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ANALYSIS AND CALCULATION BY INTEGRAL METHODS OF LAMINAR COMPRESSIBLE BOUND-
ARY LAYER WITH HEAT TRANSFER AND WITH AND WITHOUT PRESSURE GRADIENT

By Mozris MorbucaOW

SUMMARY

A survey of integral methods in laminar-boundary-layer
analysis i3 first given. A simple and sufficiently accurate
method for practical purposes of calculating the properties
(including stability) of the laminar compressible boundary
layer in an axial pressure gradient with heat transfer at the
wall is then presented. For flow over a flat plate, the method
18 applicable for an arbitrarily prescribed distribution of
temperature along the surface and for any given constant
Prandtl number close to unity. For flow in ¢ pressure gradient,
the method is based on a Prandtl number of unity and a uniform
wall temperature. A simple and accurate method of determin-
ing the separation point in a compressible flow with an adverse
pressure gradient over a surface at a given uniform wall temper-
ature 18 developed. The analysis is based on an extension of
the Kdrmdn-Pohlhausen method to the momentum and thermal
enerqy equations in conjunction with fourth- and especially
higher degree velocity and stagnation-enthalpy profiles. From
the equations derived here, conclusions regarding the effect of
pressure gradient, Mach number, and wall temperature on the
boundary-layer characteristics are derived and illustrated. In
particular the effects on skin-friction, heat-transfer coefficient,
separation point in an adverse pressure gradient, and stability
of the laminar boundary layer are analyzed.

INTRODUCTION

The purpose of the present report is to present a compre-
hensive summary of theoretical investigations of compres-
sible laminar boundary layers which have been carried out
since 1949 at the Polytechnic Institute of Brooklyn under
the sponsorship and with the financial assistance of the
National Advisory Committee for Aeronautics. The results
of these investigations are contained primarily in references
1to 7}

Briefly, reference 1 is an investigation of the relative merits
of various types of integral methods for the analysis of
laminar boundary layers. It is concluded that the one-
parameter method based on the Kérm#én momentum integral
equation in conjunction with sixth-degree velocity profiles
appears, on the whole, to be the most promising method for
analyzing laminar boundary layers in general. On the basis
of this conclusion, & simple method of calculating compres-
sible-boundary-layer characteristics, including separation
point and stability characteristics, in flow with a pressure
gradient without heat transfer at the wall is developed in

reference 2. It is further shown in reference 2 that fourth-
degree profiles are preferable for analyzing stagnation flows,
while the separation point in an adverse pressure gradient
can be still more accurately predicted with seventh-degree
velocity profiles. In reference 3, it is further verified, by
considering the flow over a flat plate with heat transfer,
that sixth-degree profiles yield results of sufficient accuracy
for stability calculations. In the course of such calculations,
certain modifications in the approximate stability criteria of
reference 8 were made, and these are shown briefly in refer-
ences 3 to 5, which are essentially & summary of an unpub-
lished report by Professor M. Bloom of the Polytechnic
Institute of Brooklyn entitled “Calculation of Stability of
Constant-Pressure Boundary Layers on Isothermal Surfaces
With an Integral-Method Mean-Flow Solution.” Thisreport
is available for loan or reference in the Division of Research
Information, National Advisory Committee for Aeronautics,
Washington, D. C. In reference 6, a method of calculating
the compressible laminar boundary layer in a pressure gra-
dient with heat transfer is developed. This reference includes
the calculation of the boundary layer over a flat plate (zero
pressure gradient) with a nonuniform wall temperature. Ref-
erence 7, finally, applies the equations developed in reference
6 to a general study of the effect of pressure gradient, wall
temperature, and Mach number on the skin-friction, heat-
transfer, separation, and stability characteristics of laminar
boundary layers. A method of calculating the separation
point in an adverse pressure gradient with heat transfer is
included there. Numerical examples are also included in
reference 7 to illustrate in detail the conclusions reached
there. The methods of references 6 and 7 are extensions of
the corresponding methods of reference 2 to cases of heat
transfer at the wall.

The emphasis in the present report will be on the develop-
ment of methods of calculation of laminar-compressible-
boundary-layer characteristics. In particular, a method of
calculating the boundary layer over a flat plate with a non-
isothermal surface, that is, with a given distribution of
temperature along the wall, will be presented. The Prandtl
number, although constant, is left arbitrary but must be of the
order of magnitude of unity. For flowin a pressure gradient,
amethod is given of calculating the boundary layer for a given
distribution of velocity outside the boundary layer, a given
reference Mach number, and a given uniform wall tempera-
ture. The Prandtl number is now assumed to be unity. A

1 8ince each of thess references contains appreciable material of interest not contained in the present report, the latter does not actually supersede any of these references,
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method of calculating the separation point in compressible
flow with an adverse pressure gradient over a surface at &
given uniform wall temperature is also presented. The
mathematical analysis on which these methods are based will
be given in sufficient detail to show clearly the logical develop-
ment of the methods and the main approximating assump-
tions which are made as well as the range of applicability of
the methods.

In addition to the methods of calculation, the implications
of the equations developed here regarding the various char-
acteristics of laminar boundary layers as they are affected
by parameters such as the pressure gradient, wall tempera-
ture, and Mach number will be discussed. The discussion
will include stability characteristics. A variety of numerical
examples will also be discussed, and details of a few of these
will be presented here. Further details of these examples
can be found in references 1 to 7.

It may be remarked that, as is well known, the literature
on laminar boundary layers and related problems is exten-
sive and rich. Indeed, wherever pertinent, reference will
be included in this report to recent work which has appeared
either more or less simultaneously with, or since, references
1to 7. The advantage of the methods of calculation devel-
oped in this report is that they combine the merits of ade-
quate accuracy and relative ease of calculation. (An ordi-
nary desk calculator will be found to be more than adequate
for all of the calculations. In fact, a large number of the
calculations may even be performed by a standard slide
rule.) The mathematical analysis will likewise entail prac-
tically the minimum number of approximating assumptions
required to retain both simplicity and adequate accuracy.

With respect to the pertinent literature, it will suffice, at
this point, to mention briefly theoretical investigations on
the general case of the compressible laminar boundary layer
with pressure gradient and heat transfer. Only a very
limited number of exact solutions, that is, solutions (which
may be numerical) based on solving directly the original
partial differential equations of the boundary layer essen-
tially without any mathematical approximations, appear to
have been obtained thus far. Such exact solutions are
restricted to particular types of flows. For low-speed (zero
Mach number), but nevertheless compressible, flows with
heat transfer, numerical solutions for “wedge flows,” or
flows in which the velocity outside the boundary layer is
proportional to a power of the axial distance, have been
developed in references 9 to 11. These solutions include &
small normal mass flow at the wall. Such solutions have
been recently extended for nonnegligible Mach numbers to
cases in which the local Mach number outside of the bound-
ary layer is proportional to a power of the axial distance (ref.
12). A class of similar solutions (refs. 13 to 15) for high-
speed (i. e., nonzero Mach number) flows has been recently
derived, under certain conditions, and calculated with the
aid of electronic computors.

In addition to references 6 and 7, several approximate
analyses of laminar compressible boundary layers with pres-
sure gradient and heat transfer have been made. An analy-
sis, for example, based on a type of approximation used by
Lighthill has been recently made in reference 16, with empha-

REPORT 1245—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

sis on separation. A method based on ‘internal” and
“external” solutions of the compressible-boundary-layer
equations, previously introduced by Kfrmén and Millikan
in an analysis for incompressible flow, is developed in refer-
ence 17. Reference 18 presents a method based on solutions
which have been obtained for wedge flows. References 19
to 21 develop methods based on an extension of the Kérmdn-
Pohlhausen method (with fourth-degree velocity and stag-
nation-enthalpy profiles) to the thermal-energy, as well as
the momentum, partial differential equation. (Refs. 18, 20,
and 21 include the case of a small normal mass flow at the
wall.) TFurther analyses based on integral methods are
given in references 22 to 24, the latter being a study of the
heat-insulating properties of the laminar boundary layer. A
small-perturbation type of analysis is developed in reference
25. It may be noted that all of the foregoing approximate
analyses, with the exception of references 16 to 18 and 25.
are based on integral methods.

The analysis in the present report is, for simplicity, based
on the usual assumption of constant specific heats. A means
of taking into account variable specific heat with tempera-
ture, at least for flow over a flat plate, is discussed, for
example, in references 26 and 27. As has already been
stated, it is further assumed in this report that for flow with
a pressure gradient the Prandtl number is 1. An approxi-
mate means, for the case of zero heat transfer, of taking into
account & Prandtl number different from unity is discussed in
reference 28 and applied in reference 29. In the case of heat
transfer at the wall, an approximate means of taking into
account a Prandtl number other than 1 would be to multiply
the Nusselt number (i. e., heat-transfer coefficient) obtained
in accordance with the method given here by the cube root
of the Prandtl number (cf., e. g., refs. 30 and 31). Such a
correction, however, may be considerably inaccurate at very
high Mach numbers (ref. 12). A further assumption in the
present analysis of flow with a pressure gradient is that the
wall temperature is uniform.? A summary of investigations
on flow over a nonisothermal surface in a pressure gradient
(a8 well as over a flat plate) is given in reference 32. Further
information can also be obtained in reference 33. Finally,
it must be noted that the present investigation is based
on the assumption that the coefficient of viscosity is pro-
portional to the absolute temperature, with the proportion-
ality factor determined so that Sutherland’s relation is
exactly satisfied at the wall. This is an assumption com-
monly made (cf. ref. 34) to simplify the analysis and yet
retain the main actual influence of the dependence of the
viscosity coefficient on temperature, at least for Mach
numbers below 5.

The present report is divided into five main sections. The
first section discusses concisely the various main types of
integral methods in laminar-boundary-layer analysis and
their relative merits. The second section develops the
basic equations to be used in the present analysis. These
equations are valid for an arbitrary constent Prandtl number
(close to unity) and a nonuniform wall temperature. In the

3 The general equations, however, developed in the sectlon “Basic Equations,” which por-
tain to flows with or without a pressure gradient, are valld also for nonuniform wall
temperature.
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third section, these equations are applied to present a
method for the calculation of the boundary layer over a
flat plate with a prescribed distribution of wall temperature
while the Prandtl number is kept arbitrary. In the fourth
gection, the basic equations are used to yield a method of
caleulating the boundary layer in a given pressure gradient
over a surface at a prescribed uniform wall temperature.
Here the Prandtl number is assumed as unity. The calcula-
tion of the separation point in an adverse pressure gradient
is included in this section. The fifth section, finally, dis-
cusses the various general conclusions on the boundary-layer
characteristics which are of physical interest and follow from
the analysis presented herein.
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SYMBOLS

coefficient of +* in velocity profile
(eq. (15))

given by equation (48)

constant average value of ay

positive constant used in reference 2

coefficient of ” in stagnation-enthalpy
profile (eq. (16))

coefficient in thermal profile not deter-
mined in advance by boundary
conditions

constant average value of b,

proportionality factor in temperature-
viscosity relation (egs. (6) and (7))

constant average value of O

average skin-friction coefficient for
length L (eq. (35))

local skin-friction coefficient (eq. (56))

specific heats at constant pressure and
constant volume, respectively

integrals defined by equations (11)

constant average value of F}

constant replacing F, for determination
of separation point

parameters defined by equations (31),
(34b), and (40b)

stagnation enthalpy, (w?/2)+4-¢,T

ratio of stagnation enthalpy at wall to
stagnation enthalpy at outer edge of
boundary layer, H,/H;(£); for Pr=1,
h=T,/T, (cf. also eq. (25))

value of A for zero heat transfer at wall

coefficient of heat conductivity

characteristic length

Mach number

constants defined by equations (55b)

Nusselt number

Prandtl number, ue,/k

local rate of heat transfer at wall

Reynolds number based on L, potte L/ 1t

Rb.cr

Rm.cr

HNow Y

.

3,8,

7
A=R.(5,/L)?
(D

Subscripts:
a

b

8ep

minimum eritical Reynolds number
based on conditions at point b im-
mediately behind shock wave at
leading edge of airfoil, pyusL/u,

minimum critical Reynolds number
based on remote free-stream condi-
tions in supersonic flow over thin
airfoil

ratio of local skin friction to Nusselt
number defined in equation (68)

Sutherland constant; S=216° R for
air (cf. eq. (7))

absolute temperature

equilibrium wall temperature for zero
heat transfer

transformation variable, defined by
equation (8)

velocity components in z- and y-direc-
tions, respectively

coordinates parallel and normal to
surface, respectively

constant defined by equation (34b)

ratio of specificheats, ¢,/c,;y=1.4for air

boundary-layer thicknesses in zy and
xt planes, respectively

recovery factor (eq. (41))

solution for A(£) to be used in deter-
mining separation point (eq. (64))

coefficient of viscosity

dimensionless distance along wall, z/L

mass density

dimensionless variable, #/5,

constant defined by equation (53)

constant replacing ¢; in determining
separation point

region at which adverse pressure gradi-
ent starts

value at point outside of boundary
layerimmediately behind shock wave
at leading edge of supersonic airfoil

value at wall

value used for determining separation
point

value at separation point

local value at outer edge of boundary
layer

value at suitable reference point out-
side boundary layer; in numerical
examples, denotes value in undis-
turbed (remote) free stream

A prime denotes differentiation with respect to £.

COMPARISON OF INTEGRAL METHODS FOR
LAMINAR-BOUNDARY-LAYER ANALYSIS

Since the development in 1921 of the boundary-layer
momentum integral equation by Von Kérmén (ref. 35) and
its first application by Pohlhausen (ref. 36), the Kdrmdn-
Pohlhausen method has probably been the most widely
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applied and fruitful of the approximate methods used for
theoretical analyses of boundary layers.

The Kérmén integral equation can be regarded physically
2s a momentum balance over a fluid element extending across
the entire boundary-layer thickness. Mathematically, the
equation can be regarded as an integration of the original
momentum partial differential equation over the boundary-
layer thickness. The advantage of this integral equation
for theoretical calculations is that if certain definite forms
are assumed for the velocity profiles as functions of the nor-
mal distance from the surface then an ordinary differential
equation is obtained with axial distance along the surface
as independent variable and essentially the boundary-layer
thickness as the unknown.

The Kérmén-Pohlhausen method in its original form is
based on the use of fourth-degree velocity profiles satisfying
certain conditions at the wall and at the outer edge of the
boundary layer. By means of this particular method a
considerable variety of useful results for laminar boundary
layers has been obtained, even for cases of a normal mass
flow (fluid suction or injection) at the wall with or without
heat transfer and pressure gradient (cf., e.g., refs. 30, 37 to
39, and 19 to 22). It has been found, however, that this
method has at least two distinct disadvantages in practical
cases. It fails to predict accurately the separation point
in an adverse pressure gradient, and it often does not yield
sufficiently accurate results for derivatives of the profiles
for use in laminar-boundary-layer-stability calculations. In
view of such limitations, various refinements in the K4rmén-
Pohlhausen method have been made, and & number of what
appeared to be the most important types of refinements
were studied and compared in reference 1.

REFINEMENTS OF KARMAN.POHLHAUSEN METHOD

In discussing refinements of the Kérmén-Pohlhausen
method, it should be first observed that the Kdrmén mo-
mentum integral equation is not actually equivalent to the
original partial differential equation. It is, in fact, essen-
tially only an average of this equation over the boundary-
layer thickness. Thus, any solution of the partial differ-
ential equation will necessarily satisfy the momentum integral
equation but not vice-versa. This basic limitation of the
integral equation is, however, to some extent overcome in
the Kérmén-Pohlhausen method by the fact that the velocity
profiles which are assumed in this equation are not chosen
quite arbitrarily but are chosen as well-behaved functions
(namlye, fourth-degree polynomials) satisfying the boundary
conditions and certain additional conditions which an exact
solution of the governing partial differential equations
would necessarily satisfy.

There are two main types of methods of refining the
Kérmén-Pohlhausen method. One method consists in using
integral equations in addition to the Kérmén momentum
integral obtained by multiplying the original momentum
partial differential equation by the axial velocity u or powers
of u (e. g., refs. 40, 41, and 29) or by the normal distance ¥
or powers of y (ref. 42) and then by integrating the resulting
equations over the boundary-layer thickness. In this type
of method, additional unknown parameters as functions of
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the axial distance z are introduced into the assumed velocity
profiles, and these are determined by the additional resulting
ordinary differential equations. In most actual applications,
only one integral equation in addition to the Kérmdn
momentum integral equation is introduced, and, hence, only
two ordinary differential equations for two parameters
result. Such methods, in fact, are therefore sometimes
called “two-parameter” methods. A detailed discussion of
such methods is given in reference 1.

The second main type of refinement of the Kérmdn-
Pohlhausen method is the use of only the Kfrmdn integral
equation, but in conjunction with profiles of higher degrec
than the fourth, satisfying additional conditions at the wall
and at the boundary-layer edge which an exact solution of
the partial differential equations would necessarily satisfy.
Tn most applications of this type, velocity profiles of tho sixth
degree (refs. 43, 44, 1 to 3, 6, 7, 23, and 24) are used. How-
ever, velocity profiles of higher degree than the sixth have
also been used (refs. 41 and 23). Seventh-degree velocity
profiles have been found particularly suitable for calculation
of the separation point in an adverse pressure gradient
(refs. 45, 2, and 7). One-parameter methods with velocity
profiles of higher than fourth degree are discussed in somoe
detail in reference 1.

COMPARISON OF METHODS

In view of the variety of specific means of refining the
Kérmén-Pohlhausen method, & theoretical investigation of
the relative merits of these methods was made in reference 1.
The methods were compared on the basis of both accuracy
and ease of computation. The method of comparison was o
posteriori. A relatively simple flow, namely, the incom-
pressible and compressible flow for a Prandtl number of unity
in a zero pressure gradient over a surface at a uniform tem-
perature, was calculated on the basis of & number of the
foregoing methods, and the results were compared with the
accurate method of analysis of reference 34 for flow over a
flat plate. The two-parameter methods considered wero
based on (in addition to the Kérmdin momentum integral)
the integral of the momentum partial differential equation
multiplied by « in conjunction with fourth- and fifth-
degree velocity profiles. The one-parameter methods were,
of course, baged on the Kérmén momentum integral equa-
tion and were applied in conjunction with fourth- (Kérmén-
Pohlhausen method), fifth-, and sixth-degree velocity pro-
files. The comparisons were made, in particilar, on the
basis of calculated skin-friction and heat-transfer coefficients,
first and second derivatives of the profiles throughout the
boundary-layer thickness, and minimum ecritical Reynolds
pumbers for laminar-boundary-layer instability according
to the criteria of Lin and Lees (refs. 46 and 8). It is well
known that the latter criterie are sensitive to first and second
derivatives of the profiles.

The boundary conditions satisfied by the various profiles
as well as the detailed comparison of the results of the various
methods can be found in reference 1. The results, in brief,
indicated that skin-friction and heat-transfer coefficients
were predicted with substantially satisfactory accuracy by all
of the methods. Moreover, the overall profile shapes ob-
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tained by all of the methods were qualitatively correct. How-
ever, quantitative differences in the first and especially second
derivatives of the profiles were obtained, with corresponding
differences in the calculated values of the minimum critical
Reynolds numbers. It was concluded that, on the whole, the
one-parameter method with sixth-degree profiles gave the
most accurate results for the profile derivatives, as well as for
the minimum critical Reynolds numbers. In reference 1 the
stability calculations were carried out for the case of zero
heat transfer at the wall. Subsequent calculations (ref. 3)
indicated that reliable results for stability calculations by the
one-parameter sixth-degree-profile method are obtainable
also for the case of heat transfer at the surface of the flat
plate.

In addition to being capable of yielding results of adequate
accuracy, it is usually also quite desirable that & method of
calculation be simple. In this connection, it must be ob-
served that the one-parameter methods, in general, involve
considerably simpler calculations than the two-parameter
methods. This adventage of the one-parameter methods
may not be very pronounced in the case of flow over a flat
plate; however, it becomes quite pronounced for the general
case of flow in a pressure gradient with heat transfer. In this
case, the thermal-energy partial differential equation must be
integrated to yield an integral equation in addition to the
momentum integral equation. Consequently, there will be
at least two parameters to determine., If, however, both the
momentum and the thermal-energy partial differential
oquations are multiplied, for example, by u and integrated
over the boundary-layer thickness, then a total of four
ordinary differential equations in four unknown parameters
will be obtained. Thus, the so-called two-parameter method
would in this case really become & four-parameter method.
(The one-parameter method in this general case similarly
becomes a two-parameter method.) It is noteworthy, in
fact, that in any of the foregoing applications of the two-
parameter method only the less general cases of zero pressure
gradient, or pressure gradient with zero heat transfer at the
wall, have been treated. If it is desired to develop a unified
method to be applicable in the more general as well as in the
simpler cases, then this would have to be considered a dis-
advantage of the two-parameter methods.

In view of the foregoing results and considerations, it was
concluded in reference 1 that the most promising integral
method for laminar-boundary-layer study appeared to be
that based on the Kdrmidn integral equation, in conjunction
with sixth-degree velocity profiles. This is essentially the
method of analysis to be applied in the present report. It
should be observed, however, that cases exist in which profiles
of other degrees are preferable. In particular, stagnation
flows are more satisfactorily treated by fourth-degree profiles
(ref. 2), while the separation point in an adverse pressure
gradient appears to be determined more accurately by
seventh-degree profiles (ref. 2). The latter case will be
treated in some deteil in the present report.

It may be asked why, in the one-parameter method,
profiles of higher degree than the sixth were not considered
in the comparison study of reference 1. The reason is that
the sixth-degree profiles, as distinguished from fourth-
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degree profiles, are chosen to satisfy an additional condition
at the wall (as well as the outer boundary-layer edge). This
condition is obtained by differentiating the partial differential
momentum equation with respect to 7. If a velocity profile
of higher degree than the sixth is assumed, then the only
means of obtaining & further condition at the wall which
would be satisfied by an exact solution of the partial differ-
ential equations is to differentiate the momentum partial
differential equation twice with respect to = (or ¥ for in-
compressible flows), and then take values at the wall. This,
however, will be found to yield & condition involving partial
derivatives with respect to z such as [0%u(z,y)/0r Oyl,, and
this condition then becomes essentially an additional
ordinary differential equation. Since the sixth-degree pro-
files have apparently led to satisfactory results, it has not
seemed worthwhile to introduce such complications into the
analysis by using higher degree velocity profiles® It is
noteworthy, in this regard, that although polynomials of as
high a degree as the eleventh were applied in reference 41,
they satisfied only the same conditions at the wall as the
sixth-degree profiles to be used in the present report.

BASIC EQUATIONS

The following equations describe the steady, two-
dimensional, laminar-boundary-layer flow of a compressible
gas along a slightly curved wall:

ou, Ou du, , 0 ou
U b:c I po ay UL d:chy 'a_y (1)

O(pu) E’(1!777)
oz Toy 0 @

ol =TYT €]

dT T dug D (10
dy (k a—f;)“ (b )

P'lwpbx"l'l’vcpb,y —Upnth dz

Equations (1), (2), and (4) are the momentum, continuity,
and energy equations, respectively. HEquation (3) follows
from the ideal-gas law and the assumption that the pressure
is constant across the boundary-layer thickness. It will be
assumed here that the specific heats ¢, and ¢, as well as the
Prandtl number Pr are constants. By multiplying equation
(1) by » and adding the resulting equation to equation (4),
the following form of the energy equation is obtained for a
constant Prandtl number:

Pr (0 ot 35):%{# 5 [H—0—P») (u*/fz)]}

®)

It will be assumed in the present analysis that the viscosity-
temperature relation cen be approximated in the form (cf.
refs. 34 and 6)

T

I“ — - —
Z—O T, (6)

3 When seventh-degree velocity profiles are used here for calculation of the separation point
in an adverse pressuro gradlent, the additional condition satisfied at the wall 1s chosen to be
exactly valld only at the separation point.
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where

T
O~(T/T )y 7S g

It is convenient, in this compressible-flow analysis, to
replace the normal distance coordinate ¥ by the Dorodnitzyn
variable ¢ defined by

t
o= @mya ®
By integrating equations (1) and (5) with respect to ¢ over
the boundary-layer thickness {=0 to ¢=4, and using the
boundary conditions u=9=0 at t=0 together with smooth
transition of the velocity and temperature profiles to their

local main-stream values, the following integrodifferential
equations are obtained:

<F1/2)x'+x{Fl'+F1 2 [r (1 aa2) 75 }
—Cloulp) @wolu) (TIT | §-tufu) | @
e [n (3]
~Cloulp)@au)(TIT.) 0P| s EIE | 0

where
A= " (fun) L —(ufus)] dr
= [(@m-wmra )
Fie ﬁ () [L—(EJEL] dr J
and
A=(/LP (ot L2 a2

Here A (%) is essentially the nondimensional squared boundary-
layer-thickness parameter in the z¢ plane.

The quantities p;/p_, and A4, In equations (9) and (10) are
related to w;/u_, which is a function of £ prescribed by the
potential flow about the body in question. Thus, in accord-
ance with the usual isentropic-flow relations,

={1+(—1) (M. 2)[1—(ui/u.)] }“"1 (13)
M1=('u1/u@)Mm (TI/T,,)‘”’ (14)

Ple"“(Tl/Tm)

In deriving equations (9) and (10) a single boundary thick-
ness has been assumed. This is an alternative to the intro-
duction of two boundary-layer thicknesses, namely, a ve-
locity, or dynamical, and a stagnation-enthalpy, or thermal,
boundary-layer thickness (ef. refs. 19 to 21 and 23). The
assumption of a single boundary-layer thickness appears
feasible for fluids with Prandtl numbers close to unity, since
in that case analyses involving both a dynamical and a
thermal boundary-layer thickness usually imply that both
thicknesses are approximately equal (see, e. g., refs. 30, 20,
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and 21).4 Moreover, as explained in reference 6, the use of a
single boundary-layer thickness does not necessarily impose
any undue restrictions on the thermal profiles, since the
latter have here been permitted to contain an additional co-
efficient not determined in advance by the boundary condi-
tions. This coefficient, to be taken here as b, replaces the
thermal boundary-layer thickness as the second unknown to
be determined by equations (9) and (10). A single boundary-
layer thickness has also been used in reference 22.

Equations (9) and (10) can be converted into ordinary
differential equations by assuming the velocity and stagna-
tion enthalpy as definite functions of the normal distance
variable 7. For this purpose, as explained in the section
“Comparison of Integral Methods for Laminar-Boundary-
Layer Analysis,” the velocity profiles will be chosen as
sixth-degree polynomials. The stagnation-enthalpy profiles
will similarly be chosen as polynomials but of one degree
higher, namely, seventh degree.

Thus, it will be assumed that

u/u1=Z:)‘ Ay ™ (15)
H/f}rl=ﬁ0 byt (16)

The following boundary conditions must be satisfied:

At =0,
u=p=0
1
H[H,=h(£) 0

where h(£) is considered as a prescribed function.

At r=1,
1L/’ll«1=H/H1=1
(18)
2ufor=0H =0

In addition to these conditions, the following conditions will
also be satisfied (cf. ref. 6):

At 7=0,
oy -b?; (ufy=—(prfp ) B+~ )M} Y
(19)

[1+(r—1)ML%2] % (HJH)=01—Pr)(r—1)M? [b('lbl{rul):]2
3 (21)
(wafu\Proifp.) 2808 b — oy T,) {a_ (HH—

3(1—Pr)(r—1) M 28 O A / B+ (r— 1)M1’/2]} ©2)
At r=1,

2, whi=Zs =2 (B/E)=2 (H/H)=0  (22)

4 In the case of flow near a stagnation polnt, however, it Is interesting to note that even for
8 Prandtl number of 1 the thermal boundary-layer thickness in the 2¢ plane may be around
25 percent greater than tho dynamical boundary-layer thickness (ref. 20).
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Conditions (19) to (22) follow from equations (1) to (4) and
differentiation of each of equations (1) and (4) once with
respect to r, taking values at the wall and taking conditions
(17)into account. Conditions (23)follow from differentiation
of equations (1) and (4) once and twice with respect to =,
taking values at the local outer boundary-layer edge and
taking conditions (18) into account.

After the coefficients @, and b, have been determined from
conditions (17) to (23) in terms of &, (or ) and b;, equations
(9) and (10) become ordinary differential equations to
determine A(¥) and b,(¥). For any given case, the flow
outside the boundary layer, as defined by w/u_(#) and
M_, i8 considered as prescribed. Moreover, the tempera-
ture distribution along the surface, as defined by h(%), is also
considered as prescribed here.

The temperature profiles are related, in general, to the
stagnation enthalpy and the velocity profiles in accordance
with the relation

PRt

Equation (24) follows from the definition of the stagnation
enthalpy H. From equation (24) it follows that the wall
temperature distribution is related to the stagnation-
enthalpy distribution A(f) at the wall, in accordance with
the relation

7 =10 (1452 112) (25)

Profiles in the z¢ plane can, if desired, be transformed into
profiles in the physical zy plane by determining ¥ as 2
function of 7 and £ in accordance with equation (8)°.
Equation (8) can be expressed, in general, in the following
nondimensional form:

. f (TITydr

(262)
8 f (T/Tydr

where §(¢) is the physical boundary-layer thickness determined
by

1
3 VE=K [ (T (26b)
In the succeeding two sections, it will be shown how the
equations thus far developed can be used to lead to a simple
and usually sufficiently accurate method of calculating the
laminar-boundary-layer characteristics for certain general
types of flows.

FLOW WITHOUT AN AXIAL PRESSURE GRADIENT WITH
ARBITRARY (CONSTANT) PRANDTL NUMBER AND
VARIABLE WALL TEMPERATURE

In this section, based on the equations thus far derived,
o simple and accurate method for calculating the laminar-
boundary-layer characteristics of the flow in & zero pressure
gradient, such as the flow over a flat plate at zero angle of

§ This is not necessary If It Is desired to determine only properties such as skin frictlon, heat
transfer, and separation point which depend enly on values at the wall.

1071

attack, is developed. The Prandtl number is considered
arbitrary but constant and of the order of magnitude of

unity, while the wall temperature may vary along the flow;
that is, To="T,(z) or h=h(}).

GENERAL SOLUTION

For flow without a pressure gradient, that is, u;'=0s
while M;=M.,, T'=Ts, and so forth, the integrodifferential
equations (9) and (10) become

N+ FA=c[ 28] @n
4 7 0 (H Hl
(PN + A= [b%l ©8)

The sixth-degree velocity profile satisfying boundary
conditions (17) to (23) in this case is

2 —9r 574 675—2r0 (29)
U

The seventh-degree stagnation-enthalpy profile satisfying
these conditions in this case is given by equation (16),
where ®

=Ho[H,=h(f) )
B:=26,
Bs=2G\
by=35(1—h) —20G,—
by=—84(1—h) 440G, + 126,74 45b,

8GN—200, - (30)

where
1—Pr) (7—1 )M 2
14
( (1)
—Pl' U

and & is thus a prescribed constant, while G5 is, in general, &
given function of £. From equations (11) in conjunction
with equations (29) and (30) it is found that

F1=985/9,009

821 32)
12,012

953
180,180

302

I 9,009

L 1)

G\ Gi—

126

‘With F] as given by equation (32), the solution of equation
(27) for A (%) with the condition A(0)=0 is

A\=4C/F, (33)

¢ The symbol Gy of references 6 and 7 is replaced here by the somewhat more appropriate
symbol b (used also In refs. 20 and 21).
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where

Olsf:(}df

Moreover, with F, Fy, and A as given by equations (32) and
(33), the solution of equation (28), with the condition of
finite &, at £=0, is

bh=C* L “opau® de (348)
where
8=(1/2)+(985/2,463) (1/Pr)
Gi(5)=(12,012/821) ((31/252) (1—h) (C/Cy)—k’ {(31/126)+ 34b)

(953Pr/[29,550)[(3/2) — (CiC"/CH)]} —
(953Pr/[29,550) (C1/ )R’ — (151/9,009) (C/C1) &)

From equations (342) and (34b) with any prescribed
temperature distribution A(§) at the wall, b,=>5,(f) can be
readily determined by a single quadrature (for which, e. g.,
numerical integration may be used). From equations (30)
the remaining b, coefficients can then be found as functions
of £ and the velocity and stagnation-enthalpy profiles in
the &7 plane are then determined by equations (29) and (16).
The temperature profiles follow from equation (24). The
profiles can be transformed into the physical 2y plane by
means of equation (8) or (26).

The average skin-friction coefficient for the length Z,
according to equations (29) and (33), will be

_1 J; (u Oufoy)odz 1.322
Ofmf (1/2)pcoum2 ‘\/F; 'ﬁl. (35)
where
C,= L ' Cds (36)

The Nusselt number, which is a nondimensional measure
of the rate of heat transfer at the wall, can in this case be
defined as

Nu=qL[k . (T.—T,) 37

where

g=(k oT/oy)., (38)
and T, is the equilibrium wall temperature for zero heat
transfer, that is, for g=0. Itis appropriate in the determina-
tion of heat-transfer rates to replace the temperature param-
eter & by the parameter T,/T., which is the physically
significant temperature parameter in high-speed flows with
heat transfer. An expression for the Nusselt number in
terms of T,/T, can be obtained by first finding the value of
A (to be denoted as h,) for zero heat transfer at the wall. By
substituting h=h, into equation (34b), assuming h, constant,
and setting G4=0 (for zero heat transfer, or ,=0) the follow-
ing value of %, in terms of G; is obtained:

252, , 151

—'ﬁ‘xm G; (39)

h=1
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Substituting now h=h(T,/T,) (cf. eq. (25)) into equation
(34b) and also substituting expression (39) for &, in terms of
@,, it is found, with C replaced by an average constant value
C, for simplicity, that equations (34a), (33), and (37) yield
the following expression for the Nusselt number:

Nu=0.297/C (1—%—")_15-5-1/2@ ﬁ Y@, (400)

where

Gs=4"1{ [1—(-T,,/TG)]—[2+(603039/152,675)Pr](Ta/T.)’E—
(40,026/152,685) Pr(T,/ T, £} (40b)

For any prescribed distribution of the wall temperature as
given by T,/T.(£), the local Nusselt number can be readily
obtained from equations (402) and (40b). The actual
heat-transfer rate at the wall (in units such as Btu per second
per square foot) can then be obtained immediately by solving
for ¢ in terms of Nu in accordance with equation (37).

The equilibrium adiabatic wall temperature 7', according
to equations (39), (31), and (25) is

T=T. [14+(15}) .7

where 7, known as the temperature recovery factor, is found
to be

(41)

7=1—0.272(1—Pr) (42)

An exact analysis (e. g., ref. 30) shows that for flow without a
pressure gradient over an impermeable surface a very good
approximation for # (t0 be denoted here as 7,;) is

Nez=+Pr (43)
For Pr=0.72, which is essentially the value for air, equation
(42) yields 7=0.924 instead of the accurate value 7,=0.845
(ref. 34). This inaccuracy in the value of 5 implied by the
equations used here, however, will not necessarily affect the
accuracy of equation (40a) for the Nusselt number, since the
derivation of this equation was actually made independently
of the particular value of G; (i. e., independently of eq. (31))
and, hence, of .7 This is further verified by the agreement
obtained with certain exact solutions, to be discussed sub-
sequently. Thus, in applying equations (40a) and (37) for
the calculation of heat-transfer rates, the actual value of 75,
as determined either by experiment or by equations (41) and
(43), should be used.

It should be observed that the use of the equations de-
veloped here is not restricted to any particular type of tem-
perature distribution h(¢) along the wall. Thus, it is not
necessary, in applying the method of calculation described
here, that the temperature distribution be expressed as a
polynomial in ¢ (unlike ref. 34) or as a power of ¢ (unlike ref.
47). In the special case, however, in which T, is expressed
as a polynomial in £, the calculations indicated by the present
method, including the transformetion from the 2t plane to

T If nevertheless desired, a practical and very simple means of modifylng the present equa-
tions in order virtually to eliminate the implicit discrepancy between n aud n.s (for Pr near
unity) would be merely to multiply the value of G as glven by equation (31) by 2. Equntlons
(402) and (40b) would remain anchanged by such a correction.
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the physical 2 plane, can be carried out directly without any
quadratures by using the results given in the appendix and
figures 4 and 5 of reference 6.

COMPARISON WITH EXACT SOLUTIONS

As o check on the accuracy of the results obtained here,
comparison has been made with certain known exact solu-
tions.

For the special case of a uniform wall temperature and a
Prandtl number of unity, it is well known that the energy
partial differential equation (4) or (5) reduces exactly to a
single quadratic relation between the temperature and the
velocity throughout the boundary layer. This relation can
bo expressed in the form

—nta—n) () (44)

Uy
By putting A=Constant and Pr=1 into equations (31) and
(34b) the solution for b, as given by equation (34a) is found

to be
b =2(1—"F) (45)

Substitution into equations (30) for values of b, and compari-
son of the resulting stagnation-enthalpy profiles with the
velocity profiles (29) then show thet relation (44) is exactly
satisfied. Thus, the equations used here reduce to the exact
integral of the energy partial differential equation in this
special case. As already indicated in the section ‘“Compari-
son of Integral Methods for Laminar-Boundary-Layer Analy-
gis,” it has been found (ref. 1), moreover, that the skin-
friction and heat-transfer coefficients obtained by the present
method in this case agree almost exactly with those obtained
by the exact method of reference 34. The present method
has also been found to yield results of satisfactory accuracy
for stability calculations in this case (refs. 1 and 3). '

To check the results of the present method for the more
general case of Pr><1 and variable wall temper&ture, calcula-
tions were carried out for the case

T,/Te=1.25—0.83¢4-0.338

This is the case calculated in reference 34 by the exact
mothod of analysis there. The local Nusselt number for
this case was calculated by means of equations (402) and
(40b). In addition, temperature and velocity profiles were
calculated by means of the present equations. The agree-
ment between the results thus obtained and those in refer-
ence 34 was found to be quite close (see ref. 6 for details of
the calculations and results).

It is interesting to note that by setting ¢5=0 and solving
the resulting differential equation for 7',/ T,(£) it is found that
zero heat transfer along the wall can be obtained for a non-
uniform (as well as a uniform) wall temperature distribution.
This result, in fact, generalizes a result of reference 47 (ef.
ref, 6 for details).

From a practical point of view, it should be kept in mind
that the solutions developed here are based on the viscosity-
temperature relations (6) and (7), which are an approxima-
tion to the actual relation for air. Because of relations (6)
and (7), the results obtained here, namely, equations (35)
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and (40a), indicate that, for a fixed wall temperature, the
skin-friction coefficient and the Nusselt number will be
independent of Mach number. For the Sutherland vis-
cosity-temperature relation, however, this will not be quite
valid (cf. ref. 48).

FLOW WITH PRESSURE GRADIENT, PRANDTL NUMBER Pr=1,
AND UNIFORM WALL TEMPERATURE (h=CONSTANT)

From the equations derived in the section “Basic Equa-
tions,” a relatively simple and sufficiently accurate method
for most practical purposes of calculating laminar boundary-
layer characteristics in & pressure gradient with heat transfer
will be developed. For this purpose it will be assumed that
the Prandtl number of the fluid is unity and that the wall
temperature is uniform. These restrictions considerably
simplify the mathematical analysis (cf., e. g., eqs. (21) and
(22)).

A further advantage of assuming Pr=1 here is that in this
case it follows from the energy partial differential equation
(5) that for zero beat transfer (i. e., for (©7T/dy),=0 and
hence, @H/Qy),=0) H=Constant regardless of the pressure
gradient. This yields the following well-known value of
the equilibrium adiabatic wall temperature 7', for & Prandtl
number of 1:

Te=T, (1+'Y%1M3> (1+ M. ) (46)
Consequently,
Ho CTD _Ta
h= Hl —p_——_T. (47)\

’llz]2
ol

Thus, the parameter & is in this case the physically significant.
ratio of the actual wall temperature to the equilibrium
adiabatic wall temperature. It follows from this that for-
zero heat transfer A=1. It will be seen (cf. eqs. (45),
(552), and (55b)) that this condition is exactly satisfied by
the approximate equations and solutions used here.

A brief discussion of methods for cases of Pr<1 andfor-
nonuniform wall temperature has been given in the intro-
duction. The development given here will be essentially-
the same as that in references 6 and 7.

GENERAL APPROXIMATE SOLUTION

With Pr=1 and % constant, while u,/u.(£) is arbitrary,.
the coefficients a, and b, in equations (15) and (16), by virtue.
of boundary conditions (19) to (23), can all be expressed in
terms of @, and b, where b; remains arbitrary, while a, is.
given by:

2~y

(Al LGN

The profiles in terms of a; and b; are then:

= (2r— 574675210+ (@a/5)[— 27+ 57— 10+ 10r°— 37
1
(b,/6k) (—7+4+1073—207*41575—479)] (49)

%=h+ (L—h) (3574—8475-+707°—20+7) +
1

by (r—2074+4575— 367541077 (50)
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With profiles (49) and (50) the following explicit expressions
for Fy, F;, and F;, are obtained:

F,=0.10934-0.0021 13— 0.000622a5*4 3
0.000412 (b;a/h) —0.0000095 (byas/k)?—
0.000153 (b, a:2/R) ‘

F3=0.395—0.500(1—k)+0.107b,+
0.0212a;—0.00062a;1+0.0028 (b,a5/k) —
0.00015 (byas?/k) —0.0000095(b,as/k)?

Fy=(1—h)[0.246—0.015a,—0.00181 (b,as/B)] —
5,[0.0683—0.00324a.—0.00041 (b,az/k)]

- (51)

With expressions (49), (50), and (51) inserted ip equations
(9) and (10), two ordinary differential equations for A(£) and
b:1(§) are obtained. Although these can be solved numerically
for a given distribution of u;/u.(%), the process may be
tedious. A relatively simple general approximate solution
of these equations will, therefore, be derived.

Equation (9) can be solved approximately for A by assum-
ing that Fy and F; can be replaced there by constant “aver-
age” values F; and F; over the distance £ 'This is justified
by the fact that the variable terms there, which are propor-
tional to a; and b, are relatively small (cf. egs. (51)). This
is equivalent to replacing a; and b, by copstant average
values @, and §, for this purpose. With equation (49) for the
velocity profile and equation (48) for a;, equation (9) then
becomes-the following linear ordinary differential equation
in A;

(F/2) x'+k{Fl<m'/p1)+(ul'/uo [m”% My (m—Fl)]} =
20 (pu/p) (To/T o) (i) (52)
where ¢, is a constant given by:

©1==0.3h+0.09055,+0.00438+0.0232a,—0.00124a,*+

(0.0838—0.004583,) (@zb:/30R) (53)

With relations (13) and (14), the solution of equation (52)
satisfying the condition A=0 or a finite value (if 4;=0 at
£=0) at the leading edge =0 is found to be:

¢ 21 -l &
Cf ufe) T (TYT.) " Fdg
A= @F)0= 3 L = (54

fu)® (TyYT)""

Equation (54) is similar in form to equations obtained for
zero heat transfer in references 2 and 49 and to those ob-
tained for heat transfer, but with fourth-degree profiles and
two boundary-layer thicknesses, in references 19 to 21. Itis
interesting to observe that for zero heat transfer it is possible
to derive forms like equation (54) (cf. refs. 20 and 49) by
applying the Stewartson-Illingworth transformation (refs.
50 and 51). However, by the present (approximate) method
of analysis, it is seen that with the use of only the Dorodnitsyn
transformation (8) such a form can be straightforwardly
derived even for the case of heat transfer, but uniform
temperature, along the wall (cf. also ref. 20).
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A general approximate solution for b;(¢) can be obtained
in a comparatively simple manner by eliminating A from
differential equations (9) and (10) in conjunction with the
same type of simplifying approximations concerning the a,
terms as made in deriving equation (54). (See ref. 6 for
details.) A quadratic equation in b, is thereby obtained,
with the solution

h=—stt] (L) +2]" (560)
where
m=2 10—{63.90—4.496aa+%{2.705—0.2096@]’
j=0.24602+a,(o.07917—0.005868«14)+-2—,‘:"><10-4><
[—284.5-}—(42.26——2.067(12)114—(7.906-—0.9086(1,) %] . (56b)

[=2(1—k)(0.24602—0.01496a,) { 1+%[—0.10495+

0.3h+aq(0.02116—0.0006216(14)]}
o

The physically appropriate root in equation (562) will, in

general, be that which is closer to the value 2(1—4).

After A(¢) has been obtained by means of equation (54),
the coefficient az(£) follows from equation (48), and b,(¢) can
then be directly calculated by means of equations (55).
For objects with sharp leading edges, for which A=0 at =0,
it will ordinarily be found that an approximate value of b,
according to equations (55) is that given by equation (45),
which is valid exactly for the case a;=0. This is illustrated
in detail in reference 7 by numerical example for the super-
sonic flow over a thin biconvex airfoil.

The general approximate solutions given by equations (54)
and (55) are quite convenient for actual calculations and
involve, at most, numerical integration. These solutions
will be approximately valid as long as the a; terms in expres-
sions (51) are indeed relatively small either individually or
collectively. Such is expected to be ordinarily the case in
practice. In cases for which the a, terms become relatively
large, however, the ordinary differential equations (9) and
(10) may have to be solved numerically.

In evaluating F; and ¢, & reasonable average value @, for
as for any given u;fua(£), b, and M., can usually be obtained
by considering equation (48) for (a;C/hN) and equation (64)
for MC. A satisfactory average value J; for b, in evaluating
F, and ¢, will ordinarily be that given by equation (45).

In reference 2, numerical examples based on the case
U [Ue=1—b¢ (where b is a positive constant) for M,=0, 1,
and 3 and zero heat transfer at the wall (h=1) were carried
out to determine the accuracy of approximate solution (54)
of ordinary differential equation (52). Comparison of
the solutions obtained by means of equation (54) was made
with numerical solutions of differential equation (52) with-~
out the use of any of the approximating assumptions made
in deriving equation (54). The comparison indicated, on
the whole, satisfactory agreement for practical purposes
(including stability calculations) between the results of
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equation (54) and the numerical solution of equation (52).
Dotails are given in reference 2. Similar comparisons
have also been carried out in reference 21 for the cases /.=
14bf with heat transfer at the wall. The agreement between
the type of approximate solution given by equation (54) and
the numerical solution of the original ordinary differential
equation was, again, found to be on the whole satisfactory.®

BKIN FRICTION, HEAT TRANSFER, VELOCITY, AND TEMPERATURE
PROFILES

With A(¢) and 0,(¢) determined, the boundary-layer
characteristics can all be straightforwardly calculated. The
local skin-friction coefficient will be

Cﬂ E(ﬁ‘ oufoy)s__
% Pulhe’

41— (ay/5)—(b:a3/B0R)] (CHRY(T/T.) unfu )R (56)

The Nusselt number giving local heat-transfer properties
at the wall will be

Nu=EoT/oyL_

u= gy =N B/ —B (LT

(67)
The velocity and temperature profiles follow from equations
(49), (50), and (24) in conjunction with equation (8) for
transforming to the physical plane. For zero heat transfer
at the wall, an explicit expression for y as a function of
r in terms of a, is given in appendix A of reference 2. This
expression can be conveniently written in the form

?I(E; T __ +( > M3 [gy (T)+dgg2(T)+a‘3 gs("')]

where g, g3, and g; are definite functions (polynomials) of
r only which remain the same for all cases. These functions
can, if desired, be evaluated and plotted once for all. A
similar expression can be obtained for the case of heat
transfer at the wall, except that additional terms, such
as those proportional to a;bi/h, will be included. The uni-
versal functions of r thus obtained can, if desired, also be
ovaluated once for all. For a given value of £ v or y/é
(cf. egs. (26a) and (26b) ) can then, in any given case, be
found quite straightforwardly for values of = from r=0
to r=1.

A numerical example to check the accuracy of the results
obtained by the equations developed in this section was
carried out in reference 2. This example, as previously
indicated, was the case of flow with a linearly decreasing
velocity outside of the boundary layer. Velocity profiles,
local skin-friction coefficient, and minimum critical Reynolds
numbers for laminar instability were calculated by this
means, and the results for incompressible flow (A=1 and
M_.=0) thus obtained were compared with those based on
the series solution in reference 52 of the original partial
differential equation (1). The agreement was in all cases
found to be satisfactory for practical purposes. (Details
are given in ref. 2.)

The solutions presented here require some modification

8 Inreferonce 21, the analysls was based on fourth-degree proflles in conjunction with both a

thermal and a dynamical boundary-ayer thickness. An equation quite analogons to eque-
tlon (54) for A(¢), however, was obtalned by analogous approximating assumptions.

in two important special cases: (a) Flow near a forward
stagnation point and (b) calculation of the separation point
in an adverse pressure gradient.

STAGNATION FLOWS

The case

wfu,=bt (58)

where b is & positive constant represents physically the flow
in the vicinity of a forward stagnation point, such as the
subsonic flow over the leading edge of a blunt object. For
zero Mach number, an exact solution of the ordinary differ-
ential equations (9) and (10) (with uniform wall tempera-
ture) can be obtained in the form X=Constant and b,=
Constant. HEquations (9) and (10) then become algebraic
equations for M and b,. For the special case of zero heat
transfer (h=1 and b,==0), however, it has already been
found (vefs. 43 and 2) that these equations will not yield
any physically significant real roots. In reference 2 it was
shown that an approximate solution can still be obtained
in this case by writing the algebraic equation as f(\)=0
and taking the value of A for which f(2) has a local maximum
value relatively close to the A-axis. The root A=9.481 was
thus obtained. This solution, however, is unsatisfactory
in principle. Consequently, the use of fourth-degree, instead
of sixth-degree, velocity profiles for this case was investi-
gated in reference 2. The profiles were chosen to satisfy
the usual K4rmén-Pohlhausen conditions. A physically
gignificant real root, namely, A=7.052, was now obtained,
and the accuracy of the resulting solution was compared
with the results of an exact solution (ref. 53). In particular,
skin friction, velocity profiles, and minimum critical Reynolds
number were compared. The comparison indicated that the
results obtained by the use of the fourth-degree profiles led
on the whole to results of satisfactory accuracy. It was
therefore concluded that the boundary-layer characteristics
in flow near & forward stagnation point can be determined
with satisfactory accuracy by the Xarman-Pohlhausen
method with fourth-degree profiles.

To calculate the boundary layer near a forward stagnation
point for the more general case of heat transfer at the wall,
in particular for a prescribed uniform wall-temperature ratio
hor T,/T, the method of reference 2 can be generalized by
introducing fourth-degree stagnation-enthalpy, as well as
velocity, profiles. This has been carried out in reference 20
with the introduction of a thermal, in addition to & dynamical,
boundary-layer thickness. Two algebraic equations in essen-
tially the two (constant) boundary-layer thicknesses are ob-
tained. These equations can, in general, be solved either
numerically for a given % or by using the values in figures 1
and 2 of reference 20. Although reference 20 is based on
flow over a sweat-cooled surface and, hence, includes a nor-
mal mass flow at the wall (»=v, at 7=0), the results there
can also be used for an impermeable wall by simply putting
C=0 and letting A be arbitrary. (This C is not to be con-
fused with the temperature-viscosity factor used in the pres-
ent paper.) An example of low-speed (A_,=0) flow in a
favorable pressure gradient with a stagnation point at
£=0, representing subsonic flow over a turbine blade, was
carried out in reference 20 on the basis of the method pre-
sented there.
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An alternative method of calculating flows near a forward
stagnation point, based on the use of a single boundary-layer
thickness, is given in reference 22.

CALCULATION OF SEPARATION POINT

The equations thus far developed in this section can be
used to calculate the laminar separation point in an adverse
pressure gradient. The results thus obtained will generally
be more accurate than those obtained by the use of fourth-
degree profiles. By an analysis for incompressible flow for
the case of a linearly diminishing velocity outside the bound-
ary layer, it was found (ref. 45), however, that still greater
accuracy for the location of the separation point is obtainable
by the special use, for this purpose, of seventh-degree velocity
profiles satisfying an additional condition involving the
fourth derivative of the velocity at the wall at the separation
point. This condition would necessarily be satisfied by an
exact solution of the original partial differential equations.
This method of calculating the separation point was sub-
sequently extended to compressible flow with zero. heat
transfer in reference 2 and to compressible flow with heat
transfer in reference 7. The method of analysis to be pre-
sented here is essentially that of reference 7.

It may be mentioned that a considerable number of
methods of caleulating the laminar separation point have
been developed. No attempt will be made here to summarize
or evaluate all of these methods. For incompressible flow,
& method which has been found to yield results of satisfac-
tory accuracy in addition to that of reference 45 is that of
reference 54. For compressible flow with zero heat transfer
(which, of course, includes.incompressible flow) recent meth-
ods, in addition to that of reference 2, are those of references
29, 50, 55, and 56. For compressible flow with heat transfer,
the only studies of laminar separation which appear to have
been made, in addition to that of reference 7, are those of
references 13 to 16. The advantage of the method to be
presented here is, once again, not only that it appears to
yield results of adequate accuracy but that the analysis is
kept relatively simple, although it is based on & minimum of
what might be termed mathematically “‘arbitrary’” assump-
tions. The method of analysis developed here is indeed
sufficiently simple and flexible to be applicable to & wide
variety of conditions. (The method has, in fact, been quite
recently extended to the case of compressible flow over a
transpiration-cooled surface (ref. 57).) The calculations to
be performed according to the method presented here will
be relatively simple a.nd will involve, at most, numerical
integration.

By differentiating the momentum partial differential
equation (1) it can be shown (ref. 7), under the present
assumption of a Prandl number of 1 and 2 linear viscosity-
temperature relation, that, at the separation point, with or
without heat transfer at the wall,

(0*ufott) ;=0 (59)

The seventh-degree velocity profile satisfying condition
(59) in addition to conditions (17) to (23) is ®

¥ This seventh-degres profile is to be used only for caleniation of the separation point. For

other purposes, the sixth-degree profile (eq. (49)) should bo used, even in an sdverse pressure
gradient (cf. ref. 2).
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%’“‘(7 2 72 )+a,( L rbr=l ey )+
(a2by/3H) (—- rh =320 —T> (60)

where a; is given by equation (48). Separation occurs
where (0u/0y),=0 and, hence, where (ou/07),=0. There-
fore, according to equation (60), separation will occur where
az(£) has the value (denoted by a.,)

__ 3.5k
h+% b,

(61)

From equations (48) and (61) it follows that the value A,
of A at the separation point will, in general, be

(TyT.) -5) 1

=—7C
w'fud) (1455 M) bt by

(62)

A satisfactory approximation for b; in equation (62) will,
in general, be that given by equation (45) (cf. also ref. 7).
With this expression for b;, equation (62) becomes

(ryry” )
(u’ 11.) (1+7 iy e

1
Mp=—105C v S ()

By inserting profile (60) into differential equation (9) and
assuming, as in the foregoing analysis, that the a, and b,
terms in F; and F; may be replaced by constant values, an
ordinary differential equation of the same form as equation
(52) is obtained, except that the explicit expressions for
and ¢, (to be denoted now as Fy, and ¢y,) are modified, while
the factor 2 on the right side of equation (52) is replaced by
7/4. Comparison, accordingly, with the solution (eq. (54))
of equation (52) yields the following solution for A(¢) (de-
noted now as ,):

3y=l on
)\‘(E\ f (’Uq/’llzw)<ﬂ' ) (Tx/Tm) v—1 Fu df (64)
2o
F " )P Ty T

Taling the constant value of a; as that at the separation
point (as in refs. 2 and 7), the espressions for I}, and ¢;, are
found to be

F,,=0.11594-0.0025250,,—0.001454a,,7—
0.0000572 (b,a2,/k)*—0.000574 (b,a2,2/h) +
0.000887 (byaz,/k)

©1s=0.25h-}0.0437+0.0738b,40.0348a,,—
0.00291az,2+0.00773(byag,/h) —0.001147(b,ag,2/h)—
0.0001145(b,as,/h)* J

# (05)

where @, and b, are given by equations (61) and (45), re-
spectively. The quantities ', and ¢, are functions of A only
and are shown in figure 1.
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Figure 1.—Ty, and oy, as functions of k.

TFor any given reference Mach number A{_ and uniform
wall temperature ratio kb, the separation point in a region of
given adverse pressure gradient, as specified by wfu_ (),
will be the station # at which the right sides of equations
(63) and (64) are equal. Thus, it is necessary, in general,
only to plot \ versus £, in the anticipated vicinity of separa-
tion, in accordance with both equations (63) and (64) and to
determine the point of intersection of these two curves.
The separation point will evidently be independent of C, so
that for the purpose of determining the separation point
one may set O=1.

In case the region of adverse pressure gradient starts at
some point £=£, downstream of the leading edge, equation
(64) can still be applied directly in calculating the separation
point. Greater accuracy, however, might be obtained in
such a case by applying equation (64) only for the region of
adverse pressure gradient. For this purpose, equation (64)
must be modified to satisfy the boundary condition A=2X; at
£=t,. Thus,

2, :
Hon=Ten g [ (L) 1(,%)_ Ty

where

-1 e

(66)
ez Pis

2
I)=@ifu)Fo " TIT™ Fu

and where )\, can be obtained as the value of A at £=§, based
on equation (54) for the region 0= £=¢, of favorable pressure
gradient.

For purposes of calculating the separation point for
various values of the temperature ratio 7,/T- and of the
reference Mach number M, equation (63) may be replaced
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by the following equivalent equation for the value of A at
the separation point:

(TITQ)—OJ 6
CEST G EE I onrm L

Mep=—105C

Equation (67) follows from equation (63) by inserting rela-
tions (13), (14), (46), and (47) there, with y=1.4.

Numerical examples for flow with a linearly decreasing
velocity at the outer edge of the boundary layer are illustrated
in detail in reference 7, and these will be discussed briefly in
the following section. An example based on a stagnation
flow followed by an adverse pressure gradient is also discussed
in detail in reference 7. For the case of a linearly decreasing
velocity outside of the boundary layer with zero heat trans-
fer at the wall the separation point was calculated by the
method presented here for Mach numbers M« ranging from
0 to 10. These results are compared in table I with those of
reference 50, and the agreement is seen to be extremely
close.

It may be recalled that the method of calculating the
separation point presented here is based on the assumption
of a linear viscosity-temperature relation pxocZ and of a
Prandtl number Pr of unity. It is noteworthy, in this
connection, that it has been concluded in a recent analysis
(vef. 56) that for pecT* and «<{1, the separation point for
Pr>0.7 occurs at roughly the same position as for Pr=o0=1.

DISCUSSION OF SKIN-FRICTION, HEAT-TRANSFER, SEPARA-
TION, AND STABILITY CHARACTERISTICS

To conclude this report, & summary will be given in this
section of the implications of the equations developed here
regarding the effect of wall temperature, Mach number, and
pressure gradient on the laminar-boundary-layer character-
istics. These conclusions have been derived and illustrated
in detail especially in reference 7.

SKIN-FRICTION AND HEAT-TRANSFER COEFFICIENTS

The effect of wall temperature on the skin-friction and
heat-transfer coefficients will depend on the nature (favorable
or adverse) of the pressure gradient. This follows from the
fact that in ordinary differential equation (52) and in expres-
sion (48) for a; the temperature parameter % appears pri-
marily in a form multiplied by the velocity gradient u,’.
The effect of the wall temperature on the skin-friction
coefficient arising from the (u,’h) term in a, is particularly
important. Thus, equations (56) and (48) show that,
without the effect of the temperature-viscosity factor C,
lowering the wall temperature tends to diminish the local
skin friction in & favorable pressure gradient (negative u,")
and to increase it in an adverse pressure gradient. It can
be shown (ref. 7) that & similar, but much smaller, effect
on the Nusselt number will also tend to occur.

Since the velocity gradient «,” in the equations developed
here (ci., especially, eqs. (48), (52), and (53)) appears in a
form multiplied by the wall-temperature ratio .k, it can be
inferred that a lowering of the wall temperature has a tend-
ency to diminish the direct effect of a given pressure gradient,
that is, the effect of u,” as such, on the boundary-layer prop-
erties. This is explainable physically by the increased
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importance of the inertia forces relative to the pressure
gradient because of the increase of the fluid density when
the wall temperature is decreased.® A clear illustration
of this will be seen subsequently in the analysis of laminar
separation. It must be observed, however, that the effect
of a pressure gradient also appears indirectly, namely, in the
variation of u,fu, and Ti/T. with £. For Mach numbers
above 1, in fact, the T3/T. terms in A (eq. (54)) may become
particularly important, so that in such a case the net effect
of the pressure gradient may actually be increased by a
lowering of the wall temperature. This is illustrated in
detail in reference 7 by a numerical example for the super-
sonic flow over a thin airfoil (especially at M.=3).

From equations (56) and (57) it follows that the ratio of
local skin friction to Nusselt number can be expressed in
the form

For flow along a flat plate (u;/u.=1, aa=0, and b;=2(1—A)),
equation (68) implies that r=2. For flow in a pressure
gradient, however, since ordinarily b,=~2(1—F), it follows
from- equations (68) and (48) that »>2 along the flow in a
favorable pressure gradient (u,’>>0), and r<{2 in an adverse
pressure gradient (u,'<{0). Moreover, it also follows from
these equations that lowering the wall-temperature parameter
h will tend to bring r closer to its value for flow without a
pressure gradient. This illustrates the diminution of the
direct effect of a pressure gradient by cooling of the wall.

From equations (54), (56), and (57) it follows that both
the skin friction and Nusselt number will be proportional to
JC. Thus, an effect of wall temperature on the skin-
friction and heat-transfer coefficients follows from the vis-
cosity-temperature coefficient C arising from the particular
viscosity-temperature relation (egs. (6) and (7)) assumed
here. This effect is independent of the pressure gradient.
From equation (7) it follows that if, as will ordinarily be
the case, T,,>>S, that is, T,>>216° R, then a lowering of the
ratio T,/T. will increase O and Nu. For a fixed ratio
h of T,/ T,, it follows from equation (25) that & Mach number
offect will also appear in C. Thus, if 7,>>S, then for a
fixed value of % an increase of Mach number 24, will diminish
C and hence will tend, as far as O is concerned, to diminish
both the skin-friction and heat-transfer coefficients in pro-
portion to 4/C.

From equation (54), as has already been noted, it will be
found that in the presence of a pressure gradient A/C may be
appreciably affected by the Mach number because of the
values of Ti/T_(£). Consequently, it can be inferred that a
pressure gradient will, in general, tend to enhance the effect
of Mach number on both the skin-friction and heat-transfer
coefficients. This effect will depend on the nature of the
pressure gradient. For a favorable pressure gradient, for
example, for which w;/u,>1 and hence T1/T.<1, an
increase of ‘Mach number will tend to increase A/C and,

10 This conclusion and the foregoing conclusions on the effect of wall temperature on skin
friction have been similarly derived in reference 21. It Is noteworthy, moreover, that such
conclusions bave also boen derived In references 12 to 16 by considerably different methods of
analysls, The physical explanation for the lessened effect of a pressure gradfent by cooling
of tho wall has been given independently in references 21 and 16.
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hence, to decrease both the skin-friction coefficient and the
Nusselt number.

Since A will ordinarily be only little affected by the wall
temperature, equation (26b) implies that cooling of the wall
will, in general, tend to diminish the physical boundary-
layer thickness 5. However, for a given value of To/T,=h,
the boundary-layer thickness & will tend to increase with
Mach number, especially in & favorable pressure gradient.

SEPARATION

For a fixed velocity distribution u;/u.(£) outside the
boundary layer and & fixed Mach number M, diminishing
the wall temperature will tend to delay separation by moving
the separation point downstream. This can be seen particu-
larly from equation (63), according to which the value of A
required for separation \,,, will increase as & is diminished.
This is & further illustration of the diminution of the direct
effect of & pressure gradient (in this case, an adverse pressure
gradient) by cooling of the wall.

The effect of Mach number on the separation point for a
fixed distribution of u;/u., (£) and eitherafixed valueof A= T,/T,
or a fixed value of 7,/T. cannot be so readily predicted from
the equations developed here, since an increase of Mach
number in the adverse pressure gradient will tend to decrease
both A.p (eq. (63)) and A, (£) (eq. (64)). However, numerical
examples carried out for the case u,/u_=1—¢ have indicated
that for a fixed ratio & of wall temperature to equilibrium
adiabatic wall temperature, including the case of an insulated
wall (h=1), an increase of Mach number tends to enhance
separation by moving the separation point upstream (cf.
table I and refs. 2, 21, 16, and 50). Lowering the (fixed)
value of k, however, tends to diminish this unfavorable
effect of Mach number on separation (cf. ref. 21).

If the ratio T,/T. of wall temperature to free-stream or
reference temperature instead of that of wall temperature to
equilibrium adiabatic wall temperature % is kept fixed, the
effect of Mach number on the separation point is changed.
This is essentially due to the fact that for a fixed value of
T,/T., the temperature ratio & decreases with Mach number
(cf. eq. (25)) and hence \,,, Will no longer tend to be so greatly
decreased by an increase in M (cf. eq. (67)). Consequently,
the effect of an increase in Mach number is, in general, much
less unfavorable in this case and may, in certain cases, move
the separation point downstream, especially at high fixed
values of T,/T,.

Figure 2 shows the separation point for the case ui/u,=
1—# as a function of the wall-temperature ratio T,/T, for
M_=0. The favorable effect of cooling of the wall is
clearly seen here. Figure 3 shows the separation point as &
function of Mach number for a fixed ratio of wall to free-
stream reference temperature 7,/7'.=2. An increase of
Mach number is seen in this case actually to move the sepa-
ration point downstream, in contrast with its effect, also
shown in figure 3, at zero heat transfer. Figures 2 and 3
are based on the equations developed here, and further details
of the calculations can be found in reference 7.

STABILITY CHARACTERISTICS

It has already been pointed out that the methods developed
here may be expected to yield sufficiently accurate results
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for laminar-boundary-layer stability calculations. In fact,
although stability calculations and their results are shown
to some extent in references 1 and 2, the chief purpose of
these calculations was to show that the results obtained by
the approximate methods presented here compare sufficiently
closely with those obtained by known exact solutions. Such
was also, at first, the purpose of reference 3. Thus, it was
found that for compressible flow without a pressure gradient,
such as flow over a flat plate, the minimum critical Reynolds
numbers for various Mach numbers at zero heat transfer,
as well as at various uniform wall temperatures, were pre-
dicted with satisfactory accuracy by the solutions obtained
by the methods presented here.” Moreover, it was shown

that the maximum wall temperatures (to be called here the
“critical temperatures”) required to stabilize the flow com-
pletely were also calculated as functions of the Mach num-
ber with satisfactory accuracy on the basis of these methods
(presented in the section ‘Flow Without an Axial Pressure
Gradient With Arbitrary (Constant) Prandtl Number and
Variable Wall Temperature”). .The minimum critical Rey-
nolds number for incompressible flow in the vicinity of a for-
ward stagnation point as calculated by the Kdrmén-Pohl-
hausen method (cf. the subsection “Stagnation Flows’ in
the section ‘“Flow With Pressure Gradient, Prandt]l Number
Pr=1, and Uniform Wall Temperature (h=Constant)’’) was
found to agree well with that calculated by the exact solution
of reference 53. Finally, for incompressible flow with a
linearly diminishing velocity outside the boundary layer, the
present method of calculation (cf. the section ‘“Flow With
Pressure Gradient, Prandtl Number Pr=1, and Uniform

- Wall Temperature (h=Constant)”’) was found to lead to a

minimum critical Reynolds number in satisfactory agree-
ment with that calculated from the solution in reference 52.

Most of the stability calculations which have been carried
out in this country have been based on the analysis and
criteria developed by Lin (ref. 58) for incompressible flow
and subsequently extended by Lin and Lees (refs. 8 and 46)
to compressible flow. Inreference 8, simplified approximate
two-dimensional stability criteria for compressible flow have
been developed, whereby, without much difficulty, it is
possible to calculate, for a given type of flow, the minimum
critical Reynolds numbers as well as the wall temperature
required for infinite minimum critical Reynolds number.
As will be explained subsequently, these criteria have
recently been modified. The minimum critical Reynolds
number E, . is the minimum Reynolds number necessary
for the possibility that very small disturbances in the bound-
ary layer may be amplified with time; that is, R, . is the
minimum Reynolds number required for instability of the
laminar boundary layer with respect to small disturbances
of at least certain wavelengths. The wall temperature for
infinite values of R, is then usually interpreted as the
highest temperature for which the (compressible) laminar
boundary layer will be completely stable for all Reynolds
numbers. The analyses in references 58, 46, and 8 and
subsequent analyses based on them are of practical interest,
since under the condition of a sufficiently low free-stream
turbulence & necessary (though not sufficient) condition for
transition from a laminar to a turbulent boundary layer
appears to be an instability of the laminar layer. A survey
(as of 1952) of theoretical and experimental investigations
on laminar-boundary-layer stability can be found in reference
59.

The purpose of the present subsection is to summarize the
theoretical investigations on laminar-boundary-layer stability
performed at the Polytechnic Institute of Brooklyn by using
the mean-flow (or steady-state) solutions obtained by the
methods presented in this report. In an unpublished report
entitled “Calculation of Stability of Constant-Pressure
Boundary Layers on Isothermal Surfaces With an Integral-
Method Mean-Flow Solution’” Professor Martin Bloom de-
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veloped certain modifications of Lees’ approximate stability
criteria (ref. 8) and applied these to the calculation of the
stability of the laminar boundary layer over a flat plate at
uniform wall temperature. This report is available for loan
or reference in the Division of Research Information, Na-
tional Advisory Committee for Aeronautics, Washington,
D. C. This work is summarized in references 3 to 5.
Minimum critical Reynolds numbers for given wall tempera-
tures and Mach numbers were calculated. Moreover, the
wall temperature required to stabilize the flow completely
was also calculated as a function of the Mach number.
Similar types of calculations with similar results were carried
out independently by Van Driest (ref. 60), and these are now
well known.! Briefly, the results indicate the stabilizing
effect of cooling of the wall by increasing the minimum
critical Reynolds number for a given Mach number. More-~
over, for a Prandtl number Pr of 1, it is found that the

boundary layer can be completely stabilized by sufficiently

low wall-temperature ratios 7,/T_ for Mach numbers M
between 1 and approximately 5. (For Pr=0.72, this can be
theoretically accomplished for 1<AM_<(9). At higher
Mach numbers, particularly in the hypersonic range, the
validity of the theoretical approach has not been established.

The stability of the laminar compressible boundary layer
in o pressure gradient has been analyzed in reference 44 for
zero heat transfer at the wall. Calculations there for the
supersonic flow over a thin biconvex airfoil indicated the
stabilizing influence of the favorable pressure gradient.
This stabilizing influence, however, was found to be con-
siderably diminished at higher free-stream Mach numbers
M_=4. The stabilizing influence of a favorable pressure
gradient can also be clearly illustrated by comparing the
minimum critical Reynolds number RE. ., (namely, B, .£=
2.40X 108 (ref. 2)) for the incompressible flow u;fu_=¢ in
the vicinity of a forward stagnation point with the much
smaller value R, £=7.3X10* (ref. 1) for incompressible
flow over a flat plate. The destabilizing effect, in the case
of zero heat transfer, of an adverse pressure gradient is
readily illustrated by considering the case u;fu_=1—§ (ref.
2). The minimum critical Reynolds numbers for this case
for M_=0 and 1 are compared, in table IT, with the larger
values for flow over & flat plate taken from reference 1.

For compressible flows with heat transfer and pressure
gradient, the only stability calculations which appear to have
been made thus far are those in references 7 and 62. In
both of these references only Mach numbers of 3 or lower
were considered. (Cf. footnote 11.) In reference 62, the
small-perturbation solutions of reference 25 are used, while
reference 7 uses solutions based on the methods of analysis
presented in the present report. Reference 62 shows that

11 Bloom’s first calculations (refs. 3 and 4) gave results quite similar to the well-known re-
sults of Van Drlest (ref. 60). Further modificatlons of the stability criterla, however, led to
rather complicated curves with several branches of critical temperature ratlo versus Mach
number (ref. 5). These were apparently due to large values of the stability parameter M (not
related to the A of the present report) as defined in reference 8, for large values of M o, or small
values of To/To,. Dunn and Lin (ref. 61), however, have quite recently made basle reflne-
monts In the analysis of reference 46 and have developed a more accurate set of both two-
dimenstonal and three-dimensional stabllity criteria. Calculations for Row over a flat plate
based on this set yielded results quito similar to those of Van Drlest or of Bloom’s first calcula-
tions. According to the Dunn-Lin eriteria, the values of A (now redefined) remained quite
smsll for flow over a flat plate even at high Mach numbers. The new two-dimensional

eriteria do not appear to yleld rerults appreciably different from those of Bloom or Lees for
Mach numbers below approximately 8.
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for infinite minimum critical Reynolds number over thin biconvex
supersonic airfoil.

the critical wall temperatures required to stabilize the lami-
nar boundary layer completely are, for a given Mach num-
ber, increased by a favorable pressure gradient and decreased
by an adverse pressure gradient. Further calculations also
indicate the greater amount of cooling required to stabilize
completely the flows with adverse pressure gradients than
that required for those with favorable pressure gradients.
This illustrates in & further fashion the stabilizing influence
of a favorable, and the destabilizing influence of an adverse,
pressure gradient. In reference 7, critical wall temperatures
have been determined for the supersonic flow over a thin
biconvex airfoil at two given stations along the flow, and
these have been compared with the corresponding results
for flow over a flat plate. The results are shown in figure 4,
wherein it is seen that higher critical temperature ratios
T./T; are obtained for the flow with the favorable pressure
gradient than for the flow over a flat plate. It may be ob-
served, in this connection, that for a given reference tem-
perature T, at a point immediately behind the shock wave
at the leading edge of the supersonic airfoil, the critical wall
temperature may, at the higher Mach numbers, be greater
for the favorable-pressure-gradient case than for the flat-
plate case. This is due simply to the fact that the local
temperature 7T; outside the boundary layer over the airfoil
diminishes along the flow (see ref. 7 for details).
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A second type of stability calculation carried out in ref-
erence 7 was the determination of minimum critical Rey-
nolds numbers for the laminar boundary layer at a given
station of the supersonic airfoil for various values of the
(uniform) wall temperature and free-stream Mach number.
The results are shown in table I and figure 5, where com-
parison is also made with the flow over a flat plate. The
stabilizing effect of cooling of the wall and of the favorable
(negative) pressure gradient here can be clearly seen.

From table ITI and figure 5, the effect of Mach number on
the stability characteristics is seen to depend on the pressure
gradient and whether the ratio h=T,/T, of wall tempera-
ture to equilibrium adiabatic wall temperature or the ratio
T,/Ty of wall temperature to reference temperature is held
fixed. From figure 5 it is seen that for a fixed & an increase
of Mach number from 1.5 to 2.0 destabilizes the boundary
layer both over a flat plate and over the airfoil. This effect
is seen, in fact, to be enhanced by the negative pressure
gradient here. For a fixed value of the ratio T./T%, how-
ever, an increase of Mach number is now seen, from figure
5, to have a stabilizing influence on the flow without a
pressure gradient, especially at the lower wall tempera-
tures. Tor the flow over the airfoil, however, figure 5 (cf.
also table TII(a)) now indicates that an increase of Mach
number has a stabilizing effect only at wall temperatures

close to the critical temperature and that for (fixed) higher
wall-temperature ratios of T,/ an increase of Mach num-
ber has a clear destabilizing effect similar to the case of

fixed h.
CONCLUSIONS

From the analysis of compressible laminar boundary
layers with heat transfer and with and without pressure
gradient presented herein under the assumption of a linear
temperature-viscosity relation, the following conclusions
can be drawn:

1. For flow without a pressure gradient, such as flow over
a flat plate, the boundary-layer characteristics can be easily
determined from the equations developed here for a given
constant Prandtl number (of the order of magnitude of
unity), a given Mach number, and a given wall-temperature
distribution.

2. For flow with a pressure gradient, the boundary-layer
characteristics can also be easily determined from the
equations developed here, provided the Prandtl number is
unity and the wall temperature is uniform. Here, the ve-
locity distribution outside the boundary layer and the free-

stream Mach number, as well as the wall temperature, are
considered as prescribed. The equations are also valid for
zero heat transfer at the wall (=1 where £ is the ratio of
stagnation enthalpy at the wall to stagnation enthalpy at
the outer edge of the boundary layer).

3. A relatively simple method of calculating the separation
point in & given subsonic or supersonic adverse pressure
gradient over & wall at any specified uniform temperature
has been developed here. This method is also applicable for
zero heat transfer (h=1).

4. A comparison of the results of the methods in con-
clusions 1, 2, and 3 with known exact solutions for various
types of flows indicates that the methods of calculation
developed here may be expected, in general, to yield results
of sufficient accuracy for practical purposes, including sta-
bility calculations,

5. From the equations developed here, it can be shown
that cooling of the wall tends to diminish the Nusselt number
and especially the skin-friction coefficient in a favorable
(negative) pressure gradient and to increase the coefficients
in an adverse pressure gradient. Because of the propor-
tionality factor in the viscosity-temperature relation assumed
here, it also follows that lowering the ratio of wall to free-
stream temperature will, independently of the pressure
gradient, ordinarily tend to increase both the Nusselt number
and the skin-friction coefficient.

6. The equations developed here further imply that cool-
ing of the wall tends, in general, to diminish the direct effect
of a pressure gradient, while heating tends to enhance it.
A particularly clear example of this is the delay of separation
in an adverse pressure gradient by cooling of the wall.

7. The results of a numerical example for a fixed linearly
decreasing velocity outside the boundary layer indicate, in
addition to the delaying of separation by cooling of the wall,
that for a fixed ratio & of wall temperature to equilibrium
adiabatic wall temperature an increase of free-stream Mach
number moves the separation point upstream, while for a
fixed ratio of wall temperature to free-stream temperature



1082

T,/T. an increase of Mach number has, in general, a less
unfavorable effect and in the case T,/T =2 actually moves
the separation point downstream.

8. While cooling of the wall tends, in general, to stabilize

the laminar boundary layer, it is shown theoretically that at
moderate supersonic Mach numbers sufficient cooling may

completely stabilize the boundary layer.

At higher Mach

numbers, particularly in the hypersonic range, the validity
of the theoretical approach has not been established. A
favorable pressure gradient has, in general, a stabilizing
effect on the laminar boundary layer, while an adverse

pressure gradient has a destabilizing effect.

A numerical

example for supersonic flow over a thin airfoil illustrates in

detail these and other effects of Mach number, wall tem- -

perature, and pressure gradient on the stability of the
laminar boundary layer. :

PoryreceNIC INSTITUTE OF BROORLYN,

10.

11,

12.

13.

14.

Brooxryn, N. Y., April 12, 19565.
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TABLE I

SEPARATION POINT CALCULATED AS A FUNCTION OF
MACH NUMBER FOR ZERO HEAT TRANSFER (h=1) AND
Uftie=1—¢

Eiep for Mo of—
Method
0 1 3 10
Present report. ... 0.122 0.113 0.0768 0.023
Ref. 80ccecmaeecolo | 0120 0.110 0.077 0. 024

TABLE II

MINIMUM CRITICAL REYNOLDS NUMBERS Rg, =
(Potinlfttn)or FOR ADVERSE PRESSURE GRADIENT COM-
PARED WITH FLOW IN ZERO PRESSURE GRADIENT
WITH ZERO HEAT TRANSBFER (h=1), 8/Tw=0.5, AND
£=0.0496

R er for Mo of—
Flow
[ 1
b =1—§ 330108 104X10¢
(adverse pressure gradient; data from ref. 2)
Uiftien =1 2,390 381
(zero pressure gradient; data from ref. 1)

TABLE III

MINIMUM CRITICAL REYNOLDS NUMBERS OF LAMINAR
BOUNDARY LAYER OVER THIN SUPERSONIC BICONVEX
ATRFOIL AND OVER A FLAT PLATE

(a) Values over airfoil; data taken from reference 7; £'=0.8

AL h=TJT, T Ty Rue

LS L1 L5985 2.69 XI1ot
1.0 1. 45 8.58
.93 1.348 48.6
.91 L3220 128.6
.90 1.305 2618
.888 1288 @

20 10 L8 0. 217
.9 L6a3 .389
.8 144 L7717
.77 1.388 4.448
737 1327 o

(b) Values over flat plate; #=£=0.8

Ay h=TdT, Tl T P

L5 L2 1.740 Q. 0680410t
1.0 1.450 . 282
.95 1.378 428
.90 1305 641
.75 1.088 16.68
.72 L0 322.2
. 7168 1.039 o

20 1.00 L8 0. 0508
.90 1.62 . 0003
.75 L35 .481
.70 126 1648
.683 1.229 L







