed oj wave propagation on lift-curve 
slope or angle oj zero lift. I t also showed that the increase in 
drag as the critical speed is approached jrom the supercritical 
range is gradual . This result is contrary w the abrupt in­
crease at the critical speed predicted by theory. 

INTRODUCTION 

Airfoils and hydrofoils operate in fluids which differ 
principally in density and viscosity, properties that are 
readily treated by the concept of Reynolds number. Since 
such is true, the vast amount of aerodynamic data already 
accumulated becomes available for use in predicting hydro­
foil charl1cteristics. The airfoil , however, generally oper­
ates in an essentially infinite medium, whereas hydrofoil 
applications usually require operation in a limited medium , 
that is, in the proximity of the water surface. Aside from 
the effects of cavitation then, the principal difference be­
tween airfoil and hydrofoil applications is one of boundaries. 

In restricted areas such as shallow harbors, canals, and 
towing tanks, other boundll,\'il's are present besides the 
water surface, that is, the holtom and sides. N aturalh­
these boundaries also influence the characteristics of a hydr;­
foil, and their effects must be evaluated in order to use aero­
dynamic do. ta for the prediction of the characterisLics of 
hydrofoils under such conditions. 

In addition to the reflective influence of the bottom and 
ides, the finite depth of water limits the speed of propaga­

tion of the transverse waves generated by the hydrofoil. 
This change in flo\\' causes the lift and drag characteristics 
to be different at spceds below this limiting speed or critical 
speed than they are above it. 

In the present report available aerodynamic and hydro­
dynamic theories have been applied to develop an approxi­
mate method of evaluating the in.fluence of boundaries in 
order to apply existing aerodynamic data to hydrofoils and 
to correct pl'operly data obtained in towing tanks to actual 
open-water condi tions. 

EJI:perimental data at subcavitation speeds were obtained 
in two water depths at several depths of submergence at 
subcritical and supercritical speeds and are compared with 
aerodYJ'lamic data orrected for the boundary effects. The 
boundary-correction methods employed are similar to the 
general methods used in wind-tunnel research with the 
additional consideration that the limiting speed of wave 
propagation is taken into account. 

A 
ao1 

SYMBOLS 

geometric aspect ratio, 2s/c 
section lift-curve slope at infinite submergence, 

dCII/dao 
section lift-curve slope at finite submergence, 

dCl 2/dao 
slope of lift curve at infinite submergence, dOLl/da 
slope of lift CUI ve at finite submergence, dCL2/da 
drag coefficient, D/qS 
induced-drag coefficient of rectangular hydrofoil in 

infinite fluid 
induced-drag coefficient due to horseshoe-vortex 

images 

1 s~perse~es recently declassified N ACA RM LS2D23a by Kenneth L. Wudlin, Charles L. Shuford, Jr., and John R. McGehee, 1952 and contains additional information from rec~ntiy 
declasSified NACA RM LS1B13 by Kenneth L . Wndlin, Rudolph E. Fontana, nnd Charles L. Shuford, Jr., 1051. 
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induced-drag coefficien t due to trailing-vortex 
images 

drag coeffi ient at infinite ubmergence, Dr/qS 
drag coefficient at finite submergence, D2/qS 
wave-drag coefficient, D3/qS 
lift coefficif'nt, L/qS 
lift coefficient at infinite submergence, LI/qS 
lift coefficient at finite submergence, Lz/qS 
chord of hydrofoil, ft 
section drag coefficient 
section lif t coefficient at infinite submergence 
section lift coefficien t at fini te submergence 
drag, lb 
drag at infinite submergence, lb 
drag at finite submergence, lb 
wave drag, lb 
effective-edge-velocity correction for lift 
Froude number based on depth of hydlOfoil sub­

mergence, V Z/gj 
depth of quarter chord of hydrofoil below free-

water surface, ft 
acceleration due to gravity, ft/ ecz 

depth of water, ft 
lift of hydrofoil, lb 
lift at infinite submergence, lb 
lift at finite submergence, lb 

free-stream dynamic pI' ure , ~ p Vl, lb/sq ft 

R eynolds number, Ve/v 
area of hydrofoil, sq ft 
semispan of hydrofoil , ft 
free-stream velocity, f t/ ec 
limiting peed of wave propagat.ion or critical 

speed, ft/sec 
induced vertical velocity at three-quarter chord 

due to bound vortex of hydrofoil (surface 
boundary only) 

induced vertical velocity at three-quarter chord 
due to hydrofoil-image bound vortex (surface 
boundary only) 

induced vertical velocity at three-quarter chord 
due to two trailing vortices of hydrofoil (surface 
boundary only) 

induced vertical velocity at three-quarter chord 
due to two hydrofoil-image trailing vortices 
(surface boundary only) 

induced vertical velocity at three-quarter chord 
due to horseshoe vortex of hydrofoil 

induce.d vertical velocity at three~quarter chord 
due to hydrofoil-image hoI' eshoe vortex (surface 
boundary only) 

induced vertical velocity at three-quarter chord 
due to hydrofoil-image bound vortices (multiple 
boundaries) 

induced vertical velocity at three-quarter chord 
due to hydrofoil-image trailing vortices (multiple 
boundaries) 

distance of bound vortex measured in free-stream 
direction from three-quarter chord of hydrofoil, 
ft 

y distance to center of image horseshoe vortex, 
measured parallel to lifting line, from center of 
hydrofoil, ft 

z distance of image bound VOL tex, measured normal 
to water surface, from hydrofoil quarter-chord 
point, ft 

ll! angle of attack, deg 
ll!o section angle of attack, deg 
r ci rculation strength of vOl't.ex, Ve('L /2 
r I circulation strength of vortex at infinite su bmer-

gence 
r z circulation strength of VOl'trx at. finite submergence 
v kinematic vi cosity, W/sec 
p mas density , slugs/cu ft 
rr plan-form correction factor for r ctangular wings 

(see ref. 7) 
if; hydrofoil submergence parameter (see eq. (16» 

DESCRIPTION OF MODELS 

The experimental data were obtained by using 8-inch-chord 
hydrofoils with a~pect ratios of 4 and 10, each supported by 
an 8-inch-chord stru t intersecting the upper surface of th e 
hydrofoil wi thou t filleLs. The stru t was perpendicular to 
the chord of the hydrofoil. The hydrofoil and struts were 
made of stainless steel and were polished to a smooth finish 
consistent with wind-tunnel practice. 

The hydrofoils had an NACA 64 1A412 section which differs 
from the NACA 64}-412 section only by elimination of the 
trailing-edge cusp; the section characteristics of these two 
il,re essentially the same (see r ef. 1). The strut had an 
NACA 66 1-012 section. Table I (see page 22) gives the or­
dinates for the hydrofoil and strut sections as computed 
from referencrs 1 and 2. 

APPARATUS AND PROCEDURE 

The tests on the aspect-ratio-lO hydrofoil were made in 
both Langley tank no. 1 and tank no . 2 to obtain two water 
depths. Figure 1 shows a view of the test setup with the 
aspect-ra tio-1 0 hydrofoil and the balance attached to the 
structure on the Langley tank no. 2 carriage. The setup 
in Langley tank no. 1 was similar except. for the method of 
attachment to the carriage. For the aspect-ratio-4 hydro­
foil a sting support was used. Figure 2 shows a view of the 
test setup with the hydrofoil supporting sting and the 
balance attached to the structure of the Langley tank no. 2 
carriage. The details of the supporting-sting arrangement 
are shown in figure 3. Figure 4 shows the cross sections of 
the two tanks. Tank no. 1 has a mean depth of 10.64 feet; 
tank no. 2 has a uniform depth of 6.0 feet. 

The hydrofoils were moved vertically by means of a 
motor-driven jacking screw which moved the balance and 
hydrofoil as a unit. Change in angle of attack was obtained 
at the plate attaching the strut to the balance. 

Measurements of lift and drag were made by means of 
electrical strain gages. The force measurements were made 
at constant speed, angle of attack, and depth of submergence. 
The d pth of submergence is defined as the distance from the 
undisturbed water surface to the quarter-chord poin t on the 
chord line. For the aspect-ratio-IO hydrofoil, tests were 
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FIG CRE 1.- 1'(·,,1 "(' III\> ,.. hu \\·ill ).( a ~ p('cl - r:t!i u-I() h.\"(lro fu il :lI leJ iJalancc 
alt :lclll'rJ t u i U\I·ing _carriagl·. 

FIG uu; 2. TcA " !'I II)) "ho\\i llJ.( a",pl'('I -rat io--! hy drofoil s lI"pe lldpd 
fro III ba ln nce attached to t owing caniage. 

Supporting strut·--___ _ 
(chords, 8.00) -

~---12.00 ------I Diameter, 2:75 .. 

Sting/ 

Fu; L' RE 3.- Dctails of aRpect-ratio-4 hydrofoil support arrangement. 
(All dimensions are in inche .) 

Tonk no. I Tonk no. 2 

Fl r.C RE -1. - ectional dctail~ of Langley tank no. 1 and no. 2. (All 
dimension are in ft. ) 

made at t,,·o ubmergel1ccs (0. 4 and 3. 4 chords) over a 
range of peed from 5 to 45 fps and a range of angle of attack 
from -3.5° to 6.0°. For the aspect-ratio-4 hydrofoil, tests 
were made at five ubmergences (0.59 , 1.09, 2.09, 3.09, and 
4.09 chords) over a mnge of speed from 15 to 35 ips and a 
range of angle of attack from -3.5° to 4.0° . The change 
in anaje of auack due 1,0 tructural deflection caused by the 
lift and drag force on the hydrofoil was obtained during the 
calibra!.ion of th balance, and the test data were adjusted 
accordingly. 

The supporting strut fo r the a pec(,-ratio-lO hydrofoil and 
the supporting Ling and trut for the aspect-ratio-4 hydro­
foil were run alone at the same range of pc d, depth, and 
angle of attack as when the hydrofoil was in taIled. For 
these te t the end of the stru t (aspect-ratio-10 tare tests) 
and the end of the ting (aspec!.-ratio-4 tare tests) were 
fitted with faired cap. The tares thus obtained were deduct­
ed from lhe te t data to give the net. forces . The net forces 
were converted to the u ual a('J'odynami' lift and drag 
coefficil'1l t by using a mea ured value of p of 1. 966 slUgS/Cli ft 
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aL tll (' tes ting temperature which wer e 40° F for th e aspect­
ratio-10 tests at O. 4 chord ubmergence in Langley tank 
no. 1, 44 ° F for all othe l' tests with aspect-ra tio-l0 hydrofoil 
ill both tanks , and 70° foJ' le ts with aspect ratio 4 in tank 
no . 2. All coeffic irll ts wCl'e based on the arrfl, of th e hydro­
foil s . The area of the hydrofoil s i 4.44 square feet for the 
asp ec t-ra tio-l0 hydrofoil and 1.78 square frrt. fol' the a. pect­
ratio-4 hydrofoi l. The mea lIl'ed kin emati c Yiseosity of th e 
,,'atpl' a t th e time of thr trsts in tank no. 1 at 40° F was 
l . .5 X 10- 5 ft2/sec, in tank no. 1 at 44° F was l.73 X 10- 5 

ft 2/sec, in tank no. 2 at 44° F \\'a. 1.83 X 10- 5 ftN sec, and in 
tank no. 2 at 70° F \\'~ 1.1 5 X 10- 5 [t2/sec. 

EXPERIMENTAL RESULTS 

The basic experimen tal r esult correc ted for strut deflection 
and drag tares are presented in figure 5 for the a.spect-ratio-IO 
hydrofoil an d in figure 6 for the aspect-ratio-4 hydrofoil as 
curves of lift and drag for each wate l' dep th and d rpth of 
hydrofoil submergence plotted against angle of attack with 
peed as the param tel'. The data , conver ted to coeffi cients, 

are presented in figures 7 and 8 in the usual form for aero­
dynamic data. The st ru t drag eoefficien t (based on the 
area of the aspect-ratio-lO hydrofo il , 4.44 sq ft) p lotted 
against speed in figure 9 indi cate thp range of s t ru t drags 
ob tain ed. 

The lift-curve slopes and angle of zero lift obtained from 
figure 7 for the aspect-ratio-10 hydrofoil are plotted against 
RpYllOld number in figure lO. Also included in this figure 
arc the corre poneling aerodynamic data for the NACA 
653- 41 8 sect ion. Th e r data were taken from r eference 3 
and th e lift-curve lopes were corrected to aspect rat io 10 
hy the eq nat ion 

(1) 

from rd(,l'encc 4 where E. i an effective-edge-velocity cor­
rec tion from referrnce .'5. Th e hy(lrofoil data show no 
signifi cant effcct of tank d (' pth a t t'ithe[' depth of sub­
mergence. It i of particular illt(' ['c. t to no te that, where 
thi effec t would be expected to he most pronoun ced , nam ely, 
in t he region betwren th e da lleel VC'l'ti('al li11t' of figure 10 
whrre thr speed in ta11k no. 1 i. sll l)(,l'itiC'al wh ile that in 
tank no . 2 is sllper cl'i tical , the lift-('u rve slope and the angle 
of zero lift for a givpn R eynolds llumlH'r arc essentially the 
same for both tanks. In the region below th e critieal p eeds , 
thr trends are not too appar ent . The lift-curve slopes de­
crea e and the angle of zero lif t in crease with deereasing 
R eynold Ilumbt'r, particlllarly at th e shal10wer depth of 
ubmerge11cc. Such a tendcncy is indicated by the corre­

sponding low R<'ynold llumber aerody namic data for the 
NACA 653- 418 sedion. Thr r ca on for the variation of 
this t end r ncy with depth of sllbmergrnee is not fu lly under­
s t ood ; howl'vrJ' , ('hang<'s in pressure di tribut ion du e to 
('hHll g'('S in 5uhmel'gl'lH'e would illfluen('c' the Rry nolds 
1l1l1ll1wl' l'fl'p('t . I t npp('lLl'~ tlH' l'dol'e tha t , if thr lift-cul've 
slopl''; and I1nglrs of Zl'I'O lift 111'l' illflul'Il( 'l'd by tIll' ('ritical 
SPl'('ti , tIll' ildllll'IIl'l' intii('l1tl'ti by tlll 'SC' tt'sts is 50 s lllall as to 

be rna ked by R eynolds number effects encountered in the 
t ests and by the effects of submergence. 

Th e val'iation of drn,g cocfficient ,,·jth speed fo r the lO.64-
foot and the 6.0-foot wat er depth at lift coeffi(' ients of 0.4 
an d 0.6 and drpth of ubmrrgen('e of O. 4 and 3. 4 chord 
and a<'rody namic edion dra g data at th e same ]ift coeffi­
cient foJ' the ;\'ACA 653-41 airfoil ection from reference 3 
are shown in figul'e 11 . .\ compal'iSOll of the drag ('oeffic ients 
for thr two \\'at r r dept h at both lift corfficient and both 
d r pths of sllhm rl'gen('e ho\\'s that., with reducing speed, 
when the cr itical peNl in the greater \Vat·er depth (tallk no. 
l , ] 5.98 chord ) \Va approach ed , a drag rise OCCUITf'd 
whereas th r drag in the shallower wah'r dept h (tank no. 2, 
9 chords) did not rise until it s lower critical speed wa 
ap proached. It ('an he sren that the (lrag rise increases wi th 
li ft. coefficient and d(,( 'I'eu es with depth of submergence . 
The variat ion in drag fise with lift coeffi(,i ent and depth of 
ubmergrncc is as pl'('(lid rcl by the theory that will be di -

cu sed sub eq uently. H ow('v(' r , the drag rise was gradual 
rather than the abrupt, rise pl'('<iided by this th eory. T he 
trends at the low s u bCl'it i(' a l SfW('ils arc not. too clear since 
they are masked by R ('y nolds nllmher r[ects. An indica­
tion of t,he possible Rry nolils T1umher effec ts can b obtained 
from the aerodynamic data pl'esenird. 

THEORETICAL BOU DARY CORRECTIONS- SUPERCRITICAL 

GENERAL 

In ol'd('l' to u e aerodynam ic. data for an a irfo il in an 
infinite ml'ilium to predict thr (·.harad l'ristics of a hydrofoil 
ill tll(' proximity of the watr (' sLlrfac!' and perhaps r igid 
boull(lari('s as would be encounte rrd ill sh allow waier, canal , 
or towillg tanks , the influ ence of these boundaries mu t be 
evaluated. T h r boundary con clitioll to he satisfi ed at the 
free surfa(, e is th at of con tant prrssurr along the surface 
streamline. Thl' boundary condition to be sati fi ed at the 
rigid boundarirs is ze (,o normal velocity. 

FR E E-SURFACE BOUNDARY 

.As a first approximation to th e threr-dimen ional problem 
supercritical conditions arc assumed, however, with only the 
free-water-surface boundary present. The con tant-pres­
sure boundary at th e free surface can be sati fi ed by the 
introduction of a hOl'srshoe vortex above the surface which 
has the same direction of rotation as t h e one which represents 
the load.ing on the hyd rofoil (fig. 12). 

The pre ence of t he image bound vortex doe not change 
the direction of the flow relative to th e hydrofoil chord line 
in the vicinity of the center of pressure, but it does tend to 
curve the streaffilines relative to the hydrofoil chord line. 
The curvature effect is equivalent to introducing camber of 
the hydrofoil in such a manner a to produ ce a negative lift 
increment. It would seem therefore that a rea onably clo e 
approximation to the effect of the free surface could be 
obtained by simply evaluating the effect of streamline 
curvature , in addi t ion to the induced-angle effect of the 
trailing vortices, by applying a technique frequently u ed in 
approximate solu tions of aerodynamic problems (see r ef. 6). 
This teeJlllique involve determination of t he circulation r 
l'equil'('d to produce a downward velocity vVs+ W6 at the 
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FIGURE 7.-Continued. 

three-quarter-chord location which when combined with the 
free-stream velocity V produces a flow tangent to the mean 
camber line of the hydrofoil. Thus , if geometric camber is 
neglected, the hydrofoil angle of attack a is equal to the 
sum of the angles at the three-quarter-chord point induced 
by the hydrofoil vortices and their images located at a 
distance directly above the hydrofoil equal to twice the 
depth of submergence. 

By use of the Biot-Savart law and the notations defined 
in figure 12, the following expressions for the separate con­
tributions at the line of symmetry to the vertical component 
of the induced velocity at the three-quarter chord were 
obtained: 
The contribvtion due to the bound vortex of the hydrofoil , 

w,-~ S 
1-7I"C ~(C)2 2 - +s 2 

the contribution due to the image bound vortex, 

(2) 

(3) 

the contribution due to the two trailing vortices of the 
hydrofoil, 

(4) 

the contribution due to the two image trailing vortices, 

(5) 

the contribution due to the horseshoe vortex of the hydrofoil, 

r [2~(C)2 2 1J Ws=- - - +s+-
271" sc 2 s (6) 

and the contribution due to the image horseshoe vortex 

(7) 
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FIGURE 7.--Continued 

By means of equations (6) and (7) a computation of the 
angle of attack a can be made. 

Effect on lift.- In order to estimate the effect of depth of 
submergence on lift, the rat io of the hydrofoil circulation in 
an infinite fluid to that of a hydrofoil at a finite depth of 
submergence for a given angle of attack is obtained; that is, 

(8) 

Therefore (for small angles), 

se [] 1] s 

r'~l +"~ GY + (2j)'+,' GY + (2}/ (2j)'+8' + (2j)'+ ,' 

r 2 2~ 2 (C)2 1 

where 

and 

-- 8 + - +-
8e 2 8 

Rewriting this equation to getj in terms of e and substituting 

A=2s 
C 

yields 

1 

j1 A(f)2 A2 [~ 1(t)2+ A2 1 (t)2] + !(t)\ A 
4~ -+4 - +- 4+ 4 4 + 4 A + 2 4 C 4 e c e 

1 +~----~----=-~----------~=--------
~ (~A2+1+1) 

(9) 

which is the ratio of lift-curve slope at finite depth to that 
at infinite dep th when only the free surface is considered. 

For the two-dimensional case, only the induced velocities 
due to the bound vortex WI and the image bound vortex W2 

are considered in equation (8); thus, 

which is the ratio of the two-dimensional lift-curve slope at 
finite depth to that at infinite depth when only the free 
surface is considered. 

Effect on drag.- In order to estimate the effect of depth 
of submergence on the drag of a finite-span rectangular 



12 

1.0 

.9 

.8 

.7 

.6 
N 

\,) .... 
C 
OJ 
'u .S ;;: 

~ 
u 

~ 
.4 

.3 

.2 

.1 

0 
-4 - 2 o 

REPORT 1232- ATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

Speed, Ips 

2S, 30. 3S,40'+''''':'' '''<:#H-i 
20' '. 
II · " 
S·· 

2 4 6 

.040.-----.-----~----_.----_.------._----._----~----~ 

N 

~ 
c 
OJ 

.036r-----+------r-----+-----1------r-----+------r~~~ 

Speed, Ips 

. 032r-----+-----~----~-----+----~~ 
~ :.-.-. ". 

13· ...... . 
14·. "" 
IS ,>" '. 

20,." '. 
30, 3S, 40· .. 

.028r-----+-----~----~-----+----~~--~~~~~~--~ 

~24r-----+_----~----_r----_+----7Y~~~~~--1_----~ 

~ .020r-----+_----~----_r--~~~--~~r_~+-----1_----~ 
~ 
8 
'" e 
a .016~----+_----~~--~L-~~~~~r-----+-----4-----~ 

.008 r-----+-----~----~-----+----~r-----+-----~----~ 

.004r-----+-----~----~-----+----~r-----+-----~----~ 

(d ) 

o .I .2 .3 .4 .5 .6 .7 .8 
Angle 01 ottock, <1, deg 

(d) Water depth, 6.0 feet (9.0 chords) j depth of submergence, 3.84 chords. 

FIG U RE 7.-Concluded. 

hydrofoil, the drag induced by the hydrofoil images at a 
given angle of attack is obtained from the equation 

The drag coefficient of a rectangular hydrofoil in an infini te 
fluid is 

(10) 

This relation is not rigorous since it gives an induced drag 
in two-dimensional flow due to the influence of the bound 
vortex at the three-quarter chord. However, for the aspect 
ratios under consideration, when the drag correction is deter­
mined in the usual manner, that is by evaluating the down­
wash at the quarter chord, the drag predicted is too low. 
This condition is true even when the spanwise distribution 
of downwash is considered. 

From equation (7) 

where 

W6=~K 
V 471.y 

The total drag coefficient of a rectangular hydrofoil at a 
given depth of submergence and angle of attack, therefore, is 

(11) 

RESTRICTED AREA 

In order to estirn:ate the effect of depth of submergence 
on the lift and drag of a hydrofoil in a restricted area such 
as a shallow harbor, a canal, or a towing tank, a system of 
images (fig. 13) that satisfied the boundary conditions of 
constant pressure at the free-water surface and zero normal 
velocity at the rigid boundaries is required. The boundary­
induced vertical velocities at the three-quarter chord are 
obtained by computing the combined effect of sufficient 
images to give the desired accuracy. An infinite array of 
images is, of course, required to give an exact value. 

J 
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Sufficient accuracy, however, can be obtained with a finite 
array of images. For example, if another row of images 
were added to the top and bottom and another column of 
images to each side of the hoI' e hoe vortex arrangement 
shown in figure 13 (A= 10, tank no . 2, ubmergence of 0.84 
chord) the additional images would cause a change of less 
than 1 percent in the total induced vertical velocity at the 
three-quarter chord of the hydrofoil. The general equation 
for this velocity for each image vortex (see ref. 7) is: 

For the image bound vortex 

and for two image trailing vortices 

(13) 

where x, y, and z define the location of the image with 
respect to the intersection of the quarter-chord line and the 
line of symmctry of the hydrofoil (see fig. 12) . 

The ratio a2/a, and the drag coefficient CD are obtained 
as previously discussed by substituting W7+ Ws for W6 in 
equations (8) and (10). 

Some results calculated by applying the foregoing theo­
retical method in tanks no. 1 and no . 2 for estimating the 
effect of submergence on lift-curve slope are shown in figure 
14 for three aspect ratios. 

COMPARISON CF THEORY AND EXPERIMENT 

Lift.-The theoretical results presented in figure 14 a!·e 
compared in figure 15 wi th the present experimental results 
for hydrofoils of aspect ratios 4 and 10 and with experimental 
results given in references 8 and 9 for hydrofoils of a pecL 
ratios 10 and 6, respectively. The ratio a.2/a, for the experi-
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FIGURE 14.- Effect of depth of submergence on lift-curve slope. 

mental lift-curve slopes for hydrofoils of aspect ratios 6 and 
10 is the ratio of the lift-curve slope obtained at a given depth 
of ubmergence to the lift-curve slope (corrected for aspect 
ratio by eq. (1)) as obtained for airfoil data (see refs. 10 and 
11). The ratio a2/a, for the experimental lift-curve slopes 
for the aspect-ratio-4 hydrofoil is the ratio of the lift-curve 
slope obtained at a given depth of submergence to the lift­
curve slope at the greatest depth of submergence. This 
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ra tio was chosen for the aspect-ratio-4 hydrofoil because the 
c:<pcrimental lift-curve slope at the grea test depth of sub­
mergence was approximately 5 percent higber than the lift­
curve slope (con ccted for aspect ratio by eq. (1)) given by 
airfoil data. If the method 1.1 ed for the hydrofoils of aspect 
ratios 6 and 10 had bcen used, the ra tios would be greater 
than 1.0. 

The agreemen t of the experimental results with results 
given by the theoretical method is generally good . 

Drag.- Results calculated by the restricted-area. theoretical 
method for estimating the effect of depth of submergence on 
the drag coefficient are ' hown in figure 16 for hydrofoils of 
aspect ra tios 10, 6, and 4. The magnitude of the increments 
indica tes that a correction to airfoil drag coeffi cients must be 
made to predict hydrofoi l characteristics a t supercritical 
speeds . 

R esults calculated by the restrictc:d-al'ea method for both 
(ank no. 1 and tank no . 2 are compared in figure 17 wi th the 
present experimental re ults for a hydrofoil of aspect ratio 
10. Figures 18, 19, and 20 present similar comparisons for 
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FIGURE 16.-Va riation of induced-drag coefficient due to t he hydrofoil 
vortex images with lift coeffi cient for hydrofoil of aspect ra.tios 10, 
6, and 4 . 

hydrofoils of aspect ratios lOr 6, and 4; the experimen tal data 
for the aspect-ratio-IO and aspect-ratio-6 hydrofoils were 
obtained from references 8 and 9, r espectively, and the ex­
perimental data for the aspect-ratio-4 hydrofoil are presented 
herein . The agreement of the experimental results with 
results given by the theoretical method is in most cases good. 

THEORETICAL BOUNDARY CORRECTIO NS- SUBCRITICAL 

GENER AL 

The speea. of propagation of the transverse waves generated 
by the bound vortex of the hyrdofoil is limited to a speed 
which is a function of water depth. This speed is defined 
by gh where 9 is th e gravitational constant and h is the 
water depth. When the hydrofoil operates below this limi t­
ing or cri tical speed, the transverse waves travel along with 
the hydrofoil , whereas above this speed the transverse waves 
no longer accompany the hydrofoil. It follows, therefore, 
that the induced effects on lift and drag due to these waves 
are present below cri tical speeds but not above. The diverg­
ing waves due to the trailing vortices are not subj ect to this 
limi ta tion and their effect is present at both subcritical and 
supercritical speeds. The effect, then, of the trailing vortices 
can be comput,ed to a first approximation in the same manner 
a t subcri tical and supercri tical speeds. The effect of the 
bound vortex at subcritical speeds, however, is not the same 
as a t supercri t ical speeds. 
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Figure 10 indicates that the expected effect of the critical 
speed on lift was either not present or so small as to be masked 
by the Reynolds number effects encountered in the tests and 
by the effects of submergence. Ii can therefore be assumed 
that to a first approximation the in£ucncc of the boundaries 
on lift will be the same as for the supel'criti 0,1 case and that 
only the influence on drag need be considered. 

Since the condition generally encountered in aC.tual appli­
cations is that of great water depth, most of the theoretical 
work ha considered only this case. Mathematical investi­
gations of the wave drag of a submerged body were made by 
Lamb, who studied. the motion of a circular cylinder and a 
spherical body. More exact solutions of the e problems 
were given by Havelock, who solved further problems, for 
instance, that of the motion of a submerged ellipsoid. L. 
Sretcnsky (ref. 12) approached the problem of the submerged 
cylinder for both infinite and finite water depths by a suming 
the existence of circulation. Kotchin (ref. 13) gave general 
formulas for the hydrodynamic forces acting on profiles of 
arbitrary hape in water of infiniLe depth. Vladimirov (ref . 
14) considf'lw\ the case of a Ull'f'e-dimf'nsional hydrofoil in 
water of infinite depth. Meyer ill reference 15 considered a 
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FIGURE 17.-Concluded. 

two-dimensional hydrofoil in both infinite and finite water 
depths and in reference 16 considered the case of a three­
dimensional hydrofoil in water of infinite depth. 

DRAG 

In order to e timate the effect of depth of submergence on 
drag, the induced drag due to the hydrofoil trailing-vortex 
images and wave drag must be added to the drag in an 
infinite fluid. 

The boundary-induced-drag coefficient due to the image 
trailing vortices is 

(14) 

From equation (5) 

where, for a free surface, 
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F IG URE 18.- Compa rison of l'xp(:rirn (; lI tu l a lld t heo reLical drag coef-
fie ir n ts for a pect-ratio-JO hydrofoil (s('(' rd. 8) . 'peed , 25 fp . 

and from equation (13), for a rcsLrid('<i arc~a (tank no. 1 ana 
tank no . 2), 

(J 5) 

The wave-drag coefficient for a hydrofoil at a given depth 
of submergence and speed is (refs. 13, 15, and 16) 

(16) 

where, for a two-dimensional hydrofoil ll1 water of innni te 
depth (refs . 13 and 15) 
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for a two-dimensional hydrofoil in waLer of fin iLe depth (ref. 
15) 
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} 2U gh 

COSl o- V 2 

( h T T' b . df hi' V2 
tanh Uo) t eparameter u olso tall1C romt e re atlOns gh = U

o 
' 

and for a three-dimensional hydrofoil in water of infinite 
lepth (ref. 16) 
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F I GU RE 20.-Comparison of experimental and theoretica l drag 
coefficients for aspect-ratio-4 hydrofoil. Speed, 25 fps. 

and HoW and H1(L) are Hankel functions. 

.8 

The drag coefficient of a rectangular hydrofoil in an infinite 
fluid is 

(20) 

The total drag coefficient of a rectangular hydrofoil at a 
given depth of submergence, angle of attack, and speed is 

(21) 

COMPARISON OF THEORY AND EXPERIMENT 

Figures 21 and 22 compare the present experimental results 
for a hydrofoil of aspect ratio 10 with the results calculated 
from equation (21). The theoretical results were obtained 
by estimating the section drag coefficient Ca and by adding 
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FIG URE 21.-Comparison of experimental alld theoretical drag coeffi­
cient for a pect-ratio-10 hydrofoil. Water depth, 10.64 feet (tank 
no. 1). 

the calculated induced-drag coefficient of a rectangular hydro­
foil in an infinite fluid ODI' the boundary-induced-drag co-

efficient SODi' and the wave-drag coefficient OD3' 

The section drag coefficient Cd at low Reynolds nuniber 
was estimated by extending the section drag data of the 

ACA 641-412 airfoil by comparison (fig. 23 ) with low 
Reynolds number data for the JACA 653-418 airfoil sec­
tion. The boundary-induced-drag coefficient SODI (eq.(14)) 
was obtained by calculating Kl for tank no. 1 and Kl 
for tank no. 2 from equation (15). The wave-drag 
coefficient was computed from equation (16), where the 
values for 'It were calculated from equation (17) (infinite 
water depth , two-dimensional hydrofoil), equation (18) 
(finite water depth, two-dimensional hydrofoil), and 
equation (19) (infinite water depth, three-dimensional hydro-
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foil). The values for'" obtained from equations (17), (18) 
and (19) are compared in figure 24. 

Figures 21 and 22 indicate that the wave-drag coefficient 
for water of infinite depth (two-dimensional hydrofoil) 
added to CD1 +8CDI where CD1=Ca+ CD; gives a better ap­
proximation of the experimental drag coefficient of a hydro­
foil at a given depth of submergence and speed than when 
wave drag is calculated for water of finite depth (two­
dimensional hydrofoil) or for water of infinite depth 
(three-dimensional hydrofoil) . 

This r esUlt may be due to the fact that the wave-drag 
theories do not consider both the effect of water depth and 
the three-dimensional case simultaneously, whereas the 
experimental values were at a finite water depth for an aspect­
ratio-lO hydrofoil. Suitable experimental data for other 
aspect ratios and water depths are not now available to aid 
in clarifying the discrepancy. The difference in the theo­
retical and experimental results at 5 fps could be an additional 
section drag increment since the section drag coefficient w'as 
estimated by an arbitrary method . 
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CONCLUSIONS 

A comparison of the results calculated by theory and those 
obtained experimentally for hydrofoils having aspect ratios 
of 6 (presented in NACA WR L-758) and 4 at supercritical 
speeds and an aspect ratio of 10 at subcritical and super­
critical speeds may be summarized as follows: 

1. A method has been developed which makes it possible 
to calculate at subcavitation speeds, to engineering accuracy, 
the lift and drag characteristics of a hydrofoil from aero­
dynamic data. The method accounts for the effects of 
submergence of the hydrofoil below the free-water surface, 
the proximity of fixed boundaries, and the limiting speed of 
wave propagation due to limited water depth. 
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FIGU RE 24.-Va riation of '" (sec eg. (16)) w ith speed fo r infini te water 
dep th a nd for fini te water d ep t h at 0.84 a nd 3.84 chords hy drofoil 
submergence. 

2. There was no appreciable effect of the limi ting speed 
of wave propagation on lift-curve slope or angle of zero lift 
at th e two depths of submergence in vestigated. 

3. Th e increase in drag as the cri t ical speed is approach ed 
from the supercritical range is gradual. This resul t is con­
trary to the abrupt increase a t t he critical speed predicted 
by th eory. 

L A GLE Y AERO N AUTICAL L ABORA T ORY, 

N ATION AL ADVIS ORY CO MMITT EE FOR AE R ONAUTI CS, 

LA GLE Y FIE LD, VA., April 22, 1952. 
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TABLE L-ORDIKATES OF STRUT A1\D H YDROFOIL 

IStatlons and ordinates arc ~I\'cn in Inches] 

~-----~-

Stru t , NACA 66,-012 Hydrofoil, NACA 64,A412 

Station I Ordinate I Upper surface I Lower surface 

0 0 Station Ordinate Station Ordinate 
.040 .072 
.060 .087 
.100 .109 0. 026 0.084 0.054 - 0.067 
.200 .145 .044 .104 . 076 - .079 
. 400 .200 .082 . 135 . 118 -. 096 
.600 . 243 .179 . 194 . 221 - . 126 
.800 .230 .376 . 279 .424 -.164 

1.200 .339 .575 .346 .6~ - . 190 
1. 600 .384 .775 .401 25 -.211 
2.000 . 419 1. 176 .490 1.224 - . 241 
2.400 .445 1. 578 .559 1. 622 - . 261 
2. 600 .464 1.981 .611 2.019 - . 274 
3.200 . 476 2.384 . 648 2.416 - . 281 
3.600 . 480 2. 788 .673 2. 812 - . 281 
4.000 .477 3. 191 .684 3. 209 -. 275 
4. 400 .467 3.595 . 679 3.605 - .259 
4.800 .447 3.999 .661 4.001 - . 236 
5.200 .411 4. 402 .632 4.398 -. 207 
5.600 .361 4.805 .592 4.795 -. 176 
6.000 .301 5. 208 .544 5.192 -.142 
6.400 .236 5.610 .487 5.590 - . 108 
6. 800 . 167 6.012 .422 5.988 -.076 
7.200 .099 6. 414 .349 6.386 - . 050 
7. 600 .038 6. 814 .265 6.786 - .034 
8.000 0 7. 210 . 179 7.190 -.022 

7. 605 .090 7. 595 - .012 
8.000 .002 8.000 -.002 

L. E. radius: 0.076 

- L .E . radius: 0.083 
Slope of radius through L.E.: 0.168 

GPO 93 996 2 1 

J 


