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AxrALLY sYMMETRIC SHAPES WITH MINIMUM WAVE DRAG ‘

BY hhx. A. HEASLETand FEANKLYX B. FULLEB

SUMMARY

The external wave drag of bodies of recoluiion moving al
supersonic speedscm be tzqmemed& in i!.ernwof thegeometry
of the body, or in term of the body-simulating axial source
distribution. For pwrpow of deriving optimum bodies under
carious given cmuiilti, it 22found that the 8econd of the
methoh mentioned is t.lu more tractable. By uae of a qumi-i-
qlindrica.1 theory, W is, the boundury conditiorMare applied
on the &ace of a qdina%rrather thun on h body ikwlj, the
variational problem of the optimum bodti king premribed
oolume or caliber are solved. The streamwise vuriaiti of
cross-sectional area and drag8 of the bodies are exhibited, and
8ome numericul rewll.s are given. The soluihrw are fownd to
depend upon a single parameter inoolvirq Mach number and
the radius-lengthratio of the given cylinder. Vaxim?imof this
parameterfrom izro to in$niiy gimx the spectrum of optimum
bodti, jor the prewribed condition,from the slender-bodyresult
to the twodimemiond. ~ numerical re8u& 8h0w thutfor
increasing va.hm of the parameter, the optimum 8hape8quickly
approach the twodhnsimal.

A reciprocity relutionfor &$ow b derioed, and&h wed
in formulating the variational problenw in term of the drq
formu?u involving geometty. Fomwu-?utionof th-e minimum
problem in ternMof combinedjlow jields is found to lead to
extremely simple rtiiOn.9 thai are 8a$i8@ by #w $OW fit2W

induced bUoptimum bodies. ZZe combined$OW concepi%are
&o w.@@ for eazmple, in checking rexuh%found by other
means.

INTRODUCI’ION

The design of minimum-drag con@rations is one of the
fundamental problems of aerodynamics. For many efi-
gineering purposes it is, furthermore, possible to make useful
predictions and design calculations for steady flight by con-
sidwing additively the drag attributable to the viscous
nature of the air and the drag that occum in an inviscid
medium. Since efficient flight is closely associated with tie
usc of aerodynamic shapes producing relatively small dis-
turbances in the air, the analysis upon which the inviscid-
fluid theory is based can, in many cases of practical interest,
be further limited to first-order approximations involving
small perturbations. For supersonic flight speeds such an
analysis is linear, the perturbation velocity potential of the
flow field satisfies the wave equation, and the pressure drag
of nonlifting configurations results from the accumulation of
energy in the waves induced by the body during its motion.

The purpose of the present paper is to show how most
:Snpemdes NAOA TN 3$53by Max. A. H@et and Fmnklyn B. Fuller, 18S5.

favorable body shapes, under various given conditions, can
be derived by using formulae for drag prediction that are
bawd upon the linearized theory. The type of body to be
treated is a nacelle- or duct-like configuration (nonlifting and
having axial symmetry) which induces perturbations that
are speciiied on the surface of a circular cylinder. The
analysis might be termed quasi-cylindrical, since boundag-
conditions are applied on the surface of a cylinder rather
than on the body itself. Only the external flow is considered.

There are two rather different methods available for the
calculation of drag of such bodies. The iirat, given by ward
in reference 1, e.spresws the drag in terms of the geometq of
the body and of a weighting function tirat encountered by
Lighthill (ref. 2) in connection with the drag of fisiform
bodies. The second result, published recently by Parker
(ref. 3), is a formula in which the drag.is expressed in terms
of the strength of an axial source distribut~on that simulates
the body shape. Generally speaking, the formula giving
drag directly in terms of geometrical characteristics would be
preferable, since the usual auxilialy conditions in variation
problems, such as given volume, given caliber, etc., are also
expressed in geometrical terms. Unfortunately, however,
the variational problem in this case leads to an integrnl
equation whose kernel is the L@thill function mentioned
previously, and the properties of this function are not at
present well enough known to enable one to solve the integral
equation by other than numerical methods. On the other
hand, the expression for drag in terms of sources leads to a
tractable integral equation, although the relations between
source strength and geometly are somewhat complex.

Problems of the sort to be treated here have been attacked
by Ferrari (refs. 4 a~d 5) and by Parker (ref. 3). The fimh
named author has approached the problem of minimum drag
with assorted isoperimetric conditions by both tie above-
mentioned methods, but the main effort was made in con-
nection with the source-strength method applied in con-
junction with a control surface consisting of a frustum of a
cone. A large number of cases have been worked out,
mostly by numerical methods. The other-work, referenm 3,
gives a solution to the problem of the ‘minimum-drag body
with given caliber, making use of boundmy- conditions on the
Stokes’ stream function, rather than the potential function.

In this paper we shall approa?h the problem by the use of
both methods outlined above. In an introductory section,
the operational approach to tho waye equation is extended
to bodies having peripheral as well as longitudinal variations
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of surface shape. The analysis is then restricted to the case
of axial symmetry and the two drag formulae are given.
Then a reciprocity relation for axial flow is derived, and the
notion of combined flow fields is introduced. This device
leads, through application of the reciprocity relation and the
drag formula in terms of body geometry, to extremely simple
physical characterizations of the flow fields associated with
optimum bodies. Next, in order to derive explicit expres-
sions for some optimum bodies we consider the scmrce-
fum%ion approach in combination with a cylindrical control
surface on which boundary conditions are speciiied. The
results obtained are discussed with the aid of numerical
esarnples, and, ilnally, the reciproci~ relations derived
earlier are exhibited in terms of the explicit solutions found,
nnd some uses of the reciprocity results are indicated.

The appendix is devot ed to summarizing the results of the
minimizations for the convenience of the reader.
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LIST OF IMPORTANT SYMBOLS

speed of sound in free simwn
strength of source distribution
function used in isoperimetric problems (See

eqs. (60).)

pressure coefficient,’+

con@ete elliptic integral of second kind of
modulus k

modulus of elliptic integrals
complete elliptic integral of first kind of modulus k
Bessel functions of order m (See ref. 8.)
length of body -

Mach number in the free streaq ~

direction cosines with respect to Cartesian axes
of the inward normal to a surface

pres9ure
pressure in the free stream
pressure in a combined flow field, p–~

dynamic pressure, $ PD.=

radial coordinate, -&%7
incremental radius on control cylinder due to

source distribution along axis
radius of cyli.n@ical control surface
cross-sectional area of a body
s(z) –s(0)
C@e9ian coordinates
perturbation velocities in x,y,z directions, respec-

tively
free-stream velocity
perturbation velocity in radial direction
volume of body ~
additional volume wrapped on cylindrical con-

trol surface..
function defied in equation (25)
psmrneter of elliptic integral of third kind
MO’–l

dimensionhx stmmmwise coordinate, ~

COMMITTEEFOR AERONAUTICS

angular coordinate, tnn-’ ~

Lagrange multipliers in isoperimetric probkuns
complete elliptic integral of third kind of modu-

lus k nnd parameter ~ (in notation of mf. 20)
free-stream density
PR
-i
perturbation velocity potentinl

suFFrxz9

dMerentiation with respect to strenmwise coordi-
nate

quantity evaluated in reversed flow field
Laplace transform

dirnensionlem quantity ns V*=J S+ etc.

INTRODUCI’ORY ANALYSIS

The analysis to be given here is odapted to boundaly con-
ditions specitied on a right circular cylinder so oriented thnt
its axis is parallel to the free-stream velocity vector.
Immediate application thus follows for quasi-cylindrical
shapes that deviate slightly, both longitudinally and periph-
erally, horn a cylindrical control surface although the esprm-
sion for drag can be extended to include the domain of
slender-body theory.

Consider a fixed Cartesian coordinate system in a SUPIW
sonic free-strewn of veloci~ U. and Mach number M.= UJao
>1 where GOis the velocity of sound in the free strenm. The
z axis is alined with the direction of the flow and the lnternl
coordinate y,z may ako be expressed in polar coordinates
T,O where r=~~w, 8= tan-lz/y. A cylintilcnl control
surface of radius r=R= const. is given with the rango
O <z <1 and on this control surface the perturbation velocity
components, together with their gradients, are small relatiw
to U. and U./l. Under these conditions the field external
tQ the cylinder of radius R has for its governing equation the
linear relation

P%Z–%Y–%=0 (1)

w-here the subscript notation denotes partird differentiation,
~(z,Y,z) is me perturbation velocity potentird yiekling the

perturbation velocity components

?@,y,z) =q=(z,y,z), U(qy,z) =qp’ (%?/,2), W(%YF) =% (W,z)

and pg=M~— 1. The boundary conditions on the body aro
to be taken in the form

d%r#)lr-B=uo Q(%Oj O<x<l (2)

where (3 is a known function of z nnd 0.

A GRNERAL SOLUTION OF THE WAVR EQUATION IN CYLINDRICAL COOR-
DINATE

If equation (1) is rewrittm in the form

@q=–*–Wr)w-Wr)%w=O (3)

it is possible, through separation of variablea, to derive a
general solution representing a rectilinear distribution o



~LY SYMMIWRIC SHAPESWIT13?MlNIMUMWAVE DRAG 133

source and multipole singularities. This general solution can
be found by use of the Laplace transformation. By defini-
tion, the Laplace transform 2 (see ref. 6) of a function
F(.qr,o) is ~(s;r,o) where

J
.q8;r,e)=e-mF(x,r,6)iz (4)

o

If one employs this transformation and applies initial condi-
tions consistent with supemcmic flow theory (ref. 7), equation
(3) becomes

@’&@r–(l/r)~– (1/r)’@o=o (5)

The tranform of the perturbation velocity, potential is
assumed separable in the form

?5(s;r,0)=~(r, 8) cos mll

find it follows directly that ~(~,s) must .mtis& the ordinary
deferential equation

d’{
— ‘k++%’]’=”LWsy+i?rs d(pm)

Thus, the solution can be written

7(8; r, 0)= –~ a cos M [Z.(s)lh%mj+zm(s) 1.@n3)]
o

where Km and I= are modified Bessel functions in the nota-
tion of reference 8. The asymptotic expansions for the
Bessel functions show that I. yields incoming waves suit-
able for the analysis of flow inside a tube or cylindrical
control surface; K. yields outgoing waves that are suited to
the c.dculation of the field external to a tube. It follows
that one has, in the latter case,

?+WJ?= —~ ~ z(s) K.@rs) Cos me (6)
.

The inversion of equation (6) can be achieved in two
ways. First, from reference 9, page 277, and tie convolu-
tion integral, one gets

fo(x,r,o)=-~[J 4‘-~Ao@)o?.z,%0 (RCJ’+W+

J (._mA.(xJ coeh m cosh-l ~) &c,
gcosme

1 0 J(z–z,)’–pr’ ~ 1

m
Second (see, e. g., ref. 8, p. 79), one has

K.@rS)=(–l)” & ($-y Ko(prs)

Thus equation (6) can be rewritten as

and the inversion is

where the function C.(z) is given by (from operational
calculus rules)

‘=’(’)=0-r@fA=Jz’)dxl
=&f: (z–q)”-lA&)clq (9)

Equation (8) expresses the solution in the usual form,
given, for example, in reference 10, page 527. For some
purpose9, numerical calculations for example, equation (7)
has advantages over equation (8). The two solutions
express the perturbation velocity potential in terms of
distributions of singularities along the central axis, the first
term representing a distribution of supersonic sources of
strength AO(z)&, and the subsequent terms representing
multiples of order m.

It is of interest to calculate the limiting forms of equations
(7) and (8) for large and small values of ~. For large r,
equation (6) becomes

where the asymptotic form

has been used. The perturbation velocity potential is then

The ultimate attenuation of ~ with lateral distance is there-
fore ii.xed by the factor l/~. For small r, equation (6) be-
comes

@(s;?’, e)= +-=(++7)+
AA+ (m–l)! &-#ycos me] (12)

1

where Y= 0.577 is Ner)s constant. The invemion of equa-
tion (12) is

where CL(x) is defined in equation (9). This result was used
by Ward (ref. 11) as a basis for the development of slender-
body theory.

2It wtlf be o.munedthrough the ma%entwtfon that the origin k n~ of dl dfstmhance @nta in the flow flefd. SnkqmntIY, the origin wffl he shIftwl m as to lie at the mutmrn
focaof the control 2rmkceor lmrly.
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As presented, the above general solutions (eqs. (7) and (8))
were not related to speci.tic boundary conditions. The formal
development of this relation is straightforward and leads to
an e.splicit solution for boundaW conditions given on the
cylindrical control surface at r=R= const. Let the given
conditions be

~]rma=uoG(~,8)=uo $ gm(~) ~S @ (14)

From equations (6) and (14), one has

=Uo $ Z.(9) cos md

since
-$ K.@rs)=@K=’@rs)

equation (15) yields

and the transformed velocity potential is, from

(15)

(16)

equation (6),

u;-ijjZ.(S) K.@rs)~(8;r,e)=—— —
PO 8 K.’ (@8) ‘s ‘o (17)

In order to give the desired expr-ion for q(z,r,O) it is neces-
sary to calculate the inverse Laplace transform of the func-
tions Km(&8)/Km’(#A%). This task has been undertaken by
Mersmnn (ref. 12).

EXTERNAL WAVE DRAG OF QUM1-CYLINDRICALBODY OF REVOLUTION
IN TERMS OF ITS GEOBIETRY OR SOURCE DISTRIBUTION

Attention is now restricted to flow fields possessing axial
symmetry with respect to the steam direction. Independence
with respect to Othen reduces equations (7) and (8) to

(18)

and the velocity potential is expressed as a rectilinear dis-
tribution of supersonic source potmtials. Operationally,
equation (18) takes the form

~87)= –&~(8)KO@r8) (19)

The axes may now be considered as shifted so that the source
distribution starts at z= —19R and induces perturbation
velocities on the cylindrical surface r=R, Os xs 1. For
r> R one then has the disturbance field associated with a
body of revolution that deviates only slightly from the
cylinder r=R. The wave drag of such a body can then be
e.spressed in two ways: iirst, as a function of the body geom-
etry;’ second, as a function of the source-strengd distribu-
tion. The tit result has been given in reference 1. To the
order of accuracy to which this control-surface theory applies,
the slope of the resulting surface is

dr= s’(z) 1 1dx 27rR‘~ ‘r ,.E (20)

where S’(z) is the streamwise derivative of local cross-
sectional ~ea of the body. This condition, together with
equation (19), yields

~o(8) F@—_=
u. 19R8KJ9R8)

(21)

where S’(s) means the Laplace transform of S’ (z), and

~8fl) Z7@ Ko@R8)—_ —. —
U. – ‘%13R8 KJ13R8)

(22)

In order to calculate drag, pressure on the body is next
evaluated. Denoting by p and pO local and free-strecun

pressure and setting q.=: POU.2,one has in

J
p~o _2u(z,R)

~. . E= U.

From equation (22)

linearized theory

(23)

._~
[

~ K1@R8)–Ko@R8)——
2@R K,@R8) J

(24)

The inverse transform of the second term involving t.ho
Bessel function leads to the function W(z) introduced by
Lighthill (ref. 2). By defiition, its transform is

K,(8) –KO(8)
D(8)= K,(8) (26)

Pressure distribution on the body can then be calculated
from the expression

y2=_.& p)-p(q~) *] (26)
o

The function W(z) is shown in figure 1; tabular values for
—2<z< 10 are given in reference 1.
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The mternrd wave drag C~Oof the body is finally deter-
mined by direct integration

(27)

and from equation (26) is

{J%=2+2:[S’(z)]’&–
( ~B ) I} C@-&J“f: S’(z) s’(x,)wa dx ax

In a later section entitled “Geometric Criteria for Minimum
Drag,” the role equation (28) plays in problems involving
drag minimization will be discussed. For the present, it
may be. remarked that although the magnitude of the in-
fluence function W(z) is known, its analytic propertiw are
not well enough defined to permit easy manipulation. It
will become more apparent later that for certain mininmm-
drag problems an advantage is provided when one deals
directly with source distributions and established the rela-
tionship between geometry and source strengths as a
separate part of the analysis.

Equation (18) expresses the potential of a source distribu-
tion of strength A&c). On the cylihdricd control surface
r=R and within the range O<x 51 an effective body shape
is induced rmd the drag of this body can be calculated as
follows. The streamwise and lateral perturbation-velocity
components are, respectively,

(29)

(30)

where AJxJ = O for xl S —DR. Tho effective body, within
the range O2X <1, is tied by the boundary conditions of
equation (20) and its external wave ‘drag is

D = –2rpaR J1Ax, Ekr(x, R)~
o

The dummy variables ccl,X2can be interchanged; if one then
combines the two expressions of equation (31) and inverts
the order of integration, 3 the integration with respect to x
can be performed and there results

D=fi
s’

~T ;RwAO’(w$l

as given in reference 3.

It is of interest to remark that although equation (32)
uses only a lmowledge of the function Ao(z) in the range
–19R<z<l-pR, the drag that is calculated presupposes a

spetic source distribution function in the range 1—PR<x
if one wishes to identify the drag with a geometric shape.
Thus, as in figure 2, if the body shape near T=R is assumed
to have some arbitrary variation for OSZS1, and to
straighten out into a purely cylindrical surface downstream
of x=1, a source distribution function is required downstream
of x=1— PR to produce the cylinder.
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IhGmm 2.—Body induced on a control surface by an axial source
distribution.

The fact that the stream velocity is supersonic means
that upstream influences of A&c) for x>l–pR cannot be
felt on the body and explains why the drag of a complete
geometric shape can be determined from its source distribu-
tion without lmowing the complete details of the distribution
function.

As anothar example of the use of equation (32) consider,
as in figure 3, a circular body extending from z=—PR to

x=1 with a cylindrical afterbody of radius R aft of x=1.
If the emrce distribution of this body is lmown as, say, for
example, in the case of a cone or slender body of revolution,
the body drag can be determined by using the surface
T=R,O <z <1 as a control surface and calculating momen-
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l?mum 3.—Body nosa induaedby an a= source distribution.

JTtro Inversionof order is p3rmkIblo only if .4.(.s) is mttably MI bobaved, a pointthatwflldse laterh thedet6mrhatimroftbeoptimum bcdy with glvon calfkr.
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tum transport through the control surface. Equation (32)
is the exact expression for the body drag, and, again, requires
no knowledge of source strength beyond x=l—PR.

COMBINED FLOW’ FIELDS

One method of attack that has proved to be extremely
helpful in the analysis of problems in aerodynamic theory
involves a symrnetrization process in which flow fields in
both forward and reverse. flow are related. Attention, up
to the present time, has been devoted principally to planar-
type problems and in referame 13 Jones has used this
approach to derive criteria that appear in the minimization
of wave drag of, for example, nordifting wings hwi.ng speci-
fied thickness ratios or volumes. In this section, a brief
discwion is given, using the methods of reference 14, of the
way these concepts appear in cylindrical-control-surface
analysis.

Z’HERECIPROCITY EELATTON FOR ~ FLOW

Equation (1) can be written

UP)=B’%%z-%u-pzz=o(33)

where L(P) is a sti-adjoint linear operator. Let now
#(x,y,z) and Q(z,y,z) be two solutions of equation (33)
satisfying boundary conditions given on a circular cylinder.
Reciprocal relations betwen # and Q can be derived by
applying Green’s theorem over a prescribed geometric
region. Considex, as shown in @e 4, the cylindrical con-
trol surface extending horn z=O to x=1 and draw the
enveloping Mach cones “at the front and rear of the surface.

FIGURE4-Surfacea of integration for combiiad-flow analysis.

Denote the cylindrical surface by z,, the front Mach cone
––BR by z,, and the rear cone z+13r=l+PR byx—&-

zs. These surfacea enclose a toroidal region, bounded
internally by Z1 and OXt@llldy by ZZ and & It follows
from Green’s theorem that the integral relation

applies where the surface integration extends over Zl, Zz, Za
and nl, ~, ~ are direction cosines, with respect to tlm x, y, z
axes, of the surface normal directed inward into the region.

It is customary to re-express relations like equation (34)
in terms of a newly defined directional derivative along rLlino
termed the conormal. In this manner, the equation becomes

SS#A a; dz= SS$JA~ dZ

where
ap ap ap ap—=—
av ax Vi+— v2+~z V3

%?4

(35)

(36)

and the direction cosines v,, V2, Va of the conormal rumderived
from

—nJP=Avl, %=Avz, ~=Av3

By calculation of the respective normals nl, %, n3 and using
the relation v?+ v/+%’= 1, it is readily found from tho
equations defining the conormal that on the surfaco 21, tho
conormal is normal to the surface andA= 1; on a Mach cone,
the conormal lies along the cone and A=13

Let now # be set equal to q(z, r, o), the perturbation
velocity potential associated with boundary conditions in o
forward-flowing stream, and let Q be Z(Z, r, o), the z-wise
component of perturbation velocity associated with bounclaq
conditions in a stream flowing in the revemo direction,
Under. these conditions, equation (35) becomes

On the Mach cone %, the perturbation potential may mbi.
trarily be set equal to zero and its conormal derivative along
the cone will also be zero; as a consequence, the second terms
on both sides of the equation vanish. Since the flow fields
are irrotational, M@r= W,/&c where v, is radial velocity,
After making this substitution and integrating the tit tmm
in the right member by parts, one gets

The last integral becomes

and for the given bouhdary conditions it is possible to show
that along a conormal of 2, the relation 5,=PZ holde and
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@ii is independent of v. The integral then can be remrittsn
as

and one has, fhdly, the desired reciprocal theorem

It is not the purpose here to exploit the various applica-

tions of equation (37); rather, the role played by the recip-
rocal relation in drag calculations will be considered. In
the forward and reverse flow fields, the pressur-velocity
relations of linearized theory are

P–Po=— Puo’% ;—p.= pouoii (38)

If, furthermore, thiclmess distributions of the form

?’=f(zje), r= f(z,o)

are placed on the cylinder r=R, the boundary conditions are

Equation (37) can then be written

An immediate consequence of this lad remdt i9 that-for a
unique thiclmess distribution, that is, for f (z,O)= f (z,O),
the drag of a body in forward and reverse flow is the same.
This follows horn the fact that for quasi-cylindrical bodi~
the relations for drag are, respectively,

For fixed geometry, therefore, drag is equal to half the sum
of these two expressions

Defining pressure P(z,T,o) in the combined flow fields by the

following
P(x,r,o)=p–~= – p~o(u+ii)

one has

If the body has axial symmetry, equation
tho form given in equation (28). To show

(40)

(41)

(41) reduces to
this, one notes

first that ~ andj are&dependent of 0 and that equation (41)
becomes

JD=; ~(Z)(tC

.
The proof follows from the relations

Is’(z)=&(z)
1

—=-* P’(’)-G’(’l)W(%)%Iu(x,Rj
Do

I

—=-40’’z)+P’@’)wr%%l’42)ii(x,l?)
u.

P(X,R)T=* FS’(Z)-JS’(Z1’W(W)
GEOMEI?BIC CRITERIA FOR MINIMUN DRAG

Consider now the problem of minimizing tie wave drag of
a quasi-cylindrical body subject to the condition that the
volume of the body is constant. The body surface may be
deiined by

r= f(z,O)=R+g(@) (43)

The function g(z,t?) determines the magnitude of the surface
displacement from the cylinder r=R; these displacements, as
well as their gradients, are assumed small and we also assume

g(z,O)=Oforzs O and 12x

If equation (41) is integrated by parts with respect to z, the
wave drag of the body becomes

(44)

where the prime indicates z-wise differentiation of P. The
imposed geometric constraint on the variational problem is

1 SS SS1~
~ :d9 ‘f %,e)(iz =2 ~ d :[R2+2R@,0)] dx

o

SS
9*

=TR21+R d ‘g(z,O)&c= V=const. (45)
o 0

where V is the totalvolume. The problem thus becomes
one of mhimizkg the expression

where p is the Lagrangiau multiplier. Carrying out the
variation, one has

R 2.

SS~(D–PV)=-3 o 6?.$; [P’(ag)+g(6P’)+ 2@g]ckc=o

but from equation (37) or (39) it can be shown that the first
two terms in the integrand yield equal integrals and the
~g condition becomes

SS‘“do: [P’(x,R,o)+P]6gdz=0
o
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Siice this latter equation must be satistied bj all possible
variations of the displacement function g(@), it follows
that the desired condition is

P’(@,L9)+J4=o (47)

Stated in words, the condition for minimum wave drag of a
quasi-cylindrical body of given volume is that the longi-
tudinal gradient of pressure on the body in the combined
forward and reverse flow field is a constant. Furthermore,
from equation (44), minimum drag is then given by

where p can now be identified with the negative pressur?
gradient in the combined field and (V–zlPl)=V, is the
volume exposed to the fluid around the cylindrical control
surface r=R.

The actual cross-section-area variation of a minimum-
drag constant-volume body and its pressure distribution
are shown in figure 5 for the case in which axial symmetry

r

I /
‘P

FXGURB5.—Mimimum dmg body with p~uro distributions in
combined flow.

is imposed. Pressure coe5cient in the combined flow field
of an axially symmetric body has been given in equation
(42). The geometric criterion just established then leads
to the integral equation

2s’(x)– [sww(~)~=-wz+b (4,,

and the solution of this equation will determine the body
geomehy. In the following section an analogous integral
equation will be derived but with the source-strength dis-
tribution chosen as the fundamental dependent variable.

The combined-flow-field technique can also be used to
study the problem of mhimbing wave drag for speciiied
body caliber or, more generally, when the body has a fixed
cross section at a specitled longitudinal position. The
resulting condition for minimum drag is that the pressure
distribution on the body in the timbined flow field is a
constant forward and aft of the specified position. ThMe
conditions are all analogous to those obtained for planar
problems by R. T. Jones (ref. 13).

DRAG MINIMIZATION

In this division, optimum bodies having certain prescribed
geometric properties will be determined by standard varia-
tional methods. The analysis will, as mentioned prcwiously,
deal with the strength of an axial source distribution aa the
mhimking function, rather than the geometric quantity,

r

Uo
t 1

+
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I
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\
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\
\
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Fmum 6.—Body and associatednomenclatureused in dmg
minimization.

cross-sectional area. Thus, we shall be concerned with
formula (32), giving drag in terms of the source distribution.

QUA91-CYIXNDRICAL BODY OF REVOLUTION OF GIVEN VOLUME

Isoperimetric conditions.-The configuration to bo con-
sidered, together with associated nomenclature, is shown in
figure 6. The geometric properties of the body can be
expressed in terms of the source distribution function A.(z)
by using equation (2o), namely,

1S(X)=%$0, (50)
0 r-R

Then, from equation (30)

(51)

If equation (51) is integrated x-wise it is seen that

J‘-p’(Z–A%’(%*1S(z)–s(o)+ J ‘z .~.
~(z–z,)’–19’R2

(52a)

By changing the order of integration and performing the
integration with respect to z one iinds

or, in~ting by parts,
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The magnitude of the additional volume wrapped a’round
the cylinder is

rind, from

Jv.= : [s(z) –s(o)]& (53a)

equation (52b),

Jv,=~‘“pRAO(xl)l/(~–x1)2–&R2 dxl (63b)
0 -BR

The variational problem.—The quantity to be n-inimized
will be taken as D–L,V.. I?rom equation (32), the drag
can be written, after an integration by parts,

In addition to prescribing the volume added to the funda-
mental cylinder, we &all also require that the body return at
the end to the same cross-sectional area as at the front.
Thus, according to equation (52b),

s

l-B’ (1—xl)A@ dkl
o=

-P. ~(1–x,)*–II?R’
(55)

is a wndition to be met by the minimizin g function Ao(z,),
and by its variations.

The quantity D—,u1V6 can be formed from equations
(53) and (54), and if the variation is performed, one finds the
condition

If this last equation is compared with equation (55), it is
seen that for admissible variations, the quantity within the
brackets must be set equal to x(l—z,), where x is an arbitrary
constant. Thus, the equation for determination of the
optimizing source distribution under the conditions of given
volume and closure is

(56)

Equation (56) is recognized as the familiar airfoil equation

with [Ao’(x~~(l—z~a—@l?] as the unlmown. Thus we
write the solution immediately as (see, e.g., ref. 15)

The first integral on the right vanishes according to
closure condition (55) and, if the remaining integrations
performed, we fid

the
are

~0 (31’–413Rl-8$R’–121x+ 8fl
1}

It will be noted that unless

this solution for Ao’ (z) does not obey the closure require-
ment. Therefore we impose this last condition and fially
obtain

P, (P-4fiRl–8@R~–81 z+8@
.A:(x)=4PD0

~(l+BR–x)(x+@?) (57)

The strength of the minimizing source distribution Ao(z)
is now obtained by integrating equation (57);

A.(z)=*
[

(1–2z)4(l+pR–z) (Cc+pR)–

1–2X
2@’R’ ‘s-’1+2PR 1(58a)

Properties of the optimal source distribution.-It is con
venient to express the various quantities such as sourco
strength, area distribution, etc., as dimensionless functions
of the dimensiordeas variable 7=x/1 and parameter u=BR/L
Thus, indicating a dimensionless function by a star, we have
from equation (58a)

[
4(1??) z~l (1._2q)J(q+u)(l-T+ .)–AO*(q)=r=—

4go

It will be noted that if the radius of the control surface is
taken very small, so that HO, formula (58b) becomes

which is the well-known slender-body theory result for the
source distribution corresponding to an optimum body of
given volume (refs. 16 and 17.)

In order to determine the value of the Lagrange multiplier
M, in terms of the prescribed volume V,, it is convenient
to find first the expression for the local cross-section area of

the optimum body.
(

Thus, using equation (52c) with
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S%)-S*(0)=;+04[T +24(1-T +24

[q(l–q)~–4–4a)(K–al (59)

where K and E are elliptic integrals of the tit and second
kinds, respectively, of modulus

h+=
?l(l-q’)

(q+wl’-?+w

Using equation (59) in equation (53a), we find

J~e*=&1~gO,~(T+2cT)(l-q+24 [v(l–n)=otl–4u) (K–@]dq

(60a)

which expresses the constant pl, in terms of tit! prescribed

v.
volume V.*

()
=7 and of a function B of the quantity

u= 9R/1. A graph of this function B(u) versus u is shown in

=.~/I

FIGUREI7.—The function B(.).

figure 7. Shown als.c in figure 7 is a dashed line that cor-
responds to the asymptotic form for B(u), which is

(60b)

The closeness of the asymptotic values to the exact values
even for relatively small values of u is noteworthy.

The formulae (58b) and (59) for the source strength and
cross-section area, respectively, can now be recast in terms of
prescribed quantities

[
m)=; ~ (1 1l—2?l

—2?J4(?l+u) (1—?l+u)-2# cm-l ma

(61)

~q+2a)(1_q+2a1

s(o)

[q(l–q)E–u(l–4u) (K–E)] (62a)

where V. is the volume of the original cylinder section,

Vo=irR21= lS(0)= 1’V.*

Consider the expression (61) for the source function A.” (q).
In the parameter u=13R/Z,we may think of B as iixed and 1as
unity, so Mat variations in u amount to variations in tlm
size of the control surface of radius R. Thus, in figure 8, the

FIGm 8.—Optimum source distributions for various values of the
parameteru. “

case u= O corresponds to the source distribution for the wcJl-
known Sears-Haack body (refs. 16 and 17). It will be noted
in the cases where u>O that the source functions become
less steep and attain lesser maximum values because &o
volume remains the earne while the control-surface cylinder
is increasing, thus giving a smaller maxtium radius of the
added portion.

Next let us examine the expression (62a) for cross-sectional
area. First, we notice that it can be written

SW-W(0)=*, 3KT+2UX1 –T+%)

[~(1–T)E%(l-4uXK-E)] (62b)

in which form it reduces formally for u+O to

s’%)+V.”[dl–w [62c)

which is identical with the expression for cross-section area
of a slender optimum body of prescribed volume (Smrs-
Haack body). Of course, V. is, in ,$hiscase, the total volunm
of the body. On the other hrmd, if we allow the radius of
the control surface to increase indefinitely, equation (62b)
gives (using the asymptotic form for B(u), eq. (60b))

N(v)–iY(o)=6V,*q(l –q)

In the case when R is very large, we trike

S(Z)–S(0)=2rRA@ (63)

so we have, returning to the original variables,

v. Z(l–z)
‘<X)=6 ~j~ 12

—— (64)

where V,/2zR.l is a finite quantity, and, in fact, is the avorago
height of the protuberance above the contzol cylinder. This



AXIALLY SYMMETRIC SHAPES WITH MINIMUM WAVE DRAG 141

result is clear from physical reasoning, for one would expect
that as the control cylinder increased in radius, the two-
dinmnsional result for the optimum problem would become
more nearly valid, and, indeed, equation (64) is the formula
for a twodimensional biconvex section, where Ar is dis-
tanco from the mean line, 1 is chord length, and muinmm

()3 v,
thickness is ~ ~ .

It will be ‘noted- that the area distribution as given by
equation (62b) has fore-and-aft symmetry, since the function-
al dependcnca upon q involves only the combination q(l–q).
The mcminmrn cross-section of the optimum body then oc-
curs at the midpoint q=~ and is given by (from eq. (62b))

F
* 1+4U E

maz — [––u(1-4u)(K-E)]=2V.* T(U)–S(0)=2V. ~(.) 4

(65)

where the modulus of the elliptic integrals is now k= 1/(1 +4u).
Figure 9 shows the function Z’(u) versus u.

FIGURE9.—The funution C!’(u).

The drag of the optimum bodies can now be evaluated.
l?rom equations (54) and (56)

The integral involving A vanishes because of the closure
condition. The remaining integration gives

by equation (53b). Finally, using the evaluation of pl of
equation (60a), we have

D v,’
–=3 14B(U)q.

(67)

Numerical results pertaining to the problem just solved will
be given in a later seotion, and a summary of the important
formulae is given in the appendix.

QUASI-CYLINDRICAL BODY OF REVOLUTION WITH GIVRN CAIJBER

The variational problem,—For this problem, we prescribe
the area at the base of the body, so the given condition is,
tim equation (52b)

The variation can be taken as before (now without invoking
the closure condition) on the quantity D+ MS, and it
leads to the integral equation

The solution to equation (69) can be written immediately
by analogy with that for equation (56). The presence of a
linear singularity in Ao’ (z) must be disallowed, however,
according to a condition mentioned in deriving the drag
formula, equation (32). Thus, we have here to set

8qoAs
‘= —T1(l+WR)

and the solution consistent with the given conditions is

Integrating this expression, we fmd for the strength of the
optimhbg source distribution

The source distribution of equation (70b) represents the iirst
approximation to the result of reference 3 for nearly equal
front and rear radii.

Properties of the solution.-As in the section on the body
with prescribed volume, we now consider z made dimension-
less by division by 1, and again set u=19R/L The various
quantities of interest in connection with the caliber problem
then become

Am=:*a4(ll+u)(l-T+u)

~*(v) –s*(o)=dl:k) (1+2u) (l+4u)@’,k)–(1–2q) (q+2u) (1–7.I+2uH-(1+2LT) 0-?7+2u)K
AS* J(T+W (1–q+fw

where II(&, k) is a complete elliptic integral of third kind of I

modulus P=
q(l —q)

(?l+~)(l-n+~)
and parameter d= — n

l—q+2u.

Again K and E are complete elliptic integrals of the tit
and second kinds, respectively, of the same moduhs k.

If we allow u to approach zero, equation (71) becomes, in
the limit,

s’l?l)_2 [s~-q&(l-2q)m—_.
s“(l) %-

(70C)

(71)

[72)

which is the shape function for the well-lmown K6rm6n
ogive (ref. 18). At the other limit, when u~~, equation (71)
gives (in the original variables)

J!!(z)-s(o) Z
AS ‘z
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or, using the approximation of equation (63),

A@_z
Ar(i) 1

(73)

which is again the expected two-dimensional result for speci-
fied caliber.

The drag can be found by substituting equation (69) in
equation (54), and then using equation (52b). There results

D_ 4 _(A~2
~–a-(l+k) 1’

(74)

A summary of formulae pertaining to this body will be found
in the Appendix.

RXAMPLRS OF OP!ITMDN BODIES

The optimum body of given volume.~In order to examine
in detail the dependence of the body geometry on the param-
eter a, we may return to equation (62a). The quantity
[i5’*(q)–i3*(o)] is actually the local cross-sectional area added
to the basic cylinder by the action of the source distribution.
In figure 10 are shown some cases of optimum bodies, having
equal additional volume V.*, for several values of the param-
eter a. Only half of each distribution is shown, since they
are symmetric about the point q= 1/2. The one labeled
u=O is the Sears-Haack optimum body, and it will be noted
that as u increases, the curves depart rather quickly from
this limiting case and approach the other limiting value of
the biconvex distribution for =OJ. In fact, a biconvex
arc drawn through the end points of the u= 1/2 case is indis-
tinguishable from the exact result in the scale used. In the
inset of figure 10 is shown the variation of the drag of the
optimum bodies as a function of a. This drag is idso based
on equal volume, and shows a fairly rapid decretwie with
increasing values of u, due to the decrease in the thickness
of the exposed portion of the body. The dashed curve” on

the drag plot is the calculated drag
[

D 112

qo(v.lw=~u ‘der

the assumption that each meridian section of the body acts
as an independent two-dimensional optimum airfoil. This
admittedly crude approximation is of course very poor at
low valuea of u, but its accuracy becomes surprisingly good
for u greater than about 0.4, and the approximation becomes
exact in the limit -=.

The variation of local cross section with u can be examined
also on the basis of equal exposed area. Thus, using equa-
tion (65) in combination with equation (62b), we have

[??(l-TW–U(l–4U)( K–E)I (75)

Figure 11 shows plots of equation (75), and it is again notocl
that the departure from the slender-body appro~tiation
(u=O) is rapid. The limiting variation of men for a~w is
also shown in figure 11, and it is seen again how closoly tho
optimum body-shape functions approach this limiting result
even for moderate vahma of u. Mao shown is the drag
corresponding to these cases.

D 3
@(A~*W)z=4B(a) [T(a)]’

(76)

which shows a similar drop from the u= O vahm m u is
increased. Again, the eflective fineness ratio of the bodies
is increasing with u, and, if frontal area esposed to the
stream is held fixed, the maximum thickness of the excres-
cence vanishea as l/u for large u. The departure of the
geometric variation from the slender-body case is most pro-
nounced near the nose, ~= 0, where the slope is given by

(77)

which vanishes only qs & for u+O.
The optimum body of given oaliber.-li this case, the maxti-

mum cross-section occurs at q= 1 so there is no longitudinal
symmetry. Figure 12 shows, for several values of the pa-
rameter u, the optimum, equal-caliber, incremental crosa-
section area given by equation (71). The inset shows the
drag as a function of u; from equation (74)

D 4

(7

A
%

2=7(1 +4U)
-i-.

Again in this case, the closeness of the optimum distributions
as u increases to the two-dimensional value (u+m ) is
noticeable. This point has also been made by I?errari in
reference 5 where problems similar to ours are treated
bv a different ammoach. If the exmwssion for oross--.
section area (eq. (71)) is expanded in powers
found that

A~*(q, u)=

()

q(l—q)(l —2?l) 1 2
AS*(l, U) ‘— 32 ;+.

which shows the smallness of the correction
dimensional result for moderate valuea of a.

RECIPEOCITYRELATIONS

of 1/u, it is

. . (78)

to the two-

The optimum body of given volurne.-The longitudinal and
radial perturbation velocities can be determined by substi-
tuting the derivative of the source-distribution function (oq.
(57)) into the formulae (29) and (30). We find, at any
point (z, r) (T2B) in the field

*= A 1

U. 87iqo~[z+~(r+R)] [&z+~(r+R)]
{4[x+19(T+R)] [1–x+P(r+R)]E+

[l(l+413R)-4(l+29R) (1–x+Pr+19R)]K+4 (l+2i3R)(t-2z)I@’, k)} (79n)
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X(1—Z)
‘=[z+/3(r+R)][l-z+p(T+R)]
&=– z—/9(f$-R)

. J–z+p(r+lq

For tie present axis system, the act of reversing the flow
amounts to substituting i!-z for x, and, for the case of the

metric body, tie 10nXtUtid perturbation velocity in
the reversed flow is

i@)r)=–u(l–z,r)= –qz(l–z,r)

Now,
given

from equation (40), pressure in the combined field is
by

%’= –AJ7d(U+ii) =–p~O[~@,r) –qz(l–q~)] (80)

In order to verify this relation using equation (79a), the
following result, which can be derived from ~ormulae of
reference 20, section 400, w-ill be useful: Let

v,(2)=lI(c@,k)

)

This, together with the fact that the modulus k is invariant
to the substitution of l—x for x, enables us to write im-
mediately

P=$ (l–2x) (81)

Ditlerentiating equation (81) we find

P’+p~=o (82)

which agrees with the criterion for minimum drag with
given volume established in equation (47). The Lagrange
multiplier pl is therefore identified as the pressure gracliont
in the combined flow field. It will be noted that equations
(81) and (82) hold everywhere within the enveloping forward
and rearward Mach cones of the quasi<ylindrical body
(see fig. 4).

Now considering the radial ccmponent of perturbation
velocity ~, we iind, using the relations mentioned just
previously

so that the relation

~(z,r)= —~(1—z,r)

(83)
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is satisfied on the quasi-ylinder itself, that is, when we set
r=R.

The optimum body of given oaliber.-For this caae we &d
the following equations for the perturbation velocities:

fo@,r) A(1+213R)—_
U. – ‘2qO@+/3(r+R)] [1–z+~(r+ll)]

[K–211(d,k)]

(84a)

%(%T) A
u. – 2rgw~[x+B(r+B)] [t–z+19(r+R)]

{ [z+8(T+~l[l–z+B(T+~)l~–P~l+z8B)K] (84b)

where the elliptic integrals have the same modulus and
parameter as in the previous section.

In this caae, the pressure in the combined flow field is

P=–pv. [~z,r)+~l–z,r)] (85)

which giV&

P=–A (86)

so that in this instance, pressure itself is constant in the
combined flow field.

From equation (Mb), we see that

*(z, r)=w(l —z)r) (87)

APPENDIX A
.

SUMMARY OF FORMULAE FOR THE OPTIMUM BODIES

since the modulus of the elliptic integrals is invariant to the
change x+l–z.

Uses of reciprocity relations,-’l?he reciprocity relations
serve the dual function of check@g the derived perturbation
potential against minimization criteria based on other
considerations (see eq. (47)) and of relating the Lagrangian
multipliers to the pressure or pressure gradient in the
combined flow field. Equations (81) and (86) also reveal
that the expressions for pressure in the combined flow field
hold, independently of r, throughout the entire reggon within
the enveloping cones of the bodies. These results are
gaueralizations of a similar effect noted in reference 1.9,
where the combined pressure field associated with rLSears-
Haack body was shown to have a constant gradiant within
the enveloping cones. In the latter reference, this property
of the minimum-drag b6dy was used to expedite the calcula-
tion of interferace drag with a satellite body lying within
the enveloping cones Similar methods could obviously be
applied to the present configurations.

h AERONAUTICAL LABORATORY

NATIONAL ADVISORY Co mmrmm FOR AER02JAUTICS

MOFFETWT FmLD, CALIF., Nov. %?, 196.4

The formulae derived in the text for the body shape func-
tion, pressure coefficient, and drag of optimum bodies having
given volume or given caliber are repeated here for con-
venience. The type of configuration treated, and the nomen-
clature, are shown in figure 13.

r

t

FIcmnm 13.—Body and rwooiated nomenclature used in drag
minimization.

,

The pressure coefficient on the body is

THE OP’IYMUMBODY OF GIVEN VOLUMB

The variation of AS for the optimum body
volume is

with given

{z(l–z)E(k)–17R(l-4L3R) [K(k) –.E(k)]
w-here

N(z) =z[(R+&)’–~
v, =volume of exposed portion

(Al)

(?B $ =B(u) function defined in equation (60a) and shown
in&ure7

K(k) =complete elliptic integral of tit kind of modulus k
l?(k) =complete elliptic integral of second kind of modulus

k

P
X(z---x)

= (3+2#R)(l–z+2BR)

Examplea of optimum bodies for a few values of the param-
eter 13R/1are shown in figures 10 and 11.

0,.==–-22=A Ve ~4(x+29B) (1–x+211B)E-[W+4@0 –4(1+2PR) 0 —z+2L3R)]K+4(Z+ 2PR)(l-2x)lI(c.&,k)

Q U. 2T

(9
14B $ ~(z+2BR)(i–z+2BR)

(M)
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where II(o?,k) is a complete elliptic integral of third kind of -16

modulus k and parameter & (in the notation of ref. 20). The
parameter &is given by -8 — — —

‘= ‘1–z;2PR o

Figure 14 shows some plots of C./(V6/P)versus x/1for a few
values of the parameter PR/Z. Cp 8 ‘

The wave drag of this optimum body is given by 14/13
16

D v.’
(A3)

G=3
()

24
ldB ~ ‘.-—.—, —

30
32

The variation of drag with ~R/1is shown in figures 10 and 11.

THEOPTIMUM BODY OF GIVEN CALIBER 400 ,,
.2 .3 .4 .5 .6 .7 . .8 .9 1.0

The variation of AS(Z) for the optimum body of given
Xll

FImmE 14.—Pressure distributions for various caees of tho opthn.um
caliber is body of given volume.

2 AS(1) z(z+w~)(z+@?)rr(~,k) –(1–2z)(z+2#R)(l –z+219B)E-1(1+2BR)(Z –x+213RXAS(Z)=; l(l+4fiR)x
-B)(l–z+2PB)

where the symbols have been defined above. Examples of
optimum bodies for a few values of the parameter BRJZare
s~own in figure 12.

The pre~e coefficient on the body is given by

-3.2

0=4.I .
-1.6 .1; /

\
“w ‘

/

Cp o — - /=-
lisll~

k’ ,\\ A -

1.6

3.2

4.80 ., ~ ~ .4
.5.6 .7.8’ .9LO

Xll ‘

FIGURE 15.—PIwwre distributions for various cases of the optimum
body of given caliber.

Fiewe 15 shows some plots of
Cp

AS(~/12
verms z/1for several

values of the parameter 19R/L
The drag of this body is

D_ 4. [AS(L)]2
G—N+4PR) i.

(A6)

and its variation with PR/1is Aown in figure 12. :
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