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EFFECT OF INTERACTION ON LANDING-GEAR BEHAVIOR AND DYNAMIC LOADS IN A
FLEXIBLE AIRPLANE STRUCTURE'

By Francis E. Cook and BENJAMIN MILWITZKY

SUMMARY

The effects of inferaction between @ landing gear and a flexible
airplane structure on the behavior of the landing gear and the
loads in the structure have been studied by treating the equations
of motion of the airplane and the landing gear as a coupled
system. The landing gear is considered to have nonlinear
characteristics typical of conventional gears, namely, velocity-
squared damping, polytropic air-compression springing, and
exponential tire force-deflection characteristics. For the case
where only two modes of the structure are considered, an equiva-
lent three-mass system 1is derived for representing the airplane
and landing-gear combination, which may be used to simulate
the effects of structural flexibility in jig drop tests of landing
gears.

As examples to illustrate the effects of interaction, numerical
caleulations, based on the structural properties of two large air-
planes having considerably different mass and flexihility charac-
leristics, are presented. For the particular cases considered,
it was found that the effects of interaction can result in appreci-
able reductions in the magnitude of the landing-gear force,
particularly when the flexibility of the airplane structure is large
and the natural frequency is small. Thus, neglect of interaction
effects, that is, the use of the landing-gear forcing function for a
rigid airplane, in a dynamic analysis of a flexible airplane can
lead 1o the calculation of excessive loads in the airplane struc-
ture.

In the case of one of the airplanes considered, the structural
loads calculated from the interaction solwtions are greater
than those for a completely rigid airplane treatment (rigid strue-
ture subjected to rigid-body forcing function) because the effects
of dynamic magnification more than overcome the reduction in
landing-gear force due to interaction. In the case of the second
airplane, because of the relatively large natural period of the
structure in comparison with the duration of the impact pulse,
the dynamic magnification factor is appreciably less than unity.
This effect, coupled with the reductions in landing-gear force
due to interaction, results in structural loads that are less than
those for a rigid airplane.

INTRODUCTION

In the design of landing gears it is usually assumed that
the airplane is a rigid body and development tests are

1 Bupersedes NACGA Technieal Note 3467 by Francis E. Cook and Benjamin Milwitzky, 1056,

frequently carried out in a drop-test jig with a landing gear
attached to a concentrated mass. In so doing, it is tacitly
assumed that the interaction between the motions of the
landing gear and the deformations of the airplane structure
has little or no effect on the behavior of the landing gear.
Also, load time histories obtained on & rigid-body basis are
often used as the forcing function in & dynamic analysis to
determine the inertia loads and stresses in flexible airplane
structures, again under the assumption that the behavior
of the landing gear is independent of the effects of airplane
flexibility. Although it has been recognized that this assump-
tion is not altogether valid, the errors involved have not been
considered particularly significant in the past because:
(2) The errors were thought to be on the conservative side
and (b) until comparatively recently main landing gears
have generally been located very close to the nodes of the
fundamental bending mode of the wing, and the airplane
therefore closely approximated a rigid body insofar as the
behavior of the landing gear is concerned. However, the
trend toward increased size of airplanes, the disposition of
large concentrated masses in outboard locations in the
wings, the use of thinner wings, and the development of
unconventional configurations tend to increase the flexibility
of the airplane structure and reduce the natural frequencies
of vibration. These characteristics tend to cause an increase
in the amplitudes of the oscillatory motions of the landing-
gear attachment points relative to the center of gravity of
the flexible system during impact so that the effects of inter-
action are increased, both with regard to the behavior of the
landing gear and the dynamic loads in the structure, par-
ticularly when the natural period of the fundamental mode
of the structure approaches the time duration of the impact
pulse.

A number of analytical studies and some simplified model
tests (refs. 1 to 5) which have been made to evaluate the
effects of structural flexibility on landing-gear loads have
indicated some reduction in landing-gear force due to the
effects of structural deformation. However, in view of the
fact that these previous investigations considered only
rather highly idealized linear-spring landing gears with
either no damping at all or viscous damping, & further study
of the effects of interaction between the landing gear and
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the airplane structure has been made with a more realistic
representation of the landing gear. In the present analysis,
as in reference 6, the landing gear is considered to have
velocity-squared damping, polytyopic air-compression spring-
ing, and exponential tire force-deflection characteristics, as
is the case with conventional oleo-pneumatic landing gears
in current use. The particular purposes of this investigation
are to evaluate the effects of interaction on the behavior of
the landing gear and to study the errors introduced into the
calculated loads in the structure (applied loads, accelerations,
bending moments, and shears) when a dynamic analysis is
made on the basis of applying the landing-gear forcing func-
tion for a rigid body to a flexible airplane. For these pur-
poses, case-history studies, based on the structural properties
of two large airplanes having considerably different mass and
flexibility characteristics, are presented. In order to cover
a range of parameters, the landing gear of each airplane was
assumed to be located at three arbitrary spanwise positions
in addition to its original location. Only symmetrical
impact conditions are considered.

The basic analysis of the landing gear and the airplane
structure as a coupled system is presented in & general form.
In the numerical examples presented, however, the system
is simplified by considering the motions of the airplane in its
first two structural modes only. With these restrictions,
the combination of airplane and landing gear can also be
represented by an equivelent three-mass system which may
be used in jig drop tests of landing gears to simulate the
primeary effects of structural flexibility. A similar type of
concentrated-mass system was used in the study of the
hydrodynamic impact of a flexible seaplane in reference 7.

SYMBOLS
GENERAL

g gravitational constant
K, lift factor, L,/ Wi
Lioe total lift force (half the airplane)
t time after initial contact
T time variable of integration
T time to maximum landing-gear force
¢ time after maximum landing-gear force
Vv, vertical velocity at initial contact
Wios total weight (half the airplane)

Q circular frequency of sine pulse
o circular frequency.of cosine pulse
A any variable
A value of any variable A at end of pth interval sub-
sequent to beginning of numerical integration
procedure
LANDING GEAR

i:':.

pneumatic area of shock strut

hydraulic area of shock strut, 4,—4,

internal cross-sectional area of shock-strut inner
cylinder

net orifice aree of shock strut, 4,-4,

area of fixed opening in orifice plate

cross-sectional area of metering pin or rod in
plane of orifice
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orifice discharge coefficient
vertical component of force in shock strut subse-

quent to beginning of shock-strut deflection
vertical force applied to tire at ground

unsprung mass below shock strut

constants in tire force-deflection relationship

polytropic exponent for air-compression process in
shock strut

air pressure in shock strut when fully extended

mass density of hydraulic fluid

air volume of shock strut when fully extended

shock-strut stroke

duration of impact pulse

angle between shock-strut axis and vertical

weight of unsprung mass below shock strut

vertical displacement of landing-gear attachment
point from position at initial contact

vertical displacement of axle from position at initial
contact

DISTRIBUTED STRUCTURE

generalized coordinate for nth mode

angle of twist of transverse station

modal function for torsion in nth mode

vertical displacement of elastic axis from position at
initial contact

modal function of elastic axis for bending in nth
mode

vertical displacement of station mass centers from
position at initial contact

modal function of station mass centers for coupled
bending torsion in nth mode

modal amplitude of landing-gear attachment point
for coupled bending-torsion in nth mode

chordwise distance between elastic axis and station
mass center

wing span

bending moment

vertical component of applied landing-gear force

natural frequency of first deflection mode

polar moment of inertia of wing eross section about
station mass center

polar moment of inertia of wing cross section about
elastic axis 4

radius of gyration of wing station about elastic axis

lift force per unit length of span

mass per unit length of span

generalized mass for nth mode (half the airplane)

circular frequency of nth mode

generalized force in nth mode

shear

natural period of nth mode

chordwise distance between elastic axis and any
arbitrary point

chordwise distance between clastic axis and landing-
gear attachment point

spanwise distance from airplane center plane to any
transverse station
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Ve spanwise distance from airplane center plane to
landing-gear station

z vertical displacement of any point from position at
initial contact

2y vertical displacement of landing-gear attachment
point from position at initial contact

2y vertical displacement of axle from position at initial
contact

5a, virtual displacement of generalized coordinate of
nth mode

oW, virtual work in nth mode

EQUIVALENT THREE-MASS SYSTEM

a, vertical displacement of center of gravity of spring-
connected masses from position of initial contact

k spring constant

L, lift force acting on mass m;,

L, lift force acting on mass m,

my mass acting directly on landing gear

m, elastically supported mass

w; natural frequency of vibration of spring-connected
masses

u deflection of spring

W, weight of mass acting directly on landing gear
w, weight of elastically supported mass

2, vertical deflection of landing-gear attachment point
2, vertical deflection of elastically supported mass
Zu vertical displacement of axle from position at initial
contact
AERODYNAMIC
A total wing area (half the airplane)
Ay wing area assumed concentrated at station ¢
(&% lift coefficient
(r, lift coefficient at instant of initial contact
Cr, lift-curve slope
v flight-path angle
Yo flight-path angle at instant of initial contact

p mass density of air
Vi landing speed of airplane

Subscripts:

a aerodynamic

I landing-gear attachment point

g landing-gear station

1 any spanwise station

n pertaining to the nth mode

0 zero or rigid-body mode

T at instant of initial shock-strut motion

T at instant of maximum landing-gear force
maz maximum

The use of dots over symbols indicates differentiation with
respect to time ¢ or 7. All translations are positive downward
(see figs. 1 to 3). The absolute value of any term () is
indicated by {( )].

ANALYSIS

In order to study the behavior of a landing gear and a
flexible airplane structure as mutually interacting elements of
n coupled system, the equations for the landing-gear

621

force are combined with the equations of motion of the
structure. The motions of the structure are treated by the
mode-superposition approach, wherein the deflections of the
structure are esxpanded in terms of its natural modes of
vibration. The effects of interaction between the landing
gear and the structure are introduced by expressing the
landing-gear force in terms of the motions of the landing-gear
attachment point and the wheel axle (or unsprung mass)
rather than as an arbitrary function of time.

Because conventional oleo-pneumsatic shock struts do not
begin to deflect until some finite time after initial contact of
the tire with the ground, the impact is treated in two parts,
namely, the phases prior to and subsequent to the beginning
of shock-strut deflection, where the initial conditions for the
second phase are determined from the terminal conditions
for the first phase.

In the first part of the analysis, the equations for the
landing-gear force are presented. Then, the deflections of
the structure are expanded in terms of coupled modes and the
resulting equations of motion for the system are presented in
a general form. For the purpose of indicating the quanti-
tative effects of interaction, however, the system used in the
numerical trend studies has been simplified by restricting
consideration of the structural deflections to the first two
modes of the expansion. Within the framework of this
two-mode treatment, it is also shown that the airplane struc-
ture can be represented by an equivalent system of spring-
connected concentrated masses, which may be used to
simulate the effects of structural flexibility in jig drop tests
of Janding gears.

LANDING-GEAR FORCE

An analysis of the behavior of the conventional type of
oleo-pneumatic landing gear was presented in reference 6.
In this study the mass above the landing gear was considered
as a rigid body; the sysiem treated therefore had two degrees
of freedom and is schematically represented in figure 1. The
analysis of the landing gear considered the velocity-squared
damping of the metering orifice, the air-compression springing
of the shock strut, the nonlinear force-deflection charac-
teristics of the tire, and the internal shock-strut friction
forces. Calculated time_ histories of the landing-gear forces
and the motions of the system were in good agreement with
experimental data obtained in drop tests.

In the present study the rigid mass is replaced by a flexible
airplane structure, but the treatment of the landing gear is
essentially the same as that in reference 6. However, since
conventional landing gears are inclined forward so as to
minimize normal forces and bending moments due to the
combination of vertical and drag forces, it will be assumed
that the resultant force on the landing gear lies along the axis
of the shock strut so that strut bending moments and
resulting internal friction forces are neglected in the present
analysis.

In view of the fact that conventional oleo-pneumatic shock
struts are preloaded with air and therefore do not begin to
deflect until some finite time #, after initial contact of the
tire with the ground, the impact must be treated in two
phases. In the first phase, since the strut is effectively rigid,



622 REPORT 1278—NATIONAL ADVISORY COMMITTEE FOR ABRONATUTICS

Lift

\ | /
L/
\C ! C/

N 9
4
my 1 ;

—_ \ ]
Zf \O / O;

7SS S S S
@ Fvy(zu)

(a) System with two degrees of freedom.

LI__
T_IJ_

LI
1,1

|
|
L
1,1
1,0

4|2 ||
) _A/ N
A

T
|/

()]
(b) Schematic representation of shock strut.

Freure 1.—Dynamical system (rigid airplane) considered in reference 6.

the landing gear has only one degree of freedom and the
motion of the complete system of the landing gear and
airplane is governed by the force between the tire and the
ground. This ground force arises from the deflection of the
tire and, in general, may be written as

FV":FVg(Zu) (1)

the exact variation depending on the particular tire
force-deflection characteristics. Prior to the beginning of
shock-strut deflection

F Vg=F Ve (2r)

since z,=2z,. (This relationship is exact when the landing
gear is vertical and holds very closely when the gear is
inclined.)

The shock strut starts to deflect at the time ¢, when the
force exerted on the airplane by the shock strut becomes equal

=) (1a)

to the air-pressure preloading force in the strut. At this
instant the free-body equation for the unsprung mass of the
landing gear is

muéf,"I'FV,(sz):paaAa cos -+ Wi (t=t'r) (2)

Equation (2) provides the relationship between the ter-
minal conditions for the first phase of the impact which, in
conjunction with the solution of the equations of motion for
the complete system prior to shock-strut deflection, deter-
mines the time #, when the shock strut begins to deflect and,
thus, the terminal values of the variables for the first phase of
the impact. These values then serve as the initial conditions
for the second phase of the impact.

After the shock strut begins to deflect, the landing gear
has two degrees of freedom, since the motions of the landing-
gear attachment point and the motions of the unsprung
mass are no longer the same. The equation for the vertical
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componentof the force transmitted to the airplane by the land-
ing gear after the shock strut starts to deflect is (see ref. 6)

|:| 3| Q(Od A N 8 -I-Pao tl cos 6 @t=t) (3

where
_ 2y 2y
cos @

s=z.f_éu
cos 8

The equation of motion of the unsprung mass is

mE ATy ()=Fy AW,  (tzt,) 4)

In equation (3) the first term represents the hydraulic
force in the shock strut, where the factor | | indicates the

change in sign required between the compression and exten-
sion strokes. (During the extension stroke of the shock
strut, because of the action of the rebound check valve or
“snubber” incorporated in most landing gears, the net orifice
aren A, will generally be smaller and the orifice discharge
coefficient C,; will be different from the values which apply
during the compression stroke.) The second term of equa-
tion (3) expresses the air-compression force in the sfrut,
based on a polytropic pressure-volume relationship. In
equation (4), the force arising from the deflection of the
tire may be expressed as Fyg(z,,) =maz,” for the usual types
of pneumatic tires, where m and r are constants for each
regime of the tire-deflection process (see ref. 6).

EQUATIONS OF MOTION OF THE AIRPLANE

Differential equations of airplane structure.—In the mode-
superposition approach, the structure is considered to deflect
in its natural modes of vibration and the total displacement
of any point in the system is the sum of the displacements
of the point in all the modes considered. With this approach
the motions are separated into functions which depend only
on the space coordinates and functions which depend on the
time variable.

In the case of a landing impact the process is discontinuous
at the instant #, when the shock strut begins to deflect. In
the first phase of the impact the shock strut is effectively
rigid, so that the motion of the unsprung mass of the land-
ing gear is essentially the same as the motion of the landing-
gear attachment point and the force transmitted by the
landing gear to the airplane is the vectorial sum of the
ground force due to tire deflection, the inertia reaction of
the unsprung mass, and the weight of the unsprung mass.
In the second phase of the impact, the motion of the un-
sprung mass is not the same as the motion of the landing-
gear attachment point and the force applied to the airplane
is governed by the relative motion between the landing-gear
attachment point and the unsprung mass, as given by
equation (3).

—Reference plane
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-Stalion mass center
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(b) ¢ Pr—~
,--Reference plane
W I

_—Point of force application

b

T tation mass center

%

(a) Coordinates along elastic axis.
(b) Coordinates at any transverse station.
(¢) Coordinates at landing-gear station.

Figure 2.—Coordinates for airplane structure.

The notation employed in the analysis is indicated in
figure 2. A typical transverse station located at & span-
wise distance ¢ from the airplane center plane is considered.
The mass per unit length of span is designated by m. The
translation of the elastic axis at the station is denoted by w;
¢ is the translation of the station mass center; ¢ is the chord-
wise distance between the station mass center and the elastic
axis; and ¢ is the angle of twist of the station. The trans-
lation of an arbitrary point located at a chordwise distance
¢ from the elastic axis is designated by z. The spanwise
distance from the center plane of the airplane to the landing-
gear station is indicated by y,. The translation of the
landing-gear attachment point, or force-application point, is
designated z;; the distance between the landing-gear attach-
ment point and the elastic axis is denoted by z,.

In the most general case, the expansion of the deflection
of the structure in terms of its natural coupled modes of
vibration may be written as

wly,ty= 2 0x(00:y) ®)
and
o) =2 a:()ea(t) ®)



624

where the subscript n denotes the order of any mode, a, is
the generalized coordinate in the nth mode, and w, and ¢
are the corresponding modal functions for bending and
torsion, respectively.

For later use it is convenient to introduce expressions for
the displacements at other points in the structure. Since
the translation of the station mass centers is given by
t=w-tep, 1t follows that

Het)=220x(0)8(0) @)

where the modal function ¢{,=w,+ep,. The translation of
any arbitrary point along the chord is given by z=w-+zy;
therefore,

2y, 1= axt)2at) ®)

where the model function z,—w.+z¢.. The translation of
the landing-gear attachment point is given by z,=w-+z0;
therefore,

24z 1) =20 (Enlt) ©)

where the modal amplitude {,2=w,+2/0a-

By application of Lagrange’s equation and the orthogo-
nality relationships between coupled modes, it can be shown
(see, for example, refs. 8 to 10) that the equation of motion
for the airplane in the nth mode may be written as

Mo+ Muwla.=Qy (=012, . ..) (10)

where A, is termed the generalized mass for the nth mode
and Q. is the generalized force, as determined from virtual-
work considerations. For a continuous system,

b2 ’ v/2 b2
M, ,,=J; mfw,.”dy-l-2f M eoW, dY+- f mEK e, dy
0 0
(11)
b2 b/2
=j; m¢ n’dill-i‘ﬁ I ,(p,,zdy

In practice the spanwise mass distribution is often approxi-
mated by breaking up the distribution into- discrete masses
which are concentrated at & finite number of stations along
the span. With this approach equation (11) may be written
as

M, z}i_‘_,(m,w. FH2miepe W M K on %)

(11a)
z? (mig-uf—l_Io;‘Pnf)

where the subscript 7 denotes any spanwise station.
For n=0 (rigid-body mode), since wy=¢,=1 and =0,

b2
Mo=f m dy=> m,
o
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The relationship between @, and the external forces can
be determined by application of virtual-work principles.
By definition, the work done in the nth mode by the general-
ized force acting through & virtual displacement of the gen-
eralized coordinate of the mode is equal to the work done by
the external forces acting through virtual displacements of
their points of application in the mode. Thus, the virtual

work.done by the generalized force in the nth mode is
W= Q.50 (12)

In the case of an airplane during landing, the external
forces are the distributed lift forces L(y), the distributed
weights gm(y), and the force F' transmitted by the landing
gear. The virtual work done by these external forces in
the nth mode is therefore given by ‘

b/2 b/2
aw,=—< f Loanz, dy—gf0 méants dy+Faa.£,.)
V]

——san(( [ Lnty—g [ mesay+FE) ()

Equating equations (12) and (13) gives the following
relationship for Q,:

Q= [ Lendy—g " meray+7e,)

Therefore, the equation of motion of the structure in the
nth mode is
~b/2

b2
Mnda+anngan=_FE:_ﬁ LG d’.l/+g o mg-u d’.l/

n=0,1,2,...) (14)

For the rigid-body mode (n=0), since wy="0 and z,={o=4§=1,
equation (14) becomes

/2
Myio=—F— f (L—gm)dy
0

subject to the initial conditions
a0(0)=0

do (0) =,VV0

and

If the airplane is assumed to be free of oscillations at the
time of initial contact,

@.(0)=38,(0)=0  (n70)

At the instant of initial contact, the airplane may be
accelerating, that is, d(0) 0, if the total lift is not exactly
equal to the total weight. Consideration of the balance of
forces on the unsprung mass as & free body leads to the
following equation for the force applied to the airplane by
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the landing gear at the instant of contact:

Substitution of this relationship into the equation of motion
for the rigid-body mode gives

b/2
W"_J:) (L— gm)dy_Wm _Ltot

7 )
GO(OI M0+mu Wlal/g
=(1—Kz)g
whero
KL=Ltat
tot
so that
FO)=—K, W,

With this definition of F(0) and the initial conditions for
the modes 770, equation (14) applied to the instant ¢=0
gives

1 *b/2 b/2
awO=g72(9 ), mwdy— [ Lendy+EMs) (0

This relationship indicates that, in general, a finite static
deflection in the flexible modes will be present at the time
of initial contact. At any subsequent time the deflection
will be equal to this initial static deflection plus an addi-
tional deflection a@,, which varies with time; that is,
@n=an(0)+a», This substitution permits equation (14) to
be written as

Mndu'}'anuza‘n‘: - (F+KLWu)$n (n-,-£0) (15)

subject to the initial conditions
@, (0)=dA,(0)=0

In the remainder of the report, for the sake of simplicity
of notation, the subscript ¢ will be dropped, with the under-
standing that a, represents the time-varying part of the
displacement of the nth mode, so that equation (15) is
written as

Muan"l'ﬂ’fn“"uza'n: - (F+KLWu)En

(n5£0) (15a)

If the external forces are specified solely as functions of
time, the equations of motion for each mode of the system
are uncoupled and can be solved individually. However,
when the external forces depend on the motions of the sys-
tem, as in the case of the landing-gear force during a landing
impact, the relationships between the external forces and the
motions in the modes serve to couple the equations of motion
80 that they must be solved simultaneously. Furthermore,
in the case of landing impact, since the process has two
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phases, as previously discussed, the equations of motion for
each phase must be solved separately, where the initial
conditions for the second phase are the same as the terminal
conditions for the first phase.

Motion prior to beginning of shock-strut deflection.—
Since the shock strut is effectively rigid in the first phase of
the impact, the force transmitted by the landing gear to the
airplane, F' in equation (15a), is equal to the ground force
Fvg(z,) less the inertia reaction of the unsprung mass and
the weight of the unsprung mass, as may be seen by consider-
ing the unsprung mass as a free body; thus,

Ftﬁt,=F Vg(zf)""'muéf_ W,

so that the motions of the system during the first phase of
the impact are governed by the following set of differential
equations:

Myio=—[Fy (2)+muZ+Wior(Kr—1)]
M, a,+Myela;—=— [Fyz(z,)—l—muéf—l-Wu(KL— 1)] 131

(t=t,)
Mm&'m'}—Mm%za'm: - [FVg(zf) +my éf"'Wu(KL_ 1)] n
(16)
where ,
2f=’§oa,.£,.

and the mth mode is the highest mode considered.
The initial conditions for equations (16) are the conditions
at the instant of initial contact, namely,

a(0)=0

d0(0)=VVo
and
a4(0)=0a4(0)=0 (n50)

As previously indicated, the first phase of the impact
terminates at the time ¢ when the force in the shock strut
becomes equal to the air-pressure preload force. The ter-
minal conditions at this instant, as determined by consider-
ation of the unsprung mass as a free body, are given by
squation (2), namely,

M3y, + Fy (27,)=7Pa,Aa cos 0-+W,

The solution of equations (16) in conjunction with equa-
tion (2) permits the determination of the time ¢, when the
shock strut begins to deflect and the values of the motion
variables at this instant; these values then serve as the initial
conditions for the second phase of the impact.

Motion subsequent to beginning of shock-strut deflec-
tion.—In the second phase of the impact the force trans-
mitted by the landing gear, F in equation (15a), is the ver-
tical component of the shock-strut force Fy, as given by
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equation (3). Thus, the motions of the system during the
second phase of the impact are governed by the following
set of differential equations:

l‘foao=_(Fv,+Wu)_ tot(KL— 1) h
Ma,+FM w20, = _(FV,‘I‘KLWu)El

R (7 (7
MG +-Muwn?tn=—(Fy,+ K, W.)tn t>e) 17)

and

mu:éu'i’FVg(zu):FV,_l"Wu J

where
FV'=FV' (Zj— 2y, éf—' éu)

as given by equation (3); and
m
2=2 Gnkn
n=0

The first m equations of equations (17) represent the mo-
tions of the airplane structure in its first 7 modes, whereas
the last equation of the set is the equation of motion of the
unsprung mass of the landing gear as previously given by
equation (4). The initial conditions for equations (17) are
the terminal conditions for equations (16) as previously
discussed. In view of the fact that the landing-gear forcing
term Fy, is highly nonlinear, analytical solution of the sys-

tem of equations (17) does not appear possible, so that it is
necessary to resort to numerical-integration or analog
methods.

SIMPLIFIED SYSTEM CONSIDERED IN NUMERICAL STUDIES

The preceding section has presented the equations of
motion for a flexible airplane coupled to a landing gear,
which permit calculation of the motions of the system
during a landing impact with consideration of as many modes
as may be desired. For the study of the effects of inter-
action between the landing gear and the structure, however,
it appears that the primary effects of structural flexibility
on the behavior of the landing gear can be represented by
considering only the first deflection mode in addition to the
rigid-body mode.? This simplification, which greatly reduces
the amount of computational work, is felt to be justified for
the purposes of the present investigation since both theoret-~
ical considerations and experimental data indicate that the
higher modes should have relatively little effect on the
landing-gear performance. With this assumption the equa-~

2 In a dynamlc analysts, stresses In the structure due to exclitation of the higher modes can
be approximated by caleulating the response of such modes, individually, to the foreing
fanction determined for the landing gear coupled with the rigid-body and first deflection
modes, This procedure should be a constderable Improvement over the use of the rigld-body

forcing function as a basts for response calculations in cases where the landing-gear attachment
polnts expericnee apprecinble defleciions relative to the mass center of the system.

tions of motion reduce to

MoGo=— [FV'(Zf)‘I‘muéf'I'mat(KL_ 1)] } (18“')
(tst)
M1d1 +M1a)1204= - [Fvg(zf)_l‘ muz-j'l'ﬁfu(KL_ 1)] EI (1 8b)
| and
M= —(Fy A W)~ Wi By—1) (190)
Mldl+Mléolza1=_(FV,+KLWu)£l (t>t,) (19b)
muéu+FVx(zu)=FV,+Wu (190)
where
2r=apt+ a4
and

my2y +Fy (2,)=p,, cos 0+ W, (t=t,)

The solution of equations (18) and the determination of
the conditions at the time ¢, when the shock strut begins to
deflect, which serve as the initial conditions for equations
(19), are treated in appendix A. With these initial condi-
tions, equations (19) may be solved by numerical integration
or analog methods.

From the time-history solutions for the motions of the
system thus obtained, the accelerations and inertia loads at
any point in the structure can be calculated from the equa-
tions presented in appendix B.

EQUIVALENT THREE-MASS SYSTEM

It is of interest to note that the equations of motion
previously given not only represent the distributed
system of the airplane but can also be used to define oquiva-
lent systems of spring-connected masses, where the number
of masses above the landing gear is equal to the number of
modes considered. For the particular case where two modes
are considered, the equivalent system is one containing three
masses, one of which is the unsprung mass of the landing
gear. The use of such & three-mass system provides a rela-
tively simple means for simulating the primary effects of
structural flexibility in actual drop tests of landing gears in
a drop-test jig.

In the equivalent three-mass system (see fig. 3), m, repre-
sents the mass to which the landing gear is directly attached
and m, is the elastically connected mass. The displacemont
of m, relative to its position at the instant of initial contact
is denoted by z,; the displacement of m, is designated z,,
whereas the displacement of the axle or unsprung mass m,
is z,. The spring constant of the elastic member is denoted
by k. Separate lift forces L, and L, will be considered to
act on the masses m, and m,.

" In order that the three-mass system represents the airplane
properly, z;, 24, m,, and, of course, the landing-gear charac-
teristics must be the same for the two systems, so that the
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Fraune 3.—Equivalent three-mass system for representing flexible
airplane and landing gear.

landing-gear force is the same; and my, m,, k, and the applied
lift forces must be determined from the relationships between
the equations of motion for the three-mass system and the
equations of motion for the airplane.

Consideration of the forces acting on each mass as a free
body (see fig. 3) leads to the following equations of motion
for the three-mass system:

Prior to beginning of shock-strut deflection,

(mgtmu)zr—k(z,—2z)+Li— (W W,) (20a)
=—F Ve (25)
(t=t)
M2+ (mf+mu) é!‘+ (L1+Lf) - (W:+Wr|‘ Wu)
——Fy, () (20b)
where
myZy,+Fy (2, )=pa,As cos -+ W, (t=t,)
Subsequent to beginning of shock-strut deflection,
mjéf—k(zs—Zf)—i_Lf—Wf:—va (21&)
méAma At LA L)— (Wt W)=—Fy, & (¢>t)  (21b)
m,,é,,-I-Fyz(zu)=FV'-|— Wu (210)

The problem is to determine the relationships between
m,, My, k, L,, and L, for the airplane so that equations (20)
are equivalent to equations (18) and equations (21) are
equivalent to equations (19) with the requirement that the
motions of the landing gear for the three-mass system be
the same as for the airplane, that is,

2=+ W

and that z, be the same in both systems. Since equations
(19¢) and (21c) are identical, they need not be considered
further in evaluating the unknown constants for the three-
mass system.

It is apparent that equations (202) and (20b) as well as
equations (21a) and (21b) can be written as

mE,—k(z,—z)+L—W=—F (228)
mZ+m,2,+ (L4 L)— (W, +Wy)=—F (22b)
where )
F= FV‘ (zu) +muéu_ Wu
and
Zy=2y (t = t'r)
zuz, (D)

Similarly, equations (18a) and (18b) and equations (19a)
and (19b) can be written as

Mdo‘l‘ Wtot(KL_1)+Wu= —F (233)
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My ot gt B W ——F

T 3 (23b)

Thus, the problem is reduced to determining the constants
for the three-mass system so as to make equations (22)
identically equivalent to equations (23). This may be done
in any of several different ways. For example, since the
structure is taken as linear, let

2y=0o+ @B

where B is a constant to be determined. Substituting for
2, and z, in equations (22a) and (22b) and ehmmatmg dy
between these equations gives

my(E—F) a1+mi'(sl—ﬁ)(m,+m,)al+Lf—
WA We—L)=—F (24

whereas subtracting equation (22a) from equation (22b),
with the same substitutions, gives

ot (BBt —g=0 (25)

Equation (24) is directly comparable with equation (23b).
Combining equations (23a) and (23b) so as to eliminate F
and to make the coefficient of & equal to unity gives the
following equation with which equation (25) may be
directly compared:

M,

M1‘°12
do Mt

R VA3

a+(K—1)g=0 (26)

In order to evaluate the constants for the three-mass sys-
tem, each term in equations (24) and (25) is set equal to
the corresponding term in equations (23b) and (26), re-
spectively. This procedure gives six simultaneous equa-
tions, the solution of which yields the following expressions
for the constants in the three-mass system:

m, + my= MO (2 7)
L:+L]‘= KLWto 3 (28)
2
o
M1‘|‘M051 29)
MM,
™= M Mot (30)

M1
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_ MotV
k=M (g7 g (32)
L=Kg ( My’ E‘ ) (33)
and
L=K;g Mﬂﬁﬁos 3 +m ) (34)
where
M
and
mE+m,Z,=Modo (36)

With the foregoing substitutions, equations (22) are iden-
tically equivalent to equations (23); thus, the three-mass
system with. the specified values of m,, m,, k, L,, and L, can
be considered to be equivalent to the airplane in its first two
modes during both the first and second stages of the im-
pact. Equations (27) and (28) are required to satisfy the
equations of motion for the airplane as a rigid body, whereas
equations (29) to (34) are required for proper representa-
tion of the airplane in its first flexible mode. With this ap-
proach the structural properties of the airplane are defined
by three parameters: the total mass above the landing gear
M,, the mass ratio m,/m,, and the natural frequency w,.

The solution of the equations of motion during the first
phase of the impact and the determination of the conditions
at the instant of initial shock-strut deflection ¢, are treated
in appendix A. With these conditions as initial conditions,
the equations of motion for the second phase of the impact
can be solved by numerical-integration or analog methods.
From the time-history solutions for the motion of the three-
mass system, the inertia loads and bending moments at any
point in the airplane structure can be calculated by use of
the equations in appendix B.

SOLUTION OF EQUATIONS OF MOTION

In view of the fact that the equations of motion subsequent
to time # are highly nonlinear and therefore cannot be
solved in closed form, it is necessary to resort to numerical-
integration or analog methods. Various numerical-
integration procedures are given in references 11 to 13.
Appendix A of reference 6 illustrates the application of
several such methods to the problem of the impact of a
landing gear attached to & rigid mass. One of these methods,
which may be termed the “quadratic procedure,” was used
to obtain those numerical results presented in this report
which could not be obtained analytically.

In this procedure, which involves & step-by-step solution
of the equations of motion, the following difference equations
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(vef. 11, p. 16) based on a quadratic variation of displace-
ment over successive finite time intervals are used to replace
the derivatives in the equations of motion:

c Ao
M=o AL

ALY S AV’ A
P (At)2

and

where A, is the value of any variable at the end of the pth
interval subsequent to the beginning of the process and Af
is the time intervel. The difference equations of motion
obtained by substituting these expressions into the differ-
ential equations of the system then become essentially extra-
polation formules which permit calculation of the displace-
ments to come from the values of displacement already
calculated, the whole procedure starting out with the initial
conditions of the process; that is, the conditions at the
instant {=t, when the shock strut first begins to deflect.
With the displacement time histories thus calculated, the
velocities and accelerations are then determined from the
foregoing difference equations.

CALCULATED RESULTS AND DISCUSSION

CASES CONSIDERED

In order to investigate the effects of structursl flexibility
on the behavior of the landing gear end the loads in the air-
frame, several case-history studies are presented which cover
o range of airplane mass ratios m,/m,. The calculations are
based on the structural properties of two large airplanes
having considerably different mass and flexibility character-
istics. Airplane A is representative of 2 four-engine propeller-
driven World War II bomber having a gross weight of 47,200
pounds and . a2 natural frequency of vibration in the first
coupled bending-torsion mode of 3.37 cycles per second.
The structural characteristics used for airplane B are repre-
sentative of a present-day swept-wing six-jet-engine bomber
having a gross weight of 125,000 pounds and a natural fre-
quency of 1.29 cycles per second in the first coupled bending-
torsion mode. The landing-gear characteristics used for
airplane A were based on the manufacturer’s data, whereas
for airplane B, because information was not available, the
shock-strut characteristics were chosen so as to yield a
landing gear which is essentially a scaled-up model of the
landing gear of airplane A. The pertinent numerical data
for airplanes A and B are given in tables I and IT, respectively;
the modal functions for the first coupled bending-torsion mode
are plotted in figure 4.

The main landing gears of airplane A were located in the
inboard engine nacelles very close to the nodes of the first
coupled bending-torsion mode; in the case of airplane B the
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Fraurm 4.—Modal functions for bending and torsion.

landing gear is of the bicycle type and is located in the air-
plane center plane. The position of the landing gear (since
it determines the value of the modal amplitude &) in con-
junction with the values of M, and M, governs the value of
the mass ratio m,/m, for each case. (See eq. (31).)

In order to represent a broader range of mass and flexibil-
ity effects, the calculations for each airplane were made for
four mass ratios corresponding to three arbitrary landing-
gear positions in addition to the original landing-gear
location. In practice, of course, & change in landing-gear
location would probably necessitate a modification of the
wing structure and result in some change in the modal
characteristics and, thus, the mass ratio. The main pur-
pose of the calculations, however, is to indicate the effect of
mass ratio on the behavior of the system, and the exact
locations of the landing gear which correspond to the mass
ratios used are of secondary interest.

In the calculation of the mass ratio m,/m,, the landing-
gear force was assumed to pass through the mass center of
the landing-gear station. Since the modal characteristics
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used were for the complete airplane including the unsprung
mass of the landing gear m,, it was assumed that the un-
sprung mass was rigidly connected to the mass m, in the
equivalent three-mass system, as in the first phase of the
impact, so that

: m, _M0£12
my+m, M

where M,, M;, and £ include the effects of the unsprung
mass as part of the airplane mass distribution. The mass
ratios considered and the corresponding landing-gear locations
are as follows:

Alrplane A Afrplane B
Landing-gear locatlon at— | Mass ratlo, | Landing-gear location at— | Mlassratio,
m,fmy efmy
2112 s O R — —_— 024 Statlon 0 ee oo 022
Nodes 0 Nodes. ]
Station 248 . o ceeeeaeeel .52 420, e
Station 307 oo 3.33 Statlon 804 e 284
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When the landing gear is located at the node of the first
flexible mode, this mode, of course, is not excited and, sinco
higher modes are not considered in the numerical calculations,
the airplane behaves as though it were a rigid body, its
motion being governed by equation (23a). As might be
expected, the farther away the landing gear is from the nodes,
the larger is the effective flexibility of the system and, thus,
the mass ratio.

In the calculation of the time histories of the motions of
the system, the lift force was assumed to be constant during
the impact and equal to the total weight of the airplane,
that is, Kz;=1. This assumption corresponds to the con-
dition that

L:= W:
and

L r= Wf'l"‘ Wy

in the equivalent three-mass system.

TABLE I—CHARACTERISTICS OF ATIRPLANE A
(a) Structure

[Data taken from ref. 8]

TABLE II.—CHARACTERISTICS OF AIRPLANE B
(2) Structure
[Unpublished data]

. "uy I . "H’
Station 2 eap . Station, 2 I, .
in. ' ___lb-i;ec Ib-in.-sec | b 1D Wi Pl in, ——lb-iff £ lb-in.a-{x’sec2 & 30 Wi P4
0 285 | - 0 —0. 078 0 0 109. 534 |4, 475, 280 200. 37 |—0. 0685 {—0. 000176
133 16. 3 85, 234 —39. 26 —. 031 |—. 00084 84 4. 695 y —4.65 | —. 0679 | —, 000187
217 b. 27 1, 288 0 —. 047 |—. 0016 168 4, 920 19,490 | —24.20 | —. 0350 | —. 000204
307 9.15 61, 717 —62. 19 . 164 |—. 00183 252 22. 177 278, 942 |—101. 22 . 0037 | —. 000231
428 . 974 536 0 . 374 |—. 00185 336 2. 560 2,161 2. 44 . 090 —. 000272
548 686 287 0 . 670 |—. 00187 420 2. 557 1, 988 2. 60 . 1842 | —, 000322
638 153 341 0 . 936 |—. 00188 504 1. 773 1, 136 .92 . 3263 | —. 000379
588 3. 269 2,474 | —14. 79 . 4772 | —. 0004356
672 8. 628 8,439 | —26. 88 . 6369 | —. 000482
AL 1b-sec? 61. 033 756 1. 144 500 . 80 . 8181 | —. 000614
O TR, CTTT T T TNTTT S TT oo oo soomemsooossoo—oeossoo--s g 840 520 186 5. 48 1. 000 —. 0005260
M 1. 607 o
. se
T 3.865 Moy i e 161, 776
1b-sec?
(b) Shock strut M, e 6. 9096
[Manufacturer’s data) T O e 1. 29
T 0. 163 (b) Bhock strut
Agy 80 Tt e 0. 214 [Values estimated from generalized curves of ref. 6]
Ay 8G Tt e 0. 00173 A
Doy O Fb 0. 2697 B SIUES/Ft- - o o e 17, 900
p.’ s Ibfsq fbo i 30, 528 31(0‘“1’}); 0’ 586
° a 8q Tt e mmmeeas X
o, glugsfeu £t o 1 626 R < 0. 7005
ag, ID/BQ fb o - o e mmamm e o , 52
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On the basis of the calculations in reference 6, the shock-
strut orifice discharge coefficient C; was assumed as 0.9
and the polytropic exponent 7 for the air-compression
process was taken as 1.12.

EFFECT OF INTERACTION ON BEHAVIOE OF S8YSTEM

Time-history solutions for the motions of the system
during impact at an initial vertical velocity of 10 feet per
second have been made for the eight configurations previously
mentioned. Figures 5 to 8 show the variation during im-
pact of the more important quantities, such as the landing-
gear force 7, the responses dofg, d1/g, 2,/g, 2,/g, the landing-
gear-motion variables, and the accelerations at the mass
centers of several stations along the span. Comparison of
the calculated results for the flexible cases with those for
the airplane as a rigid body (or landing gear at nodes,
m,/m,=0) indicates that the interaction between the flexible
structure and the landing gear can result in an appreciable
reduction in the applied landing-gear force (and thus, the
nodal acceleration), the largest reductions occurring at the
highest mass ratios. Furthermore, the reductions in landing-
gear force at the higher mass ratios are greater for airplane
B, because of its lower natural frequency, than for airplane A.

Consideration of the calculated time histories of the mo-
tion of the landing gear indicates how the interaction be-
tween the flexible structure and the landing gear affects the
loads produced in the landing gear. Because of the flexi-
bility of the structure, the landing-gear attachment point
deflects upward relative to the nodes, or instantaneous
conter of mnss of the system, as the applied force builds
up and the deceleration of the landing-gear attachment
point is greater than in the case of the rigid airplane. Thus,
the downward velocity of the shock-strut outer cylinder is
more rapidly dissipated and the displacement of the outer
cylinder is smaller throughout most of the impact. The
tire deflection is also smaller; however, because of the high
stiffness of the tire, the decrease in tire deflection is smaller
than the decrease in outer-cylinder displacement. The
net result is a reduction in strut stroke during that part of
the impact when the maximum force occurs and an accom-
panying reduction in the strut telescoping velocity. Since
the maximum landing-gear force is primarily due to the
hydraulic resistance in the strut (because the strut stroke,
and thus the air-compression force, is generally small at
the time of maximum telescoping vslocity), the decrease in
telescoping velocity results in a decrease in shock-strut
force.

In the case of airplane A with landing gear at station
307, the effect of interaction is a marked change in the shape,
as well as in the magnitude, of the time histories. Because
of the superimposed vibrations of the structure, the shock-
strut telescoping velocity (see fig. 5) has acquired an os-
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cillatory character with two peaks of the same amplitude.
However, since the second telescoping-velocity peak occurs
when the stroke is large, the superposition of the high air-
compression force on the hydraulic-force results in a total-
force time history the second peak of which is much higher
than the first (see Force-time curves, fig. 5) and which is
also higher than might be expected from the results for the
smaller mass ratios, which have a considerably different
appearance. In the case of airplane B, because of the
lower natural frequency, this double-peaked characteristic
does not appear even for the largest mass ratio, all mass
ratios yielding time histories similar in shape, the maximum
force decreasing in a regular manner with increasing mass
ratio.

The extent to which the first flexible modes of airplanes
A and B are excited by the impacts may be observed by
examining the time histories of a;, @;, and &;. As may be
expected, the higher the magss ratio, the greater is the degree
of excitation.

From the calculated values of do/g and @,/g or 2,/g and Z,/g,
the acceleration at any point along the span may be com-
puted by means of the equations in appendix B. Figures 6
and 8 show time histories of the acceleration at the mass
centers of several stations for each of the landing-gear loca-
tions considered. Because of the combined effects of the
changes in the landing-gear foreing function and in the degree

. of excitation of the flexible modes, a given change in landing-

gear location may result in an increase in acceleration at
some stations and a reduction in acceleration at other sta-
tions.

Figures 5 and 7 also show time histories of the acceleration
3,/g which would be experienced by the elastically connected
mass m, in the equivalent three-mass system, as in a drop
test. The reduction in acceleration with increasing mass
ratio is evident. As previously indicated, if such a drop test
were made, the measured accelerations z,/¢g and 2,/g could be
used to calculate the accelerations and stresses that would
result at any point in the corresponding airplane structure
by means of the equations presented in appendix B.

Figure 9 (2) presents a summary graph showing the effects
of structural flexibility and interaction on the maximum
landing-gear force for the various configurations considered.
As previously indicated, the reductions in landing-gear force
are greater for airplane B than for airplane A because of the
lower natural frequency of airplane B. For the range of mass
ratios representative of existing and proposed large air-
planes, for example, values up to about 0.5, reductions in
landing-gear force up to between 15 and 20 percent may be
possible. Along the same lines, figure 9 (b) shows the effects
of interaction on the acceleration response of the landing-gear
attachment point and on the acceleration of the elastically
connected mass in the equivalent three-mass system.
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EFFECTS OF NEGLECTING INTERACTION IN THE
CALCULATION OF DYNAMIC LOADS

In the usual procedures of dynamic analysis of landing
loads it is customary to neglect the effects of interaction on
the landing-gear forcing function and to determine the dy-
namic loads in the structure by calculating the response of
the structure to the forcing function which would be obtained
if the airplane were a rigid body, this rigid-body forcing
function being either calculated or, more frequently, de-
termined on the basis of drop tests of the landing gear with a
rigid mass. In practice, either the actual rigid-body forc-
ing function or some simplified analytical approximation of
it (see, for example, fig. 10) is used.

In order to evaluate the errors introduced by neglect of
interaction effects, the root bending moments and shears
determined from the interaction solutions for airplanes A
and B are compared in figures 11 and 12 with those deter-
mined by calculating the response of the various configura-
tions to the rigid-body forcing functions previously presented
and to simple analytical approximations to the rigid-body
forcing functions. These bending moments and shears are
total values due to both inertia and aerodynamic forces, the
latter being included to permit comparison with the steady-
flight values. For reference purposes, figures 11 and 12
also show the root bending moments and shears which would
be experienced by a completely rigid airplane.
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The calculation of the response of systems with two de-
grees of freedom to predescribed forcing functions is treated
in appendix C. The response of the various configurations
to the rigid-body forcing function was calculated by applica-
tion of the numerical-integration procedure previously
described, whereas the response to the analytical forcing
functions was obtained in closed form. The rigid-body
forcing functions for airplanes A and B and their approxima-
tions are shown in figure 10. In the case of airplane A,
the rigid-body forcing function was approximated by a pulse
composed of sine and cosine segments; for airplane B, a
simple sine pulse was used. The equations for calculating
the inertia moments and shears from the response of the
system are given in appendix C; simplified expressions for
calculating the moments and shears due to the aerodynamic
forces are given in appendix D.

From figures 11 and 12 it can be seen that the bending
moments and shears calculated from the response to the
rigid-body forcing function are larger than those determined
from the interaction solutions, the differences being greater
for the higher mass ratios where the effects of interaction
result in a greater reduction in the magnitude of the landing-
gear forcing function. From these particular examples, it
appears that neglect of the effects of interaction on the
landing-gear forcing function can lead to overconservatism in
design not only of the landing gear but also of the structure,
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Fieure 10.—Rigid-body forcing functions and simple analytical approximations.
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Ficure 11.—Dynamic loads in airplane A.

particularly for very flexible configurations with high mass
ratios. As might be expected, there was relatively little
difference in the loads calculated from the response to the
analytical approximations and from the response to the
rigid-body foreing function.

Tt is of interest to note that in the case of airplane A the
loads calculated from the interaction solutions are greater
than those calculated for the completely rigid airplane,
whereas, for airplane B, the converse is true. This result for
airplane B is due to two factors: (a) the dynamic amplifica-
tion factor is less than unity because of the relatively large
natural period of the airplane compared with the duration of
the impact pulse (f/t»=~0.3), and (b) there is considerable
reduction in the magnitude of the landing-gear force because
of the effects of interaction. In the case of airplane A, the
natural period is of about the same duration as the impact
pulse (¢;/t,=1.1) so that the dynamic magnification factor is
considerably greater than unity and more than overcomes the
effect of the reduction in landing-gear force.

From the preceding results, it can be seen that the effects
of structural flexibility are twofold; namely, (a) & change in

COMMITTEE FOR AERONAUTICS
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Figure 11.—Concluded.

the magnitude of the applied landing-gear force due to inter-
action, the amount depending on the natural frequency of
the structure, the mass ratio m/m,, and the landing-gear
characteristics, and (b) either dynamic amplification or
attenuation of the loads in the structure compared with
those for a rigid body, depending largely on the ratio of the
duration of the impact pulse to the natural period of the
structure. In the particular examples considered, the
landing-gear force was reduced by the effects of interaction;
it is conceivable, however, that, for some combinations of
landing-gear and airplane characteristics, perhaps when the
natural period of the structure is smaller than the duration
of the impact pulse and the mass ratio is large, interaction
might result in an increase in the maximum landing-gear
force over that for a rigid airplane because of the superposi-
tion of oscillations of the landing-gear attachment point on
the motions of the shock strut. Such an unfavorable effect
of structural flexibility of the applied force was indicated for
certain cases of seaplane impact in reference 7.

In view of the foregoing observations it would appear
worthwhile to consider the effects of interaction in dynamic
analyses of landing loads when the landing gear is located
at points in the airplane that experience appreciable deflee-
tions relative to the mass center of the system.
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CONCLUSIONS

The effects of interaction between 2 landing gear and a
flexible airplane structure on the behavior of the landing
gear and the loads in the structure have been studied by
treating the equations of motion of the airplane and the
landing .gear as a coupled system. The landing gear is
considered to have nonlinear characteristics typical of
conventional gears, namely, velocity-squared damping,
polytropic air-compression springing, and exponential tire
force-deflection characteristics. For the case where only
two modes of the structure are considered, an equivalent
three-mass system is derived for representing the airplane
and landing-gear combination, which may be used to simu-
late the effects of structural flexibility in jig drop tests of
landing gears.

As examples to illustrate the effects of interaction, numeri-
cal calculations, based on the structural properties of two
large airplanes having considerably different mass and flexi-
bility characteristics, are presented. In order to cover a
range of parameters, the landing gear of each airplane was
assumed to be located at three arbitrary spanwise positions
in addition to its original location. For the particular cases
considered, it was found that .

1. The effects of interaction can result in appreciable
reductions in the magnitude of the landing-gear force,

particularly when the flexibility of the airplane structure is
436875—57——12

large and the natural frequency of the structure is small.

2. Neglect of interaction effects, that is, the use of the
landing-gear forcing function for a rigid airplane in & dynamic
analysis of a flexible airplane, can lead to the calculation of
excessive loads in the airplane structure.

3. In the case of one of the airplanes, the structural loads
calculated from the interaction solutions are greater than
those for a completely rigid airplane treatment (rigid struc-
ture subjected to rigid-body forcing function) because of the
fact that the effects of dynamic magnification more than
overcome the reduction in landing-gear force due to inter-
action. In the case of the second airplane, because of the
relatively large natural period of the structure in comparison
with the duration of the impact pulse, the dynamic magnifica-
tion factor is appreciably less than unity. This effect,
coupled with the reductions in landing-gear force due to
interaction, results in structural loads that are less than
those for a rigid airplane. It thus appears desirable to con-
gider the effects of interaction in dynamic analyses of landing
loads for large airplanes, particularly when the landing-gear
attachment points experience large deflections relative to the
mass center of the airplane.

LanagLEYy AERONAUTICAL LABORATORY,
Nartionar Apvisory COMMITTEE FOR AERONAUTICS,
Lanarey Freup, Va., May 6, 1955.



APPENDIX A

CONDITIONS AT BEGINNING OF SHOCK-STRUT MOTION

Since the shock strut does not begin to deflect until the preloading force imposed by the internal air pressure is overcome by
_ the inertia forces, the shock strut is essentially rigid during the interval between the instant of initial contact with the ground

and the beginning of shock-strut motion at some time ¢=¢,. During this interval, since the deflection of the tire is essentially
the same as the displacement of the landing-gear attachment point, the system used in the numerical calculations to represent
the airplane and landing-gear combination has only two degrees of freedom, namely, the rigid-body or zero-mode displacement
and the deflection in the first flexible mode, the higher modes being neglected. The purpose of this appendix is to consider
the motions of the system prior to the beginning of shock-strut deflection in order to determine the conditions which exist
at the instant the shock strut first begins to move; these motions then serve as the initial conditions for the equations of motion
of the system during the main part of the impact. For this purpose it may be reasonably assumed that the tire force-
deflection relationship is linear for the relatively small range of deflection prior to the beginning of shock-strut motion and
that, therefore, Fy (2)=m’e,. In order to avoid & step jump in the time-history solution at the time ¢, the constant m’

should be determined so that
m'z, =mz, (A1)

DISTRIBUTED SYSTEM

Prior to time ¢, the equations of motion for the airplane and landing gear are given by equations (18) with initial conditions:
2(0)=0,(0)=0a:(0)=0
2,(0)=do(0)=Vy,
d,(0)=0

— G, equations (18) can be written as

Since a,1=z’£
1

ﬂ.{udo= —mIZJ—mgéf— ng(KL— 1) (A2a.)
2
d0+M£1‘;" I:f;-l—m,,) 54 Mgl‘;" -I-m') 2+ W (K—1) (A2b)

The exact solution of equations (A2) can be shown to be

z,(t)=ﬁ{'[fva (;é’;_@ sin At— B sln Bt>—|—D I: VE cos At— cos Bt+-C ( T B’):l} (A3)

&

where

B JEEVE—4F
— /_2__

0=M 10 2 (M omy)
q

D=(K,—1)g

m'(M1+Mo£12
2]

E= )to

_m,M1w12
F=—3

G=M(Mo+m,) +m.Met?
640
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By successive differentiation of equation (A3), the higher derivatives of z,(f) are found to be

.é,(t)=}12i—B,{ V. [(42—C) cos At—(B*—C) cos Bf]-+D [(B’E C) sin Bt—(AZZ 0) sin At:l} (Ad)
z,(t)=ﬁ{ Vi, [B(B*—C) sin Bt—A(A*—C) sin Af]+D[(B*—C) cos Bi—(42—C) cos Af] } (A5)
'2,(t)=Az—iB-,{ Vi [BAB—C) cos Bi— A A*~ C) cos At]+DIA(A*—C) sin At—B(B—C) sin Bt]} (A6)

At the time ¢, the equation of motion of the unsprung mass of the landing gear as a free body is given by equation (2)
which, with Fy =m’z, may be written as

My, +m' 2, =p, A, cos 6+W, (A7)
Substituting for z, and 2, in equation (A7) gives & relationship between ¢, and m’:

A,—iB;{ Ve, [‘%-Q (m’—m A% sin At—%’ (m’—m B sin Bt:|+D Ailja (m’—meA?) cos Af—

B8 (m'—m.BY cos Bi4m'C (Z5) | p=petecosotmn. as)

Because equation (A8) is transcendental in both ¢ and m’ (m’ being involved in the constants 4 and B), in order to obtain
an explicit solution for ¢ or m’, some approximation to the trigonometric terms is necessary, the order of the approximation
depending on the accuracy required. For the determination of & and m’ it will generally be sufficient to assume first-order
approximations for the trigonometric terms where only the first terms of their series expansions are used. With these 2pPproxi-
mations the solution of equation (A8) for ¢ is

Q(Ps,Aa cOs 0+KLW,,)
m’ MMV,

t,= (A9)

As indicated previously, m’ cannot be chosen arbitrarily but must be determined in accordance with equation (A1), which
may be written as
m/=mz; !
The first-order approximation for z,, obtained from equation (A3), is
2, =Vy it (A10)

With these substitutions equation (A9) may be written as

1 GQ(p.; 4. cos 0—I—KLW,,) 1
22 rVa l: mM M, (A11)
and the equation for m’ becomes
1';1
m'=m”’ [G(p%Aa cos 0+KLWu):| T (AIZ)
14kLg



642 REPORT 1278—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

The first-order approximations for the derivatives of z, at time ¢,, from equations (A4) to (A6), are

Er,=Vv,— Dt (A13)
2, =Vy [C—(A+B)t,—D (A14)

and
z25,=(Vy,—Dt,)[C— (A*+B%)] (A15)

With the values of ¢, and m’ calculated from equations (A11) and (A12), the values of 2 =2y, 25, =32u,8nd 2, =3, can be
calculated from equations (A10), (A13), and (A14), respectively. These values provide two-thirds of the initial conditions
for the process subsequent to the beginning of shock-strut deflection (eq. 19). The remaining initial conditions, for example,
@, do,, 2nd do_, can be obtained by menipulation of the differential equations (A2). From equation (A2b) it can be seen that

2 M - Miw? M, .
e fwl[ atma) Zr (TR Yo~ o AWK~ | (A16)
By differentiation, . u
o | (g4 me) Tt (Cg+m Jon =g o | @

where, from equation (A2a),
= _7n,zfr+muéff+W;az(KL—1)

= A
(A18)
_ paoAa coS 0+Wlol(KL—1)+Wu
= oA
Differentiating equation (A2a) gives
m'z, +m, 2,
ao,= -—-——I—M;——{' (A19)

The substitution of equations (A18) and (A19) and the initial conditions previously determined (z, 2, 4, and %)
into equations (A16) to (A18) provides the remaining initial conditions for the second phase of the impact.

EQUIVALENT THREE-MASS SYSTEM
The equations of motion for the equivalent three-mass system prior to the time ¢, are equations (20) with initial conditions
2(0)=2,(0)=0

and
2,0)=2,(0)= Vva

Since it has been shown that equations (20) are identically equivalent to equations (18) for the distributed system when
the relationships between the constants of the two systems are as defined by equations (27) to (34), it follows that equations
(A3) to (A15) are equally valid for the three-mass system when the constants are redefined in accordance with equations (27)
to (34). The redefined constants, in terms of the properties of the three-mass system, may be written as

oMt m,)

- Mo(mf+mu)
D=(Ky—1)g
ml
E= P mu+ C
mm’w?

My(m,+m,)
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where
’ My=m+m,
and
kM,
- mem,

The equations for ¢, and m/, equations (A11) and (A12), become

f— L I:H (Pa,Aa cOS 0-+E W )T -
Vv, pon
and
m/=mMr [H(paoAa cos 0+KLW,‘):|¥ o
where
H=Tutms
my

The values of ¢, and m’ given by these equations permit the calculation of z, =2, , 2, =2, , and 2, =2, by means of equa-
tions (A10), (A13), and (A14). The remaining initial conditions for the second phase of the impact, 2, and its derivatives at
the time #,, can be obtained by manipulation of the differential equations (20). Solving equation (20a) for 2, at time ¢, gives

rmi | (b A e A LAWY, (A22)
Differentiating equation (202) and substituting Fy (z,)=m'z, gives
bz Ot ma A Ge—mi,, | (a23)
An expression for z, can easily be obtained from equation (20b) as follows:

o= | Oyt ma)i g ey A LA L=~ A Wt W) | (A28)

Equations (A22) to (A24), in conjunction with the values of z,, 2,, and 2, previously determined, supply all the initial
conditions for the second phase of the impact of the equivalent three-mass system. .



APPENDIX B

DYNAMIC LOADS IN AIRPLANE STRUCTURE

The equations of motion of the airplane have been pre-
viously presented in several forms so that solutions for the
motions of the structure can be obtained in terms of the
variables a, and a;, @y and z,, or z, and z,. The purpose of
this appendix is to present equations from which the accel-
erations, bending moments, and shears at any point on the
airplane structure can be calculated once the time-history

solutions for the basic variables have been obtained.
{

ACCELERATION

At any point.—The absolute displacement at any point on
the structure (see fig. 2) is

z=w-+zp
Since
W=day-}-a,
and
=11

where w, and ¢; are the modal functions for bending and
torsion, respectively,

z=a,+a, (w0, +201)

and
Z=dot+a(w+xer) (B1)
Since
- _Z—do
T
the acceleration at any point may also be written as
B Got (5 do) 133-?& B2)
Since, from equation (36),
d _mféf-l-m’lé:
M,
the acceleration can also be written as
smgp| Mt m G2 LR | @)
Mo El

Along elastic axis.—At the elastic axis, the displacement
is designated w and z=0 so that equation (B1) becomes
simply

w=do+d;n (B4)
Equation (B2) becomes
Ww=dy+ (Z— do)% B5)
Equation (B3) becomes
. 1 = ~ - U
w =M—O[mfzf +myZ,+m, (2,—2,) %:I (B6)
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Along station mass centers.—At the mass center of any
station the displacement is designated { and 2=e so that
equation (B1) becomes

F=6ot+afy (B7)

where {, is the modal function for the station mass center
and is equal to wy+ep;. Equation (B2) becomes

Ftrt (=) (BS)
Equation (B3) becomes
ST U
_Mol:m,z,-l-m,z,—i—m,(z, 2,) Ex] (B9)

BENDING MOMENTS

Outboard of landing gear.—The bending moment at any
spanwise station y; outboard of the landing-gear station
¢ i readily determined by summing up the inertia moments
produced by the accelerations of the mass centers of all
stations ¢ between station 7, and the tip. Thus,

Up ..
MB(,,zh)=é MY~y

Inboard of landing gear.—The bending moment at any
spanwise station y; inboard of the landing-gear station 7, is
equal to the sum of the inertia moments produced by the
accelerations of the mass centers of all stations ¢ between
station y; and the tip plus the moment produced by the
landing-gear force. Thus,

(B10)

{1 -
MB(,,S,J=§m,r,<y¢—y,>+F<y.—y,) (B11)

where

F=—[Mo+ Wioi(Br—1)+ Wil
SHEARS

Outboard of landing gear.—The vertical shear at any span-
wise station y; outboard of the landing-gear station 7, is
simply the sum of the inertia reactions due to the accelera-
tions of the mass centers of all stations 7 between station
y; and the tip. Thus,

4 -
S(mav.)=,i_; Ml (B12)

Inboard of landing gear.—The vertical shear at any span-
wise station y; inboard of the landing-gear station ¥, is the
sum of the inertia reactions due to the accelerations of the
mass centers of all stations ¢ between station y, and the tip,
plus the landing-gear force. Thus,

i .
S(v;s:vg):ém‘f’_l_F

ti -
=§h mabi— Moot Wio (Bo—1)+W,]  (B13)



APPENDIX C
RESPONSE TO GIVEN FORCING FUNCTIONS

In this appendix equations are presented for the acceleration response of the airplane structure to predetermined forcing
functions applied by the landing gear. The cases considered are the arbitrary forcing function, the sine pulse, and a pulse
made up of sine and cosine segments. For the particular case where the landing-gear forcing function can be represented by a
single sine pulse,

F@)=Fpe sin Qt

where Q is the circular frequency of the applied sine pulse and is expressed by

0=5m

where 7' is the time to reach Fo,.

If the forcing pulse is not symmetricel in time about its maximum value, it may be represented by a combined pulse con-
sisting of a sine function up to the time 7" and a cosine function subsequent to the time 7. This latter function may be written
as

F(t')="Fpa: cos 2t t'=0)
where
t'=t—T

and @ is the circular frequency of the cosine pulse; the initial conditions are the same as the conditions at the time =1 deter-
mined from the response to the sine-function segment of the pulse.

The solutions are presented for the distributed system of the airplane (sketch a) and for the equivalent concentrated-mass
system (sketch b)

s

| 3

s

Fn I Fln

(@ (b) ]FU)
DISTRIBUTED SYSTEM

The acceleration response of the rigid body or zero mode is immediately evident from the equation of motion for n=0,
namely,
F(t)+Wtat(KL—1)+Wu

do=— MO

The response of the deflection modes follows.

Arbitrary forcing function.—When the landing-gear forcing function is predetermined and arbitrary, the equation of
motion for the nth mode (eq. (158)) can be written as

Mpdn+Muolay=—[F@)+EK W] ts (n5£0) (C1)

where F(t) is an arbitrary function of time and a, is the generalized coordinate of the nth mode.
The general solution of equation (Cl) may be written as

-KL ﬂEﬂ

(cos wyt—1)+a4(0) cos o+ "(0) wat (C2)

an(t)=— f P(s)sin an(t—r)dr- 30 ke
The acceleration response is obtained by double differentiating equation (C2) as follows:

d,.(t)=zf7"“ [F(t)—w,, ﬁ " F(2) sin wn(t—1)dr-+- KW, cos w.t:l--a,,(O)w,,’ 008 wxt—in(0) g SN w4t (C3)
645
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Equations (C2) and (C3) are general solutions to equation (C1) and thus represent the response of any mode to an arbitrary
forcing function F(¢). In the present study of landing impact, the initial conditions are

a,(0)=0

and
a,(0)=0

Sine-pulse forcing functipn.—For the particular case where the forcing function is a sine pulse, the acceleration response,
as determined from equation (C3), is
£, . . . . K W.t, . )
d"(t)=F"‘“IlT, -S-z%w:g(ﬂ sin w,t—w, sin Q#)—sin Qt:l—— —I'M:E—-l—a,, 0 w,.":l €08 wrt—0a,(0) w, 8In wyt (Cq)
where, again, @,(0)=0 and @,(0)=0.
Half-sine—half-cosine pulse.—In this case the response up to time 7 is given by equation (C4). Subsequent to time
T the acceleration response, determined from equation (C3), may be written as

dn (t')=Fmﬂ£;: 51—,‘%(003 wat’—cos Q.8 )—cos Qlt’]—-l:l—zlz’ulf'+a. ©) w.’:l COS wyt’ —ay(0) w, 8iN wyt’ (O5)
where
'=¢—D=1
ax(0)=0as,,
An(0)=dn,

EQUIVALENT CONCENTRATED-MASS SYSTEM

The equations of motion for the concentrated-mass system subject to an arbitrary forcing function are (see eqs. (22))

mz—k(z,—z)+ Li—W,=—F() o
mztmE,+ (L4 L)— (W, W)=—F()
Introducing the new variable
U=2,;—2¢
permits the combination of equations (C6) into a single equation in one variable:
mitk (1 4%) u=F(t)+J ©7)
where
J=L~Wy— L (L—W)
The solution of equation (C7), by analogy with equation (C1), can be written as
u(t)=—1—- fl F(7) sin o (E—7)dv+ J (1—cos o t)+u(0) cos a&t—i—iﬁ@ sin wt ’ (C8)
Mmoo Jo Mmyw® 2 !
where
=k M,

MMy
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By substituting «(f) for z,—z, in equations (C6) and combining, the following equations for the responses Z, and 2, can
be obtained:

5= | s [ F0) sin = r)drb s (1—cos axt)+0) cos ant-+2 ) sin ot | = (©9)

and

E{t)=— {_[F(t)'l'(L!_Wf) +k I:-—-— f F(7) sin wl(t-—r)dr—l— o (1— cos wyt)+u(0) cos wlt—l- ) sin w;t } (C10)
In equations (C9) and (C10), u(O) =1(0)=0 for the present application to landing impact.
Sine-pulse forcing function.—For the case where the forcing term is & sine pulse, equations (C9) and (C10) become

75‘;, Fmdﬂiiggzi::gm 01) o J. o (1—cos &it)+u(0) cos w1t+—— sin e :I-l-—— (C11)

2(t)=

and

o 1 k(Q s i— in Q¢ . 1— i ) .
20 { P [ KO0 8000 i -0+ P90 [0 cos nt+ S sinant |} (012

where, again, #(0)=14(0)=0.
Half-gine—half-cosine pulse.—The response up to time T is given by equations (C11) and (C12). Subsequent to time
T, the responses (egs. (C9) and (C10)) become

- Fm t’— Qt [
5 ()= n’; (fn"f(gi - 04 ,(1 008 ant")4+u(0) cos wt!+ L0 )sm t:l—l— (©C13)
and
i 1 k t'—cos it , 1— ¢/
z,(t’)_-=% { Pz (CO;?(IW_CZ‘S,) i) cos Q;t ]—(L,— ,)+Jk( cff:wl ) +k [u(O) cos w1t+ ]} (C19)
where
¥ =t—T=0
w(0)=ur



APPENDIX D
AERODYNAMIC AND WEIGHT MOMENTS AND SHEARS

In appendix B equations were presented for the bending moments and shears due to the combination of the inertia forces
arising from the accelerations of the masses distributed along the span and the landing-gear force. In the calculation of
the total moments and shears, however, consideration must be given to the aerodynamic lift and weight forces. This
appendix presenis equations for estimating these aerodynamic and weight moments and shears which, although only first

approximations, are considered sufficiently accurate for the purposes of the present study.
If it is assumed that the lift coefficient is constant along the span and equal to the average lift coefficient of the wing

(', the lift force at any station y,is equal to C’L% Vi2A; where A, is the area assumed to be concentrated at the station.

The moment at any station y, due to the lift and weight forces at each station ¢ outboard of station y, is

May=Cu 2 Vit 35 Auyi—u)—0 2 mel—)
' en= g VI o WY gz:.,m' Yi—Y;

(D1)

If unsteady-state lift effects are neglected, the instanteneous lift coefficient is related to the lift coefficient at the instant of

initial contact by the expression

Cr=Cr,+Cr (v—7,)

= C’Lo"l_ OLa

ao— VVO)
v

Inasmuch as the total lift at the instant of contact is KW,

(e,

(]

so that

KW, . tip l
M("I)=[ I:A 4G, (@0— Vv,) %VL E‘Ai(yt_yf)—g ,i_;"' me(y1—Y1)

Similerly, the shear at any station y, is

.K Wot . th ti
,S'a(,j)=|: 1;4 : +C'L¢(00—Vvo) !22 VL] éAt—g é my

— KLWI ot
5AV.?

D2)

(D3)
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