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ANALYSIS AND CALCULATION BY INTEGRAL METHODS OF LAMLNAR COMPRESSIBLE BOUND-
ARY LAYER WITH HEAT TRANSFER AND WITH AND WITHOUT PRESSURE GRADIENT

By MOBIUSMOEDUCHOIV

SUMMARY

A survey of ini!egnd methods in iizminar-bowruia@ayer
unalywi is jirst fi”ven. A timple and wLjZient@ accurate
method for practical purposes of calcw?u$ingthe prop&s
(inchw%q stability) of i!he lamimm eomprawibb boundary
fuyer in an axiul pre88ure gradient wiih heat tranafer at the
wall h then pre.wnted. For flow over a flat plate, the method
is applicable for an arbitrarily prem-ibed distribution of
i%mpera$urealong the surface and for any given corw!ant
Prandtlnumber dose to unity. For J?OWin a prawure gradient,
tlti mdwd is basedon a Prandi2number of unity and a uniform
wall temperature. A simple and accurate method of d&rmin-
ing the separdion point in a comprami.?hjlow with an adverse
pre+wuregradientovera surface at a given wniformwaUtemper-
ature is developed. Tlu anulytis h based on an extemim of
h Kctrmdn-PohJhausenmethodto the momentum and thermal
enerpJ eguatti in wnjwnction with fourth- and espwially
higher degrtx ve-kwiiyand stugnatbn-eni.halpypro.li.?a. From
the eqmion.s derhd here, wnelwiona regarding the e~eet of
pressure gradieni, Mach number, and wail temperature on the
boundary-layer charactitics are derived and i?lustraied. In
part?icndurthe e~ecta on skin-friction, heat-trawfer wq%ient,
separation point in an adversepre88uregradient, and 8tability

of the laminar boundqi fuyer are analyzed.

INTRODUCITON

The purpose of the present report is to present a compre-
lmnsivo summary of theoretical investigations of compres-
sible laminar boundary layera which have been carried out
since 1949 at the Polytechnic Institute of Brooklyn under
the sponsorship and with the iinancial assistance of the
National Advisory Committee for Aeronautics. The results
of these investigations are contained primarily in references
1 to 7.1

Briefly, reference 1 is an investigation of the relative merits
of various type9 of integral methods for the analysis of
Iaminar boundary layers. It is concluded that the one-
parameter method based on the K&rmfinmomentum integral
equation in conjunction with sixthdegree veloeity profiles
appears, on the whole, to be the most promising method for
analyzing lnminar boundary layers in general. On the basis
of this conclusion, a simple method of e.dculating compres-
sible-boundary-layer characteristics, including separation
point and stability characteristics, in flow with a pressure
gradient’ without heat transfer at the wall is deveIoped in

reference 2. It is further shown in reference 2 that fourth-
degree profiles are preferable for analyzing stagnation flows,
while the separation point in an adveme pressure gradient
em be still more accurately predicted with seventh-degree
velocity profiles In reference 3, it is further verified, by
considering the flow over a flat plate with heat transfer,
that sixthdegree pretiles yield results of suflkient accuracy
for stability calculations. In the mmrseof such e.dcuktions,
certain mocliiications in the approximate stability criteria of
reference 8 were made, and these are shown briefly in refer-
ences 3 to 5, wbieh are essentially a summary of an unpub-
lished report by Professor lM. Bloom of the Polytechnic
Institute of Brooklyn entitled “Calculation of Stability of
Constant-Pressure Boundary Layers on Isothermal Surfaces
WRh an Integral-Method Mean-Flow Solution.” This report
is available for loan or reference in the Division of Research
Information, National Advisory Committee for Aeronautics,
Washington, D. C. In reference 6, a method of calculating
the compressible laminsr boundary layer in a pressure gra-
dient with heat transfer is developed. This reference includes
the calculation of the boundmy layer over a flat plate (zero
pressure gradient) with a nonuniform wall temperature. Ref-
erence 7, finally, applies the equations developed in reference
6 to a general study of the eflect of pressure gradient, wall
temperature, and Mach number on the skin-friction, heat-
transfer, separation, and stability characteristics of laminar
boundary layers. A method of calculating the separation
point in an adverse pressure gradient with heat transfer is
included there. Numerical examples are also included in
reference 7 to illustrate in detail the conclusions reached
there. The methods of references 6 and 7 are extensions of
the corresponding methods of reference 2 to cases of heat
transfer at the wall.

The emphasis in the present report will be on the develop-
ment of methods of calculation of kminar-compressible-
boundarylayer eharacteristim. In particular, a method of
wdculating the boundmy layer over a flat plate with a non-
isothermal surface, that is, with a given distribution of
temperature along the walI, will be presented. The Prandtl
number, although constant, is left arbitrary but must be of the
order of magnitude of unity. For flowi.n a pre9suregradient,
a method isgiven of calculating the boundary layer for a given
distribution of velocity outside the boundary layer, a given
referenw Mach number, and a given uniform wall tempera-
ture. The Ihndtl number is now wmmed to be unity. A
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method of calculating the separation point in compressible
flow with an adverse pressure gradiant over a surface at a
given uniform wall temperature is also presented. The
mathematical analysis on which these methods are based will
be given in .mf6cient detail to show clearly theologicaldevelop-
ment of the methods and the main approximating assump-
tions which are made as well as the range of applicability of
the methods.

In addition to the methods of calculation, the implications
of the equations developed here regarding the various char-
acteristics of laminar boundazy layers as they are affected
by parameters such as the pressure gradient, wall tempera-
ture, and Mach number will be discussed. The discussion
will include stabili~ characteristics. A variety of numerical
examples will also be discumed, and details of a few of these
will be presented here. l?urther details of these examples
can be found in references 1 to 7.

It maybe remarked that, as is well known, the literature
on laminar boundary layem and related problems is exten-
sive and rick Indeed, wherever pertinent, reference will
be included in this report to recent work which has appeared
either more or less simultaneously with, or since, references
1 to 7. The advantage of the methods of calculation devel-
oped in this report is that they combine the merits of ade-
quate accuracy and relative ease of calculation. (An ordi-
nruy desk calculator will be found to be more than adequate
for all of the calculations. In fact, a large number of the
calculations may even be performed by a standmd slide
rule.) The mathematical analysis will likewise entail prac-
tically the minimum number of approximating assumptions
?equired to retain both simplici@ and adequate accuraW.

With respect to the pertinent literature, it will suflice, at
this point, b mention briefly theoretical investigations on
the general case of the compressible laminar boundary layer
with pressure gradient and heat transfer. Only a very
limited number of exact solutiom, that is, solutions (which
may be numerical) based on solving directly the original
partial differential equations of the boundary layer essen-
tially without any mathematical approximations, appear to
have been obtained thus far. Su& exact solutions are
restricted to particular types of flows. For low-speed (zero
Mach number), but nevertheless compressible, flows with
heat transfer, numerical solutions for “wedge flows,” or
flows in which the veloci~ outside the boundary layer is
proportional to a power of the axial distance, have been
developed in references 9 to 11. These solutions include a
small normal mass flow at the wall. Such solutions have
been recently extended for nomegligible Mach numbers to
cases in which the local Mach number outside of the bound-
ary layer is proportional to a power of the axial distance (ref.
12). A class of similar solutions (refs. 13 to 15) for high-
speed (i, e., nonzero Mach number) flows has been recently
derived, under certain conditions, and calculated with the
aid of electronic computom.

In addition to referen~ 6 and 7, several approximate
analyses of laminar compressible boundm-y layers with pres-
sure gradient and heat transfer have been made. An analy-
sis, for example, based on a type of approximation used by
Lightbill has been recently made in reference 16, with empha-

sis on separation. A method based on “internal” and
%xtermd” solutions of the compressible-boundary-lnyer
equations, previously introduced by lUrm4n and MiIlikan
in an analysiEfor incomprwaible flow, is developed in rofm-
ence 17. Reference 18 presents a method based on solutions
wjich have been obtained for wedge flows. References 19
to 21 develop methods based on an extension of the Kdrm6n-
I?ohlhausen method (with fourthdegree velocity and stag-
nation-enthalpy profiles) to the thermal-energy, as well as
the momentum, partial differential equation. (Refs. 18, 20,
and 21 include the case of a small normal mass flow at the
wall.) Further analysea based on integral methods am
given in references 22 to 24, the latter being a study of tho
heai%wulating properties of the lam.imuboundary layer, A
small-perturbation type of analysis is developed in rofcwenco
25. It may be noted that all of the foregoing approximate
analyses, with the exception of references 16 to 18 and 26.
are based on integral methods.

The analysis in the present report is, for simplicity, based
on the usual assumption of constant speciiic heats. A means
of taking into account variable specific heat with tempera-
ture, at least for flow over a flat plate, is discuesodj for
example, in references 26 and 27. As has already been
stated, it is further assumed in this report that for flow with
a pressure gradient the Prandtl number is 1. An approxi-
mate means, for the case of zero hemttransfer, of taking into
account a Prandtl number d.iilerentfrom unity is discusmclin
reference 28 and applied in reference 29. In the cam of heat
transfer at the wall, an approximate means of taking into
account a Prandtl number other than 1 would be to multiply
the Nusselt number (i. e., heat-trrmafercoefficient) obtaimd
in accordance with the method given here by the cube root
of the PrandtJ number (cf., e. g., refs. 30 and 31). Such a
correction, however, may be considerably inaccurate at very
high Mach numbers (ref. 12). A further aewmption in the
present analysis of flow with a pressure gradti is that the
wall temperature is uniform.a A summary of investigations
on flow over a nonisothermrd surface in a pressure gradient
(as well as over a flat plate) is given in reference 32. Furthw
information can also be obtained in reference 33. Finally,
it must be noted that the present investigation is based
on the assumption that the coefficient of viscosity is pro-
portional to the absolute temperature, with the proportion-
ality factor determined so that Sutherland’s relation is
exactly satisfied at the wall. This is an assumption com-
monly made (cf. ref. 34) to simplify the analysis ml yot
retain the main actual influence of the dependence of the
viscosity coefficient on temperature, at least for Mach
numbers below 5.

The present report is divided into five main motions. ‘J.%o
iirst section discusses concisely the various main typos of
integral methods in laminar-boundary-layer amdysis and
their relative merits. The second section develops the
basic equations to be used in the present analysis. Those
equations are valid for an arbitrary constant Prandtl number
(close to unity) and a nonuniform wall tempwature. In the

*The ganml wnatfo~ howevar,devolopwlIn tho wotlonKBn.doEqunUona/’wldohP
tabtoSOWSwithor without a pmstre mdknt, are valld olm for nontiom well
tem~
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third motion, them equations are applied to present a
method for the calculation of the boundary layer over a
flat plate with a prescribed distribution of wall temperature
while the Prandtl number is kept arbitrary. b the fourth
section, the basic equations are used to yield a method of
calculating the boundary layer in a given pressure gradient
over a surface at a prescribed uniform wall temperature.
Here the Prandtl number is assumed as unity. The Calcula.
tion of the separation point in an adverse pressure gradient
is included in this section. The fifth section, tially, dis-
cusses the various general conclusions on the boundary-layer
characteristics which are of physical interest and follow from
the analysis presented herein.

SYMBOLS

Q,n coefficient of rn in velocity profile
(eq. (15))

al given by equation (48)
z? constant average value of us
b positive constant used in reference 2
b. coefficient of # in stagnation-enthalpy

proiile (eq. (16))
bi coefficient in thermal profile not deter-

mined in advance by boundary
conditions

6, constant average value of bl
o proportionality factor in temperature-

viscosity relation (eqs. (6) and (7))
D constant average value of C

c,=J‘Od[
o

Joc,

6&6f,(&),Gf,($),(35(f)

lb,

k
L
.ii
m~,l
Nu
Pr

average skin-friction coefficient for
length L (eq. (35))

local skin-friction coefhcient (eq. (56))
speciiic heats at constant pressure and

constant volume, respectively
integrals defined by equations (11)
constant average value of PI
constant replacing ~1 for determination

of sepmation point
parameters defined by equations (31),

(34b), and (40b)
stagnation enthalpy, (ti2/2)+cJ’
ratio of stagnation enthrdpy at wall to

stagnation enthalpy at outer edge of
boundary layer, H./ZII($); for Pr= 1,

h= T./TC(cf. also eq. (25))
value of h for zero heat transfer at wall
coeiiicient of heat conductivity
characteristic length
hlach number
constanta defined by equations (55b)
Nusselt number
Prandtl number, pcJk
local rate of heat transfer at wall
Reynolds number based on L, pmu.L/pm

minimum critical Reynolds number
based on conditions at point b im-
mediately behind shock wave at
leading edge of airfoil, p,u&jP,

minimum critical Reynolds number
based on remote free-stream Con&-
tions in supersonic flow over thin
airfoil

ratio of local skin friction to Nusselt
number defied in equation (6s)

Sutherland constant; S’=216° R for
air (cf. eq. (7))

absolute temperature
equilibrium wall temperature for zero

hemttransfer
transformation variable, defined by

equation (8)
velocity components in x- and y-direc-

tions, respectively
coordinates parallel and normal to

surface, respectively
constant defined by equation (34b)
ratio of specificheats, cP/c,;y= 1.4for air
boundaxy-layer thicknesses in w and

zt planes, respectively
recovery factor (eq. (41))

sdu’tion for A(f) to be used in determ-
ining separation point (eq. (64))

Coefficientof viscosity
dimensionless distance along wall, x/L
mass density
dimensionlessvariable, t/8,
constant deiined by equation (53)
constant replacing ~ in determining

separation point

region at which adverse pressure gradi-
ent starts

value at point outside of boundary
layer immediately behind shock wave
at leading edge of supersonic airfoil

value at wall
value used for determiningg separation

point
value at separation point
local value at outer edge of boundary

layer
value at suitable reference point ouk

side boundary layer; in ‘numerical
examples, denot~ value in undis-
turbed (remote) free stream

A prime denotes differentiation with respect to &
COMPARISON OF WI’EGRAL METHODS FOR

LAMINAR-BOUNDARY-LAYER ANALYSIS

Since the development in 1921 of the boundary-layer
momentum integral equation by Von .K4rm6n (ref. 35) and
k%first application by Pohlhausen (ref. 36), the K&n6n-
Pohlhausen method has probably been the most widely
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applied and fruitful of the approximate methods used for
thmretical analyses of boundary layers.

The K&rm6n integral equation can be regarded physically
as a momentum balance over a fluid element extending across
the entire boundary-layer thickness. Mathematically, the
equation can be regarded as an integration of the original
momentum partial d.iflerentialequation over the boundary-
layer thickness The advantage of this integral equation
for theoretical calculations is that if certain definite forms
are assumed for the veloci~ profiles as functions of the nor-
mal distance from the surface then an ordinary differential
equation is obtained with axial distance along the surface
as independent variable and essentially the boundary-layer
thickn~ as the unlmown.

The Kdrm6n-Pohlhausen method in its original form is
based on the use of fourthdegree velocity -profik satisfying
certain conditions at the wall and at the outer edge of the
boundary layer. By means of this particular method a
considerable varie~ of useful results for laminar boundary
layers has been obtained, even for cases of a normal mass
flow (fluid suction or injection) at the wall with or without
heat transfer and pressure gradient (cf., e.g., refs. 30, 37 to
39, and 19 to 22). It has been found, however, that this
method has at least two distinct disadvantages in practical
cases. It fails to predict accurately the separation point
in an adverse pressure gradient, and it often does not yield
sufficiently accurate results for derivative of the profiles
for use in kuni.nar-boundary-layer=tabili~ calculations. In
view of such limitations, various refinements in the K6rm&n-
Pohlhausen method have been made, and a number of what
appeared to be the most importamt types of refinements
were studied and compared in reference 1.

mmrmnrrmm oF KXRNilN-p0mHAU132N m7moD

In discussing refinements of the Kfirm6n-Pohlhausen
method, it should be first observed that the Kti6n mo-
mentum integral equation is not actually equivalent to the
original partial diilerential equation. It is, in fact, essen-
tially only an average of this equation over the boundary-
layer thickmss. Thus, any solution of the partial difTer-
ential equation will neceiwwily satisfy the momentum integral
equation but not vice-versa. This basic limitation of the
integral equation is, however, to some extent overcome in
the K&rm6n-Poblhausen method by the fact that the velocity
profiles which are assumed in this equation are not chosen
quite arbitrarily but are chosen as well-behaved functions
(namlye, fourthdegree polwotih) satisfying the bomd~
conditions and certain additiomd conditions which an exact
solution of the governing partial dillerential equations
would necessarily satisfy.

There are two main types of methods of reiining the
K&rm6n-Pohlhausen method. One method consists in using
integral equations in addition to the K&m&n momentum
integral obtained by multiplying the original momentum
partial differential equation by the axial velocity u or powers
of v (e. g., refs. 40, 41, and 29) or by the normal distance y
or powers of y (ref. 42) and then by integrating the resulting
equations over the boundary-layer thickness. In this type
of method, additional unknown parameters as functions of

the axial distance x are introduced into the assumed velocity
profiles, and these are determined by the additional resulting
ordinary differential equations. Inmost actual applications,
only one integral equation in addition to the Ktirm6n
momentum integral equation is introduced, and, hence, only
two ordinary differential equations for two paranmtera
result. Such methods, in fact, are therefore somdimea
called “two-parameter” methods. A detailed discussion of
such methods is given in reference 1.

The second main type of refinement of tho K6.rmfin-
Pohlhausen method is the use of only the K&rm6n integral
equation, but in conjunction with profiles of higher (legreo
than the fourth, satisfying additional conditions at the wall
and at the boundary-layer edge which an exact solution of
the partial differential equations would necessarily .mtisfy.
In most applications of this type, velocity profiles of tho si..th
degree (refs. 43,44, 1 i% 3, 6, 7, 23, and 24) are used. How-
ever, vdocity profiles of higher degree than the sixth have
also been used (refs. 41 and 23). Seventh-degree velocity
profiles have been found particularly suitable for crdculdion
of the separation point in an adverae pressure gmdient
(refs. 45, 2, and 7). One-parameter methods with velocity
profiles of higher than fourth degree are discussed in somo
detail in reference 1.

COMPARISON OF ~ETHODS

In view of the variety of speciiic means of dining the
K&rm&n-Pohlhausenmethod, a theoretiwd investigation of
the relative merits of these methods was made in reference 1.
The methods were compared on the basis of both accuracy
and ease of computation. The method of comparison was a
postariori. A relatively simple flow, namely, the incom-
pressible and compressible flow for a Prandtl number of unity
in a zero preswre gradient over a surface at a uniform tem-
perature, was calculated on the bmk of a number of the
foregoing methods, and the results were compared with tho
accurate method of analysis of reference 34 for flow over o
flat plate. The two-parameter methods considered woro
based on (in addition to the K&mdn momentum integral)
the integral of the momentum partial differential equation
multiplied by u in conjunction with fourth- and fifth-
degree veloci~ profiles. The one-pmnmeter methods wore,
of course, based on the Khmuin momentum integral oqun-
tion and were applied in conjunction with fourth- (K6rm6n-
Pohlhausen method), iifth-, and sixthdegree velocity pro-
files. The comparisons were made, in particidar, on tho
basis of calculated skin-friction and heat-transfer coefficients,
fit and second derivatives of the profiles throughout the
boundary-layer thiclm-, and minimum critical Reynolds
numbers for laminar-boundary-layer instability according
to the criteria of Iiin and Lees (refs. 46 and 8). It is well
known that the latter criteria are sensitive to first and second
derivatives of the profiles.

The boundary conditions satisfied by the various profiles
as well as the detailed comparison of tbe results of the various
methods can be found in reference 1. The results, in brief,
indicated that skin-friction and heat-trrmsfer coefficients
were predicted with substantially satisfactory accuracy by all
of the methods. Moreover, the overall proiile shapes ob-
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taineclby all of the methods were qualitatively correct. How-
mmr,quantitative differencesin the first and especially second
derivatives of the profl.leawere obtained, with corresponding
differences in the calculated values of the minimum cxiticrd
Reynolds numbem. It was concluded that, on the whole, the
one-parameter method with sixddegree proiiles gave the
most accurate results for the profile derivatives, as well as for
the minimum critical Reynolds numbers. In reference 1 the
stability calculations were carried out for the case of zero
heat trrmsfer at the wall. Subsequent calculations (ref. 3)
indicated that reliable results for stability calculations by the
one-parameter sixth-degree-prone method are obtainable
also for the case of heat transfer at the surface of the flat
plate.

In addition to being capable of yielding results of adequate
accuracy, it is usually also quite desirable &at a method of
calculation be simple. In this connection, it must be ob-
served that the one-parameter methods, in general, involve
considerably simpler calculations than the two-parameter
methods. This advantage of the one-parameter methods
may not be very pronounced in the case of flow over a flat
plate; however, it becomes quite pronounced for the general
case of flow in a pressuregradient with heat transfer. In this
case, the thermalaergy partial d.ihrential equation must be
integrated to yield an integral equation in addition to the
momentum integral equation. Consequently, there will be
at least two parameters to determine. If, however, both the
momentum and the thermal-energy partial d.if7erential
equations are multiplied, for example, by u and intagratad
over the boundary-layer thickness, then a total of four
ordinary differential equations in four unlmown parameters
will be obtained. Thus, the so-called two-parameter method
would in this case really become a four-parameter method.
(The one-parameter method in this general case similarly
becomes a two-parameter method.) It is noteworthy, in
fact, that in any of the foregoing applications of the two-
prmmeter method only the less general cases of zero pressure
gradient, or pressure gradient with zero heat transfer at the
wall, have been treated. If it is desired to develop a tied
method to be applicable in the more general as well as in the
simpler cases, then this would have to be considered a dis-
advantage of the two-parameter methods.

In view of the foregoing remdts and considerations, it was
concluded in reference 1 that the most promising integral
method for laminar-boundary-layer study appeared to be
that based on the IGfrmtinintegral equation, in conjunction
with si..thdegree velocity profiles. This is essentially the
method of analysis to be applied in the present report. It
should be observed, however, that cases exist in which proiilea
of other degrees are preferable. In particular, stagnation
flows are more satisfactorily treated by fourthdegree profiles
(ref. 2), while the separation point in an adverse pressure
gradient appears to be determined more accurately by
seventh-degree proiiles (ref. 2). The latter case will be
treated in some detail in the present report.

It may be asked why, in the one-parameter method,
profiles of higher degree than the sixth were not considered
in the comparison study of reference 1. The reaaon is that
the sixthdegree profiles, as distinguished from fourth-

41867-7~

degree profiles, are chosen ta satisfy an additional condition
at the wall (as well as the outer boundary-layer edge). This
condition is obtained by differentiating the partial differential
momentum equation with respect to r. If a velocity profile
of higher degree than the sixth is assumed, then the only
means of obtaining a further condition at the wall which
would be satialied by an exact solution of the partial differ-
ential equations is to differentiate the momentum partial
diilerential equation twice with respect to r (or y for in-
compressible flows), and then take values at the wall. This,
however, will be found to yield a condition involving partial
derivative with respect to z such as ~%(z,y)pz @]O, and
this condition then becomes essentially an additional
ordinary differential equation. Since the sixth-degree pro-
files have apparently led to satisfactory results, it has not
seemed worthwhile to intxoduce such complications into the
analysis by using higher degree velocity proii.les.3 It is
noteworthy, in this regard, that although polynomials of as
high a degree m the eleventh were applied in reference 41,
they satisiied only the same conditions at the wall as the
sixthdegree profiles to be used in the present report.

BASIC EQUATIONS

The following equations describe the steady, two-
dimensional, laminar-boundary-layer flow of a comprewible
gas along a slightly curved wall:

Equations (l), (2), and (4) are the momentum, continuity,
and energy equations, respectively. Equation (3) follows
from the ideal-gas law and the assumption that the pressure
is constant across the boundary-layer thickness. It will be
assumed here that the specific heats Cpand Gas well as the
PrandtJnumber 1% are constants. By multiplying equation
(1) by u and adding the resulting equation to equation (4),
the following form of the energy equation is obtained for a
constant Prandtl number:

(5)

It will be assumedin the present agalysis that the viscosity-
temperature relation can be approximated in the form (cf.
refs. 34 and 6)

:=c;– (6)
.

J- smmh.d~ velodty moffloseronwd hmefer celcadatfonofthe seperotfonpoint
timadm~o~tie titi~wtitinm~ dattie-hktib
em-otlyYPJMonly at the emaratin VOlnk
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where

C=(To/T=)’J’~
0

m

It is convenient, in this compressible-flow analysis, to
replace the normal distance coordinate y by the Dorodnitzyn
variable f defined by

s
~= ‘ (T/Z’,) dt (8)

0

By integrating equations (1) and (5) with respect to t over
the boundary-layer thickness t=() to t= 8, and using the
boundary conditions u=u=O at t=o together with smooth
transition of the velocity and temperature profiles to their
local main-stream values, the foIIowing integrodifferential
equations are obtained:

{ ) 1}(F’1/2)A’+A F,’+F, +++ p,+(l+ M: F,

=c(p./pJ (u=/uJ (z’~z-’.) ~TT(u/w,)]o (9)

@@)’’+AP’’+c#+alal
=aPm/Pl)(%/@(~l/~.) (llz+)[:(lz..m]o (10)

where

F,= J‘(U/U~ [1–(u/u~] d~
o

JF,= : [(H/HJ–(u/uJl dr

sF3= : (U/?L,) [l–(H/H,)] dr

and

(11)

(12)

Here x(t) is esentialIy the nondimensional squared boundmy-
Iayer-thicknws parameter in the zt plane.

The quantities p,/poand M, in equations (9) and (10) are
related to ul/um, which is a function of : prescribed by the
potantid flow about the body in question. Thus, in accord-
ance with the usual isentropic-flow relations,

PIP.=(WA= { 1+(7–1) (K’/2)[l-(%/%)q @ (13)

M,=(u,/uJM. (TJTJ-’P (14)

In deriving equations (9) and (10) a single boundary thick-
ness has been assumed. This is an akmnative to the intro-
duction of two boundary-layer thicknesses, gamely, a ve-
locity, or dynamical, and a stagnation-enthalpyj or thermal,
boundary-layer thickness (cf. refs. 19 to 21 and 23). The
assumption of a single boundary-layer thiclme.w appears
feasible for fluids with J?randtlnumbem close to unity, since
in that case analyses involving both a dynamical and a
thermal bounday-layer thickness usually imply that both
tbicknessea are approxinatdy equal (see, e. g., refs. 30, 20,

and 21).4 Moreover, as explained in referen~ 6, the um of a
single boundaxy-layer thicl&sa does not necessarily impose
any undue restrictions on the thermal proiilesj since the
latter have here been permitted to contain an additional co-
efficient not determined in advance by the boundary condi-
tions. This coefficient, to be taken here aa 61,replmea the
thermal boundary-layer thickness as the second unknown to
be determined by equations (9) and (10). A singleboundmy-
layer thicknws has also been used in reference 22.

Equations (9) and (10) can be converted into ordinary
diilerential equations by asuming the velocity and stagrm-
tion enthalpy as deibite functions of the normal distance
variable ~. For this purpose, as explained in the section
“Comparison of Integral Methods for Laminar-Boundary-
Layer Analysis,” the velocity profiles will be chosen as
sixth-degree polynomials. The stagnation-enthalpy profdes
will similarly be chosen as polynomials but of one clegmm
higher, nam~y, seventh degree.-

Thus, it will be assumed that

6
@ul=~ an?

n-o

The following boundary conditions must be satisfied:
At r=O,

U=v=()

H/H1=l@ }

where h(g) is considered as a prescribed function.
At 7=1,

u/ul=H/Hl= 1

aup7’=?)HpT=o }

(15)

(16)

(17)

(18)

In addition to these conditions, the following conditions will
also be satisfied (cf. ref. 6):

At r=O,

C(T~T.) & (u/u,)=–A(pl/pJh[l+(Y--l)M,~/2] (u,/uJ’

(lg)

(20)
b2(U/U,) ?)(H/Hl)

h& (U/UI)3~ ~,

r][1+(7–Wfl’/2l~(H/H,)=(l–Pr)(wuiW% 2

{
(21)

h(u/ul) ht=c(TJTm) $ (H/El)–
:ul/u.)M’dPl/Pm) ~

a(ulu~ ag(uju,)
3(1–Pr)(-Y-l)M,’ ~

I }
~ ~1+(7–l)M1’~2] ‘ (22)

At 7=1,

3$ (14uJ=& (u/uI)=& (H/HI)=& (H/HJ=o (23)

4In W m off&wmar a3tagn3tionfmlnkhowever,It fs fntawtlng to nete thnt evenfor
kpi-end tlnnmbero flthethmnrdbwnndmy.le.ycrthfkfnthed plonemybooromd
5 pwcant - than the dynrmdmfbomdaryh thfokmm@cf.2)).
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Ckmditiona(19) to (22) follow from equations (1) to (4) and
differentiation of each of equations (1) and (4) once with
rcapect to r, taking values at the wail and taking conditions
(17)into account. Conditions (23) follow from diihrentiation
of equations (1) and (4) once and twice with respect to r,
taking values at the local outer boundary-layer edge and
taking conditions (18) into account.

After the coefficients an and bnhave been determined horn
conditions (17) to (23) in terms of ~f (or A) and 61,equations
(9) and (10) become ordinary differential equations to
determine i(t) and ~1(.f). For any given case, the flow
outside the boundary layer, as de6ned by u@m (t) and
M., is considered as prescribed. Moreover, the tempera-
ture distribution along the surface, as defied by h(f), is also
considered aa prescribed here.

The temperature profiles are related, in genertd, to the
stagnation enthalpy and the veloci@ profiles in accordance
with the relation

( ‘Y-1 ~t (-Y-l) ~,, ~ ‘Z=E l+T
T, HI ) 2 ()‘%

(24)

Equation (24) follows from the definition of the stagnation
enthalpy H. From equation (24) it follows that the wall
temperature distribution is related to the stagnation-
enthalpy distribution h($) at the wall, in accordance with
the relation

(25)

Profiles in the zt plane can, if dwired, be transformed into
profiles in the physical xy plane by determining y aa a
function of r and : in accordance with equation (8)5.
Equation (8) can be expressed, in general, in the following
nondimensional form:

sy_~(T/T,)dr

s
i-l

(26a)
(T/T,)d~

o

where ~(t) is the physicaJboundary-layer thicknessdetermined
bv

(26b)

In the succeeding two sections, it will be shown how the
equations thus far developed can be used to lead to a simple
and usually sticiently accurate method of calculating the
Iaminm-boundary-layer characteristics for certain general
typw of flows.

FLOW WITHOUT AN AXIAL PRESSURE GRADIENT WITH
ARBITRARY (CONSTAN~ PRANDTL NUMBER AND
VARIABLE WALL TEMPERATURE

In this section, based on the equations thus far derived,
a simple and accurate method for calculating the laminar-
boundary-layer characteristics of the flow in a zero pressure
gradient, such as the flow over a flat plate at zero angle of

JTW&n@nmssarYffltkdmbd to determfneonlyPM- mob aYckfnfrictfenjheat
tronefer,end @aretfon point whkb dependonly on valuesat the welf.
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attack, is developed. The Prandtl number is considered
arbitrary but constant and of the order of magnitude of
unity, while the wall temperature may vary along the flow;
that is, To= T.(z) or h=h($).

GZIJZflALSOLUTION

For flow without a pressure gradient, that i9, uI’=OS

while M1=M., T1= T-, and so forth, the integrodilhential
equations (9) and (10) become

L.1(FJ2)Y+F:h=g (=’=’)

(27)

(28)

The sixth-degree velocity proiile satisfying boundary
conditions (17) to (23) in this case is

~=2r—5r4+6rs—2T0
U1

(29)

The seveni%degree stagnation-enthalpy profile satisfying
these conditions in ti case is given by equation (16),
where e

130=Ho/Hm=h(~)

b,=2G,

ba=2Q,h

b4=35(l–h)–20G, –8Q,X–20b,

b~=–84(1-h)+40U, +12 UaA+45b,

be=70(l–h)–30G, –86jX–36bl

b,=–20(1–h)+8G, +2(3aX+10b,

where

+ “ (30)

(31)

and (%is thus a prescribed constant, while & is, in general, a
given function of & From equations (11) in conjunction
with equations (29) and ,(30) it is found that

F,=985/9,009 1

J(32)
F,=% (1 –= (.7,-% b,_-!K?- GJ 9,-J)9

‘h) 180,180 J

With FI as given by equation (32), the solution of equation
(27) for ~($) with the condition A(O)=0 is

X=4CJFI (33)

~The symbol fl ofrekmnces6 and 7 b reple.W here by tbe somewhatmore approprfote
SYmbolh(u?dalwfnn?k$mwa).
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Moreover, with F,, Fs, and A as given by equations (32) and
(33), the solution of equation (28), with the con+tion of
tide h at g=O, is

Jbl=C1-B:C,LW,(E) d.t (34a)
o

where

B= (1/2)+ (985/2,463)(l/l’r)
1

(3,(/)=(12,012/821)((31/252)(l–h) (C/CJ–h’ {(31/J.26)+

}

(Mb)
(953Pr/29,560)[(3/2)–(G@/@)] } –

(953pr/29,550) (CJC)h”– (151/9,009)(C/CJGJJ
From equations (34a) and (34b) with any prescribed

temperature distribution h(:) at the wall, b,=bl(~) can be
readily determined by a single quadrature (for which, e. g.,
numerical integration may be used). From equations (30)
the remaining bncoefficients can then be found as functions
of & and the velocity and stagnation-enthalpy profiles in
the &-plane are then determined by equations (29) and (16).
The temperature profiles follow from equation (24). The
profiles can be transformed im% the phpical w plane by
means of equation (8) or (26).

The average skin-fiction coefficient for the length L,
according to equations (29) and (33), will be

JL(y&L/ay)dix_l 322

C,=L “ —45
L (W)P.U.2 ‘—&

(35)

where

n,= J‘c& (36)
o

The Nusselt number, which is a nondimensional measure
of the rate of heat transfer at the wall, can in this case be
ddined as

Ah=qL/km (T.– Z’o) (37)

where
q= (k bT/@)o (38)

and T. is the equilibrium wall temperature for zero heat
transfer, that is, for q=O. It is appropriate in the determina-
tion of heat-tmmsferrates to replace the temperature param-
eter h by the parameter TJT., which is the physically
siegnihnt temperature parameter in high-speed flows with
heat transfer. An expression for the Nmselt number in
terms of T./T, can be obtained by first finding the value of
h (to be denoted as hJ for zero heat transfer at the wall. By
substituting h=h, into equation (34b), asmming h. constant,
-andsetting al= O (for zero heat transfer, or h = O) the follow-
ing value of h, in tams of (7Sis obtained:

~ =1 252 151
a -&%iiimG’ (39)

Substituting now h=h,(TO/TJ (cf. eq. (25)) into equation
(34b) and also substituting expression (39) for h, in terms of
G*,it is found, with C replaced by an average constant wdue
U, for simplicity, that equations (34a), (33), and (37) yield
the following expression for the Nusselt number:

where

(3,=P-’{ [1– (TO/TJ]-[2+ (60~039/152,675)Pr](T,/T,)’.+

(40,026/152,685)Pr(T0/T,)’’f’} (40b)

Nor any prescribed distribution of the wall tempemtum as
given by TJT,(E), the local Nusselt number can be readily
obtained from equations (40a) and (40b). The actual
heat#ransfer rate at the wall (in units such aaBtu per mcond
per square foot) can then be obtained immediately by solving
for q in terms of i% in accordance with equation (37).

The equilibrium adiabatic wall temperature T, according
to equations (39), (31), and (25) is

‘~=TmF+G9’M3(41)

where q, lmown as the temperature recovery factor, is found
to be

q=l —O.272(1—Pr) (42)

An exact analysis (e. g., ref. 30) shows that for flow without a
pressure gradient over an impermeable surface a very good
approximation for q (tQbe denoted here as qJ is

q.=flr (43)

For Pr=O.72, which is essentially the value for air, equation
(42) yields q= O.924instead of the accurate value q~=O.845
(ref. 34). This inaccuracy in the value of q implied by the
equations used here, however, will not necwsarily Meet the
accuracy of equation (40a) for the Nusselt number, since the
derivation of this equation was actually made independmtly
of the particular value of G..(i. e., independently of oq, (31))
and, hence, of 7.7 Thw is further vefied by the agreement
obtained with certain exact solutions, to be discussed sub-
sequently. Thus, in applying equations (40a) and (37) for
the calculation of heaktransfer rates, the octual value of T,,
asdetermined either by experiment or by equations (41) and
(43), should be used.

It shouId be observed that the use of the equations de-
veloped here is not restricted to any particular type of tem-
perature distribution h($) along the wall. Thus, it is not
mecessaxy,in applying the method of calculation deaoribod
here, that the temperature distribution be espreased as a
polynomial in ~ (unlike ref. 34) or a9 a power of ~ (unlike ref.
17). In the special case, however, in which T. is espre.smd
M a polynomial in ~, the calculations indicated by the premnt
method, including the transformation from the d plane to

rIfnevertheladadre%a practicaland very dmple maim ofmodifyingthe pmont cqtm.
Mmklinordarvfrtuaaytoaumhmte tbe lmplfdt dlsuopmoy betweenn and ?- (forPr mar
unfty)wo~dtitiy to m~thWtietiueOf G asEWI by @Ptbn @l M Z J@Mma
[@ and (40b)wouldreme.fnmchangedby mob a correction.
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the physical w plane, can be carried out directly without any
quadmtures by using the results given in the appendix and
figures 4 and 5 of reference 6.

COMPARISON~H BXAGrSOLUTIONS

h w check on the accuracy of the results obtained hem,
comparison has been made with certain lmown exact solu-
tionB,

I’or the special case of a uniform wall temperature and a
Prandtl number of unity, it is well known that the energy
partial differential equation (4) or (6) reduces exactly to a
single quadratic relation between the temperature and the
velocity throughout the boundary layer. This relation can
bo expressed in the form

;=h+(l–h) (:)
1

(44)

By putting h= Chstant and F%=l into equations (31) and
(34b) the solution for b, as given by equation (34a) is found
to be

b,=2(l–h) (45)

Substitution into equations (30) for values of 13aand compari-
son of the resulting stagnation-enthalpy proiiles with the
velocity proilles (29) then show that relation (44) is exactly
satisfied. Thus, the equations used here reduce to the exact
integral of the energy partial differential equation in this
special case. As already indicated in the section “Compari-
son of Integral Methods for Laminar-Boundary-Layer Analy-
sis,” it has been found (ref. 1), moreover, that the skin-
friction rmdheat-transfer coefficients obtsined by the present
method in this case agree almost exactly with those obtained
by the exact method of reference 34. The present method
ha also been found to yield results of satisfactory acc~acy
for stability calculations in this case (refs. 1 and 3).

To check the results of the present method for the more
general case of Pr# 1 and variable wall temperature, calcub3-
tions were carried out for the case

To/Te=L25-0.3W+ 0.33(2

ThB is the case calculated in reference 34 by the exact
nmthod of analysis there. The local Nusselt number for
this case was calculated by means of equations (40a) and
(40b). In addition, temperature and velocity prcdileswere
calculated by means of the present equations. The agree-
ment between the results thus obtained and those in refer-
ence 34 was found to be quite close (see ref. 6 for details of
the calculations and results).

It is interesting to note that by setting 0,=0 and solving
the resulting differential equation for To/T,(&)itisfound that
zero heat transfer along the wall can be obtained for a non-
uniform (ns well as a uniform) wall temperature distribution.
This result, in fact, generalizes a result of reference 47 (cf.
ref. 6 for details).

From a practical point of view, it should be kept in mind
that the solutions developed here are based on the viscosity-
temperature relations (6) and (7), which are an approxima-
tion to the actual relation for air. Bemuse of relations (6)
and (7), the results obtained here, namely, equations (35)

and (40a), indicate that, for a tied wall tem~erature, the
skin-friction coefficient ‘and the Nusselt n&ber ~ be
independent of Mach number. For the Sutherland vis-
c.osity-temperature relation, however, this will not be quite
valid (cf. ref. 48).

FLOJvJl!l?IHPRESSUREGRADIENT,PRANDTLNUMRER1%=1,
AND UNJJ?ORMVVALLTEMPERATURE(h= CONSTANT)

From the equations derived in the section ‘Tlasic Equa-
tions,” a relatively simple and suf6ciently accurate method
for most practical purpo:es of calculating ltiar boundary-
layer charactarieticain a pressuregradient with heat transfer
will be developed. For this purpose it will be assumed that
the Prandtl number of the fluid is unity and that the wall
temperature is uniform. These restrictions considerably
simplify the mathematical analysis (cf., e. g., eqs. (21) and
(22)).

A further advantage of asmming 1%=1 here is that in this
case it follows from the energy partial differential equation
(5) that for zero heat transfer (i. e., for @T/@)o=O and
hence, @H/by) .=0) IZ=Constant regardlew of the pressure
gradient. This yields the following well-known value of
the equilibrium adiabatic wall temperature T, for o Prandtl
number of 1:

Consequently,
~=E,= CPTO T.

‘=E
“ cPTl~

(47}

Thus, the parametw h is in this case the physically sigrdkmt.
ratio of the actual wall temperature to the equilibrium
adiabatic wall temperature. It follows from this that for
zero heat transfer h= 1. It will be seen (cf. eqs. (45),
(55a), and (55b)) that this condition is exactly satisfied by
the approximate equations and solutions used here.

A brief discussion of methods for cases of Pr#l rind/or
nonuniform wall temperature has been given in the intro-
duction. The development given here will be essentially-
the same as that in references 6 and 7.

GENZRAL APPROXIMATE SOLUTION

With Pr=l and h constant, while u,/u_(Q is arbitrary,.
the coefficients a. and b%in equations (15) and (16), by virtue,
of boundary conditions (19) to (23), can all be expressed in
terms of % and bl,iwhere 61remains arbitr~, while m is-
given by:

2-y

~=-m=(%)h(l+%’’”)’ ‘48)’

The profiles in terms of% and bl are then:

;=(2r–5r’+6T’– 2#)+(~5)[-2r+5#-10T4+ 10T6-3#+

(bl/6h)(–T+10#–20T4+ 15T’–4TT] (49)”

H
~=li+(l-h) (35~4–S4#+70+-20#)+

‘ h(T-20r4+45#-36r6+ 10#) (50)
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With profiles (49) and (5o) the following explicit expressions
for Fl, Fz, and FS, are obtained:

F1=0.1093+0.00211 &0.000622G2+

0.00(1412(b,a#t)-0.0000095(tWZ/h)’–

o.000153(tJ,a2’/h)
1

F,=o.395–o.500(1 –h)+o.107b,+
0.0212G–0.00062(q’+ 0.0028(b,a2/hJ–

/

(51)

o.Qoo15(b@#/h)–o.0000095(b,Q9/h.)*

F,=(l–h)[O.246–O.015@–O.60181(b,aJii)]–
bJO.0683-O.003!AQ-O.00041(b,QJh)]

With expressions (49), (50), and (51) inserted in equations
(9) and (10), two ordinary d.iilerentialequations for k($) and
6,(I) are obtained. Although these can be solved numerically
for a given distribution of u,/u. (g), the process may be
tedious. A relatively simple general approximate solution
of these equations will, therefore, be derived.

Equation (9) can be solved approximately for x by awum-
ing that F1 and F2 can be replawd there by constant “aver-
age” values ~1 and 72 over the distance & This is justified
by the fact that the variable terms there, which are propor-
tional to Q and h, are relatively small (cf. eqs. (51)). This
is equivalent to replacing U2and h by constant average
values % and ;l for this purpose. With equation (49) for the
velocity profile and equation (48) for q, equation (9) then
becomes- the following linear ordinary diilerential equation
ink

{ 1}(Rm’+kFwm)+(%’/uJ[$01+7<M?(WFJ=
20 (p=/pJ(~,/Tm)(um/uJ (52)

where w is a constant given by:

pl=0.3h+0.0905~1 +0.00438 +0.0232& —0.0012&2+

(0.0838–O.00458iiJ@J30h) (53)

With relations (13) and (14), the solution of equation (52)
satisfying the condition A= O or a finite value (if u1= O at
$=0) at the leading edge :=0 is found to be:

z-f-l PI

E(u,/U.) +-’(T1/z’m)-~
(54)

(who) + (TI/T.) s~
Equation. (54) is siqihy in form to equations obtained for

zero heat hansfer in references 2 and 49 and to those ob-
tained for heat transfer, but with fourthdegree profdw and
two boundary-layer thiclmesses, in references 19 to 21. It is
interesting to observe that for zero heat bmmfer it is powible
to derive forms like equation (54) (cf. refs. 29 and 49) by
applying the Stewartson-lllingworth transformation (refs.
50 and 51). However, by the present (approximate) method
of analysis, it is seen that with the useof only the Dorodni@n
transformation (8) such a form can be straightforwardly
derived even for the case of heat transfer, but uniform
temperature, along the wall (cf. also ref. 20).

A general approximate solution for bl(~) cm be obtainod
in a comparatively simple manner by eliminating it from
difkential equations (9) and (10) in conjunction with tho
same type of simplifying approximations concerning tho a2
terms as made in deriving equation (54). (See ref. 6 for
details.) A quadratic equation in bl is thereby obtained,
with the solu~ion

bl=-+’[w+a’p
where

~%
f 1=Tx10- 63.90–4.496&+~2.705–O.2096G)

j=0.24602+a2(0.07917 -0.00586&@ +~&10-4X

[–284.5+(42.26-2.067(z2)@-(7.906-O.9086uJ ~]

{[
1=2(1 –h)(O.24602-O.01496UJ l+% –0.10496+

0.3h+u2(0.02116-O.0006216(@ 1}

(65n)

(66b)

The physically appropriate root in equation (66a,) will, in
general, be that which is closer to the value 2(1–h),

After x(f) has been obtained by means of oqudion (64),
the coefficient ~(f) follows from equation (48), and bl(~) can
then be directly calculated by means of equations (66).
For objects with sharp leading edges, for which A=O at g=O,
it will ordinarily be found that an approximate value of bl
according ti equations (55) is that given by equation (46),
which is valid exactly for the case @= O. This is illustrated
in detail in reference 7 by numerical example for the super-
sonic flow over a thin biconvex airfoil.

The genertilapproximate solutions given by equotions (64)
and (55) are quite convenient for actual calculations rmd
involve, at most, numerical integration. These solutions
will be approximately valid as long as the % twins in mpros-
sions (51) are indeed relatively small either individually or
collectively. Such is expected to be ordinarily the cam in
practice. In cases for which the ~ terms become rolativoly
large, however, the ordinary differential equations (9) and
(10) may have to be solved numerically.

In evaluating ~1 and ~ a reasonable average valuo z for
~ for any given U& (t), h, and ~U. can usually bo obtained
by considering equation (48) for (aJ7/hA)and equation (64)
for h/C. A satisfactory average value ~, for bl in mwh.mting
~1 and ~ will ordimwily be that given by equation (45).

In reference 2, numerical examplea based on the cam
uJu.=1–bt (where b is a positive constant) for i14’m=O,1,
and 3 and zero heat transfer at the wall (h= 1) were carried
out to determine the accuracy of approximate solution (64)
of ordinary differential equation (62). Comparison of
the solutions obtained by means of equation (64) was made
with numerical solutions of differential equation (62) with-
out the use of any of the approximating assumptions made
in deriving equation (54). The comparison indicated, on
the whole, satisfactory agreement for practical purposes
(including stability calculations) between the results of



equation (64) and the numerical solution of equation (52).
Dotnils are given in reference 2. Similar comparisons
have also been carried out in reference 21 for the caseauJu. =
1& b~with heat transfer at the wall. The agreement between
the type of approximate solution given by equation (54) and
the numerical solution of the original ordinary differential
equation was, again, found to be on the whole satisfactory.s

SKIN FRICTION, HEAT TRANSFER, VELOCITY, AND TEMPERATURE
PROFILRS

With ~(g) and bl(~) determined, the boundary-layer
characteristics can all be straightforwardly calculated. The
Iocnl skin-friction coefficient will be

~ , .& ~@!l)O–
/ 1

g Pm.%=

4[1–(a.J5)-(haJ60h)] (C/fi)(TJTm)(@Um)BL-’i~ (56)

Tho Nusselt number giving local heatAmmsfer properties
at tho wall will be

The velocity and temperature profiles follow from equations
(49), (60), and (24) in conjunction with equation (8) for
trrmsfonning to the physical plane. For zero heat transfer
at the wall, rm explicit expression for y as a function of
r in terms of & is given in appendix A of reference 2. This
repression can be conveniently written in the form

Y(:, r)
()
7—1

—’r+ ~
&

M? [g,(~) +Gg,(7)+ag2g,(r)]

where gl, g’, and gg me detik tictio~ (Polpo~~) of
~ only which remain the same for all cases. These functions
can, if desired, be evaluated and plotted once for all. A
similar expression can be obtained for the case of heat
transfer at tho wall, except that additiomd terms, such
as those proportional to aJJhj will be included. The uni-
versal functiom of r thus obtaimd can, if desired, also be
mwlurked once for all. For a given value of & y or y/~
(cf. eqs. (26a) and (26b) ) can then, in any given case, be
found quite straightforwardly for values of r from ~=0
ta 7=1.

A numerical example to check the accuracy of the results
obtnincd by the. equations developed in this section was
carried out in referenca 2. This example, as previously
indicated, was the case of flow with a linearly decreasing
velocity outside of the boundary layer. Velocity profles,
local skin-friction coefficient, and minimum critical Reynolds
numbers for laminar iustabti~ were calculated by this
means, and the results for incompressible flow (h= 1 and
M. =0) thus obtained were compared with those based on
the swies solution in reference 52 of the original partial
differential equation (l). The agreement was in all cssea
found to be mtisfnctary for practical purposes. (DeW
am given in ref. 2.)

The solutions presented here require some modification

I In referonm21,the anskels wasbasedonfearthdegea m’efflwfn mnJmctkn with both a
thermal and a dynamksl boandary~ayarMcknem. An eqnat!enqnlte mmlogormto eqrw
tlon (64)forA(t),however,wm obtalmd by analogous8Pproxlmetbz&munPtlon.%

in two important special cams: (a) Flow near a forward
stagnation point and (b) calculation of the separation point
in an adverse pre9suregradient.

STACiNATTONFLOW
The case

U@== be ‘ (5s)

where b is a positive constant represents physically the flow
in the vicinity of a forward stag-nation point, such as the
subsonic flow over the leading edge of a blunt object. For
zero Mach number, an exact solution of the ordinary differ-
ential equations (9) and (10) (with uniform wall tempera-
ture) can be obtained in the form X= Constant and bl=
Constant. Equations (9) and (10) then become algebraic
equations for A and bl. l’or the special case of zero heat
transfer (h= 1 and bl=O), however, it has already been
found (refs. 43 and 2) that these equations will not yield
any physically significmt real roots. In reference 2 it was
shown that an approximate solution can still be obtained
in this case by writing the algebraic equation as j (A)=O
and taking the value of x for whichf(~) has a local maximum
value relatively close to the ~-axis. The root h= 9.481 was
thus obtained. This solution, however, is unsatisfactory
in principle. Consequently, the use of fonrthdegree, instead
of sixthdegree, velocity proiiles for this case was investi-
gated in reference 2. The proflhw were chosen to satisfy
the usual lUrm6n-Pohlhausen conditions A physically
significant real root, namely, ~=7.052, was now obtained,
and the accuracy of the resulting solution was compared
with the results of an exact solution (ref. 53). In particular,
skin friction, velocity profiles, and minimum critical Reynolds
number were compared. The comparison indicated that the
results obtained by the use of the fourthdegree profiles led
on the whole to results of satisfactory accuracy. It was
therefore concluded that the boundary-layer characteristics
in flow near a formwd stagnation point can be determined
with satisfactory accuracy by the lbrman-Pohl.hausen
method with fourthdegree profdm.

To calculate the boundary layer near a forward stagnation
point for the more general case of heat transfer at the wall,
in particular for a prescribed uniform wall-temperature ratio
h or T./Tm, the method of reference 2 can be generalized by
introducing fourth-degree stagnation-enthalpy, as well as
velocity, profiles. This has been carried out in reference 20
with the introduction of a thermal, in addition to a dynamical,
boundary-layer thickness. Two algebraic equations in essent-
ially the two (constant) boundary-layer thicknesses are ob-
taiued. These equations can, in general, be solved either
numerically for a given h or by using the values in iigures 1
and 2 of reference 20. Although reference 20 is based on
flow over a sweahcooled surface and, hence, includes a nor-
mal mass flow at the wall (u=oO at r= O), the results there
can also be used for an impermeable wall by simply putting
C= O and letting h be arbitrary. (This C is not to be con-
fused with the temperature-viscosity factor used in the pres-
ent paper.) An example of low-speed (Ma= O) flow in n
favorable pressure gradient with a stagnation point at
t=O, representbg subsonic flow over n turbine blade, was
carried out in reference 20 on the basis of the method pre-
sented there.
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An rdtmnative method of calculating flows near a forward
stagnation point, based on the use of a single boundary-layer
thickness, is given in reference 22.

CALCULATIONOFEUlFA13A~ONPOINT

The equations thus far developed in this section can be
used to calculate the ltiar separation point in an adverse
pressure gradient. The results thus obtained will generally
be more accurate than those obtained by the use of fourth-
degree proiiles. By an analysis for incompressible flow for
the case of a linearly &mini&m“ g velocity outside the bound-
ary layer, it was found (ref. 45), however, that still greater
accuracy for the location of the separation point is obtainable
by the special use, for this purpose, of seventh-degree velocity
profiles satisfying an additional condition involving the
fourth derivative of the velocity at the wall at the separation
point. This condition would necessarily be satisfied by an
exact solution of the original partial d.illerential equations.
This method of wilculating the separation point was sub-
sequently extended to comprewible flow with zero. heat
transfer in reference 2 and to compressible flow with heat
transfer in reference 7. The method of analysis to be pre-
sented here is -entially that of reference 7.

It may be mentioned that a considerable number of
methods of calculating the laminar separation point have
been developed. No attempt will be made hereto summarize
or evaluate all of these methods. For incomprwsible flow-,
a method which has been found to yield results of satisfac-
tory accuracy in addition to that of reference 45 is that of
reference 54. l?or compressible flow with zero heat transfer
(which, of coume, iucludes.incompressible flow) recent meth-
ods, in addition to that of reference 2, are those of references
29, 50, 55, and 56. For compressible flow with heat transfer,
the only studies of laminar separation which appear to have
been made, in addition to that of reference 7, are those of
references 13 to 16. The advantage of the method to be
presented here is, once again, not only that it appears to
yield remits of adequate accuracy but that the analysis is
kept relatively simple, although it is based on a minimum of
what might be termed mathematically “arbitrary” assump-
tions. The method of analysis developed here is indeed
sufficiently simple and flexible to be applicable to a wide
variety of conditions. (The method has, in fact, been quite
recently extended to the case of compressible flow over a
transpiration-cooled surface (ref. 57).) The calculations to
be performed according ti the method presented here -will
be relatively simple and will involve, at most, numerical
integration.

By differentiating the momentum partial differential
equation (1) it can be shown (ref. 7), under the present
assumption of a PrandI number of 1 and a linear viscosi~-
temperature relation, that, at the separation point, with or
without heat transfer at the wall,

@%/at’)o=o (59)

The seventhdegree velociw prd.le satisfying condition
(59) in addition h conditions (17) to (23) is ‘

$Thfsseventh.degIwprdle k toM nsal only formhndntkn ofthe se~tfen @nL Fcu
otk ~ the dxthdcmm prdle (w. (49))dmold be used.even~ ~ Mv=ee rmasnre
glndf’nt (M I’f. z).

u–-(7——
)( )

–$ T5+7T9-: 77 +fzl –; r+r’-; r5+3#-T7 +
% 47

(%6,/3h)
(

16+ T+r’-31-e+T 76—77
)

(60)

where q is given by equation (48). Separation occurs
where (A/ by).= O and, hence, where (bu/ &)e=O. There-
fore, according to equation (60), separation will occur whore
%(g) has the value (denoted by a-J

3.5h&.
h+; b, (61)

From equations (48)and (61) it follows that the vrduo A,,,
of A at the separation point will, in general, be

A satisfactory approximation for b, in equation (62) will,
in general, be that given by equation (45) (cf. also ref. 7).
With this expression for bl, equation (62) becomes

A,0=–105C (TI/TCO)-ffi) 1

(%’/%) (1+7; w) 11h+4

By inserting proiile (60) into d.Herential equation

(63)

(9) and
assuming, as in the foregoing analysis, that the rq and bl
tm in ~1 and ~a may be replaced by constant values, m
ordinary differential equation of the same form as equation
(52) is obtained, except that the explicit expressions for ~1
and ~ (to be denoted now as ~1, and ~,) axernodificd, whilo
the factor 2 on the right side of equation (52) is replaced by
7/4. Comparison, accordingly, with the solution (eq. (54))
of equation (52) yields the following solution for ~(~) (de-
noted now as k,):

Taking the constant value of a.’ as that at the separation
point (ss in refs. 2 and 7), the expressionsfor ~1, and ql, am
found to be

~,,=0.1159+0.002525G, —O.001454az:—

0.0000572(b,aJh)2-0.000574(b,G?/h) +

0.000887(b,~,/h)

~1.=0.25h+0.0437 +0.0738 bl+0.0348fi,—
0.00291w?+0.00773 (b,%,/h)–0.001147 (bl(z2?/h)–

0.0001145(bl~,/h)g

(66)

where ~, and bl are given by equations (61) tind (46), re-
spectively. The quantities ~1, and p,, are functions of h only
and are shown in figure 1.
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Fmum 1.—T,,andp,, asfunotionsof ~.

I?or rmy given reference Mach number M= and uniform
wall temperature mtio h, the separation point in a region of
given advmse pressure gradient, as specified by u,/um(:),
will be the station $ at which the right sides of equations
(63) and (64) are equal. Thus, it is necessary, in general,
only to plot x versus & in the anticipated vicinity of sepaxw
tion, in accordance with both equations (63) and (64) and to
determine the point of intersection of these two curves.
The separation point will evidently be independent of (7, so
that for the purpose of determiningg the separation point
one may set 0=1.

In case the region of adverse pressure gradient starts at
some point .$=& downstream of the leading edge, equation
(64) can still be applied directly in calculating the separation
point. Greater accuracy, however, might be obtained in
such a case by applying equation (64) only for the region of
adverse prcssnre gradiant. For this purpose, equation (64)
must be modi6ed to satisfy the boundary condition A=k= at
$=.fa, Thus,

I7Y&1*-1(2)=*,66,I($h(t)=l(h)b+z:=Um
where

2 Hl ?,,
=w#

l(g)= (’u,/t&J~l# (2’,/T’m)=r.

anctwhere & can be obtained as the value of x at g=ga based
on equation (54) for the region O~ E~ & of favorable pressure
gradient,

l?or purposes of calculating the separation point for
various values of the temperature ratio TO/T~and of the
reference Mach number lM=, equation (63) may be replaced

by the following equivalent equation for the value of x at
the separation point:

(T,T~)-O”’
“@=-105c [4+ll(To/Tm)+o.S.M.q(ul’/u.) (67)

Equation (67) follows from equation (63) by inserting rela-
tiOIIS(13), (14), (46), and (47) there, with ~= 1.4.

Numerical examples for flow with a linearly decreasing
velocity at the outer edge of the boundary layer are illustrated
in detail in reference 7, and these will be discussed brieily in
the following section. An example based on a stagnation
flow followed by an adverse pressure-gradientis also discussed
in detail in reference 7. I’or the case of a linearly decreasing
velocity out&de of the boundary layer with zero heat trans-
fer at the wall the separation point was calculated by the
method presented here for Mach numbers J1l. ranging from
Oto 10. These results are compared in table I with those of
reference 60, and the agreement is seen to be extmrnely
close.

It may be recalled that the method of calculating the
separation point presented here is based on the assumption
of a linear viscosity-temperature relation ymT and of a
Prandtl number Pr of unity. It is noteworthy, in this
connection, that it has been concluded in a recent analysis
(ref. 56) that for pa P and CO<l, the separation point for
Pr>O.7 occurs at roughly the same position as for Pr=fJ=l.

DISCUSSION OF SEIN-FRICl’ION, HEAT-TRANSFER, SEPARA-
TION, AND STARILITY CHARACI’ERISTICS

To conclude this report, a summary will be given in this
section of the implications of the equations developed here
regarding the effect of wall temperature, Mach number, and
pressure ~adient on the laminar-bonndary-la.yer character-
istics. These conclusions have been derived and illustrated
in detail especially in reference 7.

S~-FZI~ON ANDHEAT-TRANSFZRCOZFl?ZCIENTS

The effect of wall temperature on the skin-fiction and
heahtransfer coefficients will depend on the nature (favorable
or adverse) of the pressure gradient. This follows horn the
fact that in ordinary differential equation (52) and in expres-
sion (48) for G the temperature pammeter h appears pri-
marily in a form multiplied by the veloci~ gradient uI’.

The effect of the wall temperature on the skin-friction
coefficient arising from the (u%) term in a~is particularly
important. Thus, equations (56) and (48) show that,
without the eflect of the temperatnreAscosity factor 0,
lowering the wall temperature tends to diminish the local
skin friction in a favorable pressure gradient (negative U1’)
and tQ increase it in an adverse pressure gradient. It can
be shown (ref. 7) that a similar, but much smaller, effect
on the Nusselt number will also tend to occur.

Since the velocity gradient u,’ in the equations developed
here (cf., especially, eqs. (48), (52), and (53)) appears in a
form multiplied by the wall-temperature ratio A, it can be
inferred that a lowering of the wall temperature has a tend-
ency ta diminish the direct effect of a given pressuregradient,
that is, the effect of u,’ as such, on the boundary-layer prop-
erties. This is explainable physically by the increased
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forces relative to the pressure
gr&iient because of the increase of the fluid densi~ w-hen
the wall temperature is decreased.l” A clear illustration
of this will be seen subsequently in the analysis of laminar
separation. It must be observed, however, that the effect
of a pressure gradient also appears indirectly, munely, in the
variation of UJU. and TJT. with & For Mach numbers
above 1, in fact, the T1/Tmterms in x (eq. (54))may become
particularly important, so that in such a case the net effect
of the pressure gradient may actually be increased by a
lowering of the wall temperature. This is illustrated h
detail in reference 7 by a numerimd example for the super-
sonic flow over a thin airfoil (e9peciaIly at ilZ.=3).

From equations (56) and (57) it follows that the ratio of
local skin friction to llnsselt number can be expressed in
the form

Cf, u.()‘=TU ~ ‘F%+)] ’68)R== ~,

I’or flow along a flat plate (u@.=1, G=O, and b1=2(l–h)),
equation (68) implia that r=2. For flow in a pressure
gradient, however, since ordinarily bl= 2(1 —h), it follows
from equations (68) and (48) that r>2 along the flow in a
favorable pressure gradient (u,’> 0), and r<2 in an adverse
pressure gradient (w’< O). Moreover, it also follows from
these equationa that lowering the wall-temperature parameter
h will tend to bring r closer to its value for flow without a
pressure gradient. This illustrates the diminution of the
direct eflect of a pressure gradient by cooling of the w-all.

From equations (54), (56),and (57) itfollows that both
the skin friction and Nusselt number will be proportional to
~. Thus, an effect of wall temperature on the skin-
friction and heat-transfer coefliciants follows from the vis-
cosity-temperature coefEcient O arisii from the particular
viscosity-temperature relation (eqs. (6) and (7)) assumed
here. This effect is independent of the pressure gradient.
From equation (7) it follows that if, as will ordinarily be
the case, TO>SJ that is, To>216° R, then a lowering of the
ratio TJT. will incresse Ofl and i%. For a fixed ratio
h of TJT,, itfollows horn equation (25) that a Mach number
effect will also appem in (?. Thus, if T~>S, th~ for a
fixed value of h an increase of lMachnumber LL will diminish
O and hence will tend, as far as O is concerned, to diminish
both the skin-fiction and heathxmsfer coetlicients in pro-
portion b Jo.

From equation (54), as has already been noted, it will be
found that in the presence of a pressure gradient A/6’ may be
appreciably affected by the Mach number because of the
values of T1/T.(~). Consequently, it can be inferred that a
pressure gradient will, in general, tend to enhance the eflect
of Mach number on both the skin-friction and heat-transfer
coefhcients. This effect will depend on the nature of the
pressure gradient. For a favorable pressure gradient, for
example, for which u@m>l and hence TJT.<1, an
increase of “Mach number will tend to increase x/C and,

UTbfs cendndon end the foregokwmndnsbmson the efknt ofwfdftemptnre on W
kfctfonhave beantidy derfvedfn rekence m. It k notmtiy, moreo=, ~ ma
conddm bnvealsotin daivul fnreferarms12to 16by mmidmeblydlfkent methwisof
malyd.% The Dbydcele@eneHen for the lessenedeffectof a pmsmregiadfentby “ding
oftbowal lhmkngfv mfndependenilyfnrekwmesnarldlo.

hence, to decrease both the skin-friction coefficient and the
Nusselt number.

Since A will ordinarily be only little affected by the wall
temperature, equation (26b) implies that cooling of the wall
will, in general, tend to diminish the physical boundary-
layer thiclmess & However, for a given value of TJT,=h,
the boundary-layer thiclmess 6 will tend to increase with
Mach number, especially in a favorable pressure gradient,

SEPAEATTON

For a fixed velocity distribution UJU-(4) outside the
boundary layer and a fixed Mach number M., diminishing
the wall temperature will tend to delay separation by moving
the sepmation point downstream. This can be seen particu-
larly tim equation (63), according to which the value of X
required for separation h,m will increase as h is diminished.
This is a further illustration of the diminution of the direct
effect of a pressuregradient (in this ewe, an ndverm pressure
gradient) by cooling of the wall.

The tiect of Mach number on the separation point for a
fixeddistributionof uJu~($) and eitheraiixedvalueof h= TJT,
or a fixed value of TOIT. cnnnot be so readily predicted from
the equations developed here, since an increase of Mnch
number in the adverse pressuregradient will tendta decream
both & (eq. (63)) and ~,(~) (eq. (64)). However, numerical
examples carried out for the case uJu. = 1—1 have indicatod
that for a fixed ratio h of wall temperature to equilibrium
adiabatic wall tomperatnre, including the case of an insulated
wall (h= 1), an incr-e of Mach number tends to enhance
separation by moving the separation point upstrenm (cf.
table I and refs. 2, 21, 16, and 50). Lowering the (fired)
value of h, however, tends to diminish this unfavorable
effect of Mach number on sepmation (cf. ref. 21).

II the ratio To/T. of wall temperature to free-stream or
reference temperature instead of that of wall temperature to
equilibrium adiabatic wall temperature h is kept fixed, tho
effect of Mach number on the sepmation point is changed.
This is essentially due to the fact that for a fixed value of
T./T= the temperature ratio h decreases with Mach number
(cf. eq. (25)) and hence A,Owill no longer tend to be so grerkly
decreased by an increase i.nilfo (cf. eq. (67)). Consequently,
the effect of an increase in Mach number is, in general, much
less unfavorable in this case and may, in certain ca.acw,move
the separation point downstream, especially at high fixed
values of To/Tm.

Figure 2 shows the separation point for the case uJum=
1—g as a function of the wall-temperature ratio T,/T. for
LQ=O. The favorable effect of cooling of the wall is
clearly seen here. Figure 3 shows the separation point as o
function of Mach number for a tied ratio of wall to free-
stream reference temperature To/Tm= 2. An increase of
Mach number is seen in this case actually to move the sepa-
ration point downstrwun, in contmst with its effect, rdso
shown in figure 3, at zero heat transfer. Figunx 2 and 3
are based on the equations developed here, and further details
of the calculations can be found in reference 7.

STASILI’iYCHARACTERISTICS

It has already been pointed out that the methods devcdoped
here may be expected to yield sufEciently accurnte results
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l?murm20-Separat.ionpointas a functionof walltemperature.In-
compressibleflow;ul/u~= 1—~; MO= O.

(sep

Iwm

l?IGURE 3.-Separation point as a function of Mach number.
Ullu. =1-[.

for lruninm-bounclary-layer stability calculations. In fact,
although stability calculations and their results are shown
to some extent in references 1 and 2, the chief purpose of
these calculations was to show that the results obtained by
the approximate methods presented here compare sufficiently
closoly with those obtained by known exact solutions. Such
was also, at first, the purpose of reference 3. Thus, it was
found that for compressible flow without a pressure gradient,
such as flow over a flat plate, the minimum critical Reynolds
numbera for various Mach numbers at zero heat transfer,
as well as at various uniform wall texnperature9,were pre-
dicted with satisfactmy accuracy by the solutions obtained
by the methods presented here.’ Moreover, it was shown

that the maximum wall temperatures (to be called here the
“critical temperatures”) required to stabilize the flow com-
pletely were also calculated as functions of the Mach num-
ber with satisfactory accuracy on the basis of these methods
(presented in the section “Flow Without an Axial Prewure
Gradient With Arbitrary (Constant) Ibndtl Number and
Variable Wall Temperature”). .The minimum critical Rey-
nolds number for incompressible flow in the vicinity of a for-
ward stagnation point as calculated by the K6rm6n-Pohl-
hausen method (cf. the subsection “Stagnation Flows” in
the section “Flow WM Pressure @adient, PrandtJ ATumber
l+= 1, and Uniform Wall Temperature (h= Constant)”) was
found to agree well with that calculated by the exact solution
of reference 53. Finally, for incompressible flow with a
linearly & “ “ ‘ “ g velocity outside the boundary layer, the
present method of calculation (cf. the section ‘Wlow Wii%
Pressure Gradient, Prandtl hTumber Pr=l, and Uniform
Wall Temperature (h=&mstant)”) was found to lead to a
minkomn critical Reynolds number in satisfactory agree-
ment with that calculated from the solution in reference 52.

Most of the stability calculations which have been tied
out in this country have been based on the analysis and
criteria developed by Lin (ref. 58) for incompresdde flow
and subsequently extended by Lin and Lees (refs. 8 and 46)
to compressible flow. In reference 8, simplified approximate
two-dimensional stability criteria for compressible flow have
been developed, whereby, without much diiliculty, it is
possible ti calculate, for a given type of flow, the minimum
critical Reynolds numb em as well as the wall twperature
required for iniinite minimum critical Reynolds number.
As will be explained subsequently, these criteria have
recently been modilied. The minimum critical Reynolds
number &,m is the minimum Reynolds number necessary
for the possibility that very small disturbance in the bound-
ary layer may be ampliiied with time; that is, I?t,,a is the
minimum Reynolds number required for instability of the
ltirw boundary layer with respect to small disturbances
of at least certain wavelengths. The wall temperature for
infinite values of R~,m is then usually interpreted as the
highest temperature for which the (compressible) laminar
boundary layer will be completely stable for all Reynolds
numbers. The analyses in references 58, 46, and 8 and
subsequent analyses based on them are of practical interest,
since under the condition of a su.fliciently low free-stream
turbulence a necessmy (though not sufficient) condition for
transition from a laminar to a turbulent boundary layer
appeara to be an instability of the laminar layer. A survey
(aa of 1952) of theoretical and experimental investigations
on laminar-boundary-layer stability can be found in reference
59.

The purpose of the premnt subsection is to summarize the
theoretical investigations onlaminar-boundary-layer stability
performed at the Polytechnic Institute of Brooklyn by using
the mean-flow (or steady-state) mlutions obtained by the
methods presented in this report. In an unpublished report
entitled “Calculation of Stability of Constant-pressure
Boundary Layera on Isothermal Surfaces With an Integral-
Method Mean-Flow- Solution” Professor Martin Bloom de-
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veloped certain modifkations of Lees’ approximate stability
critsria (ref. 8) and applied these to the calculation of the
stability of the laminax bouudaxy layer over a flat plate at
uniform wall temperature. This report is available for loan
or reference in the Division of Research Information, Na-

tional Advisory Committee for Aeronautics, Washington,
D. C. This work is summarized in references 3 to 5.
Minimum critical Reynolds numbers for given wall tempaw
tures and Mach numbers were calculated. Moreover, the
wall temperature required to stabilize the flow completely
was also cnhdated as a function of the Mach number.
Similar types of calculations with similarresults were carried
out independently by Van Driest (ref. 60), and thwe are now
well lmown.ll Briefly, the results indicate the stabilizing
effect of cooling of the wall by increasing the minimum
critical Reynolds numbar for a @ven Mach number. More-
over, for a Prandtl number I% of 1, it is found that the
boundary layer can be completely stabilized by sui%ciently
low wall-temperature ratios 2’JT= for Mach numbers LfQ
between 1 and approximately 5. (For 1%=0.72, this can be
theoretically accomplished for l<M.<9). At higher
Mach numbers, particularly in the hypersonic range, the
validity of the theoretical approach has not been established.

The stability of the larninar compressible boundary layer
in a pressure gradient has been analyzed in reference 44 for
zero heat transfer at the wall. Calculations there for the
supersonic flow over a thin biconvex airfoil indicated the
stabilizing influence of the favorable pressure gradient.
This stabilizing influence, however, was found to be con-
siderably diminished at higher free-stream Mach numbers
Mm=4. The stabilizing influence of a favorable pressure
gradient can also be clearly illustrated by comparing the
minimum critical Reynolds number R.,., (namely, R-..4?=
2.40X10s (ref. 2)) for the incompressible flow .uJum=g in
the vicinity of a forward sta~ation point with the much
smaller value R-, ,<=7.3 X 10A (ref. 1) for incompr~ble
flow over a flat plate. The destabilizing eilect, in the case
of zero heat transfer, of an adverse pressure gradient is
readily illustrated by considering the case UJU.= 1—~ (ref.
2). The minimum critical Reynolds numbers for this case
for ill. =0 and 1 are compared, in table II, with the larger
value9 for flow over a flat plate taken from reference 1.

For compressible flows with heat transfar and pressure
gradient, the only stability calculations which appear to have
been made thus far are those in references 7 and 62. In
both of these references only Mach numberz of 3 or lower
were considered. (Cf. footiote 11.) In reference 62, the
small-perturbation solutions of reference 25 are used, while
roferenca 7 uses solutions based on the methods of analysis
presented in the present report. Reference 62 shows that

IIB~~~~~ ~-~ (~ 3~ ~ ~vO~@@~ ~~ @tb~~~~ ~~
ndtsofVanllti W. @l).~ modfSmtbmof the atahffM crfta4 however,led te
rothcr mmpUmM ~ wfth mveralbranch= of rrftfml tamperatma ratfo vmns hfaoh
nmnbr+ (ML6). ‘I’kaw~apprmrdy duetolargavalu~ oftbeatabfllty pmarnekr~ (not
rofatmltotbeXoftheprmmtr@ort) aadafln&lfnm&enm &forlargevalne oflf. oramall
vrdnmof TJ1’m. Dnnn and Ltn (c% Of),hmwvar, have qtdte -Y made bade_
montala thoamafyr&ofrekenm40 srdhavadweJo@ameraacmaahsetofbothtwe
dhursfenalsnd~nal 5tabfUtYaftarfa.0olcnlatfon9forfiw overaffatPlate
Won W*~ddtih~_=ti kofVmMtorofBbom’s ti@*
tfom. A~titieDmLh_tie*ofX@wtiW) ramfnodqnfto
amalf for flow over a Snt data evaa at W W rmmbma Tha now two-dfmamfonal
mltcriado not appear to YfeIdmoffa apprmlabfyclffkmt horn thoMof Bloomor k for
Mad rmmbersMow approrfnmtdy8.
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the critical wall temperatures required to stabilize the lami-
nar boundary layer completely are, for a given Mach num-
ber, incxeaaedby a favorable prwaure gradient and decreamd
by au adverse pressure gradient. Further calculations also
indicate the greater amount of cooling required to stabilize
completely the flows with adverse pressure gradients than
that required for those with favorable pressure gradients.
This illustrate in a further fashion the stabilizing influenco
of a favorable, and the destabilizing influence of an adverse,
presmwegradient. In reference 7, critical wall temperatures
have been determined for the supersonic flow over a thin
biconvm airfoil at two given stations along the flow, and
these have been compared with the corresponding results
for flow over a flat plate. The results are shown in figure 4,
wherein it is seen that higher critical temperature ratios
TJTI are obtained for the flow with the favorable pressure
gradient than for the flow over a flat plate. It maybe ob-
served, in this connection, that for a given reference tem-
perature Tb at a point immediately behind the shock wave
at the Iqding edge of the supersonic airfoil, the critical wall
temperature may, at the higher Mach numbers, be greater
for the favorable-pressure-gradient c.aae than for the flat-
plate case. This is due simply to the fact that the local
temperature T, outside the boundary layer over the airfoil
diminishea along the flow (see ref. 7 for details).
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l?IGUnEI 6,—NfinimumcriticalReynoldsnumbemRbo., versusMach
number Mb, wafl-reference-temperatureratio T./Tb and wfdl-
equWbrium-temperature ratio h. Verticallineswith arrm’s indi-
aatecorresponding asymptota; compare with table III.

A second type of stability CaIctiation carried out in ref-
arenca 7 was the determination of minimum critical Rey-
nolds numbers for the lami& boundary layer at a given
station of the supersonic airfoil for various values of the
(uniform) wall temperature and free-stream Mach number.
Tho results are shown in table HI and figure 6, where com-
parison is also made with the flow- over a flat plate. The
stabilizing effect of cooling of the wdl and of the favorable
(negative) pressure gradient here can be clearly seen.

I?rom table HI and figure 5, the effect of Mach number on
the stability charachwistics is seen to depend on the pressure
gradient and whether the ratio h= T./T, of wall tempera-

ture to equilibrium adiabatic wall temperature or the ratio
T./T* of wall temperature to reference tempwature is held
fixed. From figure 5 it is seen that for a fixed h an increase
of Mach number from 1.5 to 2.0 destabilizes the boundary
layer both over a flat plate and over the airfoil. This eifect
is seen, in fact, to be enhanced by the negative pressure
gradient here. For a fixed value of the ratio T./Tt,, how-
ever, an increase of Mach number is now seen, from figure
6, to have a stabilizing influence on the flow without a
pressure gradient, especially at the lower wall tempera-
tures. For the flow over the airfoil, however, figure 5 (cf.
dso table III(a)) now indicates that an incxease of Mach
number has a stabilizing effect only at wdl temperatures

close to the critical temperature and that for (tied) higher
vndl-temperature ratios of To/Tb an increase of Mach num-
ber has a clear destabilizing Meet similar to the case of
tied h.

CONCLUSIONS

From the analysis of compressible laminar boundary
layem with heat transfer and with and without pressure
gradient presented herein under the assumption of a linear
temperature-viscosity relation, the following conclusions
can be drawn:

1. For flow without a pressure gradient, such as flow over
a flat plate, the boundary-layer characteristics can be easily
determined from the equations developed here for a given
constant Prandtl number (of the order of magnitude of
unity), a given Mach number, and a given wall-temperature
distribution.

2. For flow with a pressure gradient, the boundary-layer
characteristics can also be easily determined from the
equations developed here, provided the Prandtl number is
unity and the wall temperature is uniform. Here, the ve-
locity distribution outside the boundary layer and the free-
stream Mach number, as well as the will temperature, are
considered as prescribed. The equations are also valid for
zero heat. transfer at the wall (h= 1 where h is the ratio of
stagnation ,enthalpy at the wall to stagnation enthaIpy at
the outer’ edge of,the boundary layer).

3. A relatively simple method of calculating the separation
point in a given subsonic or supemonic adverse pressure
gradient over a wall at any speciiied uniform temperature
has been developed here. This method is also applicable for
ZOrOheat transfer (h= 1).

4. A comparison of the results of the methods in con-
clusions 1, 2, and 3 with known exact solutions for various
types of flows indicates that the methods of calculation
developed here may be expected, in general, to yield results
of sticient accuracy for practical purposes, including sta-
bility calculations.

5. From the equations developed here, it can be shown
that cooling of the mill tends to diminish the F4usseltnumber
and especially the skin-friction cxdicient in a favorable
(negative) pressure gradient and to increase the coefficients
in an adverse pressure gradient. Because of the propor-
tionality factor in the viscosity-temperature relation assumed
here, it also follows that lowering the ratio of wall to free-
stmam temperature will, independently of the prwsure
gradient, ordinarily tend to increase both the ~usselt number
and the skin-friction coefficient.

6. The equations developed here further imply that cool-
ing of the wall tends, in general, to diminish the direct effect
of a pressure gradient, while heating tends to enhance it.
A particularly clear example of this is the delay of separation
in an adverse pressure gradient by cooling of,the wall.

7. The results of a numerical example for a bed linearly
decreasing velocity outside the boundary layer indicate, in
addition to the delaying of separation by cooling of the wall,
that for a tied ratio h of wall temperature to equilibrium
adiabatic wall temperature an increase of free-stream lMach
number moves the separation point upstieam, while for a
&ed ratio of wall temperature to free-stream temperature
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TJT. an increase of Mach number has, in general, a less
unfavorable effect and in the case T./Tm=2 aotually moves
the sepmation point downstream.

8. While cooling of the wall tends, in general, ta stabilize
the laminar boundary layer, it is shown theoretically that at
moderata supersonic Mach numbers sticient cooling may
completely stabilize the boundary layer. At higher Mach
numbers, particuhmly in the hypersonic range, the validity
of the theoretical approach has not been established. A
favorable pressure gradient has, in general, a stabilizing
effect on the Iaminar boundary layer, while an adverse
pressure gradient has a destabilizing oiled. A numerical
example for supersonic flow over a thin airfoil illustrate ii
detail these and other effects of Mach number, wall tem-
perature, and pressure gradient on the stability of the
kuninar boundary layer.

POLYTHCENIC INSTITUTE OF BROOKLYN,
BROOKLYN, IV. Y., April L??,1966.
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TABLE I

SEPARATION POINT CALCULATED AS A FUNCTION OF
MACH NUiMBER FOR ZERO HEAT TRANSFER (h=l) AND
u]/uco=l-E

&., for .MalOf–
hfetfwd

0 1 3 10

Pr%wntrepJ*____ am a Us o.Oms Eon

Ref. fO--.._:__:_ am 0.110 0.077 cloz

TABLE II

MINIMUM CRITICAL REYNOLDS NUMBERS Rm.cr=

(Pm%L/PJe, I?ORADVERSE PRESSUREGRADIENT CON-
PARED WITH FLOW IN ZERO PRESSURE GRADIENT
WITH ZERO HEAT TRANSFER (h= 1), S/2’. -0.5, AND
~=0.0496

R=,. for Ma of-
Fforv

011

u@m-l-c s30xlfP 104X1P
(8dverra presnre gradfent; data from rd. 2)

ul/um -1 ~w Sal
(zriro~ gmdfan~ data fromref. 1)

TABLE III

MINIMUM CRITICAL REYNOLDS NUJIBERSOF LAhHNAR
BOUNDARY LAYER OVER THIN SUPERSONIC BICONV33X
AIRFOIL AND OVER A FLAT PLATE

(a) ValueS over airfoil; data taken from reference 7; ~=0.8

L5 L1 L5W ;2 Xlf$
LO L4.93
.89 LS49
.91 LXM W
.’20 Lm fama
.a% L!E9 -

(b) Values over flat plate; t’= F=O.S
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