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EFFECT OF INTERACTION ON LANDING-GEAR BEHAVIOR AND DYNAMIC LOADS IN A
FLEXIBLE AIRPLANE STRUCTURE ‘

By FRANCIS E. COOKand BENJAMIN MILWITZKY

SUMMARY

T?w efects ojinterwtion between a luno?ing gear and a$exible
airplane structwre on i%e behavior of the ikding gear and the
loads in the structure huve been studied by treuiing the equu$ims
of motion of the aiqikne and the landing gear as a coupled
system. The landing gear is conM&red to have nonlinear
ChaT(lGteTiStiCStyw Of C0?W(?71ti0?14dgMlX8, WTldy, O&?OCiiy-
squared damping, polytrofl air-compremion springing, and
exponential tire forced@ection chura&nM.cs. For the we
where only two nwdtx of the structure are conM&Ted, an equiva-
lent three-rows s@em ti derived for repre+wn$ingthe airplim.e
and lunding+ear combination, which may be wed to simuiizte
the eJects of structural jzxibiliiy in jig drop tests of iiznding
gears.

As ezampkx to i?ktrate the efects of interaction, num.eriud
calculations, based on the structural propertb of two large a&--
plum hurnng conkderably di$erent maas andjkib-ility chu.rac-
tetitics, are prtmnted. For tlw partiadur ca-wx conskkred,
it was found that the e~ects of interactti can raul.t in appreci-
abik redwctionx in tlw magnitude of the Lznding+eur force,
particularly when tbmtiy of the airplane stru.dure h lurge
and the natwrdfieqwwy ia small. T?wj neglect of interaction
e@ct8, that &?,the use of the kn472kg+e4zrforci~fi* for a
ri@i? airplmw, in a dynamic analysis of awls airplane can
lead to the cu.kuidion of eixemive kxwk in the airplane strw-
ture.

In the cme of one of tb airplanes cmwi.dered, the structural
loads ca.kuikted from the interaction soluiimw are greater
thun tlwse for a compldely rigid airplane treatment (rigid stru43-
ture subjected to rigid-body forcing function) becawe the e~ects
of dynamic magnification more than overcome tti reduction in
landing-gear force dw to thknwti.on. In the me of the second
airplane, beuzwe of the relatively large natural period of the
structure in comparison m“th the duxation of the impact pw?se,
the dynamic ?na@jication factor ix appreciably k3s than unity.
This effect, coupled with the Tedudio?w in Lmi?ing+em form
dm to interaction, rau.lts in structural .?aadxthut are l.as than
tho8efor a rigid airplane.

INTRODUCI’ION

In the design of landing gears it is usually assumed that
the airplane is a rigid body and development tests are

frequently carried out in a drop-test jig with a landing gear
attached to a concentrated row.. In so doing, it is tacitly
sssumed that the interaction between the motions of the
landing gear and the deformations of the airplane structure
has little or no effect on the behavior of the landing gear.
Also, load time histories obtained on a rigid-body bask are
often used as the forcing function in a dynamic analysis to
determine the inertia loads and stresses in flexible airplane
stmctures, sgain under the assumption that the behavior
of the landing gear is independent of the effects of airplane
flexibility. Although it has been recognized that this assump-
tion is not altogether valid, the errors involved have not been
considered particukly significant in the past because:
(a) The errors were thought to be on the conservative side
and (b) until comparatively recently main landing gears
have generally been located very close to the nodes of the
fundamental bending mode of the wing, and the airplane
therefore closely approximated a rigid body insofar as the
behavior of the landing gear is concerned. However, the
trend toward increased size of airplanes, the disposition of
large concentrated masses in outboard locations in the
wings, the use of thinner wings, and the development of
unconventional con&urations tend to increme the flexibility
of the airplane structure and reduce the natural frequencies
of vibration. These characteristics tend to cause an increase
in the amplitudes of the oscillatory motions of the landing-
gear attachment points relative to the center of gravity of
the flexible system during impact so that the effects of inter-
action are incressed, both with regard to the beha&or of the
landing gear and the dynamic loads in the structure, par-
ticularly when the natural period of the fundamental mode
of the structure approaches the time duration of the impact
pulse.

A number of analytical studies and some simplified model
tests (refs. 1 to 5) which have been made to evaluate the
effects of structural flexibility on landing-gear loads have
indicated some reduction in landing-gear force due to the
effects of structural deformation. However, in view of the
fact that these previous investigations considered only
rather highly idealized linear-spring landing gears with
either no damping at all or viscous damping, a further study
of the effects of interaction between the landing gear and
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the airplane structure has
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been made with a more realistic
representation of the landing gear. In the present analysis,
as in reference 6, the landing gear is considered to have
velocity-squared damping, poly~opic air-compression spring-
ing, and exponential tire force-deflection characteristics, as
is the case with conventional ohm-pneumatic landing gears
in current use. The particular purposes of this investigation
are to evaluate the effects of interaction on the behavior of
tbe landing gear and to study the errors introduced into the
calculated loads in the structure (applied loads, accelerations,
bending moments, and shears) when a dynamic analysis is
made on the basis of applying the landing-gear forcing func-
tion for a rigid body to a flexible airplane. For these pur-
poses, case-history studies, btwed on the structural properties
of two large airplanes having considerably different mass and
flexibility characteristics, are presented. In order to cover
a range of parameters, the la@ing gear of each airplane was
assumed to be located at three arbitrary spamvise positions
in addition to its origimd location. Only symmetrical
impact conditions are considered.

The basic analysis of the landing gear and the airplane
structure as a coupled system is presented in a general form.
In the numerical examples presented, however, the system
is simplitled by considering the motions of the airplane in its
first two structural modes only. With these restrictions,
the combination of airplane and landing gear can also be
represented by an equivalent three-mass system which may
be used in jig drop tests ot landing gears to simulate the
primary effects of structured flexibility. A similar type of
concentrated-mass system was used in the study of the
hydrodynamic impact of a flexible seaplane in reference 7.

SYMBOLS

GENZk4L

gravitational constant
lift factor, .L,OJW,O,
total lift force (half the airphme)
time after initial contact
time variable of integration
time to maximum landing-gear force
time aft er mtiti landing-gear force
vertical velocity at initial contact

total weight (half the airplane)
circular frequency of sine pulse
circular frequenq, of cosine pulse
any variable
value of any variable h at end of pth interval sub-

sequent ta beginning of numerical integration
procedure

LANDING GEAR

pneumatic area of shock strut
hydraulic area of shock strut, A,–~
internal cross-sectional area of shock-strut inner

cylinder
net ofice area of shock strut, AO–~
area of fixed opening in oritlce plate
cross-sectional area of metering pin or rod in

plane of orifice

oritice discharge coefficient
vertical component of force in shock strut subse-

quent to beginning of shock-strut deflection
vertical force applied to tire at ground

unsprung mass below shock strut
constants in tire force-deflection relationship
polytropic exponent for air-compression process in

shock strut
air pressure in shock strut when fully extended

mass density of hydraulic fluid
air volume of shock strut when fully exkmcl~d
shock-strut stroke
duration of impact pulse
angle bettveen shock-strut axis and vertical
weight of unsprung mass below shock strut
vertical displacement of landing-gem attmhmen t

point from position at initial contact
vertical displacement of axle from position aL ini tial

contact

DISTRIBUTED STRUCIWRE

generalized coordinate for nth mode
angle of twist of transveme station
modal function for torsion in nth mode
vertical displac8meflt of elastic axis from position at

initiaI contact
modal function of elastic axis for bending in nth

mode
vertical displacement of station mass centers from

position at hitial contact
modal function of station mass centers for couplwl

bending torsion in nth mode
modal ampfitude of landing-gear at tachmont point

for coupled bending-torsion in nth mode
chordwise distance between elastic axis rmd stmtion

mass center
wing span
bending moment
vertical component of applied landing-gear forco
natural frequency of first deflection mode
polar moment of inertia of wing cross section about

station mass center
polar moment of inertia of wing cross section nbout

elastic axis
radius of ~tion of wing station about elastic axis
lift force per unit length of span
mae9 per unit length of span
generalized mass for nth mode (half the airplane)
circular frequency of nth mode
generalized force in nth mode
shear
natural period of nth mode
chordwise distance betwerm elastic axis and any

arbitrary point
chordwise distance between elastic axis nnd landing-

gear attachment point
spanwise distance from airplane center plane to my

transverse station
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spnnwim distance from airplane center plane to
landing-gear station

vertical displacement of any point from position at
initial contact

vertical displacement of lrding-gear attachment
point from position at initial contact

vertical displacement of axle from position at initial
contact

virtual displacement of generalized coordinate of
nth mode

virtual work in niih mode

EQUIVALENT THREEMASS SYSTEM

vertical displacement of center of gravi~ of spring-
connected masses from position of initial contact

spring constant
lift force acting on mass m~
lift force acting on mass m,
mass acting directly on landing gear
elastically supported mass
natural frequency of vibration of spring-connected

masses
deflection of spring
weight of mass acting directly on landing gear
weight of elastically supported mass
vertical deflection of landing-gear attachment point
vertical deflection of elastically supported mass
vertical displacement of axle from position at initial

contact
AERODYNAMIC

total wing area (half the airplane)
wing area assumed concentrated at station i
lift coefficient
lift coefficient at instant of initial contact
lift-curve slope
flight-path angle
flight-path angle at instant of initial contact
mass density of air
landing speed of airplane

Subscripts:

aerodynamic

; landing-gear attachment point

E landing-gear station
i any spanwise station
n pertaining to the nth mode
o zero or l~ld-body mode
7 at instant of initial shock~trnt motion
T at instant of mtium landing-gear force
max mrmimum

The use of dots over symbols indicates differentiation with
respect to time t or r. All translations are positive downward
(see figs. 1 to 3). The absolute value of any term ( ) is
indicated by I( )1.

ANALYSIS

In order to study the behavior of a landiug gear and a
flesible airplane structure as mutually interacting elements of
n coupled syst~ the equations for the landing-gear
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force are combined with the equations of motion of the
structure. The motions of the structure are treated by the
mode-superposition approach, wherein the deflections of the
structure are expanded in terms of its natural modes of
vibration. The effects of interaction between the landing
gear and the structure are introduced by exprwsing the
landing-gear force in terms of the motions of the landing-gear
attachment point and the wheel axle (or unsprung mass)
rather than as an arbitrary function of time.

Because conventional oleo-pneumatic shock struts do not
beD@nh deflect until some finite time after initial contact of
the tire with the ground, the impact is treated in two parts,
namely, the phases prior to and subsequent to the beginning
of shock-shut deflection, where the initial conditions for the
second phase are determined from the terminal conditions
for the first phase.

In the fiat part of the analysis, the equations for the
landing-gear force are presented. Then, the deflections of
the structure are expanded in terms of coupled modes and the
resulting equations of motion for the system are presented in
a general form. For the purpose of indicating the quanti-
tative eil-ecti of interaction, however, the system used in the
numerical trend studies has been simplified by restricting
consideration of the structural deflections to the first two
modes of the expansion. Within the framework of this
two-mode treatment, it is SJSOshown that the airplane struc-
ture can be represented by an equivalent system of spring-
connected concentrated masses, which may be used to
simulate the effects of structural flexibility in jig drop tests
of landing gears.

LANDING-GEAR FORCE

An analysis of the behavior of the conventional type of
oleo-pneumatic landing gear was presented in reference 6.
In this study the mass above the landing gear was considered
as a rigid body; the system treated therefore had two degrees
of freedom and is schematically represented in figure 1. The
analysis of the landing gear considered the velocity-squared
damping of the metering oriiice, the air-compression springing
of the shock strut, the nordinear forcedeflection charac-
teristics of the tire, and the internal shock-strut friction
forces. Calculated time. histories of the landing-gear forces
and the motions of the system were in good agreement with
experimental data obtained in drop tests..

In the present study the rigid mass is replaced by a fle.uble
airplane structure, but the treatment of the landing gear is
essentially the same as that in reference 6. Eowever, since
conventional landing gears are inclined forward so as to
minimize normal forces and bending moments due to the
combination of vertical and drag forces, it R ill be assumed
that the resultant force on the landing gear lies along the axis
of the shock strut so that strut bending moments and
resulting internal friction forces are neglected in the present
andysk.

In view of the fact that conventional oleo-pneumatic shock
struts are preloaded with air and therefore do not begin to
deflect until some finite time G after initial contact of the
tire with the ground, the impact must be treated in two
phases. In the first phase, since the strut is effectively rigid,
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(a) System with two degrea of freedom.

FIGUREI.—Dynamical system (rigid

the landing gear has only one de~e of freedom and the
motion of the complete system of the landing gear and
airplane is governed by the force between the tire and the
ground. This ground force arises from the deflection of the
tire and, in general, may be written as

Fvz=l’v=(z.) (1)

the exact variation depending on the particular tire
fore.edeflection characteristics. Prior to the beginning of
shock-strut deflection

F.g=F.g(zJ (tS&) (la)

since G=zP (This relationship is exact when the landing
gear is vertied and holds very closely when the gear is
inclined.)

The shock strut starts to deflect at the time t, when the
force exerted on the airplane by the shock strut becomes equal
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(b) Schematio representation of shook strut.

airplane) considered in reference 6.

to the air-pressure preloading force in the strut. At this
iqstant the free-body equation for the unsprung mass of the
landing gear is

77Z.’Zf,+F.z(Zf,) =Pa,#a ~s 8+ ~. (t=L) (2)

Equation (2) provides the relationship between the tc+r-
minal conditions for the first phase of the impact which, in
conjunction with the solution of the equations of motion for
the complete system prior to shock-strut deflection, cletor-
mines the time tr when the shock strut begins to deflect and,
thus, the terminal values of the variables for the first phaa of
the impact. These values then serve as the initial conditions
for the second phase of the impact.

After the shock strut begins to deflect, the landing gear
has two degrees of freedom, since the motions of the landing-
gear attachment point and the motions of the unsprung
mass are no longer the same. The equation for the verticol
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component of the force transmitted to the airplane by the land-
ing gear after the shock strut starts to deflect is (see ref. 6)

where
2,—Z*

8=—
Cos e

.Zf-zug=—
Cos e

The equation of motion of the unsprung mass is

?nu2.+Fvr(zJ=1’v, +w. (t at,) (4)

In equation (3) the first te~ represents the hydraulic

force in the shock strut, where the factor ~ indicatea the
181

change in sign required between the compression and exten-
sion strokes. (During the extension stroke of the shock
strut, becauae of the action of the rebound check valve or
‘i snubber” incorporated in most landing gears, the net oritice
area ~ will generally be smaller and the ofice discharge
coefficient Cd will be diflerent from the values which apply
(luring the compression stroke.) The second term of equa-
tion (3) expresses the air-compression force in the strut,
baaed on a polytropic pressure-volume relationship. In
equation (4), the force arising from the deflection of the
tire may be exprewed as FV~(zJ =m<’ for tie usual types

of pneumatic tires, where m and r are constants for each
regime of the tire-deflection process (see ref. 6).

EQUATIONS OF MOTION OF TEE AIRPLANE

Differential equations of airplane structure,-In the mode-
superposition approach, the structure is considered to deflect
in its nrdmral modes of vibration and the total displacement
of any point in the system is the sum of the displacements
of the point in all the modes considered. With this approach
the motions are sepmated into functions which depend only
on the space coordinates and functions which depend on the
time variable.

In the case of a landing impact the proce9a is disc0ntinuou9
at the instant G when the shock stmrt begins to deflect. In
the fist phase of the impact the shock strut is effectively
rigid, so that the motion of the unsprung mass of the land-
ing gear is essentially the same as the motion of the landing-
gear attachment point and the force transmitkd by the
landing gear to the airplane is the vectorial sum of the
ground force due to tire deflection, the inertia reaction of
the unsprung mass, and the weight of the unsprung mass.
In the second phase of the impact, the motion of the un-
sprung mass is not the same as the motion of the landing-
gear attachment point and the force applied to the airplane
is governed by the relative motion between the landing-gear
attwhrnent point and the unsprung mass., m given by
equation (3).

I .-efewnce pfone

(a)

ii’; t

Eh3sJicoxis-”

(b)

,--Referena dme

W9 ‘f 47

,,~nf of fcrce application
totion moss cmter

Elastic oxis-’”

(c)

(a) Coordinates along ela9tic asis.
(b) Coordinates at any transverse station.
(c) Coordinate at lancling-gear station.

FrGmm 2.—Coordinate9 for airplane struature.

The notation employed in the analysis is indicated in
figure 2. A typical transverse station located at a span-
wise distance y from the airplane center plane is considered.
The mass per unit length of span is designated by m. The
translation of the elastic axis at the station is denoted by w;
~ is the translation of the station mass center; ~is the chord-
wise distanm between the station mass center and the elastic
axis; and q is the angle of twist of the station. The trans-
lation of an arbitrary point located at a chordwise distance
x from the elastic axis is designated by z. The spanwise
distance from the C8nter plane of the airplane to the landing-
gear station is indicated by y.. The translation of the
landing-gear attachment point, or force-application point, is
designated ZJ; the distance between the landing-gear attach-
ment point and the elastic axis is denoted by XT

In the most general case, the expansion of the deflection
of the structure in terms of its natural coupled modes of
vibration may be written as

W(?J,t)+un(t)wn(y) (5)

and

(6)
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where the subscript n denotes the order of any mode, as is
the generalized coordinate in the ntih mode, and w. and P.
are the corresponding modal functions for bending and
toreion, respectively.

For later use it is convenient to intioduce expressions for
the displacements at other points in the structure. Since
the translation of the station mass centers is given by
FW+WY, it follows that

r(c,y,t)=n~n(t)rn(y) (7)

where the modal function t~=w-+ qon. The translation of
any arbitmmy point along the chord is given by z= W+XP;
therefore,

2(z,@=nsJaz(t)z.(!/) (8)

where the modal function z~=wz+zqm. The translation of
the landing-gear attachment point iS given by Z7=W+ZW;

where the modal amplitude &=wm+zfls.
By application of Lagrange’s equation

(9)

and the orthogo-
nality relationships between coupled modes, it can be shown
(see, for example, refs. 8 to 10) that the equation of motion
for the airplane in the nth mode maybe written as

M@a+Mmwxaam= Q* (7L=0,1,2, . . .) (lo)

where -d& is termed the genershed mass for the nth mode
and Qmis the generalized force, as determined from virtual-
vrork considerations. For a continuous system,

s
b~

J

bf2

. m{mgdy+ I&.’dy
o 0 J

. .
In practice the spanwise mass distribution is often approxi-

mated by breaking up the distribution into. discrete masses
which are concentrated at a tite number of stations along
the span. With this approach equation (11) may be written
m

where the substipt i denotes any spanwise station.
For n=O (rigid-body mode), since m=l~= 1 and %=0,

J

bji
Mo= m dy=~mi

o

The relationship between Q and the mtermd forces con
be determined by application of virtual-work principles.
By definition, the work done in the nth mode by the general-
ized force acting through a virtual displacement of the gcm-
eralimd coordinate of the mode is equal to the work done by
the external forces acting through virtual displacements of
their points of application in the mode. Thus, the virturd
work. done by the generalized force in the nth mode is

6Ws=QJa. (12)

In the case of an airplane during landing, the external
forces are the distributed lift forces ~(y), the distributed
weights gin(y), and the force F transmitted by the landing
gear. The virtual work done by these external forces in
the nth mode is therefore given by

Equating equations (12) and (13) gives the following
relationship for 9=:

Therefore, the equation of motion of the structure in tho
nth mode is

M&+Mn~~*a~= —Ft~—
J

bpLz, dy+gj~mt. dy
o

(n=0,1,2, . . .) (14)

For the rigid-body mode (n= O), since uo=O and %= ~o=to= 1,
equation (14) becomes

J@o= —F—
J

~(L–gm)dy

subject to the initial conditions

%(0)=0
and

&(o) =.VVO

If the airplane is assumed to be free of oscillations at the
time of initial contact,

ti.(o)=an(o)=o (n#O)

At the instant of initial contact, the airplane may be
accelerating, that is, %(O) #O, if the total lift is not exnctly
equal to the total weight. Consideration of the balance of
forces on the unsprung mass as a free body leads to the
following equation for the force applied to the airplano by
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the landing gear at the instant of contact:

““’=W=’H-ll

Substitution of this relationship into the equation of motion
for the rigid-body mode gives

w.–
J

‘D(L–gnz)d~ W,O,–L,~’
(iQ(o)= ik+lnu = w,o~g

=(1–KL)g
where

so that

F(o)= –K.W=

With this definition of F(O) and the initial conditions for
the modes n#O, equation (14) applied to the instant t=O
gives

(J

9‘/2 bf2

%(”)=M+29 ~
J

m{. dy— ~
)

Lz. dY+.&w.tn (n#O)

This relationship indicates that, in general, a finite static
deflection in the flexible modes will be present at the time
of initial contact. At rmy subsequent time tie deflection
will be equal to this initial static deflection plus an addi-
tional deflection a.l which varies with time; that is,

an=an(o)+(z#l. This substitution permits equation (14) to

be written as

subject to the initial conditions

axt(o)=(i.t (0)=0

In the remainder of the report, for the sake of simplici~
of notation, the subscript t w-ill be dropped, with the under-
standing that an represents the time-varying part of the
displacement of the nth mode, so that equation (15) is
written as

Mmdn+MA2an= – (F+ K~WJ& (n#O) (15a)

If the external forces are specified solely as functions of
time, the equations of motion for each mode of the system
are uncoupled and can be solved individually. However,
when the external forces depend on the motions of the sys-
tem, as in the cnse of the landing-gear force during a landing
impact, the relationships between the external forces and the
motions in the modes serve to couple the equations of motion
so that they must be solved simultaneously. Furthermore,
in the case of landing impact, since the process has two

phases, as previously discussed, the equations of motion for
each phase must be solved separately, where the initial
conditions for the second phase are the same as the terminal
conditions for the first phase.

Motion prior to beginning of shock-strut defleotion.—
Since the shock strut is effectively rigid in the first phase of
the impact, the force transmitted by the landing gear to the
airplane, F in equation (15a), is equal to the ground force
FV~(zr) less the inertia reaction of the unsprung mass and

the weight of the unsprung mass, as maybe seen by consider-
ing the unsprung mass as a free body; thus,

so that the motions of the system during the first phase of
the impact are governed by the following set of diilerautial
equations:

i’k&iiO=– [~v~(~)+mti~f+W~oJ(K&-l)]

i141iil+&fl%’al= – [FvJzj+m.Zf+WJKL- l)]&

. . .

~m&+~m~2~=–[1’vg(zf) +mUZ~+W.(KL–l)]&

where

zF*$aAn

and the mth mode is the highest mode considered.

(16)

The initial conditions for equations (16) are the conditions
at the instant of initial contact, namely,

and

As previously

%(0)=0

Uo(o)= Vvo

a.(o) =f.in(o)=o (n#o)

indicated, the fit phase of the impact
ttiates at the time G when the force in the shock strut
becemes equal to the air-pressure preload force. The ter-
minal conditions at this instant, as determined by consider-
ation of the unsprung m= as a free body, are given by
equation (2), namely,

m.~fr+.l’vt(zf,) =paO& cos O+ Wu

The solution of equations (16) in conjunction with equa-
tion (2) permits the determination of the time G when the
shock strut begins to deflect and the values of the motion
variables at this instant; these values then serve as the initial
conditions for the second phase of the impact.

Motion subsequent to beginning of shock-strut defleo-
tion.-In the second phase of the impact the force trans-
mitt ed by the landing gear, F in equation (15a), is the ver-
tical component of the shock-strut force FV,, as given by
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equation (3). Thus, the motions of the system during the
second phase of the impact are governed by the following
set of differential equations:

Motio= —(Fv,+wJ—W&(KL- 1)

M1al+M1&G= —(FV,+K~WJ&

. . .

MJim+Mn%2Q= —(FV,+KJV&

and

mU;w+Fr$zJ=Fv,+ Wu

where

(t>Q [17)

Fv,=Fv,(z~— zu, ~~—&)

as given by equation (3); and

zF*$oaA=

The first m equations of equations (17) represent the mo-
tions of the airplane structure in its fit m modes, whereas
the last equation of the set is the equation of motion of the
unsprung mass of the landing gear as previously given by
equation (4). The initial conditions for equations (17) are
the terminal conditions for equations (16) as previously
discussed. In view of the fact that the landing-gear forcing
term FV, is highly nonlinear, analytical solution of the sys-

tem of equations (17) does not appear possible, so that it is
neccs-sary to resort to numerical-integration or analog
methods.

~PLUZIXl SYSTEMCON~ERED INNUMERICALSTUDIES

The preceding section has presented the equations of
motion for a flexible airplane coupled to a landing gear,
which permit calculation of the motions of the system
during a landing impact with consideration of as many modes
m may be desired. For the study of tie effects of inter-
action between the landing gear and the structure, however,
it appears that the primary effects of structural flexibility
on the behavior of the landing gear can be represented by
considering only the first deflection mode in addition to the
rigid-body mode.2 This simplification, which greatly reduces
the amount of computational work, is felt to be justified for
the purposes of the present investigation since both theoreb
ical considerations and experimental data indicate that the
higher modes should have relatively little effect on the
landing-gear performance. With this a.smunption the equa-

1In a dymmlc an.olx stremmfn tbesknotnredue toemdtatkmof thebfgbermed~ can
be approxfmatd by cafmkdfng the rmpome of meh modq fndfvfdndly, te the a
fcmctlondekrnfrmi for tbe landfng~ mnpled wftb the rfgfd-bedyend firstdeflwtien
mede% Thfnprocedureshouldbea mnddmble fmprevemmtow theme of therfgld-body
fordngfumctfenesa bast3forreqmnsecaknhtierufn- wherethelsndhg.gmrattnchrnemt
pointseqxrlmca apprwhble deffedlensrelativeto themasscenti of thesystem.

tions of motion reduce to

M&= – [FVc(zJ)+m&+ W,O,(K.–1)]

}

(18n)
(t s t,)

1M16,+JMl~*G= — [FV$z~)+m.Z, +WJIL-1)] & (18b)

and

M&=- (FV,+WJ-W,.,(K~-1)

lM1&+M1%2al= —(FV,+If~TVJ&

m ~.&+FV$z.)=FV,+ W“

where

z~=~+al~
and

(If)n)

(t>t,) (19b)

(19C)

m.%,+Fv.(@=wo cos O+w. (t=L)

The solution of equations (18) and the determination of
the conditions at the time G when the shock strut begins to
deflect, which serve as the initial conditions for equations
(19), are treated in appendix A. With these initial concli-
tions, equations (19) maybe solved by numerical int egrntion
or analog methods.

From the time-history solutions for the motions of the
system thus obtained, the accelerations and inertia loads at
any point in the structure can be calculated from the equo-
tions presented in appendix B.

EQUIVALENT THREE-MASS SYSTEM

It is of interest to note that the equations of motion
previously given not only represent the distributed
system of the airplane but can also be used to deiine equiva-
lent systems of spring-connected masses, where the number
of masses above the landing gear is equal to the numbm of
modes considered. For the particular case where two modos
are considered, the equivalent system is one containing thrm
masses, one of which is the unsprung mass of the lnnding
gear. The use of such a three-mass system provides n rela-
tively simple means for simulating the prirmuy effects of
structural flexibility in actual drop tests of landing gems in
a drop-te9t jig.

In the equivalent three-mass system (see fig. 3), m~ rGprG-
sents the mass to which the landing gem is directly attachecl
and m. is the elastically connected mass. The displacement
of mf relative to its position at the inst~nt of initial cont,ncL
is denoted by Zf; the displacement of m, is designated z,,
whereas the displacement of the axle or unsprung mass m“
is zW. The spring constmt of the elastic member is clenotod
by k. Sepmate lift forces L, and Lf dl be considered to
act on the masses m, and mfi
“ In order that the three-mass system represents the airphmo
properly, Zr, z., m., and, of course, the landing-genr charac-
teristics must be the same for the two systems, so thnt the
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landing-gear force is the same; and mf, m., k, and the applied
lift forces must be determined from the relationships between
the equations of motion for the three-mass system and the
equations of motion for the airplane.

Consideration of the forces acting on each mass as a free
body (see fig. 3) leads to the following equations of motion
for the three-mas system:
Prior to beginning of shock-strut deflection,

(mf+m.)zf–k(z,– zf)+~,– (wJ+W.)

= –Fvg(z,)

m,z,+(mf+mu)Ef+ (L,+Lf) —(W,+JV+WJ

= –Fvg(zr)

where

muz/,+Fvg(zJr) =p=o& ~s ~+ ~u

(20a)

(tsh)

(20b)

(t=iL)

Subsequent to begiming of shock-strut deflection,

?n#~k(z*— Zf)+L,— Wp —FV*

}

(21a)

Zap,+m.z.+ (L,+Lf) — (w,+ WJ) = —l’v, (t>tr) (21b)

?n*E.+Fvg(z.) =Fv,+ w. (21C)

The problem is to determine the relationships between
m,, mf, k, L,, and Lf for the airplane so that equations (2o)
are equivalent to equations (18) and equations (21) are
equivalent to equations (19) with the requirement that the
motions of the landing gear for the three-mass system be
the same as for the airplane, that is,

z~G+al&

and that Z. be the same in both systems. Since equations
(19c) and (21c) are identical, they need not be considered
further in evaluating the unlmovm constants for the three-
mass system.

It is apparent that equations (20a) and (20b) as well as
equations (21a) and (21b) cm be written as

m~~—k(z,—zr) +L~— W- —F (22a)

ZV/Zr+m,Z,+ (L,+ LJ - (W,+ WJ) = —F (22b)

where

F= Fv’g(z.) +m.zu— w.

and
Zv= Zf (ts h)

z“# Zf (t>G)

Similarly, equations (18a) and (18b) and equations (19a)
and (19b) can be written as

MG+wtot(KL–l)+waf=-F (23a)
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.
M, M, ,
-R-“+x %“+KLWU=–F (23b)

Thus, the problem is reduced to determiningg the constants
for the three-mass system so as to make equations (22)
identically equivalent to equations (23). This maybe done
in any of several different ways. For example, since the
structure is taken as linear, let

z$=a+=d

where p is a constant to be determined. Substituting for
Zf and z. in equations (22a) and (22b) and eliminating G
between these equations gives

%(.%+) ~1++(h-B)(%+%)al+Lr

W,% (WC-L,)=-F (24)

wherein subtracting equation (22a) iiom equation (22b),
with the same substitutions, gives

do+@I+*(/3-& )al–&-g=0
s

(25)

Equation (24) is directly compmable with equation (23b).
Combining equations (23a) and (23b) so as to eliminate F
and to make the coefficient of & equal to unity gives the
following equation with which equation (25) may be
directly compared:

(26)

In order to evaluate the constants for the three-mass sys-
tem, each term in equations (24) and (25) is set equal to
the corresponding term in equations (23b) and (26), re-
spectively. This procedure gives six simultaneous equa-
tions, the solution of which yields the following expressions
for the constants in the three-mass system:

m,+m~MO (27)

L$+LpKzW,o, (28)

(29)

(30)

(31)

and

(32)

(33)

(34)

where

p= –M% (35)

and
m~f+m,Z,=M& (36)

With the foregoing substitutions, equations (22) are iden-
tklly equivalent to equations (23); thus, the three-mass
system with the apecitied values of m,, mr, k, L,, and L1 cxm
be considered to be equivalent to the airplane in its first two
modes during both the first and second stages of the im-
pact. Equations (27) and (28) are required to satisfy tho
equations of motion for the airplane as a rigid body, whams
equations (29) to (34) are required for proper ropreaonta-
tion of the airplane in its first flexible mode. WltlI this ap-
proach the structural properties of the airplane are dofined
by three parameters: the total mass above the landing gear
Mo, the mass ratio m~mf, and the natural frequency w.

The solution of the equations of motion during the first
phase of the impact and the determination of the conditions
at the instant of initial shock-strut deflection t,am treated
in appendix A. With these conditions aa initial conditions,
the equations of motion for the second phase of tho impact
can be solved by numerical-integration or analog methods.
From the time-history solutions for the motion of the three-
mass system, the inertia loads and bending moments at any
point in the airplane structure can be calculated by um of
the equations in appendix B.

SOLUTIONOFEQUATIONSOFMOTION

In view of the fact that the equations of motion subsequmt
to time G are highly nonlinear and therefore cannot bo
solved in closed form, it is necessary to resort to numerical-
integration or analog methods. Various numerical-
integration procedure are given in reference9 11 to 13.
Appendix A of reference 6 illustrate the applicrkion of
several such methods to the problem of the impact of CL
landing gear attached to a rigid mass. One of these methods,
which may be termed the “quadratic procedure,” was used
ti obtain those numericnl results presented in this report
which could not be obtiined analytically.

In this procedure, which involves a step-by-step solution
of the equations of motion, the following difference equations
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(ref. 11, p. 16) based on a quadratic variation of displace-
ment over successive finite time intervals are used to replace
the derivatives in the equations of motion:

Ap+l—hp.l
i.= .2 At

and

where XPis the value of any variable at the end of the pth
interval subsequent to the beginning of the procew and M
is the timo interval. The difTerenca equations of motion
obtained by substituting these expressions into the differ-
ential equ~tions of the system then become essentially extra-
polation formulas which permit calculation of the displace-
ments to come from the values of displacement already
calculated, the whole procedure starting out with the initial
conditions of the process; that is, the conditions at the
instant t=t. when the shock strut first begins to deflect.
With the displacement time histories thus calculated, the
velocities and accelerations are then de&mined from the
foregoing difference equations.

CALCULATED RESULTS AND DISCUSSION

CASllSCONSIDERED

In order to investigate the effects of structural flexibility
on the behavior of the landing gear and the loads in the air-
frame, several case-history studies are presented which cover
n range of airplane mass ratios m,/mr The calculations are
based on the structural properties of two large airplanes
having considerably different mass and flexibility character-
istic. Airplane A is representative of a four-engine propeller-
driven World War II bomber having a groes weight of 47,200
pounds and a natural frequency of vibration in the fit
coupled bending-torsion mode of 3.37 cycles per second.
The structural characteristics used for airplane B are repre-
mntative of a presentday swept-wing six-jet-engine bomber
having a gross weight of 125,000 pounds and a natural fre-
quency of 1.29 cycles per second in the &t coupled bending-
torsion mode. The landing-gear characteristics used for
airplane A were based on the manufacturer’s data, whereas
for airplane B, because information was not available, the
shock-strut characteristics were chosen so as to yield a
landing gear which is essentially a scaled-up model of the
landing gear of airplane A. The pertinent numerical data
for airplanes A and B are given in tables I and II, respectively;
the modal functions for the fit coupled bending-torsion mode
are plotted in figure 4.

The main landing gears of airplane A were located in the
inboard engine nacelles very close to the nodes of the &et
coupled bending-torsion mode; in the case of airplane B the

Lo !-
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-.5 I I I I I I I I I I I I 1 I
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-.0032
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mo400500eoomoeoo
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(a) Airplane A.
(b) Airplane B.

FIGURE4—Modal funotions for bending and torsion.

landing gear is of the bicycle type and is located in the air-
plane center plane. The position of the landing gear (since
it determines the value of the modal amplitude .fJ in con-
junction with the values of ~~ and ilfl governs the value of
the mass ratio m,/m~ for each case. (See eq. (31).)

In order to represent a broadar range of mass and flexibil-
ity effects, the calculations for each airphme were made for
four mass ratios corresponding to three arbitrary landing-
gear positions in addition to the original landing-gear
location. In practice, of course, a change in landing-gear
location would probably necessitate a modification of the
wing structure and remdt in some change in the modal
characteristics and, thus, the mass ratio. The main pur-
pose of the calculations, however, is to indicate the eflect of
maw ratio on the behavior of the system, and the exact
locations of the landing gear which correspond to the mass
ratios used are of second~ interest.

In the calculation of the mass ratio m,/mf, the landing-
gear force w= assumed to pass through the mass center of
the landing-gear station. Since the modal characteristics



—.——

630 REPORT 1278—NATIONAL ADVISORY COMMITT13E FOR AERONAUTICS

used were for the complete airplane including the unsprung
mass of the landing gear ~, it was assumed that the un-

When the landing gear is locabd at the node of the first
flexible mode, this mode, of course, ia not recited and, sinm
higher modes are not considered in the numerical calculations,
the airplane behaves as though it were a rigid body, its
motion being governed by equation (23a). As might be
expected, the farther away the landing gear is from the nodm,
the larger is the effective flexibility of the system and, thus,
the mass ratio.

In the calculation of the time histories of the motions of
the system, the lift force w-as assumed to be constant during
the impact and equal to the total w-eight of the airphumj
that is, .&= 1. This assumption corresponds to the con-
dition that

L,= TV,
and

L~= W,+ Wti

in the equivalent three-mass system.

sprung masa was rigidly connected to the m- mf in the I
equivalent three-mass system, w in the tit phase of the I
irnpacti, so that

_ikfoh2
m~?m. A4,

where .iMo, Ml) and & include the effects of the unsprung I
mass as part of the airplane mass distribution. The mass I
ratios con-sidered and the corresponding landing~ear locations
me as follows:

I

hndlng-gearbath at— 1%:’1-=
Statlan o--------------- a 24
h’tia..----..-. -----. ----—— o
Station 246-------------
Stctkm 207------------- i:

StatIon o------------ :22
No&--------------------
Statim 4al------------
Statlonsol__________ i%!

TABLE I.—CHARACTERISTICS OF AIRPLANE A TABLE 11.—CHARACTERISTICS OF AIRPLANE B

(a) Structure

Data taken from ref. 8]

(a) Stnmture

~npublished data]

lbww’c~ I ●ql
lb-in.-se& ei, m. WI,

-37

Stgcm,
. .51,in. ml{ W* %ation

in.

,
I

28.5 ~-%i--
16.3
5.27 :
9.15 6;, ~
.974 536
. (33: 287

341

13:
217
307
428
548
638

–O. 078
–3;. 26 –. 031 –. :0084

–. 047 –. 0016
– 6; 19 .164 –. 00183

.374 –. 00185

.670 –. 00187
! .936 –. 00188

82
168
252
336
420
504
588
672
756
840

lo~ :X& 447:, ;:: 200.37
–4. 65

4.920 19:490 –24. 20
22.177 278,942 –101. 22

2.560 2, 161
z 557 1,988 2E
L 773 1, 136
3.269 2,474 – li %
& 628 8,439 –26. 88
1.144 500
.520 186 6:%

– O.0585
–. 0579
–. 0350

: :%7
.1842
.3263
.4772
.6369

1: %:1

-0.0001713
-.000187
-.000204
-.000231
-.000272
-.000322
–. 000370
–. 000436
–. 000482
–. 000614
-.000626

I ,

lb-seal
MO,~ --------------------- ----------------------- 61.033

lb-se~
afl, ~ -------------------------------------------- 1.607

1 1 1

----- 161.7761, cps------------------------------------------------- 3.365

(b) Shock strut

~fanufactnrer’s data]

Ak, Sq ft---------------------------------------------- O.163
A., Sq ft---------------------------------------------- O.214
A., wft---------------------------------------------- 0.00173
0., cuft ----------------------------------------------- 0.2697
PaO,Iblsq ft------------------------------------------- 30, 528
p, @s/cu ft------------------------------------------- L 626

(c) Unsprung masa

[Manufacturer’s data]

W~, lb------------------------------------------------ 700
Tires (one per landing gear) --------------- S&inch smooth contour
Tire p~ lb/sq in. --------------------------------- 70
m, lb/ft ----------------------------------------------- 86, 309
r----------------- __---------------------------------: L 22

Mb - ---------------------------------------m.
lb-se&

Ml, ~ -------------------------------------------- & 9096

f,, ups---- -------------------------------------------- 1. 2D

(b) Shook strut

~alues estimated from generalized curves of ref. 6]

2-J81u@/ft -------------------------------------- 17,000

Aa, sqft ---------------------------------------------- 0, 685
00, Cuft----------------------------------------------- 0.7006
~a.,lb/w ft------------------------------------------- 30,628

(c) UnsprungMam

[Manufacturer’s data]

W., lb------------------------------------------------ 2,300
Tti(moper lantiggwr)----------------------------- 66X1O
mPerlantig @,lb/fi -------------------------------- 280,180
r---------------------------- .-.---_-------------.---- 1.21
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On the basis of the calculations in reference 6, the shock-
strut orifico discharge coe~cient cd was a-mmed w 0.9
and the polytropic exponent n for the air-compression
process was taken as 1.12.

EFFECT OF INTEBAWON ON BEHAVIOR OF SYSTEM

Time-history solutions for the motions of the system
during impact at an initial vertical veloci~ of 10 feet per
second have been made for the eight configurations previously
mentioned. Figures .5 to 8 show the variation during im-
pact of the more important quantities, such as the landing-
getw force F, the responses &/g, al/g, Z,/g, ZJg, the landing-
gem-motion variables, and the accelerations at the mass
centem of several stations along the span. Comparison of
the calculated results for the flexible cases with tlose for
tho airplane as a rigid body (or landing gear at nodes,
mJm,=O) indicatea that the interaction between the flexible
structure and the landing gear can result in an appreciable
reduction in the applied landing-gear force (and thus, the
nodal acceleration), the largest reductions occurring at the
highest mass ratios. Furthermore, the reductions in landing-
gem force at the higher mass ratios are grater for airplane
B, because of its lower natural frequency, than for airplane A.

Consideration of the calculated time histories of the mo-
tion of the landing gear indicates how the interaction be-
tween the flexible structure and the landing gear aflects the
loads produced in the landing gear. Because of the flexi-
bility of the structure, the landing-gear attachment point
deflects upward relative to the nodes, or instantaneous
center of mass of the system, as the applied force builds
up and the deceleration of the landing-gear attachment
point is greater than in the c.aae of the rigid airplane. Thus,
the downward velocity of the shock-strut outer cylinder is
more rapidly dissipated and the displacement of the outer
cylinder is smaller throughout most of the impact. The
tire deflection is also smaller; however, because of the high
stiffness of the tire, the decrease in tire deflection is smaller
than the decrease in outer-cylinder displacanent. The
net result is a reduction in strut stroke during that part of
tlm impact when the mtium force occurs and an accom-
panying reduction in the strut t&scoping velocity. Since
the mtium landing-gear force is ptiarily due to the
hydrrmlic resistance in the strut (because the shut stroke,
cmd thus the air-compression force, is generally small at
the time of mtium telescoping vdocity), the decrease in
telescoping velocity results in a decrease in shock-strut
force.

In the case of airplane A with landing gear at station
307, the effect of interaction is a marked change in the shape,
as well as in the magnitude, of the time histories. Because
of the superimposed vibrations of the structure, the shock-
strut telescoping velocity (see fig. 5) has acquired an os-

cillatory character with two peaks of the same amplitude.
However, since the second telescoping-velocity peak occurs
When the stroke is large, the superposition of the high air-
compression force on the hydraulic-force results in a total-
force time history the second peak of which is much higher
than the fit (see Force-time curves, fig. 5) and which is
also higher than might be expected from the results for the
smaller mass ratios, which have a considerably different
appearance. In the case of airplane B, because of the
lower naturaJ fkequency, this double-peaked characteristic
does not appear even for the largest mass ratio, all mass
ratios yielding time histories similar in shape, the maximum
force decreasing in a regular manner with increasing maw
ratio.

The extent to which the first flexible modes of airplanes
A and B are excited by the impacts may be observed by
examining the time histories of al, &l, and iii. As may be
expected, the higher the mass ratio, the greater is the degree
of excitation.

J?rom the calculated valuea of aO/gand a~g or El/g and Z,/g,
the acceleration at any point along the span may be com-
puted by means of the equations in appendix B. Figges 6
and 8 show time histories of the acceleration at the mass
centers of several stations for each of the landing-gear loca-
tions considered. Becanse of the combined eilects of the
changes in the landing-gear forcing function and in the degree
of excitation of the flexible modes, a given change in landing-
gear location may result in an increase in acceleration at
some stations and a reduction in acceleration at other sta-
tions.

Figures 5 and 7 also show time histories of the acceleration
z,/g which would be experienced by the elastically connected
mass m, in the equivalent three-mass system, as in a drop
test. The reduction in acceleration with increasing mass
ratio is evident. As previously indicated, if such a drop test
were made, the measured accelerations 2f/g and Z./g could be
used to calculate the accelerations and stresses that would
result at any point in the corresponding airpkme structure
by means of the equations presented in appendix B.

Figure 9 (a) presents a summ v graph sho~ the effects
of structural flexibility and interaction on the maximum
landing-gear force for the various configurations considered.
As previously indicated, the reductions in landing-gem force
are greater for airplane B than for airplane A because of the
lower natural frequency of airplane B. For the range of mass
ratios representative of existing and proposed large air-
planes, for example, values up to about 0.5, reductions in
landing-gear force up to between 15 and 20 percent may be
possible. Along the same lines, @me 9 (b) shows the effects
of interaction on the acceleration response of the landing-gear
attachment point and on the acceleration of the elastically
connected mass in the equivalent three-mass system.

43m7G-57~
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EFFEcTs OF NEQLE~ING INTERACTION IN THE
CALCULATION OF DYNAMIC LOADS

In the usual procedures of dynamic analysis of landing
loads it is customary to neglect the effects of interaction on
the landing-gear forcing function and to determine the dy-
nmnic loads in the structure by calculating the response of
the structure to the forcing function which would be obtained
if the airplane were a rigid body, this rigid-body forcing
function being either calculated or, more frequently, de-
termined on the basis of drop tests of the landing gear with a
rigid mass. In practice, either the aotual rigid-body forc-
ing function or some simplified analytical approximation of
it (see, for example, fig. 10) is used.

In order to evaluate the errors introduced by neglect of
interaction effects, the root bending moments and shears
determined from the interaction solutions for airplanes A
and B are compared in figures 11 and 12 with those deter-
mined by calculating the response of the various configura-
tions to the rigid-body forcing functions previously presented
and to simple analytical approximations to the rigid-body
forcing functions. These bending moments and shears are

* total values due to both inertia and aerodynamic forces, the
latter being included to permit comparison with the steady-
fhght values. For reference purposes, figures 11 and 12
also show the root bending moments and sheam which would
be e.sperienced by a completely rigid airplane.
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RGURE 10.—Rigid-body forcing funotione

The calculation of the response of systems with two de-
grees of freedom to predescribed forcing functions is treated
in appendix C. The response of the various configurations
to the rigid-body forcing function was calculated by applica-
tion of the numerical-integration procedure previously
described, whereas the response to the analytical forcing
functions was obtained in closed form. The rigid-body
forcing functions for airplanes A and B and their approxima-
tions are shown in figure 10. In the case of airplane A,
the rigid-body forcing function was approximated by a pulse
composed of sine and cosine seggnents; for airplane B, n
~imple sine pulse was used. The equations for calculating
the inertia moments and shears from the response of the
@em are given in appendix C; simplified expressions for
calculating the moments and shears due to the aerodynamic
forces are given in appendix D.

From figures 11 and 12 it can be seen that the bending
moments and shears calculated from the response to the
rigid-body forcing function are larger than those determined
from the interaction solutions, the differences being greater
for the bigher mass ratios where the effects of interaction
result in a greater reduction in the magnitude of the landing-
gear forcing function. From the9e particular marnples, it
appears that neglect of the effects of interaction on the
landing-gear forcing function can lead to overconservatism in
design not only of the landing gear but also of the structure,
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particularly for very flexible configurations with high mass
ratios. As might be expected, there was relatively little
diilerence in the loads calculated from the response to the
analytical approximations and from the response to the
rigjd-body forcing function.

It is of interest to note that in the case of airplane A the
loads calculated from the interaction solutions are greater
than those calculated for the completely rigid airplane,
whereas, for airplane B, the converse is true. This result for
airplane B is due to two factors: (a) the dynamic ampli&a-
tion factor is less than unity because of the relatively large
natural period of the airplane compared with the duration of
the impact pulse (tJta .=73.3), and (h) there is considerable
reduction in the magnitude of the landing-gear force because
of the effects of interaction. In the case of airplane A, the
natural period is of about the same duration as the impact
pulse (ti/t~= 1.1) so that the dynamic magnification factor is
considerably greater than unity and more than overcomes the
effect of the reduction in landing-gear force.

From the preceding results, it can be seen that the effects
of structural flexibility are twofold; namely, (a) a change in
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FIGURE Il.—Concluded.

the magnitude of the applied landing-gear force duo to inter-
action, the amount depending on the natural frequency of
the structure, the mass ratio m,/mJ, and the landing-gem
characteristics, and (b) either dynamic amplification or
attenuation of the loads in the structure compared with
those for a rigid body, depending largely on the ratio of the
duration of the impact pulse to the natural period of the
structure. In the particular examples considered, the
landing-gear force was reduced by the eflects of intwaction;
it is conceivable, however, that, for some combinations of
landing-gear and airplane characteristics, perhmps when the
natural period of the structure is smaller than the duration
of the impact pulse and the mass ratio is large, interaction
might result in an increase in the maximum landing-gear
force over that for a rigid airplane because of the superposi-
tion of oscillations of the landing-gear attachment point on
the motions of the shock strut. Such an unfavorable effect
of structural flexibility of the applied force was indicated for
certain ca9es of seaplane impact in reference 7.

In view of the foregoing observations it would appear
worthwhile to consider the effects of interaction in dynamic
analysea of landing loads when the landing gear is located
at points in the airplane that experience appreciable deflec-
tions relative to the mass center of the system.
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The effects of interaction between a landing gear and a
flesible airplane structure on the behavior of the landing
gear and the loads in the structure have been studied by
treating the equations of motion of the airplane and the
landing gear as a coupled system. The landipg gear is
considered to have nonlinesr characteristics typical of
conventional gears, namely, veloci@-squared damping,
polytropic air-compression springing, and exponential tire
force-deflection characteristics. For the case where only
two modes of the structure are considered, an equivalent
three-mass system is derived for representing the airplane
and landing-gear combination, which may be used to simu-
late the effects of structural flexibility in jig drop tests of
landing geara.

As examples to illustrate the effects of interaction, numeri-
cal calculations, based on the structural properties of two
large airplanes having considerably d.iflerent msss and flexi-
bility characteristics, are presented. In order to cover a
range of parameters, the landing gear of each airplane wss
assumed to be located at three arbitrary spanwise positions
in addition to its original location. For the particular cases
considered, it was found that

1. The effects of interaction can result in appreciable
reductions in the magnitude of the landing-gear force,
partictiarly when the flexibility of the airplane structure is

.i3GS75-57~2

(Q ,
I I I I I I I I I I I I I

o .04 .08 .t2 .16 .20 .24 .28
llme after contact, sec

(b) Sheare.
fiG~ 12.—Concluded.

CONCLUSIONS
large and the natud frequency of the structure is small.

2. Neglect of interaction effects, that is, the use of the
landing-gear forcing function for a rigid airplane in a dynamic
analysis of a flexible airplane, can lead to the calculation of
excewive loads in the airplane structure.

3. In the case of one of the airplanes, the structural loads
calculated from the interaction solutions are greater than
those for a completely rigid airplane treatment (rigid struc-
ture subjected to rigid-body forcing function) because of the
fact that the &ects of dynamic magnification more than
overcome the reduction in landing-gear force due to inter-
action. In the case of the second airplane, because of the
relatively large natural period of the structure in comparison
with the duration of the impact pulse, the dynamic magnifica-
tion factor is appreciably less than unity. This effect,
coupled with the reductions in landing-gear force due to
interaction, results in structural loads that are less than
those for a rigid airplane. It thus appeam desirable to con-
sider the effects of interaction in dynamic analyses of landing
loads for large airplanes, particularly when the landing-gear
attachment poirts experience large deflections relative to the
mass center of the airplane.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY Co~~DE FOR AERONAUTICS,

LANGLEY F~LD, VA., iWay 5, 1966.



APPENDIX A

CONDITIONS AT BEGINNING OF SHOCK-STRUT MOTION

Since the shock stxut does not begin to deflect until the preloading force imposed by-the internal air pressure is overcome by
. the inertia forces, the shock shut is essentially rigid during the interval between the instant of initial contact with the ground

and the beginning of shock-strut motion at some time t=&. During this interval, since the deflection of the tire is essentially
the same as the displacement of the landing-gear attachment point, the system used in the numerieal calculations to represen t
the airplane and landing-gear combination has only two degrees of freedom, namely, the rigid-body or zero-mode displacement
and the deflection in the first flexible mode, the higher modes being neglected. The purpose of this appendix is to consider
the motions of the system prior to the beginning of shock-strut deflection in order to determine the conditions which exist
at the instant the shock strut first begins to move; these motions then serve as the initial conditions for the equations of motion
of the system during the main part of the impact. For this purpose it may be reasonably assumed that the tire forc.c-
deflection relationship is linear for the relatively small range of deflection prior to the beginning of shock-strut motion ancl
that, therefore, Frz(z,) =m’efi In order to avoid a step jump in the time-history solution at the time G, the constant m’

should be determined so that
m’ Zfr= m zf,r (Al)

DISTBIBUTBD SYSTEM

Prior to time G the equations of motion for the airplane and landing ge~ are given by equations (18) with initial conditions:

Zf(o)=au(o)=al(o)=o

Zf(o)=&(o) =Vvo

Cil(o)=o

Since fi= ~a~ equations (18) can be written as
&

Mo&= –m’z,–m.ZJ– ‘JV.,(K.– 1) (A20)

(A2b)

The exact solution of equations (A2) can be shown to be

1

{(

AZ–C Sk At B2–C A2–C ~osAt B’–C
‘J(t)== V.. ~ )[

—7. sin Bt +D ~ -TCOSB,+C($-+)]} @3,

M’,~,2(Mo+m.)c= ~

D=(li?.-l)g

E=m’(M1+M&2) + c

Q

m’M1q2
F= ~

040
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By successive differentiation of equation (A3), the higher dmivatives of zJ(t) are found to be

1w=~~i {
V,O[(A’–C) Cos At–(B’–c) Cos m]+l)

[FF)-(%shl’t]}

641

(A4)

1
w=~~

{
VVO[B(132-C)sin Bt–A(A’–C) sin At] +D[(B’–C) cos B-(.42-C) cos At]

}
(A5)

“zJ(t)=&*
{

VVO[B2(B’–C) cos Bt–A’(A2–C) cos At]+D[A(A’-C?) sin At–B(B’–C) sin Bt]
}

(A6)

At the time G, the equation of motion of the unsprung muw of the landing gear m a free body is given by equation (2)
which, with ~v~=m’z~, may be written as

Substituting for z~,

mu~f,+m’zf,=p.oA. cos e+ w. (A7)

and ZJ, in equation (A7) gives a relational.ip between t. and m’:

(Aa J)]}
$C (m’–mtiB2) cos Bt+m’C ~— =p%& co’ e+m. (A8)

Becnuse equation (AS) is transcendental in both k and m’ (m’ being involved in the constants A and B), in order to obtain
an explicit solution for G or m’, some approximation to the trigonometric terms is necessary, the order of the approximation
depending on the accuracy required. For the determination of G and m’ it will generally be su.flicient to assume ii.mkrder
approximations for the trigonometric terms where only the first terms of their series expansions are used. With these approxi-
mations the solution of equation (AS) for G is

Q(nOAa cos o+KLW.)
t,= m’MIMOVVO (A9)

As indicated previously, m’ cannot be chosen arbitrarily but must be determined in accordance with ;quation (Al), which
may be written as

m’=mzfr’-l

The tit-order approximation for Zfr, obtained from equation (A3), is

Zf,= Vvok

WMh these substitutions equation (A9) may be written as

1

[ 1Q(P.OA cos O+KLW.) lfI
“=CO miw,lkfo

(A1o)

(All)

and the equation for m’ becomes

r–1

[ 1Q(p%f4co’O+K-w.)Tmf=m,lfi
MJ40 (A12)
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Tho fket-orderapproximations for the derivatives of ZJat time L, from equations (A4) to (A6),

&f,= VvO–Dtr

Zf,=VrOIC– (A’+ IP)]L-D
and

Z,7=(VV0–DQ[C– (A’+ P)]

are

(A13)

(A14)

(A15)

With the values of G and m’ calculated from equations (Al 1) and (A12), the values of zf,= zU,, if,= ~U7,and Zfr= z ~, con be

calculated from equations (A1O), (A13), and (A14), respectively. These values provide two-thirds of the initial conditions
for the process subsequent to the beginning of shock-strut deflection (eq. 19). The remaining initial conditions, for example,
aor, d,, and h,, can be obtained by manipulation of the differential equations (A2). From equation (A2b) it can be seen thnt

“=&2[($+m~)5f,+(w+m’)”f,-$~+wa(K’-1)l
By differentiation,

~=~[(g+mx)’f.+(w+m’)’f,-%~l

where, from equation (A2a.),
tn’zf7+mti5Jr+W,0,(K.– 1)

~=–
M,

PA COS e+W,JKrQ+Wx=—
Mo }

Differentiating equation (A2a) gives
m’2fr+mU2 f,-.

aO,= —
- M,

(A16)

(Al?)

(A18)

(A19)

The substitution of equations (A18) and (A19) and the initial conditions previously determined (z,,, 2J,, ~f,, and ‘;,,)

into equations (A16) to (A18) provides the remaining initial conditions for the second phase of the impact.

EQUIVALW THREELMASS SYSTEM

The equations of motion for the equivalent. three-maw system prior to the time G are equations (20) with initial conclit ions

Zf(o)= 2,(o)= o
and

if(o) = i.(o)= Vvo

Since it has been &own that, equations (20) are identically equivalent to equations (18) for the distributed system when
the relationships between the constmts of the two systems are as defied by equations (27) to (34), it follows that equations
(A3) to (A15) are equally valid for the three-mass system when the constants are redefined in accordance with equations (27)
to (34). The redefined ponstants, in terms of the properties of the three-mass system, maybe written as

~=w&(M+@
Mo(mr+mJ

D=(KL–l)g

E=
mf’lm=+c

3’= m,m’*2
iK0(7n,+mJ
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Wlllm

MO=mJ+m,

The equations for G and m’ , equations (Al 1) and (A12), become

1 H(PaOAaGOS19+KLWJ ‘fl
‘7T0 [ m 1

and

[ 1

r-l
m’=mlfi H(paO&cm o+KJ’7J ~

whore

(A20)

(A21)

==mf+m.
mr

The values of G and m’ given by these equatio~ permit the calculation of z~r= z.,, if,= ~tir,and Zr7= z., by means of equa-

tions (A1O), (A13), and (A14). The remaining initial conditions for the second phaae of the impact, z, and its derivatives at
the time G, can be obtained by manipulation of the diiIerential equations (2o). Solving equation (20a) for z, at time f. gives

[ 1
z,r=~ (m,+m~z f7+(k+m’)zJ,+.Lf + Wf—W= (A22)

Differentiating equation (20a) and substituting FVa(zf) =m’zr gives

An expression for Z% cm easily be obtained from equation (20b) as follom:

[ 1
––~ (mf+m=)Zfr+m’zf,+ (L,+Z,)–(W,+Wf+W=)z8,—

s

@23)

(AM)

Equations (A22) to (A24), in conjunction with the values of zf,, 2fr, and Zf, previously determined, supply all the initial

con~tions for the second phase of the impact of the equivalent thee-mass system.



APPENDIX B

DYNAMIC LOADS IN AIRPLANE STRUCTURE

The equations of motion of the airplane have been pre-
viously presented in several forms so that solutions for the
mot ions of the structure cm be obtained in terms of the
variables % and al, % and zf, or Z~and z~. The purpose of
this appendix is to present equations horn which the accel-
erations, bending moments, and shears at any point on the
nirplane structure can be calculated once the time-history
solutions for the basic variables have been obtained.

I
ACCELERATION

At any point.-The absolute displacement at, any point on
the structure (see fig. 2) is

Z= ’W+XQ

Sinco
w=ao+alwl

and
q=al~

where WI and n are the modal functions for bending and
torsion, respectively,

z=ao+al(wl+zpl)

and

Z=do+(il(wl+xp,) (III)

Since
~l_zf—f%_—

.!3

the acceleration at any point<may also be written as

wl+ Xqq
2= (%+ (z,—do)—

‘5
(B2)

Sinc13,from equation (36),

the acceleration can also be written as

Along elastio axis.-Atl the elastic axis, the displacement
is designated w and z= O so that equation (B 1) becomes
simply

ti=do+iilwl (B4)

Equation (132) becomes

?3= do+ (Zf— do)~
fl

(B5)

Equation (B3) becomes

(B6)

Along station mass centers.—At the mass center of any
station the displacement is designated ~ and z= e so that
equation @l) becomes

f=%+wl (B7)

where ~1 is the modal function for the station mass center
and is equal to m+ e%. Equation (B2) becomes

f=uo+(z,–ao) : (138)

Equation (B3) becomes

1
F=+, [mA+mA+mWf-Z) & (B9)

BSNDING MOMENTS

Outboard of landing gear.-The bending moment at fmy
spantise station Vj outboard of the landing-gear station
y= is readily determined by summing up the inertia moments
produced by the accelerations of the mass centers of all
stations i between station yj and the tip. Thus,

ti
M

$%izv>= -, miff(yf —yj) (B1o)

Inboard of landing gear,-The bending moment at any
spanwise station yj inboard of the landing-gear station y~ is
equal to the sum of the inertia moments produced by tho
accelerations of the mass centers of all stations i betvmon
station yj and the tip plus the moment produced by tim
landing-gear force. Thus,

M%isrd=s~iii(Yi–Yj)+~(v.–u,) (Bll)
f=j

where
F= – [Al&%+ W,O,(K..– l)+ W.]

SHE-

Outboard of landing gear.-The vertical shear at any spnn-
wise station yj outboard of the landing-gear station y~ is
simply the sum of the inertia reactions due to the accelera-
tions of the mass centers of all stations i between station
~, and the tip. Thus,

s(J’izv#l=3 miff (B12)
i-j

Inboard of landing gear.-The vertical shear at any span-
wise station yj inboard of the landing-gear station y~ is the
sum of the inertia reactions due to the accelerations of the
mass centers of all stations i between station ~j ancl the tip,
plus the landing-gear force. Thus,

s(Visua=~mti,+F
f-j

=3 mifi–[M~ti~+Wt.t(K.-l)+M’.l (1310
i-j}

644



APPENDIX c

RESPONSE TO GIVEN FORCING FUNCTIONS

In this appendix equations are presented for the acceleration response of the airplane structure to predetermined forcing
functions applied by the landing gear. The cases considered me the arbitiary forcing function, the sine pulse, and a pulse
mfide up of sine and cosine segments. For the particular case where the landing-gear forcing function can be represented bv a
single sine pulse,

F(t)=Fm= sin Qt

where $2is the circular frequency of the applied sine pulse and is expressed by

T
‘=~T

where T is the time to reach F-.
If the forcing pulse is not symmetrical in time about its maximum value, it may be represented by a combined pulse con-

sisting of a sine function up to the time T and a cosine function subsequent to the time T. This latter function may be written
as

F(t’) =3.= Cos Qlt’ (t’20)
where

t’=t— T

and G is the circular frequency of the cosine pulse; the initial conditions are the same as the conditions at the time t= T deter-
mined from the response to the sine-function segment of the pulse.

The solutions are presented for the distributed system of the airplane (sketch a) and for the equivalent concentrated-mass
system (sketch b)

*

(a)

DISTRIBUTED SYSTEM

The acceleration response of the rigid body or zero mode is immediately
namelv,

W,

F(t)+%t($-l)+w.&=–

The response of the deflection modes follows.

Arbitrary forcing funotion.-When the landing-gear
motion for the nth mode (eq. (15a)) can be written as

forcing function is

6
%

k

m,

(b) FV)

evident from the equation of motion~for n=O,

predetermined and arbitrary, the equation of

(n#O) (cl)

where I’(t)isan arbitrary function of time and as is the genemlized coordinate of the nth mode.
The general solution of equation (Cl) maybe written as

t,
J

aa(~)= -M= ~
KLWJ.‘2(7) sin CO.(t-7’)dT+Mm%, (CosCOJ--l)+as(o) CosCO”t+*) sin Cd (C2)

The acceleration response is obtained by double differentiating equation (C2) as follows:

‘a(t)=& @-%~; ~(~) ~ %(t–~)dT+KLWti COStixt1
—an(o)%~Cos4-U%(0)% sin d (C3)

n
045
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Equations (C2) and (C3) are general solutions to equation (Cl) and thus represent the response of any mode to an arbitrary
forcing function J’(t). In the present study of landing impact, the initial conditions are

an(o)=o
and

a.(o)=o

Sine-pulse foroing fnncticm.-For the particular case where the forcing function is a sine pulse, the acceleration response,
as determined from equation (C3), is

[

K.W=rf=f&(t)=F- *E Q2_@w2
1[ 1

~ (Q sin @-u. sin Qt)–sin W – —M—+an (0)con’cos aJ-&(0) Onsin u.t (C4)
n

where, agg, a.(0)=0 and um(0)=O.
Half-sine-half-cosine pulse,-In this case the response up to time T is given by equation (CM). Subsequent to time

T the acceleration response, determined horn equation (C3), maybe written as

where

The equations of motion for the

Introducing the new variable

t’=(t– T)>l

ax(0)=aq

u.(o) =unT

EQUIVALENT CONCRNTRATRD-MASS SYSTEM

concentrated-mass system subject to an arbitiary forcing function are (see eqs. (2!.2))

nzfzf-lc (z.— z-f)+Lr W,= —F(t)

}

(cm
m,zf+mz~+ (Lj+L,) — (W,+ W~)= —F(t)

u=z8—zf

permits the combination of equationa (C6) into a single equation in one variable:

()mfi+k 1-#$ u= F(i$)+J

where

J= LJ–Wf–~ (L.–W,)

The solution of equation (C7), by analo~ with equation (Cl), can be wmtten as

u(t)=& J-:F(T)Sin4t-T)dT++2 (1–COS ult)+u.(o)Cos %t+~+) sin U,t

(C7)

(C8)

where

M,&.k —
m,m.

,
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By substituting u(t) for z,— ZJin equations (C6) and combining, the following equations for the responses 2. and 2, can
be obtained:

[s
1’z!8(t)=—~ — F(7)sin ~(t–7)dT+:2 (1–COS qt)+?f.(o) Coscd.+ sin @] +-m, mfi o (C?9)

s

and

z~t)=+{ –[F(t)*(~,–Wf)]+k [* J F(7) sin %(t–T)dr+&, (1– cosqi!)+u(0) cm qt+ ~ sin qt1}(Clo)

In equations (C9) and (C1O), u(O) =ti(0) =0 for the present application to landing impact.
Sine-pulse forcing funotion. —For the case where the forcing term is a sine pulse, equations (C9) and (C1O) become

k Fmm.(QSill qt–q SiIl ilt)+ J.Z,(t)=—z
[

_ (1 –Cos qt)+u(o) Coscd+u+ sin 4]+
m*(Q2—q2) (Cll)

nnd

whcm, again, U(O)=ti(0) = O.
Half-sine-half-cosine pulse. —The response up to time T is given by equations (Cll) and (C12). Subsequent to time

T, the responses (eqs. (C9) and (C1O)) become

(C13)

and

{[

k (COS @,t’–COs fl,t~_wa ~,t, _(Lf_wJ)+Jk(] ‘ME? @It’)
z~t’)=; F-

m~Q12—&) 1
+k [u(O)COS CL@+%) sin qt’m~2 1}

(C14)

where
t’=t— T=O

u(o)=%

ti(o)=ti~



APPENDIX D

AERODYNAMIC AND WEIGHT MOMENTS AND SHEARS

In appendix B equations were presented for the bending moments and sheam due to the combination of the inertia forcos
arising from the accelerations of the mssses distributed along the span and the landing-gear force. In the calculation of
the total moments and shears, however, consideration must be given to the aerodynamic lift and weight forces. This
appendix presents equations for estimating these aerodynamic and weight momenti and shears which, although only first
approximations, are considered sufficiently accurate for the purposes of the present study.

If it is assumed that the lift coefficient is constant along the span and equal to the average lift coefficient of the wing

C~, the lift force at any station y, is equal to CL$ V~’A,where A, is the area assumed to be concentrated at the station,

The moment at any station Y, due to the lift and weight forces at each station{ outboard of shtion ~j is

M&j)=c. ; v.’ : h/,-w)-9 g ~f (w –w), (IX)

If unsteady-state lift effects are neglected, the instantaneous lift coefEcient is related to the lift coe5cient at the instant of
initial contact by the expression

C.=c.o+ CL=(’Y-70)

C-)=C.o+C.a VL “

Inasmuch ss the total lift at the instan~ of contact is K~W~.~,
~ =KLW,O,

Lo
~Av’~

2

so that

Map,)= Y+ L’. (Q,-
[ 1

%mh-w) (D2)VVO)~ VL i?&&h-yh ,.,a

Similarly, the shear at any station y, is

s=,,,= Kp’
[

]~Ai-g~w‘+ CL=(UO–VVO) ; VL (D3)
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