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FREE-STREAM BOUNDARIES OF TURBULENT FLOWS!

By StanpLey CorrsiN and Avanx L. KIsTLER

SUMMARY

An experimental and theoretical study has been made of the
instantaneously sharp and irreqular front which is always
found to separate turbulent flurd from contiguous “nonturbu-
lent” fluid at a free-stream boundary. This distinet demarca-
tion is known to gwe an intermiltent character to hot-wire
signals in the boundary zone.

The overall behavior of the front is described statistically in
terms of its wrinkle-amplitude growth and 1ts lateral propagation
relative to the fluid as functions of downstream coordinate.

It s proposed and justified that the front actually consists
of a very thin fluid layer in which direct viscous forces play the
central role of transmitting mean and fluctuating vorticity to
previously nonturbulent fluid. Outside this “laminar super-
layer” there s presumably a field of rrotational velocity
Auctuations (the “nonturbulent” flow) with constant mean
velocity.  As outlined in the following paragraphs, theoretical
analysis based on this general physical picture gives results on
front behavior which are in plausible agreement with experi-
mental results for three turbulent shear flows: rough-wall
boundary layer, plane wake, and round jet.

1t 7s shown that the rate of increase of wrinkle amplitude of
the front can be roughly explained as a Lagrangian diffusion
process, using the statistical properties of the turbulence in the
Sully turbulent zone.

The transversal propagation velocity of the turbulence front
s predicted by the behavior of a physicomathematical model of
the laminar superlayer. The model is a generalized Stokes-
Rayleigh infinite wall, oscillating in its own plane, translating
to give constant mean vorticity at the boundary, plus local
vorticity production and uniform suction velocily.

Finally, various statistical properties of the turbulence front
location as a stationary random variable (for fixed downstream
position) have been either directly measured or indirectly inferred
from known theorems on Gaussian stochastic processes; it 1is
found that for boundary layer, wake, and jet the front location
s very nearly Gaussian. Specifically, it is possible, therefore,
to estimate the autocorrelation function of the front position.

INTRODUCTION

Until the last few years, basic experimental and (especially)
| theoretical attacks upon the problems of turbulent flow have

centered on fully turbulent fields, both isotropic and shearing.
The experimental researches have been concerned with the
measurement of significant statistical quantities with the
hope that these will give some insight into the mechanism of
fully developed turbulence and might even suggest a profit-
able theoretical approach.

In reality, however, every turbulent flow is bounded by
fluid not in a turbulent state. Tf the boundary spacings can
be made very large compared with the characteristic correla-
tion lengths of the turbulence, for example, integral scale and
dissipative scale (microscale), then an “infinite field”” approxi-
mation can be used. This has been possible in research on
the decaying turbulence behind regular grids, a reasonably
good likeness of Taylor’s ideal concept of 1sotropic turbulence
(ref. 1).

It now seems probable that the classic turbulent shear
flows, boundary layer, wake, jet, channel, and so forth have
transversal integral scales not very small compared with
their characteristic widths. This has been shown experi-
mentally for the round jet (ref. 2), the plane half jet (ref. 3),
the boundary layer (ref. 4), and the channel (ref. 5). This
implies that the general behavior of these shear flows cannot
be fully inferred on a (still unsolved) homogeneous shear flow
basis but must involve the boundary phenomena.

Turbulent shear flow boundaries can be classified in various
ways. A conventional one is the division into (a) solid and
(b) free (or free stream) boundaries, depending upon the
presence or absence of a solid wall and excluding possible
svmmetry planes from consideration as boundaries.

A further subdivision can be made in each class according
to whether the outside flow or wall is traveling faster or
slower than the turbulent fluid just inside the boundary,
but this distinction is probably only a quantitative one
(because of the nonlinearity of the system), not affecting the
nature of the boundary phenomena; a comparison of wake
and jet boundaries would illustrate this remark. One can
also visualize a boundary state in which this mean velocity
difference is zero, that is, the case of uniform velocity field
including both turbulent and outside flow.

This investigation is concerned solely with the free
boundary condition. In practice, this case generally involves
a mean shear stress in the fully turbulent region, reducing

1 Supersedes NACA TN 3133, “The Free-Stream Boundaries of Turbulent Flows” by Stanley Corrsin and Alan I.. Kistler, 1954,
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to zero monotonically toward the nonturbulent? free-stream
flow.

The outstanding observable characteristic of free bound-
aries is the relatively sharp instantaneous demarcation
surface between turbulent and nonturbulent fluid. This
shows up very clearly, for example, in short-duration shadow-
oraphs of the turbulent wakes behind high-speed projectiles
(fig. 1). The sharpness of the irregular boundary illustrated
persists as far downstream as pictures have been taken,
about several hundred wake diameters.

L-81230

Frcure 1.—Turbulent wake of bullet. (Courtesy of Ballistic Research
Laboratories, Aberdeen Proving Ground.)

In a mixed flow zone of this type, a probe stationary rela-
tive to the disturbance (e. g., the wall in a turbulent boundary
layer) will be swept over by successive sections of turbulent
and nonturbulent fluid. With a hot-wire anemometer this
vields an intermittent signal of the type which led to the
discovery of this characteristic of free turbulent boundaries
(ref. 2).  The relative time spent by the probe in turbulent
fluid was first measured by Townsend (ref. 6) and called
the intermittency factor .

Most steady-state shear zones spread with increasing
downstream distance. Therefore, there cannot be even
rough overall flow similarity unless the average lateral
position and the wrinkle amplitude of the sharp boundary
both increase at roughly the same rate as does the momentum
width of the shear flow. Since it is well known that most
“simple” turbulent shear flows exhibit a rough overall
similarity, it can immediately be anticipated that this
turbulence front must (a) propagate relative to the local
fluid in the same sense that a flame front propagates through
a combustible mixture and (b) increase its geometrical
amplitude with increasing downstream coordinate.

The explanations of these necessary properties of the
turbulence front are two of the explicit purposes of this
investigation. The two properties are to be measured and
to be analytically related to physical properties of the turbu-
fence in the fully turbulent zone.

For any z-station, the intermittency factor y(y) is just 1
minus the distribution function of Y (#), the instantaneous
Jocation of the sharp front between turbulent and nonturbu-

——

2 The term ‘“laminar’ is reserved for a nonturbulent flow in shear, that is, where viscous
forces are important. This is in contrast with the terminology introduced in reference 2,
where laminar was used to indicate any nonturbulent flow. Of course, in practice, a “non-
turbulent” flow may be one whose turbulence level is much lower than that of the con-
tiguous turbulent flow.

lent fluid. For a fixed value of z, Y(f) is a stationary
random variable, and

v(y) =probly= Y () £ =] (1)

Since v(y) is differentiable (in fact, nondifferentiable func-
tions cannot be experimentally so identified), 0y/0y is the
probability density of Y(¢).

A priori the fact that the free turbulence boundary
(vorticity fluctuation boundary according to the physical
picture proposed here) remains sharp can be attributed to
the continuous irregular stretching of the local vorticity
gradient in the boundary, that is, to the fact that the vorticity
propagation process is nonlinear; for a given stretching rate,
the production of new vorticity is proportional to the amount
already present. This must be balanced on the average
by the viscous diffusion of the vorticity gradient at the front.

[t is obvious that the random vorticity field ordinarily
called turbulence can propagate only by direct contact, as
opposed to action at a distance, because rotation can be
transmitted to irrotational flow only through direct viscous
shearing action. This insures that under ordinary circum-
stances the turbulence front will always be a continuous
surface; there will be no islands of turbulence out in the free
stream disconnected from the main body of turbulent
fluid.

The analytical estimates will include a hypothetical case
in which the turbulent part of the flow field is also without
shear. This is perhaps the simplest conceivable case under
which turbulence propagates into nonturbulent fluid—
provided that one can neglect the necessary monotonic time
decreases in turbulent energy per unit mass. Under these
conditions it is proposed that the distinction between turbu-
lent and nonturbulent zones i1s the presence or absence,
respectively, of random vorticity fluctuations.

A more complex case is the one ordinarily encountered in
practice, as described before: a shearing turbulence en-
croaching on a nonshearing (irrotational) nonturbulent fluid.
In this case, the average propagation velocity of the turbu-
lence front should also depend upon the mean shear stress
in the turbulent fluid near the front.

A somewhat different situtation, not included fully in the
above classes, occurs in the transitional spreading of a turbu-
lent shear region into a shearing laminar region, when the
principal shear planes of laminar and turbulent flows are
parallel to each other but perpendicular to the mean propa-
gation front.

Such a phenomenon was first studied experimentally by
Charters (ref. 7), who called it “transition by transverse
contamination.”  Emmons (ref. 8) has given good experi-
mental evidence that transition from laminar to turbulent
flow may often occur in this way, usually from irregularly
generated “ignition’” spots in the moving fluid, and a pre-
liminary analytical discussion of the turbulence spread under
these conditions has been given by Mitchner (ref. 9). How-
ever, it appears that Mitchner has omitted from his non-
turbulent region the very shear which distinguishes the tran-
sition problem. Tt is not intended that this important case
be included in the present report. Although some of the
same phenomena may occur as in the simpler nonshear
boundary, it is possible that the dominant turbulence propa-
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gation mechanism is different. In particular, it may be
that a destabilization of the already rotational flow occurs in
addition to a transmission of random vorticity by direct
viscous action at the turbulent-laminar interface.

When the present work was begun, it was hoped that the
problem of propagation of turbulence into a nonturbulent
flow could be studied at the boundary between a grid-
generated isotropic turbulence and a nonturbulent flow
moving at the same uniform speed. This would eliminate
the shear stress entirely, although involving a relatively rapid
turbulence-level change due to viscous dissipation with no
turbulent energy production.

The principal generating arrangement tried was a half grid
consisting of a conventional 1-inch-mesh, ¥-inch-dowel grid
covering half the tunnel cross section, with a fine mesh
screen of virtually identical static-pressure drop covering
the other half. Unfortunately, anomalous boundary be-
havior, arising from complexities in the flow around the joint
between grid and screen, could not be eliminated with a
reasonable amount of effort. Therefore, the turbulence
propagation has been studied in situ, chiefly at the outer
edge of a low-speed turbulent boundary layer, with a few
measurements in a round jet for an additional check of some
particular phenomena. For completeness, some of Town-
send’s plane-wake data (ref. 10) have also been analyzed in
the light of this investigation.

The general purpose of this investigation has been to
measure statistical properties of the propagating turbulence
front to permit qualitative or even rough quantitative theo-
retical explanation of the phenomenon.

The work has been carried out at the Department of
Aeronautics of The Johns Hopkins University with the
financial assistance and sponsorship of the National Advisory
Committee for Aeronautics. The authors would like to
acknowledge the assistance of Miss Vivian O’Brien, Mr.
Aristoteles Scoledes, Mr. Donald Johnson, and Miss M. Ann
Emmart as well as the critical advice of Dr. Francis H.
Clauser and Dr. Mark V. Morkovin.

SYMBOLS
A characteristic ordinate in sketch (d)
a random variable representing some flow
property
ar same property, taken in turbulent flow only
B constant
b random on-off signal, taken between zero
and 1
(50) random variables
¢y skin friction coefficient, - :"
@ diameter of rod used to produce plane wake
F,, F, F,, F, power spectra
- scalar function

height of wall roughness

random variable

parameter in model of laminar superlayer,
equivalent to vortex stretching rate

wave number
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transversal Eulerian scale

Lagrangian time scale

Lagrangian length scale, v L,

average pulse lengths of intermittent signal

empirical constant

exponent of boundary-layer power-law ve-
locity profile

average frequency of occurrence of any
particular value of random variable 7(f)

average frequency of occurrence of Y and
zero, respectively, in front-location vari-
able Y(t)

eyelie frequency

total static pressure

probability densities of turbulent and po-
tential segment lengths, respectively, in
intermittent signal

total velocity vector

veloeity fluctuation vector, (J—(T)

dynamic pressure in free stream of wind
tunnel

instantaneous radial location of turbulence
front in round jet

Lagrangian correlation function

shear correlation coefficient, wo/u'v’

Reynolds numbers of laminar superlayer

turbulence Reynolds number, u'\/»

coordinate vector

radial coordinate in round jet

jet orifice radius

U,z 2t a sec-

Ji=

radial position at which /=;

-

8

tion of the jet

total shear force vector (per unit area) at
turbulent side of superlayer, lying in
plane of superlayer

segment (or pulse) lengths of turbulent and
potential signal, respectively, in inter-
mittent signal

time

velocity along z, 7, and z, respectively

mean velocity on axis of jet or wake

mean velocity in free stream of boundary
layer or wake

skin friction velocity, /7./p

velocity fluctuation along 2, 7, and z,
respectively

average velocity of propagation of turbu-
lence front relative to fluid (perpendic-
ular to its own plane)

Cartesian coordinates (z is measured from
beginning of working section in bound-
ary-layer case)

Cartesian coordinates alined locally with
turbulence front
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apparent origin of wake, boundary layer,
or jet

instantaneous y —location of
front for boundary layer and wake

turbulence

instantaneous 1, —location of turbulence
front of plane wake

in wake

value of 7 at which mean velocity defect
is half maximum

radian {requency of wall
model of laminer superlayer

intermittency factor, relative time spent
by a fixed probe in turbulent fluid

instantaneous vector veloeity jump across
laminar superlayer

boundary-layer thickness, the value of ¥y

Uu=U,

boundary-layer displacement thickness

thickness of laminar superlayer

model superlayer thickness for mean and
fluctuating vorticity, respectively

momentum thickness of boundary layer

Lagrangian length scale in flow direction,
UL,

transversal Eulerian microscale of turbu-
lence

Lagrangian time microscale

oscillation in

at which

microscale of Y(t) times U,

Lagrangian length microscale, o'\,

viscosity coefficient

kinematic viscosity coefficient, u/p

total vorticity components in z— and z—
directions, respectively

total vorticity, E=4

vorticity fluctuation components along z, v,
and z, respectively

vorticity fluctuation, & =w =2 Q0

density -7

standard deviation of (Y —Y) =Y,

stress tensor

time interval

skin friction stress

rate of dissipation of turbulent energy per
unit mass of fluid

Kolmogoroff (minimum) length, x = (»*/®)'*

autocorrelation function of Y (t)

autocorrelation functions of @, a,, and b

autocorrelation function of trigger output

total vorticity vector

vorticity fluctuation vector

average

“short’” time or space average

r=v( )2 root mean square

()r hypothetical variable equal to actual varia-
ble in turbulent fluid only and obtained
by deleting potential fluid part of an

intermittent oscillogram

EXPERIMENTAL EQUIPMENT AND PROCEDURES
AERODYNAMIC EQUIPMENT
The wind tunnel (fig. 2) is an open-return NP type with
a 2- by 2-foot working section and a free-stream turbulence
lovel at entrance of ' [[7=0.05 percent and /U =0.06 per-

cent at a mean velocity of {7 =26 feet per second.

}*— —q,t‘_ _7
L i 5-hp blower _7‘
L [ 6 .|~3+35+3-{
Lo =
! | )

g | o

l‘ b v/}_Cﬁr;ugahons
:F?_L__‘_L_ y Transition

—Cheesecloth screen section

Other screens-No. 24 wire mesh

Frcure 2.—Schematic diagram of wind tunnel.

In order to have a reasonably thick turbulent boundary
layer in the relatively short working section, a wall was used
as a working surface, and it was muglwnv(l by corrugated
paper starting from the beginning of the contraction. The
corrugations, set perpendicular to the flow, were roughly
sinusoidal, with about %-inch wave length and %,-inch ampli-
tude (half height)

The extent of two-dimensionality in the boundary-layer
flow was checked by mean velocity profiles at several stations
across the 2-foot width of the working surface, at the farthest
downstream station, r =102 inches. The uniform zone was
18 inches wide, with a boundary-layer thickness of 6=
inches from wall to free-stream velocity and, estimating from
reference 4, the transversal Eulerian scale was about 0.5 inch.

The boundary-layer measurements were all made at a
free-stream velocity of 37 feet per second. The static pres-
sure was very nearly constant along the working section
(fig. 3). From comparisons with earlier work on this type
of flow (ref. 11), it appears that the flow state is such as to
have a fully rough wall condition.

The round-jet unit is sketched schematically in figure 4.
The orifice diameter was % inch and it was run at an exit
/2
velocity of 300 feet per second.

08 ﬁ
04
o

ée (©) ‘g T — \B.z 1} —O
9, o o

-04

o | | | 1 1

’080 20 40 60 80 100 120

X, tn.

Ficure 3.—Static-pressure distribution along wind-tunnel working

section. ¢,, dynamic pressure in free stream at x=:0.



FREE-STREAM BOUNDARIES OF TURBULENT FLOWS

5" digm ——
Nozzle
475" digm —>
|
|
\\ // Diffuser
6.0" diam.—>
|
] l ——i— Blower

Frcure 4.—Schematic diagram of round-jet equipment.
HOT-WIRE SET

Most of the measurements reported here were made with
the hot-wire anemometer as sensing element, The basic
amplifier and compensation unit, constructed by Mr. C. L.
Thiele, is described in reference 12. The oscillograms were
taken with a General Radio Type 761 camera photographing
blue cathode-ray tubes. Measurements of the statistical
distribution of lengths of turbulent bursts were made by
scaling directly from the recorded oscillograms.

The power spectra were measured with a Hewlett-Packard
Type 300A wave analyzer, followed by a vacuum thermo-
couple. The strongly fluctuating output was averaged by
integrating with a fluxmeter and bucking circuit as illustrated
in reference 12.

The hot-wires used were either 0.00010 inch platinum or
0.00015 inch tungsten, with lengths of about 1.5 millimeters
for the u-meters and 2 millimeters for the X-meters used to
measure 2/, w’, and up. No correction was applied for finite
wire length.

MEASUREMENT OF INTERMITTENCY

Following Townsend (ref. 6) the intermittency v is defined
as the fractional time spent by the (fixed) probe in turbulent
fluid. Townsend has measured v in two ways: (a) from the
“flattening factor” (or “kurtosis’) of the probability density
of the intermittent signal (ref. 6); (b) from the mean-square
output of an on-off signal triggered by passing the intermit-
tent signal through a gate (ref. 10). The method used here
is a development of (b), the relative “on time” being meas-
ured by counting a high-frequency pulse signal as modulated
by the on-off signal. This should give more accurate results
at low values of 7.

The overall block diagram is given in figure 5. Figure 6 is
a further breakdown of the manipulative details, with a
schematic diagram of a hypothetical signal as modified by
passage through the various blocks. The actual circuit
of this is given in figure 7. It is clear from figure 6 that the
number of pulses counted for a given input signal will be
a monotonically increasing function of discriminator setting.
One would like to find a wide range of diseriminator settings
over which the count rate, for a given input signal, would
be unchanged. Unfortunately, there is no such indication

Compensated
input from hot-wire
circuit

Amplifier

Differentiating circuit

Amplifier

Intermittency circuit

Counter

Ficure 5.—Overall block diagram of intermittency-measuring
arrangement.
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Signal

Input
from amplifier

Noise clipper
)

Rectifier

Smoothing
filter

D-c amplifier

(clipping)
|
. | e
Discriminator I [ (.
_____ DTNV TN
I
\“ |
Schmitt | ! o
trigger ——{w
I
I
I}
Gate - T

Lttt [ )

Pulse Magnified time D-¢ :
formation scale restoration | |
0 |
|

THHHHt

Magnified time
scale

|
|
|
|
[

T

Square wave To counter

Fraure 6.—Detailed block diagram of intermittency-measuring device.

of a “correct” setting for the discriminator, possibly because
of the lag introduced in the necessary smoothing process.
A typical illustration is given in figure 8.

In practice, the discriminator level was set for each signal
by visual observation on a dual-beam oscilloscope of simul-
taneous traces of the differentiated hot-wire signal and the
corresponding trigger output (e. g., fig. 9). The settings cf
the noise clipper and of the smoothing-filter time constant
were chosen by visual comparison at the beginning of the
sequence of tests and kept fixed for the entire investigation.

The intermittency circuit was desgined and built by Mr.
Donald S. Johnson.

VORTICITY FLUCTUATIONS

The pyramidal configuration of four hot-wires connected
in a Wheatstone bridge responding primarily to the vorticity
fluctuation component along the flow direction is due to
Kovdsznay (ref. 13). Figure 10 is an isometrie sketch and
a wiring diagram. Some of the pertinent details are given
in reference 14.

Calibration of sensitivity to vorticity has been tried by
spinning the meter about its axis (ref. 13) in a uniform flow,
but for the measurements presented here an indirect method
was used: The readings in a decaying isotropic turbulence
were compared with the values of vorticity fluctuation level

computed from turbulence level and microscale measure-
ments.  Estimates of the parasitic sensitivities, especially
to the three components of turbulent velocity, were made by
measuring the steady-state yvaw and speed sensitivities in a
low-turbulence stream. These were found to be negligibly
small for the particular meter used in getting the & data.
No correction has been made for finite wire length (the
lengths were about 1 millimeter), and no correction has been
made for the nonzero ratio of wire spacing to turbulence
microscale, a characteristic giving parasitic sensitivity to the
second derivatives of velocity fluctuations.

MEAN VELOCITY PROFILES

A flattened no. 20 hypodermic needle was used as total-
head tube in the measurement of the mean velocity profiles
from which boundary-layer and jet thicknesses were de-
termined.

Although exact wall location is probably a meaningless
concept for rough-wall boundary-layer flows, the choice of
such a reference value of y is convenient for presentation of
data in familiar coordinates. Therefore, a y =0 reference was
chosen by extrapolation to zero of the mean velocity profiles
from a region outside the boundary tangent to the corruga-
tion peaks. In order to minimize scatter near the “wall,”
all total-head traverses were made at the same phase position
in the corrugation peak. A slight cutout on the downstream
side in each case permitted the total-head tube to go com-
pletely into the boundary.

Since the exact details of mean velocity profile shape were
not of primary concern in this investigation, no correction
for the effect of turbulence has been applied to the total-head
tube data.

MEASUREMENTS

MEAN VELOCITY FIELDS

Rough-wall boundary layer.—Mean velocity profiles as
determined from total-head tube measurements are plotted
in dimensionless form in figure 11. There is reasonably close
similarity. Of course, exact similarity is not to be expected
since boundary-layer Reynolds number varies considerably
with z and effective roughness varies slightly.

The momentum-thickness distribution

(T (,_ T, |
@)= — (1 Tg) Iy @)

is given in figure 12. The solid line is a simple power law
drawn from the apparent origin z =z,. The similarity shown
in figure 11 is close enough so that the displacement thickness

and the total thickness §(z), the value of 5 at which U=0T_,
are assumed proportional to 6(x) for the purpose of later
figures. The 6(z) values are assumed to be more reliable
than 6* because equation (2) deemphasizes the relatively
uncertain region near the wall. The values of 6*(x) and é(z)
are then given by 6(r) times the average values of 6%/6 and
6/6. 'These values are 1.47 and 7.2, respectively.
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Ficure 7.—Circuit of intermittency-measuring device. Capacitances are in microfarads unless otherwise noted; resistances, in ohms. 7%,
test count rate.
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typical probe position.
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computed from 6(z) by the Von Kdrmén integral relation

‘ 0 d
J O=2 Iz

is included in figure 12.

(5)

Round jet.—Figures 13 and 14 present data for the round

jet corresponding to the data for the boundary layer. The

(a) Discriminator set too high (signal is 0u/0t). | tail depression is, of course, due to the directional sensitivity
b) G iseriming s setting (signal is : p > . - S
(b) Good diseriminator setting (signal is wu(t)) ‘ of the total-head tube: at the jet (‘(l}.‘t'. the mean v (k]”(.”.\

Froure 9.—Oscillograms of hot-wire signal and trigger output. is chiefly radially inward. These measurements agree with
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Ficure 12—Momentum thickness and skin friction coefficient in

rough-wall boundary layer.

the results of references 2 and 12 on velocity profile and
linearity of jet momentum spread with 2. However, the
angle of spread is slightly greater than that in reference 2,
being 10.8° total angle for the half-velocity cone as against
9.5° in the earlier work

Possible factors in this difference are the following:

(a) Different orifice boundary conditions: In reference 2
the jet emerged from a plane wall about 25 orifice diameters
in width; here there was no wall.
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Ficure 13.—Mean velocity profiles for round jet.
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Frcure 14.—Half-velocity radius of jet.

(b) Different Reynolds numbers: At the same z/r, this jet
field has a Reynolds number five times bigger than the one
in reference 2.

(¢) Different measuring instrument: The mean velocity
profiles of reference 2 were measured with a hot-wire anemom-
eter while were measured with a total-head tube.
In neither case were the data corrected for the (different)
effect of turbulence on apparent mean velocity.

However, the difference is of no interest here since the
principal concern is a comparison of the relative behaviors
of overall mean flow field and irregular turbulence front.

these

CHARACTER OF FLUCTUATIONS

The intermittent character of the outer part of the turbu-
lent. boundary layer is indicated by typical oscillograms.
Figure 9 includes u(f) and ou/ot, while figure 15 includes
u(t) and £(t). Obviously there are still appreciable velocity
fluctuations in the nonturbulent parts of the flow. These
are of relatively low frequency. The typical time record of
vorticity fluctuations &£(#) indicates that the nonturbulent
parts are irrotational, since the order of magnitude of the
low-frequency fluctuations visible between turbulent seg-
ments can be accounted for by parasitic sensitivity in this
particular vorticity meter.

&7
S
ulf)
s
[ Ficure 15.—Oscillograms of vorticity fluctuations and of longitudinal

velocity fluctuations in intermittent zone.

A definite property of the u(¢) oscillograms is one-sidedness
of the turbulent bursts. This result that on the
average the bulges of turbulent fluid are moving more
slowly than the nonturbulent fluid passing by the same
This is not sur-

shows

lateral y-position in the boundary layer.
prising, since such turbulent bulges must largely originate
from further in toward the fully turbulent region, which is a
region of lower mean velocity in the boundary-layer case.

This one-sidedness is sharpened up a bit by the fact that
(as will be proved later) the irrotationally fluctuating fluid
must be traveling at the same mean velocity as the free

stream.
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The qualitative description of the turbulence propagation
phenomenon given in the “Introduction” requires that it
actually takes place through a (presumably thin) viscous
shear layer plastered all over the boundary. 1In fact, this
“laminar superlayer” is the boundary between turbulent
and nonturbulent fluid. Inspection of the oscillograms
reveals no clear similarity among all the beginnings and ends
of the turbulent bursts, but this is not a contradiction of the
physical picture. Any such tendency must be completely
masked by the randomness of velocity gradients (and hence
the shears) in the laminar superlayer. Furthermore, the
boundary itself is an irregularly wrinkled surface in three
dimensions so that the relative orientations of hot-wire
and boundary at the moments of immersion and withdrawal
are also random.

TURBULENCE LEVELS

Turbulence-level distributions for the three velocity
components u’/U, »'/U, and w’/U at the boundary-layer
station studied in detail (z=102 inches) are plotted in figure
16, with the corresponding mean velocity profile included
for reference. Clearly the velocity fluctuations due to the
presence of the boundary layer extend far outside the region

conventionally identified as the boundary layer.
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Ficure 16.—Turbulence-level distributions at z=102 inches in

boundary layer.

Variation of turbulence level in the a-direction, for cor-
responding locations in the boundary layer, is indicated by
o'/U versus z at several fixed values of y/é (fig. 17). Since

the Prandtl friction velocity (',E\/E is probably the basic
P

reference quantity with the dimensions of Length/Time in
a solid-wall shear flow, one expects that, for corresponding
positions in the boundary layer, u’, v/, and w' ocl’,. In
turbulent pipe flow, Laufer (ref. 15) finds that »’/U, versus
radius 1s mdependent of Reynolds number except in the
vicinity of the wall. This suggests that, in the boundary
layer, '/U, versus y/6 may be constant away from the wall.
Figure 17 shows at least no clear-cut contradiction with
this hypothesis, within the overall experimental uncertainty.

TURBULENT SHEAR STRESS
The turbulent shear stress distribution —puv(y), at
z =102 inches, is presented in dimensionless form in figure

18 and shows the same behavior as in the smooth-wall cases
(refs. 4 and 16), approaching zero appreciably faster than

o
08 . .
B o]
o067 o
a
Foal- A
U o 05
B o 7
o2}
0 1 == I 1 1 | (L 1 1 1 J
(o]
1.0 fo) o
8 a]
[/L’ 6 o o
Ta
2
e fi i { f it 1 i i i i
2 20 40 €0 80 100
x,in

Frcure 17.—Boundary-layer turbulence level as a funection of z for
corresponding y-positions

the squared fluctuation intensities (%)%, (»')% and (w’)%
The shear correlation coefficient R,, =uv/u’»’ becomes quite
uncertain in the outer part of the boundary layer because
the measurement then involves the taking of small differ-
ences between relatively large uncertain readings.

VORTICITY FLUCTUATION LEVEL

The measured distribution of root-mean-square vorticity
fluctuation (¢, the z-component only) across the boundary
layer at z =102 inches is given in figure 18. The instrument
was by chance sufficiently symmetrical that, within the
purposes of this investigation, no correction for parasitic
sensitivities was necessary.
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Frcure 18.—Vorticity fluctuation and turbulent shear-stress distribu-
tions in boundary layer at =102 inches.

INTERMITTENCY

Boundary layer.—The transversal distributions of inter-
mittency ¥(y) at several z-stations in the boundary layer (typi-
cal comparison with U/, in fig. 19) show good similarity
when 7 is normalized with o(z), the square root of the
second moment of dy/dy with y-origin chosen so that 0y/0y
has zero first moment (fig. 20). As pointed out in the “In-
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troduction,” 0y/dy is the probability density of ¥(?), the
instantaneous y-position of the front between turbulent and
nonturbulent fluid, at a fixed . Then

dn:[@ﬂ-?YT”:[Jj}V—?fg%My—?ﬂug (6)

where 0y/0y is written as a function of (y —1"). Therefore,
o(r) is a suitable measure of the width of the intermittent
zone, that is, of the wrinkle amplitude of the turbulence

front.

0 [ 2 3 4
y,in.

Freure 19.—Typical intermittency distribution across boundary layer.
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Ficvre 20.—Intermittency distributions for several z-stations in

boundary layer.

Another important statistical measure of the turbulence
front is its average location,

?maﬁygw (1)

Since 0v/dy turned out to be symmetrical and, in fact,
virtually Gaussian within the experimental precision (sce
section “Probability Density of Y(#)”), the determination
of ¢ and Y was considerably simplified. Both o(z) and
Y (x) are given in figure 21 and §(z) is included for compari-
son. The logarithmic plot was used to estimate exponents
in power-law approximations for the three quantities.

The power-law fitting has been done with the best common
origin for the three sets of points in order to simplify the
comparison concept.

Round jet.—Intermittency data for the round jet cor-
responding to the data for the boundary layer are given in
figures 22, 23, and 24.
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Fraure 21.—Amplitude and average position of turbulence front in

boundary layer as functions of x and z—ux,.

Fraure 22.—Typical intermittency distribution across round jet.

10

Froure 23,—Intermittency distributions for several z-stations in round
jet.




FREE-STREAM BOUNDARIES OF TURBULENT FLOWS

(o)

= iURIETRT

I

| ! I IO S BT
10 100

(a) Amplitude of turbulence front.
(b) Average position of turbulence front.

Frcure 24.—Amplitude and average position of turbulence front in
round jet as functions of z/2r,.

Townsend’s plane wake.—For convenient comparison
Townsend’s last published data (ref. 10) for the plane wake
have been put into a form corresponding to that of the other
data (figs. 25, 26, and 27).

Since, however, only the points for z/d =800 and 950 are
in the fully developed wake, no attempt has been made to
determine separate power laws from his data. Instead,

1.0

N

Figure 25.—Typical intermittency distribution across a plane wake.
(Data from ref. 10.)

10 @ Gaussian distribution function

O

Frcure 26.—Intermittency distributions for several z—stations in
plane wake. (Data from ref. 10.)
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Ficure 27.—Amplitude and average position of turbulence front in
plane wake as functions of z. (Data from ref. 10.)

parabolas have been drawn with his choice of apparent
origin simply to show that his results are not in contradiction
with the parabolic o(z) and Y(z) (predicted theoretically
in a later section).

STATISTICAL ANALYSIS OF ON-OFF INTERMITTENCY SIGNAL

(Output of Schmitt Trigger)

As sketched in figure 6, one stage in the electrical signal
manipulation sequence is a two-valued (on-off) random
function. These flat-top pulses have duration equal to the
time spent by the hot-wire in turbulent fluid and spacing
equal to the time spent in nonturbulent fluid.

Two basie statistical characteristics of such a random
on-off signal are (a) its power spectrum and (b) the prob-
ability densities of its top lengths and its bottom lengths.
Except in special cases, no one has yet deduced a relation
between these two functions (see section “Probability
Density of Pulse Lengths”).

Since the jumps in this signal are generated by the random
occurrence of a particular amplitude of a more general sta-
tionary random variable, that is, Y(¢), its properties give
some information on the properties of Y (#). For example,
the probability densities of top and bottom lengths indicate
the statistical distribution of wave lengths of the turbulence
front, though less directly than the way in which 0y/dy gives
the statistical distribution of amplitudes. A detailed dis-

11
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cussion follows in the section “Statistical Description of
Turbulence Front.”

The power spectrum of the on-off signal must be related
to that of the total hot-wire signal, thongh not in any simple
fashion. As will be pointed out later, considering the total
signal as continuous turbulence modulated by this on-off
signal, it appears that carrier and modulation must be
statistically independent for the power spectra to combine
stmply.

Figure 28 1s a series of power spectra F.(n) of the Schmitt
trigger output at various values of vy for =102 inches.
Statistical symmetry of Y () (indicated by the approximate
symmetry of 0y/0y) requires that F.(n) for intermittency
v =7 be equal to F (n) for intermittency v =1 —v,. Figure
29 gives the probability densities of tops and of bottoms at
the same hot-wire locations. These were obtained by direet
measurement of oscillographic records.

The solid line in figure 28 is the theoretical power spectrum
for a random flat-top signal whose jumps have a Poisson
distribution in time (see section “Power Spectrum of Schmitt
Trigger Output,” especially eq. (8R)).
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Ficure 28.—Power spectra of Schmitt trigger outputs for three differ-
ent intermittencies in boundary layer at =102 inches.
F.n) 1

F.(0) 1+2.49X10-*n?

THEORETICAL EXISTENCE OF TURBULENCE FRONT
Although the relatively sharp front between turbulent
and nonturbulent fluid has been well established experi-
mentally, this apparently ubiquitous phenomenon must still
be explained and explored analytically. The oscillographic

Turbulent,,oI

— ——Nonturbulent P,
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ysomp le

7sumple =0.56 (at position where ¥ =0.50)
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Ficure 29.—Probability densities of segment lengths of intermittent
signal for three different intermittencies in boundary layer at 2=102
inches.

records indicate that it is likely to be a boundary between
rotational and irrotational motion. The theoretical dis-
cussion will therefore aim first at heuristic demonstration of
this concept by showing in this context the known fact that
turbulent stretchine of the vortex lines in a local vorticity
gradient tends to steepen the gradient (leading, of course, in
the limit to zero vorticity on one side).

Succeeding sections will discuss some of the ramifications
of this physical picture, in preparation for the more desailed
analyses which follow. The degree of agreement between the
predictions of these analyses and actual experimental results
will provide further indication of the validity of the hypoth-
esis that the nonturbulent field is actually irrotational.

STEEPENING OF A VORTICITY GRADIENT WITH LOCAL PRODUCTION OF
VORTICITY

Since the distinetion to be made here between turbulent
and nonturbulent flow is on the basis of presence or absence,
respectively, of random vorticity fluctuations, the boundary
phenomena must obviously be studied in terms of vorticity
as a principal characteristic variable.

The vector form of the vorticity equation for three-
dimensional incompressible viscous flow is

D _

7, —@V)@+v'Q ®)
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\\h(‘l( <bt+Q V) is the Stokes derivative (following a

fluid oloment), Q is total vorticity vector, ) is total velocity
vector and » is kinematic viscosity.
Introducing a Reynolds type restriction:

2r)=20) ol 3=0
QurH=Qw)+qrt)  g=0
equation (8) yields the mean-vorticity equation:

@92 +{gVe=@V)Q+{V)g+V2 ©)

Subtracting equation (9) from equation (8) leaves the
equation for vorticity fluctuation:

2 B+ @ Vet Ve~

(@ V)g+(wV)@+(2V)g—(@V)g+rV (10)

The scalar product of «» with equation (10) gives the
equation for instantaneous vorticity intensity:

‘1)052 +ol(g V@ —e (g Vel =e (@ V) +

@ [(0V) Q)+ @ [(©-8)g] —w-[(@V)g]+re(Ve) (11)

In Cartesian tensor notation, but keeping vorticity as a
vector instead of an antisymmetric second-rank tensor,

1 Dw?

e DE bu, U,
2Dt+suai 2 ’) 6 gttt ot

(EJ >+VE V&

where a repeated index indicates summation and w’=&&.
The averaged equation is

Egj a (118.)

7,00 12 OZi_z . Ou
U; dz; ' 2 da; (w0 )’*‘El"h oz, ==k a;]+

b =

SEJ D.T +El$} a +V£ V Ef (12)

It was Taylor (ref. 17) who first identified &, T as the

rate of production of vorticity fluctuations by the random
stretching of vortex lines. 1t is largely the absence of this
effect that makes fully two dimensional motion trivial in the
problem of fully developed turbulence.

To demonstrate the tendency of a vorticity gradient to
steepen in the presence of this vorticity production effect,
consider the simplified form of equation (11a) for a flow with
no mean velocity or vorticity:

1 Ow? an DE
5 bt+ Boe, s,
.
st gt (b g JHive (3

It appears that no conclusion can be reached without further
restriction. Since the vorticity spectrum varies like £2F(%),
the running second moment of the velocity spectrum,

vorticity-dominated phenomena must be associated with the
fine structure of the turbulence, especially for high values of
turbulence Reynolds number Ry=u'\/v, where %’ is root-
mean-square velocity fluctuation in the z-direction and X\ is
the Eulerian microscale. For large enough values of 2y
there should exist a time long compared with that charac-
terizing the main body of vorticity fluctuations but short
compared with that characterizing the largest scale velocity
fluctuations, which dominate the convective properties of
the turbulence. For example, one can expect

il
il 14
< (14
where £ is the root-mean-square z-component of vorticity
fluctuation and X\, is the Lagrangian time microscale (ref. 1).
Introducing \,=v'\, (ref. 18) and, with local isotropy, the

’
. . . =1 .
isotropic relation &=+/5 ¥ equation (14) becomes

0.45 (%)«1 (15)

or, in terms of Ry, the large R\ approximation for N/, gives
(ref. 18)

2.4

—=<1 (16)

VR

For flows with equation (16) valid, equation (13) could be

averaged over a time long enough to average vorticity

phenomena but short for convective velocity phenomena:

a‘“ ~ 5, 2§’+usivzst (7

1 aw2+1
2 0ot "2
where () =( ) for the fine-structure variables.
The velocity derivative has characteristic time like that
of vorticity.
Since the objective is to show the steepening of the «?
gradient in the absence of », omit the last term and write

1 Dw
Therefore,
1D (o) _0 (., ou
N a_>~a—y <’5“5 = S

Taylor (ref. 17) has shown that &, b ‘>0 for isotropic

turbulence. In fact, since this inequality Jllht expresses the
general tendency for fluid lines to lengthen in a turbulent

mwwwvm

flow, 1t seems clear that S,E, 5, > 0 in any tmbulom :e. Then,

! Uy ; :
if & -—1% monotonie \\1111 w?, it follows from equation (19)

Sisj a

)
that & <f— has the same sign as 0w’ /07/ which means a

steepening of this o gradient.
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The physical reason tor the steepening tendency is, of
course, just the fact that the rate of production of new
vorticity by line stretching is proportional to the vorticity
already present at any point in the fluid. Hence the higher
vorticity regions experience a greater rate of increase of
vorticity than the lower vorticity regions, that is, the
eradients tend to steepen up, limited finally by viscous
diffusion and dissipation. Of course, the eradient of con-
cern here is that in the zone between fully turbulent fluid and
nonturbulent fluid. A steepening of this gradient means a
tendency toward a relatively sharp surface of demarcation
between the two states. The above discussion does not
treat the question ot the equilibrium thickness e of the laminar
superlayer that results; this will be estimated later. Of
course, for the turbulence front to be sharp as observed
experimentally, it must be shown that <.

Although the analysis is valid only for extremely high
ralues of 7y, far higher, in fact, than those that occur in the
experiments reported here, there appears to be no reason for
the situation to change qualitatively at lower values of £,
as long as nonlinear effects in the Navier-Stokes equations
remain important, for example, /2,>10.

LAMINAR SUPERLAYER

Vorticity can be transmitted to an irrotational flow only
through the tangential forces due to viscosity; it cannot be
transmitted to the irrotational flow by macroscopic Reyn-
olds tvpe shear forces. It therefore follows that the
instantaneous border zone lying between turbulent fluid and
irrotational fluid must be a region in which viscous forces
play a central role, in spite of the presence of velocity
fluctuations which dominate the gross momentum transfer
of the turbuient field. This border zone may be termed the
laminar superlayer and is exactly what is also referred to in
this report as the turbulence front, although the latter
designation implies emphasis on its overall behavior rather
than its detailed structure.

This laminar superlayer differs in function from the well-
known laminar sublayer at the smooth solid boundary of a
channel, pipe, or boundary-layer flow. The sublayer is a
relatively fixed region in which mean flow momentum is
transported primarily by a net mean viscous (laminar)
shear force. Tt transmits little mean vorticity (being a
zone of roughly constant S__Z(g/)) and 1t remains “attached”
more or less to the same fluid particles. On the other
hand, the superlayer is a (convectively) randomly mov-
ing layer of fluid which probably transports relatively
small amounts of mean momentum and vorticity by viscous
shear forces; its distinguishing function is transport of
vorticity fluctuations and mean vorticity, when present,
into what was previously an irrotational field, and in so
doing it continuously propagates (relatively to local fluid)
normal to its local “plane.”

Sketches (a) and (b) illustrate the concept of the super-
layer as a very narrow zone in which the vorticity fluctuation
level and the total shear (if any) drop from values charac-
teristic of fully turbulent flow to practically zero.

Fluctuating potential flow
U:Uq

/Lomincr superlayer

Turbulent flow

N\
&
[

Sketeh (a).

£ or w? or shear

\

Coordinate fixed in front
ond perpendicular to it

Potential i

flow

Laminar
superlayer

Turbulent
flow

Sketeh (b).

While the instantaneous local viscous shear force inTa
laminar sublayer is predominantly in the direction of the
mean shear force, that in the superlayer must have a much
higher fluctuation level, often reversing its direction, for
example. In fact, in a flow field with constant mean velocity
everywhere, the superlayer viscous shear force would have
no mean value at all.

The discussion headed “Steepening of a Vorticity Gradient
With Local Production of Vorticity’” 1s a justification
(not a proof) of the experimental fact that the continuous
fluid-line stretching due to the velocity fluctuations tends
to steepen up the laminar superlayer. This steepening
effect is reinforced by the propagation and must, of course,
be balanced out at some state by the diffusive action of
viscosity, so that the superlayer must have some average
thickness. From the oscillograms, it appears that this
quantity, e say, 1s very small.

Some heuristic comments can be made about this thickness.
First of all, since the layer is primarily a vorticity-propagating
device, its thickness should be less than a length character-
izing vorticity fluctuations on the turbulent side of the
boundary, for example, the dissipation scale N (Taylor’s
microscale). In fact, as a characteristic viscous shear
length, it might be expected to be the same order as

3\ 1/4
— S o V >
Kolmogorofl’s minimum length (=) » where @& is the rate
& t=} (I)

of dissipation of turbulent energy per unit mass of fluid.

A second intuitive specification is that, as a violently
disturbed free laminar shear layer, its characteristic Reynolds
number should be on the order of the lower critical Reynolds
number for free laminar shear layers. A possible choice of
characteristic instantaneous Reynolds number would be
that based on thickness and instantaneous tangential
velocity difference A across the superlayer. When the
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! ) A . .
instantaneous viscous shear force, §'%;pror unit area in

the plane of the front, has a nonzero average (i. e., a pre-
ferred direction), a plausible average Reynolds number
might be

=

‘ml

l[\)(E

(20)

N

where A is the magnitude of A. Of course, A and e are
doubtless negatively correlated, but inclusion of such a
refinement would be inconsistent with the crude nature
of the discussion.

For turbulence fronts in which there is little or no mean
velocity difference across the superlayer, the above definition
is inapplicable and might be replaced by

(21)

again omitting the implications of Ae correlation.

Since, however, there still exists no analysis relating A
to the properties of the turbulence, a third definition, re-
placing ; ,R. and including such properties, is preferable:

In fact, this definition is not too different from the other two:
Ale must be of the same order as the neighboring turbulent
vorticity fluctuations.

Given an order of magnitude of the lower critical Reynolds
number for free laminar shear flow plus a measurement or

estimate of o’ = 1/57 4+ 72+ ¢ in the turbulence near the front,
an estimate can be made for e.

The only information available for estimating the desired
Reynolds number is the partial analysis of Lessen (ref. 19),
a small-perturbation analysis. KExtrapolation of his neutral
stability curve (a highly inaccurate process) suggests an
estimate

1< R.<L10

The measured turbulent value of & for a typical case
(fig. 18) is about 400 per second, which gives ' =700 per
second, if there is approximately local isotropy. With
y =0.15 square centimeter per second the estimate of super-
layer thickness turns out to be

0.015< €< 0.05 centimeters

This appears to be a reasonable order of magnitude since

A=0.2 centimeter in this part of the flow. The Kolmogoroff
'VB 1/4
. ; ” :
length ($> is roughly 0.03 centimeter.

In concluding this section it should be mentioned that,
although no systematic measurements of A have been made,
rough estimates from oscillograms in the intermittent zone
of the boundary layer indicated the order of 0.05 to 0.10
times (/.. This average velocity defect indicates the
obvious fact that turbulent boundary bulges originate in a
region of lower mean velocity and also represents the presence
of vorticity and of locally laminar shear.

357386—56——3

A simple mathematical model of the laminar superlayer
will be taken up as a separate section in the discussion of
propagation velocity of the turbulence front.

The following important inference can be made on the basis
of the highly localized character of the laminar superlayer:
Since no appreciable viscous effects extend beyond this thin
layer, and since only viscous effects can transmit vorticity,
it follows that the mean wvelocity everywhere in the potential
part of the flow must be constant and equal to that at “infinity.”
This is a consequence of the fact that the mean vorticity is
Q=00/2y.

This conclusion will be analytically emphasized in the
following section. It is in contrast with an assumption of
Townsend (ref. 10) that the nonturbulent fluid lying between
bulges in the turbulence front “is constrained by pressure
gradients to move at the same mean velocity” as the fluid
in the adjacent turbulent bulges.

IRROTATIONALITY AND REYNOLDS SHEAR

In view of the evidence that the fluctuations outside a
turbulence front are irrotational, it is pertinent to take a
look at the customary turbulent-flow equations (actually
valid for any stationary fluctuations) for the particular case
of irrotational fluctuations. The hope is that some drastic
simplification will appear.

In Cartesian tensor notation, the Reynolds equation for
steady mean motion is

ol _10P

Lkia.l'k: ;b.l‘,,-

() e .
+VV'(J i.—bi.l':f (uiu,) (2.&)

The last term is the turbulent apparent force vector or
Reynolds vector.

For irrotational fluctuations,

ou;__ o,
bJ‘, a.l'i
therefore,

which shows that the Reynolds force reduces to a normal
force only, since it is expressible as the gradient of a scalar.
The Reynolds equation can then be written

and this form emphasizes the fact that, regardless of the mean
velocity field, irrotational fluctuations give no net apparent
shear forces on a flwid element.?

This does not necessarily mean, however, that the Reynolds
shear force on a plane is zero or that the Reynolds stress
tensor —pwu;u; has only leading diagonal terms. Also there
may still be a continuous “production’ of fluctuating kinetic
energy, that is, a transfer from the mean motion kinetic

—oU,
energy (ul«uk a—r—’;éO .
Lk /

3 This fact was pointed out by Dr. F. H. Clauser.
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Comparison of equations (23) and (25) for the case of
motion two-dimensional in the mean (three-dimensional
irrotational fluctuations) yields the relations for the Reynolds
shear force components

our 1 0 =, — —
2 —= = (52 32 a2 on
DR ot (4w —u?) (26)
Qur 1 0 -, — =
= e ) 22 97
or 209y (W t+w'—0v) (27)

which may also be regarded as a pair of differential equations
relating the four nonzero components of the Reynolds stress
tensor.

Two provocative forms follow trom alternative combina-
tions of equations (26) and (27):

% uv  O*uv 2 = S
— - P -)
o o ot T 28]
and
O%D | WD _ 0w’ 5
¥ + oy Ox dy (29)

Equation (28) gives the interesting conclusion that if %2 —2?
is constant in either z or y the turbulent shear stress satisfies
a homogeneous plane-wave equation with characteristics at
+45° in the zy-plane.

For the particular flows studied in this report, the experi-
mental results show that ws approaches zero faster than «/»’
as i (or r) is increased. This seems to indicate that % =0
in the potential field. However, insufficient coverage and
accuracy of the data preclude the possibility of checking
this through equation (28). Since up —w? =p> =0 for y = =,
such a check would require that %?—2* throughout the po-
tential field.

Parenthetically, viscous fluids with zero net shear force on
a fluid element but with nonzero shear stress are far from
unknown mathematically: Any irrotational laminar flow of
a viscous fluid is such a case (aside from the trivial case of
) —Constant).
that it produce only normal forces is that

The requirement on a stress tensor oy

Oal—k_a (;1 ¢
5 O (30)

where G1s a scalar.

The principal significance of equation (25) in the general
problem under investigation is as follows: Assuming that
the fluctuations on the free-stream side of the turbulence
front are actually irrotational, as both measurements and
heuristic reasoning indicate, the mean velocity there must
be equal to that for y = . This verifies the physical infer-
ence drawn in the previous section from the concept of the
localized laminar superlayer.

It appears paradoxical that the mean flow kinetic energy
should be unchanged in a zone where there has appeared an
appreciable kinetic energy in velocity fluctuations. How-
ever, the latter can come from the turbulent part of the field
through nonviscous effects, leaving mean flow kinetic energy
in the potential zone unchanged. This would be consistent
with the inference that wp=0.

Probably the highest intensity random irrotational fluc-
tuations easily available in the laboratory are those in the
“potential cone” of a round turbulent jet. These apparently
et as high as u'/U =5 percent (ref. 2).

Equation (28) also can be deduced for the special case of
a constant mean velocity field with arbitrary fluctuations,
provided only that the mean values are plane, that is,

s, () =0.

THEORETICAL BEHAVIOR OF TURBULENCE FRONT

As mentioned in the “Introduction,” two of the fluid
mechanically  pertinent characteristics of the relatively
sharp boundary between turbulent and nonturbulent fluid
are (a) its mean rate of increase of wrinkle amplitude in the
downstream direction and (b) its mean velocity of pronaga-
tion transversely into the irrotational fluid. The following
sections represent crude theoretical attempts to predict
these two characteristics in terms of the statistical properties
of the fully turbulent fluid on one side of the boundary.

WRINKLING RATE

In turbulent flows with 72, greater than about 10, there is
no reason to expect any particular chunk of fluid to return
to the nonturbulent state once it has become turbulent.
Therefore, the presence of turbulence in a small piece of
fluid can be regarded as an indelible tagging, somewhat like
heat or a chemical contaminant. Were it not for the con-
tinuous propagation of the turbulence front into new fuid,
this front would always consist of the same fluid particles
and would obviously be susceptible to a Lagrangian study
in terms of Taylor’s theory of diffusion by continuous move-
ments (ref. 20), as has been applied to the wrinkling rate
(identical to turbulent diffusion rate) of a very thin sheet
of thermally tagged fluid in a turbulent flow (refs. 1 and 18).

In fact, a uniform translational velocity V¥ of the tagging
attribute relative to the fluid does not render Taylor’s con-
cepts invalid; it does, however, require a generalization of
the analysis to a mixed Eulerian and Lagrangian treatment,
though somewhat different from the relative dispersion case
set up by Brier (ref. 21) and by Batchelor (ref. 22).
Clearly in the limit of V*>¢" (e. g., wrinkling of a Mach
wave propagating through low-speed turbulence) it reduces
to a simple KEulerian diffusion problem, while in the limit of
V¥« the purely Lagrangian analysis of Taylor applies.

For the present problem it appears that neither of these
limiting conditions holds, although the latter is closer.
Consider the rough-wall boundary layer at z—=102 inches
as an example:

WNF 7 d YV sx)
7~?>\%() 5%)=0.1

where ¢//U is taken in the fully turbulent zone adjacent to
the intermittent zone. This formula is deduced in the
section “Applications to Particular Turbulent Flows.”
Since the basic problem (diffusion of a front propagating
through a homogencous turbulence) has vet to be analyzed,
the present phenomenon will be estimated as though
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V*<’.  Subsequent approximations are consistently rough.

Another peculiar property of the present problem is that
the surface whose turbulent diffusion is of interest has
turbulent flow on only one side; the thermally tagged sur-
face used in conventional diffusion studies has the same
kind of turbulence on both sides. However, the theory of
diffusion by continuous movements is simply a kinematic
analysis based on the presumably given velocity statistics
of the fluid particles in the surface. If these are correctly
given, no further information or restriction is necessary.
Therefore, since the purpose of this section is to predict the

form of a(r):\/(Y~7)2 in terms of the properties of the
fully turbulent zone, the only additional assumption neces-
sary is that the velocity fluctuations of the fluid particles in
the front are proportional to those in the fully turbulent fluid
near the front.

The analysis of one-dimensional diffusion by continuous
movements for a homogeneous field with no mean motion

leads to
do*

’[—t=2(v')2j;t R (7)dr (31)

where o 1s the standard deviation of the distance traveled due
to turbulent convection and /2, is the Lagrangian correlation
coefficient. For times long compared with that for which
R, =0, the familiar asymptotic form results:

o®)=v" 2Lt (32)
where L,Ef R, dt is the Lagrangian (time) scale.
0

If a relatively high uniform mean velocity in the z-direction
is introduced ([7>>'), equations (31) and (32) can be inter-
preted approximately in spatial terms since Ut=z for any
particle (refs. 1, 18, and 23). Then

4

o (z) = Z: VA Lz 33)

where A,=0UL, is an approximate longitudinal Lagrangian
length scale.

It has been pointed out in previous publications (refs. 18
and 24) that the most concise representation in such a flow
follows from introduction of a transversal Lagrangian length
scale L,=v"L,. Then

o (@) ~ \/ 2(2:% (34)

which gives the dispersion (identical to surface wrinkle
amplitude) at large distances from a fixed source of tagging,
when »(t) following a fluid particle is a stationary random
variable and U is constant.

For the hypothetical case of the turbulence front bounding
a turbulent motion homogeneous in the stream direction, this
asymptotic form would pertain; the “source’ lies indefinitely
far upstream. However, in virtually all turbulent flows of
imterest, the statistical properties of the motion vary with .
Consequently, application of equation (34) to these cases
implies the further restriction that these z-variations be slow,
that is, that there be little change in an z-interval comparable
with Az.

A particular example of the degree of validity of this
restriction can be drawn from the case of decaying isotropic
turbulence, where Lagrangian scales have actually been
measured (ref. 18). At 43 mesh lengths behind a 1-inch-

square mesh grid of Y-inch dowel, with (/=25.8 feet per
second, it is found that »"/l/=2.0 percent, A, =17 inches, and
dv'[dx corresponds to a change of about Y% in »//U over an

1 ([LL . -
0, Az is only on the

z-interval equal to A,. However
order of 0.03.

In most shear flows, the v/l changes will be slower than
for this decaying isotropic turbulence while the L, changes
may be slightly faster. In general, it can be anticipated that
in the application of equation (34) to boundary layer, jet,
and wake the requirement of slow z-variations in turbulence
properties will be satisfied at least as well as the previously
mentioned restrictions for this Lagrangian treatment. These
applications and comparison of computed values of o(z) with
experimental results will be presented further along, under
the appropriate section headings.

PROPAGATION VELOCITY BY DIMENSIONAL REASONING

The average velocity of propagation of the laminar super-
layer (or turbulence front) relative to the local fluid V* must
be monotonic with the average magnitude of the instan-

tancous (laminar) shear stress in the suporln,yor<pr0p0rtional

A e O .
to u=) However, the ratio is not a directly measurable

quantity and must be replaced by something more tractable.
As has been mentioned in the section “Laminar Superlayer,”
when there is no mean shear stress A/e must be of the same
order as the vorticity fluctuations in the turbulent fluid near
the front. Therefore V* should be monotonic in «’. Since
this is a viscous phenomenon, it must also depend upon ».

In fact, the inference that V*=V* (», »’) can be made on a
much more direct and superficial level. Since the laminar
superlayer is a device for the viscous propagation of vorticity
fluctuations into an irrotational fluid (in the case of zero
mean shear), the propagation velocity must depend at least
on « and on ». Furthermore, these alone are sufficient to
produce a parameter with the dimensions of velocity.

The only combination giving the appropriate dimensions
gives, by inspection,

V*ex v (35)

for zero mean shear stress.* Of course, V* is directed per-
pendicular to the local tangent plane of the turbulence front.
The effects of nonplanarity of the whole front will be noted
later in this section.

Equation (35) would be expected to apply, for example,
in the case of the boundary between a homogeneous tur-
bulence and a nonturbulent fluid, with ¢7 constant over the
entire flow field.

At the free boundary of a turbulent shear flow it is to be
expected that the shear force vector of the laminar super-
layer will have a mean value which will also promote V*.

4 It should also be noted that the assumption that R.(where R.=¢w’/») has a “universal”

average value corresponding to a lower critical Reynolds number coincides with the plausible
dimensional hypothesis that e v’y/w’.
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If the whole front were nearly flat, this mean value would
be a function of 7 in the superlayer and also proportional to
the mean shear in the turbulent fluid just inside the tur-
bulence front,® varying from equality on the turbulent edge
to zero on the free-stream side. Sketeh (b) includes this
concept in a coordinate system attached to the laminar
superlayer.

In this more general case, the physical picture suggests
that V* depends upon the average magnitude of the total
shear in the superlayer: ﬁsﬁ(g), where S(1)=§+§(f) 18
the shear force vector on a unit area on the turbulent edge
of the superlayer. With Cartesian coordinate system zy, 1,
and z, fixed in and alined with the turbulence front (i, per-
pendicular to front), the fluctuation s has only z;- and

z;-components.  Then, with gross mean shear directed along
11, =5, 245,245, 2.
Dimensional reasoning gives

, Te TE TR\ A
Woc\/s,: St (36)

p p

If the random slope of the turbulence front in the z-, y-,
and z-coordinates is small on the average, the -, 7,-, and
z;-system can be replaced by z, y, and z, and E: IS propor-
tional to the mean shear stress in the turbulence. Further-

more, with local isotropy in the turbulence, s;°~s. % Asin
the simpler case, these are proportional to (w’)®. Then
equation (36) can be written
O ¢ 27 11/4
— | SA+Bui(w')’ P
e o)
o

where B is a numerical constant, probably of order unity.
This reduces to equation (35) for a shear-free turbulence.
For each particular type of turbulent shear flow, S, can be
taken proportional to some characteristic mean shear stress.
No application of equation (36) or (37) is made later in
this report.

Handling of the propagation problem in terms of a plane
turbulence front implies that € is much smaller than the
radii of curvature of the front. The degree of validity of
this assumption is not easy to check directly from the sta-
tistics of the turbulent fluid; it requires fairly detailed infor-
mation on Y(zt). However, the measurements on statisti-
cal distribution of pulse lengths coming out of the trigger
circuit (fig. 29), transformed by U, from time to length,
give indirect indication that the assumption is well satisfied.

Conversely, since 7# is normal propagation velocity of
the front (especially in the case with zero mean shear),
propagation with constant V* over the whole front would
tend to introduce a skewness into the probability density of
Y, as in sketeh (¢). This is the effect mentioned by Karlovitz
(ref. 26) in accounting for the skew nature of the flame front
as observed in a turbulent bunsen flame.

The highly symmetrical shape of 0v/0y (indicated by
linearity in fig. 32) shows that this effect, if present, is
negligible in the phenomenon considered here.

5 In fact, F. H. Clauser proposes a propagation velocity, fnrt_hv tllrhlllvnl boundary layer,
depending only on the mean shear stress in the turbulence: V*cc7o/pA (ref. 25).

Sketeh (e).

This negligibility is an indication that the radii of curva-
ture of the front are large compared with the wave lengths.
This means that V* is directed very nearly perpendicular to
the Y (z) surface. For two-dimensional flows in which the
boundary-layer approximation applies, this in turn is nearly
parallel to the zz-plane, that is, dY Jdz<1. Therefore, within
a corresponding approximation, the surface area of the
turbulence front on a two-dimensional flow is equal to its
projection on the zz-plane, and the average rate of conquest
of new fluid by the turbulent state is V*, in units of volume
per unit time per unit area of contact. A similar concept
holds for the axially symmetric flows.

1t is obvious that a turbulent shear flow can have similarity

only if both ¢(z) and Y(z) are proportional to the boundary-
layer thickness é6(z) (which, of course, must be proportional
to any other characteristic thickness defined in terms of the
mean velocity profile). Stated in different but related
terms, the average rate of flow of turbulent fluid passing
through any constant z-plane must be proportional to the
rate of flow of boundary-layer fluid passing through the plane.

MODEL OF LAMINAR SUPERLAYER

Dimensional reasoning as employed in the preceding sec-
tion, and in earlier ones, gives at best the functional forms
of the laminar-superlayer characteristics in terms of the
statistical properties of the turbulence with which it is
associated. Fully quantitative results follow only through
deductive analysis, that is, actual solution of an appropriate
boundary-value problem. Since the actual problem appears
to be too complex for full solution at present, a simple
physicomathematical model will be used with the expectation
that the results, after interpretation in terms of pertinent
variables in the actual problem, will give a proper order-of-
magnitude relation among these variables.

The model proposed is a generalization of the Stokes and
Rayleigh problem of the infinite wall moving in its own
plane (ref. 27). The first extension is the addition of a
constant suction velocity V(<0) with, of course, wall
corresponds to propagation ve-
The differential equations

porosity. The velocity V
locity of the turbulence front.
are thus

ol oo

bt—H 0]/‘V o (38a)
oW —=oW o'W -
= & o =y o (38b)

Since the U7 and W equations are independent they can be
treated separately. In the absence of mean shear they are
identical, and only one need be considered.
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Since equations (38) are linear, the vorticity components
Z=0U/dy and E=0W/dy obey the same equations as the
velocities:

oZ 7 0Z 0*Z

S 27 o (392)
FOE_ O%E
V=== =5 G
+ S o (39b)

These equations are to be solved with boundary conditions

Z({t,)=E (t, ©)=0 (40a)
Z{t, 0)=2Z,+¢, sin ot (40b)

)
= (t, 0)=¢, sin Bt (40¢

Since = has only a fluctuating part, and since linearity
permits separation of the steady and fluctuating parts of Z,
the problem becomes

T A7 (127

dy (l]/é (1)

with Z()=0 and Z(0)=Z,, and
of o8, 0% 2
5wy op (42)

with ¢(f,)=0 and ¢(¢,0)=¢, sin at. There is an identical
boundary-value problem for £(¢,y).

To get closer equivalence to the fully three dimensional
problem a purely mathematical extension can be made, cor-
responding roughly to the physical phenomenon of contin-
uous vorticity fluctuation production (by fluid-line stretch-
ing) at a rate proportional to that already present. This
is most simply done by adding a linear term to the & equa-
tion, giving

,bg .

where K is like a constant average vortex-line stretching
rate.

No corresponding term is added to equation (41) because
the plane fmm of the mean-vorticity equation for turbulent
flow (eq. (9)) shows no term identifiable as production of
mean v01t1(,1t) due to random turbulent stretching of
vortex lines.

The solution of equation (41) is

= 5 \%
Z=Z, exp <7 ?/)

The solution of equation (43) is

sl @ T
DY Wl DT

T7\2 1/2
(2%) +5} y] (V<0; &, K>0) (45)

(V<0) (44)

with a similar expression for & Here the negative root has
been chosen so that equation (45) reduces to Stokes” solu-
tion for V=K=0.

From equations (44) and (45) it is desirable to extract an
expression for the thickness of the disturbed layer. A con-
venient measure of thickness is simply the inverse of the
coefficient of —y in the exponentials of both solutions:

(46)

== =\ iz (47)
V&) K]+<> W=

Application of equations (46) and (47) to the laminar-
superlayer problem requires identification of V, a, and K
with measurable variables in the turbulent fluid near the
superlayer:

(1) —V=V*, the propagation velocity.

(2) a=¢, the root-mean-square value of any one of the
three orthogonal turbulent vorticity fluctuation compo-
nents. In other words, root-mean-square vorticity may be
regarded as a char a(tol istic frequency of turbulence. For
large values of l.’x, 77 ~§ by loc al 1s0t10p\

(3) Kz\ Ou) \/ by) \/(b >f01 large /2)’s. Hence,

with local isotropy, K~¢/y/5 is a measure of the rate of
fluid-line stretching.
Substituted into equations (46) and (47), these give

lz_y_ 8
S (48)
Coe e _*? 2;7 5 7\ ?7 172
+*{\ [( ) o) =)
(49)

A simpler, more approximate form for e, is attained after
inspection of the experimental orders of magnitude of V*
and ¢. For example, at the inner side of the intermittent
zone, in the rough-wall boundary layer at z=102 inches,
V* ~1.3 inches per second and ¢ =400 per second. Therefore,
it turns out that equation (49) can be simplified by liberal
employment of chopped-off binominal expansions. The
roughest (and simplest) resulting estimate is

@~ \/ ;”: (50)

Since the laminar superlayer can be assumed to exist even
in the absence of a mean vorticity field, it is reasonable to
assume that the fluctuating part of the superlayer model is
the more pertinent one. Then one may take e to be ¢, giving
the theoretical prediction

(50a)

as an order of magnitude. This is consistent with the earlier
conjecture on the constancy and order of a possible Reynolds




i

number R.=¢w/v. It does not appear to be susceptible to
direct experimental verification, but, as mentioned earlier, is
of the same order as the Kolmogoroff (minimum) length

szE(j;f)”* (51)

which follows from equation (50a) and the relation between
x and .

No estimate of V* follows from equation (50) and, insofar
as a strictly fluctuating laminar superlayer is concerned, the
dimensionally induced equation (35) remains as sole predic-
tion of propagation velocity.

However, equation (48) for the mean thickness gives

T*ol 59
Vi~ 52)

If there is a single layer, V¥ should be the same for both fluc-
tuating and average vorticity. If ¢ happened to be of the
same order as e, equations (51) and (52) would give V¥~
0(y»£'), but there seems to be insufficient a priori basis to
make this guess a formal part of the analysis.

INFERENCE OF TURBULENCE PROPERTIES FROM INTERMITTENT SIGNAL

Townsend (refs. 10 and 28) has suggested that it may be
possible to compute the statistical properties of the turbu-
lence inside the convex bulges of the turbulence front from a
knowledge of the corresponding statistical properties of the
full intermittent signal plus the intermittency factor y. His
hypothesis is that, in effect,

o a
=
&y

[

(53)

where a(t) is a random property of the flow and ar is the same

property but confined to the turbulent parts of the total sig-

it emna
Y

nal.  For example, Townsend refers to as ‘‘the

mean turbulent intensity within the jets” (identical to
bulges).

Actually, the applicability of equation (53) is contingent
upon very definite restrictions. For discussion purposes,
suppose that a(t) is the complete signal and b(f) is the inter-
mittent (0 or 1) signal. Obviously, b=b?=~, the intermit-
tency factor. Also ar(t) is a hypothetical signal whose phys-
ical nature is the same as a(f) but applies to turbulent fluid
only. If a,is chosen to have a mean value of zero, then it is
necessary to introduce a constant quantity A which is the
distance between the zero line of ar(f) and the signal level
corresponding to b(t) at zero.

Sketeh (d) illustrates the definitions. Implicit in this for-
mulation and sketch is the restriction that a (or az) is a physi-
cal property which is zero in the potential flow region.

Zero line of g ——— = e

Zero line of whole )\
A

signal @ Y \ r L ‘ 1\,\.

Sketch (d).
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With this representation, the total signal expressed in
terms of the other quantities is

a(t)=b(t)[ar(t)+A]—baz— Ay (54)

since =0 by definition and b(a,+A)=ba,+Ay. Whence,
the mean-square value can be written as

@=ba 42400, — (bay)?—2Avbar+v(1—v) A% (55)

The objective is to express a2 as a function of @ and other
necessary parameters. Obviously this is impossible without
introducing some further restrictions, especially on the
statistical relation between a,(f) and b(t). Therefore,
assume

(a) bap,=0 (whence b%a,=0, since b*=b
(56)
(b) Blay =8 Xy —10.

A sufficient but not necessary condition for these two is
that b(¢) and a,(¢) be statistically independent.

With restrictions (56), equation (55) reduces to
d?=vyar+y(1—y) A (57)
and the turbulence property a;2 can be computed from the
corresponding total-signal property plus measurements of
v and A.

For some physical variables a(f) it will turn out that
A =0 and then equation (57) reduces to equation (53).

For the quantity @72 to have any simple interpretation it
must of course be assumed that the physical variable it
represents is a homogeneous random variable in the turbulent
fluid.

Summarizing the conditions necessary for equation (53)
to lead to meaningful results, the following restrictions are
necessary :

(1) The physical variable must be zero in the potential
flow.

(2) The physical variable must be homogeneous in the
turbulent flow.

(3) The physical variable (and its square) in the turbulent
flow must be uncorrelated with the location of the front.

(4) There must be no mean value in the variable between
turbulent and potential flows for the same value of y.

The first condition immediately eliminates velocity flue-
tuations from this sort of treatment. This renders uncertain
Townsend’s turbulent energy application, mentioned above.
However, vorticity fluctuation and turbulent shear certainly
satisfy it, as may temperature or concentration fluctuations
and heat or mass transfer, when these are present.

The second requirement is probably not satisfied by any
rariables in flows with transport, including, of course, the
commonest example, shear flow. This follows from the
fact that, even in spatial zones with v =1 everywhere, there
are gradients in all of the quantities which have been meas-
ured. Consequently, the entire concept of @z as a function
of position in a shear flow must be semiquantitative at best.

Tt seems unlikely that the third requirement is satisfied by
all of the physical variables, but for most of them it may be
close enough that equation (57) would be approximately

true.
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Finally, the occurrence of a mean value between potential
and turbulent fluid must also depend upon the particular
physical variable under consideration. It certainly does
occur for longitudinal velocity at the boundary of a turbulent
shear flow. It certainly does not occur for z-component
velocity in a shear flow which is two-dimensional in the
mean with gradients all in the z- and y-directions. For
many physical variables its occurrence or absence is not a
priori obvious. In any case it can be handled by resorting
to equation (57).

For complex cases, when even equation (57) is believed to
be inadequate, possibly because the variable is not zero in
the potential zone, it is still possible to obtain statistical
information on the signal structure within the turbulent
bursts by laborious computational procedure for the oscillo-
graphic trace.

A more detailed question may be raised at this point as to
the influence of intermittency upon the measured power
spectrum of velocity fluctuation. Again the answer is
certain to be simple if the four conditions listed above are
satisfied. In that case, with probe signal a(t)=a»(t)b(t), the
autocorrelation functions of the three variables are related by

‘Pa(T):"l/aTCr)‘l/b(T) (58)

where 7 is time interval. The power spectra are simply the
Fourier cosine transforms of the correlations and, since the
transform of a product is equal to the convolution integral
of the individual transforms, the three power spectra are
related by

F,,('n,)zf Fo (n) Fy(n—n,)dn, (59)

o .

where F,(n) can be measured directly from the output of the
hot-wire anemometer; F,(n)=F,(n), the spectrum of the
Schmitt trigger output in the intermittency-measuring
circuit (see fig. 28); and F,,(n) is the spectrum of a hypo-
thetical homogeneous turbulence variable which should give
the nature of the fluctuations within the bulges of the
wrinkled front.

Equation (59) is a Fredholm integral equation of the first
kind, readily solved in principle by Fourier integral methods
which corresponds in effect to going back to equation (58).

No attempt has been made to apply this relation because
the experimental results appear too uncertain to merit such
detailed manipulation. It is hoped, however, that such a
study can be made in later shear-flow research.

APPLICATIONS TO PARTICULAR TURBULENT FLOWS

Application of the foregoing general concepts and theoreti-
cal predictions on the behavior of the turbulence front to
particular turbulent flows involves two explicit aspects:

(a) Comparison of directly measured o(z) and Y (z) with
measured values of characteristic shear-layer thicknesses, for
example, 0(x)( cc6* ocd) in the boundary layer.

(b) Comparison of o(x) and Y (x), as computed from
measured turbulence data, with directly measured values of
a(z) and Y(z).

The first step is the strictly experimental process of ex-
amining a new aspect of the degree of similarity to be found
i the detailed structures of the various turbulent shear
flows.

The second has as its purpose the approximate verification
of the rather crude hypotheses leading to prediction of the
turbulence front behavior, that is, to equations such as (34)
and (35).

ROUGH-WALL BOUNDARY LAYER

Fitting the experimental results on boundary-layer thick-
ness by a simple power-law relation (see appendix), it turns
out that, neglecting Reynolds number effects,

50(5*0(90((.E—]?0)0'61:’:()'1 (60)
numerically,
6~0.19(z—x,)°-% in.
0% ~=0.13(x—x,)°-%" in. (60a)

0~0.026(x—x,)" " in.

The fitting of a power law to a set of points without origin
involves two steps: (1) An origin must be chosen by trial and
error to give the closest approximation to linearity on
logarithmic graph paper, and (2) the “best” straight line
must be drawn through the resulting plot. This procedure
was also applied to the fitting of power-law approximations
to the experimental data on o(z) and Y(z). Figure 21
tlustrates the degree to which a power-law fitting is success-
ful. The latter quantities are then given by this “direct”
measurement as

o ~0.022(z— 2,)°-57+01 in, 61)

Y ~0.14(z—2,)" =01 in, (62)

The “best” common origin is z,= —20 inches.

Comparison of equations (61) and (62) with equation (60)
shows that, within the precision of these experimental results,
the turbulence front both progresses laterally and increases
in amplitude at the same rate as the mean boundary-layer
flow grows. The uncertainty range indicated is a crude
estimate of standard deviation, not the maximum.

Verification of equation (34) requires knowledge of both
/U and L, (the transversal Lagrangian scale) as functions
of 2. On the basis of the »’/U measurements at corresponding
positions across the boundary layer at four different -
stations (fig. 17), it is assumed for the sake of this calculation
that »’clU,, as dimensional reasoning and Laufer’s pipe
measurements (ref. 15) also indicate. The U, is obtained
from the measurements of 6(x): U, ccz™%* for very large
values of .

Unfortunately, there exist no measurements of Lagrangian
scale in turbulent shear flows. However, the ratio of La-
grangian to Eulerian scale [,/L has been measured as a
function of »'L/y for isotropic turbulence (ref. 18). These
highly scattered measurements show L,/L to be a slowly
decreasing function of »'L/v. In order to estimate L, (x)
for substitution into equation (34) it is assumed that this

variation holds roughly for shear flow. Further, there is
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good evidence that for a given shear flow the Eulerian scale
is proportional to the characteristic width of the shear zone;
that is, in this case, L ocd and the constant of proportion-
ality is taken from the smooth-wall boundary layer of
Schubauer and Klebanoff (ref. 4) at a station where dP/dz =0.
Their data give L=0.176.

With this estimate of L/6, »’L/v in the present boundary
layer goes from about 300 to 500 in the principal test area:
20 inches<x< 110 inches. But over this range of »'L/y,
figure 34 of reference 18 indicates (by extrapolation) little
change in L /L. Therefore, for purposes of the present
rough estimate, it is assumed that LpocLocd. With
doc - (eq. (60)) and 2 oc Urocz™®®, the resulting
theoretical prediction (eq. (34)) 1s

o(x) oc (2—x,)"7 (63)

which agrees with the directly measured exponent (eq. (61))
perhaps better than the accuracy of either measurement or
theoretical approximation.

Verification of equation (35) requires information only on
£ (r) at corresponding y-positions in the boundary layer.

Since this information is not yet directly available, one
’/

5 o . = v > . (o \
assumes the isotropic relation & ~+/5 where »’(x) has been
measured and N(z) can be inferred by using the well-known
. : : g\ YN . o
isotropic estimate® ==( 5+ and assuming L=0.176 as

L \vL
before. Using the experimental value of 6(x) (eq. (60a)
t=} )
this calculation gives

V*(x) o (J'—.r(,)‘“-x"r'm (64)

For comparison with experiment this is next translated
into Y (r). Since V* is propagation velocity relative to the
fluid, one can write the approximate relation

v _Vv(¥)+v*
&~ T (65)

which should hold for any reasonably flat turbulence front.
The term V is the mean fluid velocity in the y-direction.
Equation (65) is approximate because (a) in some flows the
front is not very flat and (b) at y —Y the mean velocity of
the turbulent fluid is somewhat less than that of the non-
turbulent fluid (i. e., U.).
For the boundary layer, it is well known that
£ T
,([5 ~‘ (62 ((56)

dx Nif_'m
which is easily shown from the definition of 6%(x).

Since experiments show that U(Y)~U(5) :I_'m, one can
infer V() =V(5), so that, for the boundary layer, equation
(65) gives

Yy V* ds* .
dz =~ [';+ dr (67)

& The constant of proportionality is obtained empirically from reference 29.

Since equation (60a) gives the experimental result

£
% ~0.08 (x—x,) %% (68)

it is clear that the power-law approximation to Y(z) will
lie between 0.70 (if the V*-term dominates in eq. (67))
and 0.62 (if the 6*-term dominates). In fact, if the propor-
tionality constant of equation (35) is determined from the
data at 2 =102 inches,

V*~0.54/v8 (69)
If this is used with equations (67) and (68) to predict
Y(z) ~0.18(x —x,)0-% (70)

the agreement with the directly measured result, equation
(62), 1s good.

It should be remarked parenthetically that, although ade-
quate measurements of v(z,y) are still not available on the
smooth-wall turbulent boundary layer, an indirect verifica-
tion of equations (34) and (35) follows from approximate
agreement between the experimental (or analytically in-
ferred) 6(z) and the predicted o(z) and Y(z), using reason-
ing like that presented in detail for the rough-wall case.

TWO-DIMENSIONAL WAKE

The measurements of Townsend (ref. 10) in the plane wake
far behind a circular rod provide another case in which
equations (34) and (35) can be checked against experiment.

From conservation of momentum and the assumption of
similarity, dimensional reasoning yields the experimentally
verified predictions that far behind the obstacle a turbulent
wake spreads parabolically (§ecz'/?) and that the char-
acteristic mean velocity defect decreases parabolically
(U, —U,) ocz™?) (ref. 30). This means that the plane
wake is a constant Reynolds number shear flow and there-
fore significantly simpler than, for example, the boundary
layer.

Far behind the wake-producing obstacle, where the fully
developed wake 1s finally reached, the difference between
minimum and maximum velocity is so small that equa-
tion (67) can be approximated by

a7 _
dx x[_; (71)

Since there are only two points in the fully developed
r-range, it has not been possible to determine empirical
power laws for 8, Y, and o. The pertinent experimental
result is simply that within the experimental uncertainty
the points in the fully developed range are consistent with

parabolic growth for all three lengths.
’

= ¢ . ; ‘ : : v
Verification of equation (34) again requires data on + ()

l
and L, (r). As can be anticipated for a constant Reynolds
number flow, the root-mean-square turbulent velocities are
proportional to the characteristic mean velocity (mean
velocity difference in the wake) so that »" ccz™"2. In this
asvmptotic state, the mean velocity differences are all
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('—‘%_I ’«l so that U=Constant=U_.
more, constant Reynolds number implies Lagrangian scale
proportional to Eulerian scale (L.(x) ocL(x)), and with the
general assumption of Locs it follows that L, ocz'/?. Equa-
tion (34) then gives as prediction for the variation in wrinkle
amplitude of the turbulence front

small Further-

o(x) ocxl/? (72)
in agreement with the directly measured result, in the simi-
larity (large x) zone.

For the comparison of equation (35) with experiment, no
data on & are available. As in the boundary layer, it will

therefore be assumed that & oc»’/N.  Since » ocz™? and
Nocz!/?) equation (35) predicts
V* ™12 (73)
whence
Y ocz/? (74)

again in agreement with the directly measured result,

ROUND JET

Since fairly detailed turbulence data were already avail-
able for the case of the round turbulent jet (refs. 2 and 31)
entering fluid at rest, intermittency surveys v(z,7) have been
made during the course of this investigation to provide
further experimental check on the proposed physical picture
of the turbulence front.

From conservation of momentum and the assumption of
similarity dimensional reasoning yields the experimentally
verified predictions that far from its source the round turbu-
lent jet spreads linearly (r,,, ccz) and that the characteristic
mean velocity decreases hyperbolically (U7, ocz™!) (ref. 30).
Thus, the round jet is another constant Reynolds number
flow and therefore relatively simple.

The new measurements made in the course of this study
(fig. 24) give as power-law approximations with the “best”

comimon origin,
T 1.00£0.05
[BVELSS *-—3> 75
/ <(l )

. x  \0-88%0.05
]fa(;l—,i)

n 1.06+0.05
£,
oo =—3
d

which may all be taken as linear within the experimental
uncertainty.

(76)

(77)

Previous measurements have shown #//U to be constant
and independent of z at corresponding radical positions in
the jet. Furthermore, the constancy of Reynolds number
again permits the inference that L,oc L. With the assump-
tion that L ocry), equation (34) predicts

o cc(5—2,)

(78)

in reasonable agreement with equation (77).

For the V*(x) evaluation it is again assumed that £oco’/\.
With o oc(z—a,)"' and NocL ocry)s oc(z—2a,) equation (35)
gives

V* o (2—a,) !

(79)

and the comparison with experiment can be made by using
equation (79) to predict R(z), merely replacing ¥ by R in
equation (65). Instead of attempting a detailed proper cal-
culation only a rough estimate was made by assuming

V(a,R) <U(z,R) ocUl(,0)
Then the prediction is

R(x) oc(x—2,) (80)

in reasonable agreement with equation (76). 1In fact, a be-
lief in full similarity for constant Reynolds number shear
flows suggests that equation (80) may be more nearly correct
than equation (76).

INTERMITTENCY AND MEASURED MEAN QUANTITIES

As pointed out earlier in the section on “Inference of
Turbulence Properties From Intermittent Signal,”” there
seems to be only a restricted likelihood of extracting from
the measured statistical characteristics of the intermittent
signal respectable quantitative results on the statistical
properties of the turbulent flow in the convex bulges of the
turbulent front. Probably the broadest obstacle to simple
physical interpretation of results computed from equation
(53) or (57) is the lack of homogeneity within a fully turbu-
lent zone supporting transfer.

Nevertheless, it seems worth while to present, for some
fluctuating variables which are zero in the potential fluid
(i. e., satisfy the first requirement), the results of applying
these two operators.

No detailed quantitative information has yet been obtained
on the mean-value jump for any physical variable. A rough
check from w(t) oscillograms in the rough-wall boundary
layer where y~0.4 indicated that the jump in longitudinal
velocity was about 5 to 10 percent of U/...

Unfortunately, this still does not permit calculation of u,*
because all velocity fluctuations violate the first condition;
that is, they are nonzero in the potential flow.

For &vorticity, which does satisfy this first condition, no
mean-value jump is observable on the oscillograms. This is
not surprising since this z-component has no corresponding
mean vorticity in this flow field. It may be anticipated
that the z-component ¢ will be found to have a jump, if and
when it is measured. A plot of &2=£/y is given in figure 30.
To insure y-coordinate consistency, this particular y(y) has
been measured with the vorticity meter as sensing element.
It does not differ appreciably from v(y) as determined from
the differentiated signal of a u-meter.

In the outer part of the intermittent zone £/y turns out
to be roughly constant, leading to the possible conclusion
that £ is relatively homogeneous in the turbulent fluid.

The Reynolds shear stress —puz has been inferred to be
zero in the potential field outside a turbulence front. There-
fore, it may also be interesting to estimate — puz07.
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Fraure 30.—Distribution of mean-square vorticity fluctuation divided
by intermittency in boundary layer at z=102 inches.

Using a representation like equation (54) for u(f) and »(f)
separately and assuming (a) no mean jump in o(f), (b)
Uph =70 =0, and (¢) B2upvy =burvy, it follows that

uTrT:u; (81)

Townsend (ref. 28) has plotted U_F,'//’Yab('g/ versus y without
attempting a justification.

Figure 31 shows the result of applying equation (81) to
the measured Reynolds shear stress in the rough-wall
boundary layer and in Townsend’s plane wake (vef. 10).
The nonconstancy of wp/y can probably be attributed largely
to nonhomogeneity within the turbulent field.

In concluding this section it may be remarked that, if an
existing nonhomogeneity for any variable in the turbulent
part of the field depends only upon distance in from the front,
a first-order estimate of its effect can be made by computing
the average value generated at a fixed point by random
motion of a “fixed” pattern like that in sketch (e).

\ _.--Nonzero slope (corresponding to nonhomogeneity

& of ain turbulent fluid)

Rigid pattern fluctuates
randomly like Y ()

Sketch (e).

STATISTICAL DESCRIPTION OF TURBULENCE FRONT

The position of the turbulence front Y (x¢) is a random
variable stationary in time and nonstationary in z. The
purpose of this section is to report some further measure-
ments which have been made on its statistical properties,
especially those of Y(t) for a fixed value of 2. Earlier

4x10°3 =

(b) | 1 |
2 ) 4
'yW

(a) Boundary layer at x=102 inches.
(b) Plane wake at =800 inches. (Data from ref. 10.)
Froure 31.—Distributions of Reynolds shear stress divided by inter-
mittency.

sections have emphasized its statistical variation with z,
particularly through Y(x) and the standard deviation o(z).

It is of course possible for 1" to be a multiple-valued func-
tion (see, e. g.. fig. 1), but in most flows the occurrence of
multiple values appears to be sufficiently rare that a discus-
sion predicated upon a single-valued Y is applicable with
good accuracy. This is especially true for the boundary
layer, where turbulence levels tend to be appreciably lower
than, for example, in jets entering a still medium. This
conceptual restriction to single-valued V| exercised through-
out the report, will be justified empirically for the boundary
layer by showing that the average wave length is considerably
greater than the average wrinkle amplitude.

As a stationary random function Y(#) is susceptible of
quantitative statistical description in various ways, not all
independent. Perhaps the two most common mutually
independent functional representations for such variables
are the autocorrelation function (or its Fourier transform,
the power spectrum) and the probability density (or its
Fourier transform, the characteristic function). Usually
the lower order moments of the density and spectral func-
tions, which have simple physical interpretations, are the
most easilv measured statistical properties.
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The problem of acquiring detailed statistical information
on Y(f) is novel in the sense that nowhere in the experiment
is there a signal which is simply proportional to the stationary
variable under study. Therefore, the conventional statistical
functions (above) are not readily measurable by standard
techniques. It is fortuitous that the dissimilar character of
the fields on opposite sides of Y(f) gives such a convenient
method of measuring probability density. However, the
autocorrelation or power spectrum apparently cannot be
directly measured, and therefore other direct statistical data
have been sought, in particular, the probability density of
“pulse lengths,” actually the statistical measure of the times
between successive occurences of any particular value of the
primary variable Y(¢).

A challenging problem in the theory of stochastic processes
is that of relating (if possible) these densities to the more con-
ventional statistical measures. Up to the present time, only
a few fringe results seem to have been obtained by workers
in the field; these will be mentioned in appropriate context.

PROBABILITY DENSITY OF Y (t)

As has been pointed out in the “Introduction” (eq. (1)),
the intermittency factor ~(y) is simply the distribution
function of Y(f) and, therefore, oy/dy is its probability
density.

Calculation of ov/dy shows that, except in the two tails of
the function, it is remarkably symmetrical. Furthermore,
the physical picture given here of front wrinkling as pri-
marily a (Lagrangian) turbulent diffusion phenomenon then
suggests a check to see how nearly 0vy/0y approximates a
Gaussian function, since studies of scalar diffusion in iso-
tropic turbulence have shown a closely Gaussian density.
Figure 32 shows this check. It includes typical plots on
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Freure 32.—Typical intermittency distributions for boundary layer,
jet, and wake plotted on Gaussian probability scale.

Gaussian paper of v(y) for the boundary layer and for Town-
send’s wake, as well as v(r) for the round jet. Clearly all
three distributions are Gaussian within the experimental
precision except in the tail regions.

Deviations from symmetry must, of course, occur at the
tails since the boundary conditions on the two sides are
vastly different.

Since the nearly Gaussian character of dispersion in iso-
tropic turbulence is still unexplained theoretically, it is not
to be expected that this much more complex phenomenon
can be clarified at present. Also, it must be emphasized that
even in the former case it is not necessarily true that the
probability densities are precisely Gaussian; the current con-
clusion is only that a Gaussian curve fits the data as closely
as present experimental techniques produce data. Very
likely it is the deviations (however small) which, when
measured, will shed more light upon the central property of
turbulence, the nonlinearity.

Batchelor (ref. 32) has pointed out that the Gaussian dis-
persion pattern observed at very large distances downstream
from a contaminant source in a turbulent flow may be simply
a consequence of the central limit theorem,” since the relative
position of a fluid particle a long time after tagging may be
regarded as the sum (time integral) of a large number of
small displacements, which are at least uncorrelated for mod-
erate intervals if not exactly statistically independent. In
fact, if this reasoning does apply, it is doubly effective:
Particle displacement, the principal variable, is itself the
integral of particle velocity, so that the long-time displace-
ment is the sum of a collection of sums.

Apparently, the central limit theorem has not been ex-
tended to integrals of continuous random variables, but some
pertinent work has been done by Kac and Siegert (ref. 33),
who showed mathematically that passage of a particular
skew (probability density) random signal through a low-pass
filter reduces the skewness. This prediction has been experi-
mentally verified by Jastram (ref. 34) and by Iribe (ref. 35)
A low-pass filter is, of course, qualitatively equivalent to
integration.

PROBABILITY DENSITY OF PULSE LENGTHS

Experimental results.—From a sketch of Y (¢) as a sta-
tionary random variable, it is easily seen that the intermit-
tent signal from a fixed probe provides a direct means of
measuring the statistical distribution of the time intervals
between successive occurrences of any particular value of Y.

7
Y (#)

T

Sketch (f).

7 In effect, thisstates that the sum of a number of statistically independent random variables
approaches Gaussian character as the number increases without limit (provided that no
finite group dominates the sum).
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From the fluid-mechanical point of view this gives a conven-
ient measure of the wave lengths of the mountains and valleys
in the turbulence front. The laminar superlayer is thin
enough to be considered a discontinuity in all of this analysis.

If 7, is the duration of the probe in a turbulent zone and
75, the duration in a nonturbulent zone, figure 29 gives the
probability densities p;(71) and p.(7:) at three different
values of transversal position, that is, three different values
of the intermittency factor.

By definition (of probability density), the curves in figure
29 are normalized to unit area. A check on their accuracy
is given by the more or less obvious condition

7
— — =Y
T+T,
i = J = T (TaT, and D= f Ty po(Ty)dTs,
0 0

(82)

The terms _'1 and 7, are average pulse durations in units
of time and are functions of y or, alternatively, of ¥ since v(y)
1s monotonic.

The computations from figure 29 give (for §=3.5 inches):

[ | —

Y = — Y =
) directly T, sec T, sec from _Il hy, in. Iy, in.
measured | | and T
| 0.72 0.75 0.0155 | 0. 0060 0.72 7.0 | 2:7.
0.85 0. 50 0.0106 0.0082 0. 56 4.8 | 3.7
0.98 0.25 0. 0069 0.0132 [ 0. 34 3l | 5.9

where {,=0_T, and L,=0U_T, are approximate measures of
the spatial extension of the average intervals in this z vieinity.
This interpretation of the I's as average intercept lengths for
the random variable Y(x) gets increasingly accurate as the
velocity fluctuation level decreases. This time-space trans-
formation is, in fact, identical with that first proposed by
Taylor for an isotropic turbulence (ref. 36) and discussed in
more detail by others (refs. 37 and 18).

. 1 -
A comparison between 5 (I, +1,) for yY=0.50 and the stan-

dard deviation o of Y,(f) at the same z-station gives a rough
measure of the flatness of the wrinkled turbulence front.
For this particular station in the boundary layer,

20 . ;
[ ~018 (83)

which indicates a rather flat front, as assumed in the earlier
theoretical discussion on the propagation of the laminar
superlayer.

Inspection of figure 29 shows the following traits of the
data:

(a) The points are rather scattered.

(b) For v =0.50, p; and p, show an appreciable difference.

(¢) The y=0.25 and v =0.75 cases, which might be ex-
pected to have identical curves with reversed labels, show
this character qualitatively, though not accurately.

Properties (b) and (c¢) can apparently be attributed chiefly
to the shortness of oscillographic samples;® therefore, the

$ About 3 seconds, as compared with the 2 minutes used in obtaining the y's directly.

curves in figure 29 have been labeled with the v's actually
given by these short samples, and the apparent discrepancies
(b) and (¢) are qualitatively explained. In other words, a
short sample with actual ¥ =, drawn from an infinite record
with v =v, can be expected to show other statistical proper-
ties resembling those of an infinite record with y =v;.

Two other sources of uncertainty in the data of figure 29
are (1) the natural uncertainty of measurement in the
presence of noise, even with perfect equipment, and (2) im-
perfections in measuring equipment and techniques.

The first of these difficulties affects all intermittency meas-
urements and is basically insurmountable. Of course, the
noise level could be reduced somewhat and, under simplifying
statistical assumptions on both noise and signal, some esti-
mate of the effect could be made.

The second difficulty probably affects p, and p, measure-
ments more seriously than direct v measurements. For ex-
ample, suppose that the measuring process misses a sizable
number of the shortest turbulent bursts. This fault will
scarcely affect the directly measured v since these contain
only a small part of the total number of pulses to be counted
(except for y<<1). On the other hand, this fault will not
only change the character of p, (7)) for small values of 7' but
also will change the level of p,(75) for large values of 7, since
the very short turbulent bursts subdivide long potential
bursts into shorter ones. Hence, this fault will seriously
affect T, and, therefore, v as computed from T, and T
Precisely this fault is observable on the oscillographic traces.

Other defects similarly observed are the (relatively in-
frequent) missing of short potential bursts and the occasional
overhang of the trigger signal beyond the duration of a tur-
bulent burst. The last of these faults affects the direct vy
measurement as well.

An obvious way around some of these difficulties s the
direct use of £(1) m'% (1) oscillograms to compute p, and ps.
To some extent this was done, and the extreme tediousness
of this method is exactly why the samples processed are so
short.

This inadequate sample length (fault (3)) most seriously
affects the results in the large 7', and 7, ranges. The relative
seriousness of this limitation for long versus short pulses is
not given (as might be guessed at first blush) by the ratio of
sample length to pulse length but by the ratio of sample
length to the inverse of the frequency of occurrence of the
particular length of pulse (actually a small range) in question.
For example, in a 3-second oscillographic sample, the points
on the tails of p, and p, may represent as few as one or two
actual occurrences. With this in mind it can be concluded
that the agreement between values of v obtained via T, and
T, and values of v directly measured is surprisingly good.

It would be interesting to know whether p, and p, approxi-
mate exponential distributions for large values of 7' and 7%.
However, the uncertainty of the points in just this range is
so great as to render such a quantitative question unanswer-
able. Some very indirect evidence via the power spectrum
of the Schmitt trigger output for v =0.50 will be discussed
in a following section.

Since the small 7 and 7, ranges of p, and p, are quite un-
certain (i.e., for bursts shorter than 2 milliseconds), some
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qualitative analytical consideration of the anticipated be-
havior in this range is in order. These short segments arise
whenever the hot-wire passes just below a local maximum
(for turbulent fluid) or just above a local minimum (for po-
tential fluid) in Y(¢).

The variable Y (f) must be differentiable (since it occurs in
a continuum); therefore, its extremes have horizontal
tangents. Thus, a Taylor series expansion of Y (¢) about any
local extreme t=t,, starts with a term proportional to (t—t,)>.
The limiting behavior of p; and p can thus be obtained by
considering a parabola C'=D? as in sketch (g). The problem
is then as follows: Suppose (' has a flat probability density
pc(0);° what is the probability density p, of D=+/C?

C

D
Sketeh (g).
In general, if C'=C(D) is unique,
—p,(6) 2C
whence, for this particular problem
po(D) <D (85)

It follows from this calculation that the probability density
of the intervals between successive occurrences of any particular
value of a differentiable random wvariable must start out (a)
from the origin and (b) linearly. Specifically, p,(7;) and
p2(T,) must behave in this fashion, even though the measured
curves do not all show this tendency in the range covered.

By reasoning similar to the above it is obvious that for a
continuous but nondifferentiable variable (corresponding to
pointed but uncusped extremes) the corresponding density
starts out at a finite value.

Status of random-variable theory.—The mathematical
problem of relating the probability density of the intervals
between successive occurrences of any particular value of a
continuous random variable to the ordinarily more accessible
statistical functions (probability density of the primary
variable, power spectrum, etc.) has apparently not been
solved, even for a Gaussian variable.

Rice (ref. 38) has deduced the probability of a zero of a
Gaussian variable /(f) in an interval (t,-Ff),(t,+t+dt)
when there is a zero at ;. However, the probability density
of intervals between successive zeros (or successive occur-
rences of any other particular value) does not appear to

9 The very small range to be studied, that is, just the immediate vicinity of an extreme,
permits approximating any small segment of a finite probability density by a constant value.

follow easily from Rice’s result. Of course, in the particular
case when successive intervals are statistically independent,
the occurrence numbers have a Poisson density, and the
interval lengths have a simple exponential probability
density.

A more directly applicable result, apparently due to Rice
(ref. 38), relates the expected rate of occurrence of any
particular value of a Gaussian variable /(¢) to the probability
density of the variable and the autocorrelation function
behavior in the vicinity of zero:

I2

B 6_2‘;,(0) ¢/I(0) 1/2

Sl

where ¢(7) is the nonnormalized autocorrelation function

(86)

I(t)I(t+7) and a prime indicates differentiation. The
proof of equation (86) requires also that 7(t) and I’(t) be
uncorrelated—which is automatically satisfied for a station-
ary variable.

However, it must be emphasized that the pristine simplicity
of this theorem is dependent upon the restriction to a
Gaussian variable. Two of the seemingly inexhaustible
number of fortuitous properties of the Gaussian probability
density are:

(a) If a variable is Gaussian, so is its derivative.

(b) If two Gaussian variables are uncorrelated, it follows
that they are statistically independent.

Without these built-in conveniences, it seems likely that
such a theorem could be deduced only with the general
assumptions that the variable and its derivative are statisti-
cally independent.

For the expected rate of zeros, equation (86) reduces to

(ref. 38)
r _1[_¥'0) s ”
Ny - l: © (87)

Equation (87) has been used by Liepmann, Laufer, and
Liepmann (ref. 39) to measure the microscale in a decaying
isotropic turbulence. It will be used here to obtain ¢”(0)
for the turbulence front Y (#).

Measurements have also been made of the average rate of
occurrence of the values of Y (#) corresponding to y=0.25
and 0.75 in the intermittent zone of the rough-wall boundary
layer. In figure 33, the three experimental points are

: : . Yy—Y .
compared with equation (86). The y location of the
ag

three experimental points has been chosen according to the
value of v of the short samples (from which the N’s were
measured; see the preceding table) rather than the true
physical locations of the probe. The agreement is better
than can be expected with the uncertainty of the measure-
ments and therefore fortuitous. The number given for the
rate of occurrence of zeros, Ny=108 per second, is inter-
polated along the Gaussian curve.

Measurements of the probability density of zeros in the
fluctuating part of the signal from a human voice have been
reported by Davenport (ref. 40).
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Ficure 33.—Frequency of occurrence of zero and two other particular
values of Yi({) in boundary layer at x=102 inches. Solid curve is

that of a strictly Gaussian variable. Ny=108.

POWER SPECTRUM OF SCHMITT TRIGGER OUTPUT

As indicated in figure 6, the output of the Schmitt trigger
is in principle a random flat-top signal which is on whenever
the probe is in turbulent fluid and off whenever it is in poten-
tial flow. Obviously the statistical properties of this signal
must have some relation to those of the primary variable
Y(t), and therefore two convenient properties have been
measured.  The first is the probability density of pulse
lengths, tops and bottoms separately; these are, of course,
just p (7)) and py(Ty) (fig. 29). The second is the power
spectrum of the trigger output, measured at the same loca-
tions as the densities (fig. 28).

The three spectra have the same general shape, with power-
law decrease for high frequency as indicated in the figure.

It might be expected that a relation should exist between
the pulse-length densities of any flat-top signal and its power
spectrum, but a search of the literature has uncovered no
such analytical results except in special cases, one of which
is used below.

The simplest of the three signals is that corresponding to
v=0.50, and in figure 28 this power spectrum is seen to agree
closely with that for a “Poisson type’” flat-top signal (see,
e. g., ref. 38):

M

Metrin Be

F(n)ec
where M is the average number of jumps per second and = is
cyclic frequency. For this application and y=0.50, M # N,
the average number of zeros per second in Y—7, since the
distribution of zeros cannot be truly Poisson.

The very good agreement in figure 28 implies only that in
this case p, (7)) and p,(7T,) could be exponential away from
the origin, even though the directly measured data are too
uncertain to permit any estimates. However, no assertion
can be made, since the —2 power spectral decrease is charac-
teristic of most signals with “discontinuities.”

AUTOCORRELATION FUNCTION OF Y(/)

The approximately Gaussian character of Y—7Y permits
application of equation (87) relating the zero occurrence rate
and the autocorrelation. For this purpose the nonnormal-
ized autocorrelation is defined by

Y=Y ()Y (t+7) (89)
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where Yi=Y—7Y. Obviously ¢(0)=¢* and, since N, and o
are the measured quantities, equation (87) is written

ll/” (()) e ,"_20,2]\'02 (90)
where
. 2
N = T AT, zeros/sec (90a)

For the rough-wall turbulent boundary layer at z==102
inches, c=0.55 inch and N;=108 zeros per second, so

¢ (0)=3.4%10* sq in./sec? (91)

A corresponding characteristic length mathematically equiva-
lent to the dissipative scale (microscale) in turbulence can
be deduced by the time-space transformation mentioned
earlier:

— 2¢(())]‘/2 2 T
A ,-:[, 77 =1 == 92
: 2 \b (()) AN ( )
For this particular case,
Ar=1.9 in. (93)

which is a bit smaller than /, and /, in the preceding table
for y=0.50.
For low turbulence levels, one might expect the quantity

’

) 1 : :

— Ay to be of the order of the Lagrangian spatial microscale
M=\ (ref. 18), which is roughly equal to the Eulerian
microscale X over a wide range of 2y in isotropic turbulence

(ref. 18). 1In this case, (;: )x}-> ~(.09 inch. This is the same

order as X in the neighboring turbulence. Since £\ for this
turbulence is roughly 70, which (in isotropic turbulence)
gives N\, =~ 1.5\, the conclusion here is that

% )\y = L'/)\( (94)

or, since (/=0 _, the Lagrangian time mocroscale of the
neighboring turbulence is given roughly by

_
A\, = H\ﬁ) (95)
Equation (90) gives only the vertex curvature of the auto-
correlation function. Because of the Gaussian character of
Y(1), it is possible to estimate the entire ¢(7) from the spec-
trum of the trigger output. It has been shown by North
(see ref. 41) that the autocorrelation function of a strongly
clipped Gaussian variable is simply related to the autocor-
relation function of the variable itself:

2 (T):% sin—! ‘//(T) (96)

Y (0) ¥ (0)

A strongly clipped variable is just a flat-top signal which
changes sign whenever the primary variable passes through
zero—which exactly describes the relation between the trigger
output and the primary variable Y (7).
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Since, as shown by Wiener (ref. 42), the autocorrelation
function of a stationary random variable is just the Fourier
cosine transform of its power spectrum (and vice versa),

Ye (T):f 7, (n) cos 2wn dn (97)
0

F, (12,):4f Y. (1) cos 2mnrdr
0

the autocorrelation of the trigger output is computed from
the measured power spectrum. The good agreement of
F.(n) with the form in equation (88) permits using a simple
exponential for ¢ () (ref. 38):

Then, equation (94) gives the autocorrelation function of
the turbulence front location:

:—llj—ggiz sin (g c“”“)
which is plotted in figure 34. The vertex osculating parabola
corresponding to ¢'/(0) as given by equation (87) and the
directly measured zero occurrence rate are drawn in for com-
parison. The former parabola should give the origin be-
havior of ¢(7) more accurately than equation (99).
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Frcure 34.—Autocorrelation function of turbulence front location
as a function of time in boundary layer at =102 inches.

As should be expected, the calculation of ¢¥//(0) for equa-
tion (99) gives
¥"'(0) 2
o) — a M
identical with equation (87), if M—Nj.
In fact, it found experimentally that M =2N, for this in-
vestigation. This is not surprising since the differentiability
of Y,(t), whose zeros give the square-wave jumps, leads to
a considerable deficit of short pulses as compared with a
truly Poisson square wave (see the section “Experimental
results” under “Probability Density of Pulse Lengths”).
Of course, the power spectrum of Y,(#) could be calculated
by taking the Fourier cosine transform of y(r) but the data

(100)

are sufficiently inaccurate that further manipulation scarcely
seems worth while.

Other characteristic lengths of the wrinkled turbulence
front can be estimated from the integral of ¢(7), mathemati-
cally analogous to the integral scale of turbulence, but these
may be less pertinent than, for example, [, and L, the average
pulse lengths:

L _ 1 (*sinp . _
@(O)L W) ([T_ZJIJZL P dp=

whence,
U J‘” :
- (r) dv="7.41n.
w0 Jo ¥
which turns out to be the same order as /; and /,.
Alternatively,
v
¥(0)
both values being for the rough-wall boundary layer at
r=102 inches.

j Y(7r) dr=0.351in.
0

CONCLUDING DISCUSSION

From the analytical and experimental results reported
here on the problem of the relatively sharp instantaneous
front separating turbulent fluid from nonturbulent fluid (as
at a free-stream boundary), the following new conclusions
are drawn:

1. The nonturbulent region is a field of irrotational fluc-
tuations.

2. The front separating turbulent from potential flow is
actually a very thin fluid layer in which viscous forces are of
primary importance. The role of this “laminar superlayer’ is
the propagation of vorticity (both mean fluctuating) into
the potential field. It is maintained thin by propagation
relative to the fluid and by the random stretching of vortex
lines in its local vorticity gradient.

3. The common occurrence of contiguous rotational and
irrotational velocity fluctuation fields underscores the useful-
ness of confining the word “turbulent’” to random rotational
fields only.

4. The rate of increase of wrinkle amplitude of the turbu-
lence front can be roughly predicted in terms of a Lagrangian
diffusion analysis, using the statistical properties of the
turbulence in the fully turbulent zone. The actual estimate
is given by equation (34).

5. By dimensional reasoning and, independently, through
a model of the laminar superlayer, the thickness of the super-
layer can be estimated. The simplest approximation is
equation (51), giving a thickness of the same order as the
Kolmogoroff (minimum) turbulence length.

6. The propagation velocity V* of the turbulence front is
taken by dimensional reasoning to be proportional to NS
This is roughly verified by experiment.

7. The downstream rate of growth of the turbulence front,
as measured by standard deviation o(z) and transversal
position Y (), is found to be proportional to the shear-zone
thickness, within the experimental precision, for plane wake,

round jet, and rough-wall boundary layer. This is shown




<

mmdependently by direct experiment and by application of
the results outlined in the previous paragraphs.

8. The probability density of the turbulence front location
at any fixed downstream station is Gaussian within the
precision of the measurements everywhere except at the tails.
This is found experimentally for all three types of turbulent
shear flow studied.

9. The probability density of the pulse lengths in the
intermittent signal deviates strongly from the simple expo-
nential type, presumably because Y(f) is differentiable.

10. The autocorrelation function of Y, (¢) for the boundary
layer is found very indirectly from experiment to be as
shown in figure 34.

It seems likely that the presence of the turbulence front
with its attendant detailed statistical properties will have
to be included in basic research on turbulent shear flows
with free-stream boundaries. It is not quite so clear that
it must be explicitly included in semiempirical engineering
estimates concerned only with overall transfer; so far no
case has been encountered in which the front grows at a
rate distinetly different from the gross shear-layer growth.

It appears that at present this new physical picture
introduces at least as many new questions as it gives expla-
nations of older observations. Insofar as it is concerned
with a boundary condition, it tells nothing about transport
phenomena within a turbulent region. Yet, since the
wrinkle amplitude ¢(z) and transversal travel Y (z) of the
turbulence front appear to be governed by f{or related to)
properties of the contiguous turbulence, any gross assump-
tion on these variables implies consequent relations among
the turbulence properties.

It should especially be pointed out that the present
investigation does not appear to shed any light on the
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characteristic difference between transport rates of vector
(momentum) and scalar (heat, mass) properties. In fact,
since it 1s coneluded that no mean momentum can be trans-
ported beyond the turbulence front it appears that (for
laminar Prandtl and Schmidt numbers not very much smaller
than unity) the front should apply equally well to heat or
chemical composition. Oscillographic observations (not
mentioned in the body of the report) in a hot jet show a
temperature fluctuation intermittency, presumably coinei-
dent with the vorticity intermittency. If this inference is
true, then the vector versus scalar transport rate difference
will have to be explained in terms of properties of the en-
tirely turbulent region.

Interesting speculations in this direction have been made
by Townsend (ref. 10), who suggests that momentum is
largely transported by relatively high wave number fluctua-
tions while heat is transported by both low and high wave
number fluctuations, that is, by jet convection and by
gradient diffusion, respectively. However, there are two
dubious minor postulates in his analysis (mentioned here
in the section ‘‘Inference of Turbulence Properties From
Intermittent Signal” and at the end of the section “Laminar
Superlayer’”) and also he has not clarified the principal
assumption vis-i-vis the known fact that the shear correla-
tion wr appears to get ever increasing contributions toward
the low wave numbers (ref. 43). Finally, his inference that
the lateral jets (bulges) convect little longitudinal momentum
appears to be in contradiction to the fact that the inter-
mittent velocity signal shows an appreciably lower mean
in the turbulent segments that in the potential ones, as
seen in figures 9 and 15.

Tuae Jouns Hopkins UNIVERSITY,
Bavrivore, Mbp., January 20, 1953.



APPENDIX

GROWTH OF ROUGH-WALL BOUNDARY LAYER

Although the growth of turbulent boundary layers with
zero static-pressure gradient is better approximated by a
logarithmic function (ref. 11), the exploratory purposes of
this investigation are satisfied by the simpler and less
accurate power-law treatment.

The momentum integral relation for turbulent boundary
layer with zero static-pressure gradient can be written
approximately as (ref. 11)

(lﬁﬁ To

—= Al
de 72 (o)

The following rough assumptions are made:
(a) Simple geometrical similarity in mean velocity profiles:

U - y)
F(ﬂ—fn (6
(b) “Fully rough” wall conditions:
U-h 5 100
14

Therefore,
o p[U (W]

where /4 1s effective roughness height.
(¢) Power-law velocity profile:

£4<y>m
U. \o

From assumptions (a) and (¢)

U (h) h>”’
— = — A2
o (5/ (A2)

whence the second assumption gives
rocpl.t (5) (43)

Since §ocd, substitution of equation (A3) into equation (A1)
gives

b :
—2m y. 4
dx 2 (A4)
for h=Constant. Therefore,
= 1_
0M(J'—J’0)2']l+l (A’B)

Equation (A5), a simple power law, permits approximation
to the actual boundary-layer growth with accuracy adequate
for the present investigation.

In fact, since both m and the exponent in equation (A3)
have been measured independently, there is opportunity for

an experimental check on the accuracy of the present crude
approach: Mean velocity profiles (fig. 11) give m=~1/3.5.
Therefore, the analysis predicts

0 o (J,_J.o)l).ﬁl

whereas measurements of boundary-layer growth (fig. 12)
give
foc (.I._‘I.U)O.G-Zi().l

It should be pointed out that boundary layers in general
cannot have simple geometrical similarity because their
characteristic Reynolds numbers increase with .

This particular “rough-wall” boundary layer is fully rough
all the way downstream (from z=0 to z=102, U,h/v falls
from 200 to 145), if the peak-to-peak height of the corruga-
tion is interpreted as /.
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