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A SPECIAL METHOD FOR FINDING BODY DISTORTIONS THAT REDUCE THE WAVE DRAG
OF WING AND BODY COMBINATIONS AT SUPERSONIC SPEEDS!

By Harvarp Loamax and Max. A. HEASLET

SUMMARY

For a given wing and supersonic Mach number, the problem
of shaping an adjoining fuselage so that the combination will
have a low wate drag is considered. Only fuselages that can
be simulated by singularities (multipoles) distribuied along the
body axis are studied. However, the oplimum variations of
such singularities are completely specified in terms of the given
wing geomelry. An application is made to an elliptic wing
having a biconvex seclion, a thickness-chord ratio equal to 0.06
at the root, and an aspect ratio equal to 3. A comparison of
the theoretical results with a wind-tunnel experiment is also
presented.

INTRODUCTION

The most simplifying assumptions that still permit the
construction of a mathematical model general enough to
contain qu&ntitative information about steady three-
dimensional supersonic flow are those basic to the develop-
ment of linearized theory. Of these, the two principal
assumptions are that the viscosity effects are negligible and
the perturbation velocities are almost everywhere small
enough to be neglected relative to the flight or free-stream
velocity. Under such restrictions the flow field can be
described in terms of a perturbation velocity potential ¢
obeying the equation

B2 0zz— Oyy— P2r=0 1)

where g*=M?—1 and the reference coordinate system? is
shown in figure 1. Further, the wave drag of any object in
a flow field governed by equation (1) can be evaluated (see,
e. g., ref. 1) by means of the equation

@ 2r
D=—p " da[” & tim o | @
where z, r, and 8 are cylindrical coordinates also defined in

figure 1.

General solutions to equation (1) are numerous and clas-
sicel. In applying these solutions to the interpretation of
physical phenomena the usual approach is to fit them to the
given boundary conditions, that is, to make the flow field
simulated by them conform to the shape of the disturbing
object as well as to a uniform free stream at infinity. Hence,

1 Supersedes NAOA RM A6 by Horvard Lomax and Mex. A, Heasle

easlet, 1055,
2 It shonld be stressed tha is el to the free-stream direction (wind axes)
sonbodyo[mvolutioneanbesymmetﬂ bout this axis only at zero angle of attack.

from this point of view, the choice of a type of general solu-
tion to be used in analyzing a particular problem with the
least mathematical effort depends on the geometric form of
the object under consideration. For example, general solu-
tions based on Green’s theorem are well adapted to the study
of forces on single planar wings in a steady supersonic flow.
On the other hand, the general solution given by Lamb (ref.
2)—which is composed of an infinite set of multipole distri-
butions disposed along & line—is well adapted to the study
of the flow around fuselage-like objects.

In this report use is made of certain general solutions to
equation (1) but with a deviation from the usual approach
mentioned above. One considers, in fact, two different
kinds of solutions which represent separately, in a given

Ficurs 1.—Reference coordinate systems,
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vicinity, different classes of real objects and, by means of
equation (2), finds optimum combinations of these solutions
from the viewpoint of low wave drag. The analysis involved
in solving this problem has, in general, a distinct mathemati-
cal advantage over the problem of calculating the drag of a
given object; namely, that the imimediate problem of finding
a shape with a relatively low wave drag is divorced from
any detailed reference to the shape itself. It is true, of
course, that the stream surface representing this shape must
eventually be found and, in fact, a limitation on the appli-
cability of the method is given by the requirement that this
shape be real. However, the problem of finding the shape
of the object when ¢ is known is a matter of direct calcula-
tion.® One should also be careful to notice that the optimum
solutions obtained by this procedure are not necessarily true
optimums but purely relative to the choice of solutions used

- B

() strength of nth-order optimum cancellation

multipoles (See eq. (36).)
M3*—1

A glope of wing upper surface .measured relative
to free-stream direction

I tan~! (8 cos )

Po free-stream density

@ perturbation velocity potential

DEFINITION OF THE PROBLEM

The problem of designing an airplane to have & minimum

in the analysis.

LIST OF IMPORTANT SYMBOLS

A wing aspect ratio

A, (x) (—B)" times the nth derivative of the nth multi-
pole distribution a,(x) (See eq. 16.)

a semi-root-chord of elliptic wing

an(2) strength of nth-order multipole distribution
multiplying cos n6

B.(z) (—B)" times the nth derivative of the nth multi-
pole distribution .(z)

b semispan of elliptic wing

ba(z) strength of nth-order multipole distribution
multiplying sin 76

Co drag coefficient, %

C, pressure coefficient, local pressure minus static
pressure divided by ¢

D wave drag

D, wave drag associated with nth-order cancella-
tion multipole distribution (See eq. (59).)

L,/,L, meximum fore-and-aft extent of wing equiva-
lent multipole distribution

L’(6),L(6) maximum fore-and-aft extent of wing equiva-
lent multipole distribution for angle 8

M free-stream Mach number \

q free-stream dynamic pressure, 2 "g"

- BR

" L,

Te see equation (46)

R radius of body

S ares of wing plan form

Se(z,0) normal projection of wing cross-sectional area
measured in oblique planes

i maximum thickness of wing root chord

U, speed of free stream

14 volume

z,9,2 Cartesian coordinate system, z parallel to free-
stream direction

z,r,0 cylindrical coordinate system, = parallel to free-

stream direction

3 From a mathematical polnt of view the essence of the method outlined above fs that the

apal Involves the solution to direct problems, that is, problems of integrati
of a given body, on the other hand, invalves the solution to inverse prob-
lems involving the inversion of integral equations.

cula the dra
lems, that is, pro|

on. Cal-

wave drag must be stated quite precisely. If the aerody-
namicist is approached with the question, “Given an acro-

"dynamic shape, can its wave drag be lowered?” he can always

reply that any volume of material having a wave drag can
always be reshaped within & space of finite dimensions so
that it will have less wave drag at a given Mach number.
Such an answer is interesting but, at present, not very useful
to the airplane designer. Thers is first, of course, the basic
criterion that the total drag should be minimized at a given

_lift and minimizing & component part of this total without

holding the other parts fixed does not necessarily yield the
lowest possible drag for a given set of restraints. For ox-
ample, the configuration illustrated in figure 2 has no wave

Cylindrical shroud Y

/
/ \\
/ \
/ / \\

// \\
/ N
\ /

\ \ //

\\ Body of revolution-) /
/
\ /
\ /
\ /
AN /
——-—— Mach waves

F1cure 2.—Body and shroud with zero wave drag.

drag when traveling at zero angle of attack; but it has a
relatively high friction drag, because of the large amount of
wetted area, and its drag due to lift could also be relatively
high. Completely aside from all such performance consid-
erations, however, are many other important considerations
that are unfortunately more or less vaguely defined from an
gerodynamic point of view. For example, an airplane must
contain a certain amount of usable volume, the shaping of
individual parts is limited by structural requirements, and
the arrangement of these parts must not seriously harm the
airplane stability and control. The interrelation of all such
separate demands presents an extremely complex design
problem making it difficult to deviate too far from the reliable
shapes set by experience.

As a result of the above-mentioned difficulties, the aero-
dynamicist who is concerned with discovering a practical

4



THE REDUCTION OF WAVE DRAG OF WING AND BODY COMBINATIONS

airplane shape having low wave drag finds the real definition
of his problem somewhat obscure. In a sense his first prob-
lem is, literally, to pose & problem; that is, to impose 2
minimum number of arbitrary but pertinent restraints within
the framework of which the wave drag is to be minimized.
Even when this has been done, he still is concerned with the
question of uniqueness, since optimum shapes are not neces-
sarily unique even when several vestraints are imposed.
Consider, for example, the problem of finding the Busemann
biplane which will have minimum wave drag at & given
Mach number for & fixed section strength, volume, and
wetted area. If the design Mach number is 1.41, one such
design (on the basis of linearized theory) is shown in figure
3 where the chord-gap ratio, h/c, is equal to ¥. The resulting
variation of the wave drag is shown in the upper part of
figure 4. However, when the gap is closed to the point
where h/c equals ¥, the variation of wave drag, shown in
the lower part of figure 4, is the same within the interval
1.28<M<1.68 and everywhere else is lower. It is likely
that one would have first discovered the former solution, yet
to the accuracy of the theory used, the latter is obviously
preferable.

With the above observations always in mind, attention
will be directed in this report to the analysis of simplified
configurations composed of two distinct types of volume:
planar types, that is, wing-like volumes, thin in one dimen-
sion and bounded by surfaces that never deviate far from
a reforence plane; and rectilinear types, that is, fuselage-like
volumes longer in one dimension than in the other two and
disposed more or less symmetrically about a straight line.

In particular the following problem is posed.:

Given a thin nonlifting wing, what is the shape of an
adjoining fuselage, the stream surface of which is
simulated by & line of multipoles in the same plane as
the wing, that will minimize the wave drag of the
combination at a given Mach number?

BASIC CONCEPTS
A LINE OF SOURCES
The velocity potential induced at the point x,r,8 by a group

of sources distributed along the z axis, starting at —L,, 18
well known to be given by

_ 1 (= al(B)dE
ﬁa(a:srxo)_—i; -5, W (3)

— — — — Mach waves at M =1.4]

Figure 3.—Busemann biplane.
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F16URE 4.—Drag variation for double-wedge Busemann biplanes.

where a@,(¢) is the source strength per umit of length. In
order to calculate wave drag one needs only the value of pasr
approaches infinity. This asymptotic vslue is simple enough
to find provided it is observed that, as r is increased, z should
also be increased so the potential can be studied in the
vicinity of the Mach waves radiating from the disturbing
object. Hence, set

z=z,+pr @)

so for a given r, ¢, measures the streamwise distance of the
point z,r,6 from the Mach wave emanating from the origin
and, in particuler, the foremost wave is located at 2,—=—L,.

(See figure 5.)
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Ficurs 5.—Coordinates introduced in equations (4) and (5).
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If equation (4) is placed int-o-equation (3) and r is assumed
to be large, the potential induced by & source is

Phrore=

2w /21

and the induced velocities are

—LoJTo—E

- 1 % ay'()dE
=i S o o
@r)roo=—Pp: (6b)

MULTIPOLES

Lamb, in reference 2, page 527, has presented a general
solution to equation (1) consisting of an iufinite set of basic
singular solutions. These basic singularities, referred to as
multipoles, can be distributed along a line and weighted so
as to reproduce certain body shapes enclosing the line. The
expression for the perturbation velocity potential for a
distribution of nth-order (n=0,1,2,...) multipoles starting
at —L, and continuing along the z axis can be written in
terms of a cylindrical coordinate system (fig. 1) as

( ® ff-ﬂ' [aa(£) cos 78+ ba(£) sin nf] dt .
ror Jo—b—pr @

2
is defined as

¢,(x,r,0) =

10
The operator (; >

10 10,109
(r or (r br>— Z)_r_i_—r_2
and the definition of { = E follows by induetion. If the
notation*
< ) f A(y)dy —1) DA .. .Cn—1) (= A(ydy
oz 2n J. @—y)®on

isintroduced, where the symbol ]C is read “finite part ot the

integral,” equation (7) becomes

rog (@l o [ay(8) cos n0+ba(B) sinndlds g
¥ ()l Jz, (G —Fr O

and the general expressions for the induced velocities be-
come—writing only the term involving the cosine, since the
result for the sine is directly analogous

_rp@nA-2)! [+ (z—E)au(f) cos ndds
¢’z(93a7';0)—§ 22t (L 1)] j: I, [@—tP—pEAerTan

BN 2n)! (=r

e (2,r,0)= ’g 2""17(71)1 T
e FDF a O cosndds gy

¢n(x:r,0)=

(98)

G——Freon
1 _ & 1p2n) (=-6r a,(t) sin nfdt
o wo(z,7,0) _nzno 2% ()l jc__ I, [(@—E)—prCx+irE (9¢)

Another very useful way of developing these multipole
solutions evolves from an application of operational tech-
4 ¥or a detailed discussion of the finite-part concept as used in this report see reference 3.

1 %o av(e)dé (5) °
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niques. To begin with, rewrite equation (1) in terms of a
polar coordinate system, thus

0% 0% 10p 1 0%

B s o ror mog 0 (10)

Next, define the Laplace transform of (z,r,6) by
6(8,7',0)=fm ga(a:,r,ﬁ)e-”da: (11)
0

and apply this transform to equation (10). There results

(for a proof see Appendix A).

0% 10p 1 0%

57 7 or 7o 0 (12)

ps%

Now, if a general solution to equation (12) is expressed in
the form

o(s8,r,6)=F(r) cos nd

then-f(r) must satisfy the equation
1 df

T a; (7'2 +528 >f =0
Solutions to this are given by
F@)=C(8) L.(Brs)+A (&) K A(Brs)

where I, and K, are modified Bessel functions as defined in
reference 4, page 77. Hence, if g is to vanish as r goes to
infinity, a geneml solution to equation (10) can be written
in the form

Bar )= 3 [A) cos o+ By(s) sin nlK,(6re) (13)

The above result will be transformed back to the physical
plane in two ways. First, apply the identity (ref. 4, p. 79)

K ()=(—1(3 )Ko<z)

and re-eipress equation (13) as (only the coefficient of the
cos 1 term is written since the treatment of the sine term is

identical)
L) (L4
ﬁ" o rdr

The inverse Laplace transform of K,(8rs)—see reference
5—is

o(8,7,0)= —5- }:‘, (—1)* cos nd =+ ’ K, (Brs)

0 , z<pr
LK (Bre)]= 1
ﬁz) 93>ﬂl‘

So, since

f_zz,adx‘ f:—,adxﬂ - f—:,,L_;, dr A (2,)=

T J g, e A (9)



THE REDUCTION OF WAVE DRAG OF WING AND BODY COMBINATIONS 713

an applieation of the convolution integral and other standard
operational techniques yields

1 [ (= __AfH)dE
“’W"’):“%{f—aa 0
: .((ni)l), e AL WA
1 f ~L, V(@—8*—p£r* (1(:;

From comparison of equations (8) and (15), the relation
between the strengths a,(z) and A,(x) for the two different
forms of the solution is found. to be

a,(2)=4,()

, n=0

z 16
(et a0 [ 1

or

(—B)"a (z)=A() (16b)

where af® (z) symbolizes the operation ja:“ a,(x) and where

use 18 made of the conditions

e (—Ly)y=aP P (—Ly= . . . =ax(—L,)=0 (17)

Another way to transform equation (13) back to the
physical plane is to do so directly. In this way one finds
(from ref, 5)

ool ( [ CaL TN . f,_,,,

1o =B 2

If the relation between the functions a.(x) and A4.(z) is
given by equation (18), the velocities represented by equa-
tions (9) and (19) are, of course, identical.

In order to obtain limiting values induced by multipoles
distributed along the z axis starting at —L,, one returns to
either equation (8) or (18) and calculates the leading term in
a 1/r expansion. As in the derivation of equation (5), it is
necessary to observe that as r is increased, z should also be
increased 8o ¢ is given in the vicinity of the foremost Mach
cone created by the multipole distributions. Hence, using
equation (4), one finds for equation (18)

A8 cosh| n cosh™ (1 +x" E):l dt

NEs

which has the leading term as r goes to infinity

1 = %o AN()dE
_— Lals)os 2
2 @;cos no I (20)

Similarly, the perturbation velocities reduce to

=-——Z‘,cosn8f

D=

0 )

L7'K.(Br8)=+ cosh| ncosh Q%)]

N R

from which equation (13) reduces immediately to

A.(%) cosh| neosh™ ( >:|

Va—r—p

rfpr

2 >Pr

olz,r,0)= —5 2 cos naf
Ta=g ~Ly

(18)

The perturbation velocities in the field represented by
this potential are readily calculated. Thus ’

—prAa’(8) cosh | ncosh—? ("’_ﬂ_r_f>:|

oz, r,0)-——— 2 , cos 10
T =0 —-Ly
(19a)

A 2 (£) cosh | ncosh™ ( >:|

goe(fc 7 0)— Z‘_,nsm nﬁf
(19b)

and by taking the derivative of equation (13) with respect
to r, one finds

P { PAOEr) + 55 A B Br0)+ o1 |

which transforms to

sio{fgmfron(5)]1e)

(19¢)

1 & %o A, (£)dE
Prro= D7 Zo} cos nf i —‘/ﬁ (21a)
Prr—eo=—Lp: (21b)
%.“Po)r_m: z—,ri@ﬁ 2‘, n sin nf f_ A————_;(“’id: (21¢)

In calculating the wave drag using equation (2) only the
velocity components ¢.),~., and ¢;),-. 8&re necessary.
Hence, from comparison of equations (21a) and (21b) with
(6a) and (6b), it follows that at a given 8 a series of multipoles
induce the same momentum flux on an infinite cylindrical
control surface as a line of sources having a strength varia-

tion a,(z) equal to ? cos nA,’(¢). If one identifies a line

of sources with a body of revolution, then it is apparent
that, at a given 8, a dragwise equivalence has been estab-
lished between a line of multipoles and a body of revolution.

HAYES' THEOREM AND ITS APPLICATION

In the previous section & relation was found between
multipole and source strengths which produce, at a fixed 6,
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Figure 6.—Mach forecone from z,r,6 in 31,2 space.

equivalent momentum transport across a cylinder of infinite
radius. By using a theorem attributable to Hayes (vef. 6)
one can derive the strength relationship between any distri-
bution of singularities throughout space and a line of sources
which gives the same equivalence.

The essence of Hayes’ theorem is that, for a fixed 6, the
velocities induced on a cylinder of infinite radius by singular
solutions to equation (1) (e. g., sources and doublets) are
invariant to displacements of the singularities along certain
oblique planes. In order to be specific, the equation of
these oblique planes is next derived.

Consider the point z,7,0 in a flow field having a supersonic
free stream moving parallel to the = axis. Figure 6 shows
the Mach forecone (by definition the Mach forecone is the
boundary of the region within which a disturbance in @
supersonic stream can affect the flow at the cone apex)
from z,r,8 in z,,7,,2; space. The equation of the forecone is

Ty =2—B~/(r cos §—y,)*+(r sin 6—z,)? (22)

One wishes to let r become very large and find the shape of
the forecone as it passes through regions close to the origin
of the 2,1,z coordinate system, regions in which the objects
oreating the wave drag are located. From equation (4)
and the expansion of equation (22) for large r, it follows that

o =xo}+Br—Br [1 —% (3 cos 0-+2, sin 6) 'i-&iz-rti g

=xo+B(y1 cos §+2, sin 0)—% (¥, sin 68—z, cos 8*+. . .

and when r goes to infinity

=2, By, cos 8-}z, sin § (23)
which is the equation of the oblique plane mentioned above.
It should be noted that the envelope formed from these
planes by fixing z, and varying 6 between 0 and 2= coincides
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with the Mach forecone and aftercone from the point z,,0,0.

Hayes’ result can now be stated *
To the lowest order in 1/r, as r tends to infinity, the
magnitude of the perturbation velocity potential and
its gradients at a fixed angle 6 is invariant to a finite
translation of sources (or any other singular solution
to the wave equation) on planes parallel to that given
by equation (23).

Consider the application of Hayes’ theorem to planar
distributions of sources lying in the z,=0 plane. As is well
known, such a distribution simulates a wing symmetrically
disposed about the horizontal (z,=0) plane. In fact, if
Mu(z,y1) i8 the local slope of the wing upper surface, the
local source strength per unit area (according to thin airfoil
theory) required to simulate the wing is — IU/,A,/= and the
velocity potential of the disturbed flow field is given by

. U, ANu(@1,31) o
=2 | |

where 7 is the area of integration bounded by the wing edge
and the trace in the z;=0 plane of the Mach forecone from
the point z, ¥, 2. Next introduce the new coordinates £ and
m such that & lies along the z, axis and =, lies along the
intersection of the z;=0 plane and the plane given by
equation (23) (see fig. 7). Set

(24)

tan u=gp cos 6 (26)
and
h=x—y tan u
m=yi8ec u
(26)

=%+ 8in p
Y1=m COS u
Then, in terms of the £,7; system, equation (24) becomes

__U N1 71 8in u,n; cos p) cos u dE, dny
ozy,2)=—— ff V(z—&~—m sin p)*—BHy—m cos u)'—p%2?
(27

Wing plon form-,

&

Ficure 7.—Orientation of z,, and #,m coordinates.
s For proofs, see Hayes’ original derivation (ref. 6) or, if more convenient, referonce 1.
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Wing plan form7

/r£|=constant J7
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/
LLine of wing sources
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F1aure 8.—Position of wing sources and equivalent single source.

As before, the asymptotic value of ¢ as r=+'+Z—> = is to
be calculated. Accordingly, one can apply Hayes’ theorem
and sum up all the sources along a line £ =constant (e. g.,
between a and b in fig. 8) and place them as a single source
on the axis. The strength of this equivalent single source
is’given by

U8, (£,0)=2U, cos #fmlgh(&-l- ny 8in p,m cos p)dm  (28)

where the integration is taken across the complete wing along

the'hne El—-consmnt and S /(EI,B)_‘ Sﬂ-,(&,ﬁ)

The term S,(z,6) has a clear geometrical interpretation
(see fig. 9), being simply the normal projection of the wing
aren intercepted by the oblique plane® z;=x-8y; cos 6.

The above defines the strength variation of a line of
sources (and, therefore, & body of revolution) which induces,
for large » and a fixed 6, & potential field identical to that

S,x,8) =Normal projection of wing area along Ail/--\

-
—

~.
~

x,=x-ﬁy,cose-/

Fiauore 9.—Wing area intercepted by oblique plane.

¢ ’I'he true oblique plans Is given b, equatlon (23) but the wing is so close to the z1=0 plane
that the variation with z; can be neg
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induced by @ given wing. Hence, the results given in
equation (6) yield

S (£1,8) d&
R =
@r)rmso=—Pepz (29b)

A similar result exists for a planar doublet distribution
(see ref. 1 or 6) but, in this report, only problems in which
the wings have no loading (local lift) will be considered.
Lifting effects have been treated in & similar fashion in
reference 7.

CANCELLATION MULTIPOLES AND DRAG MINIMIZATION

Since the flow field is governed by a linear partial differ-
ential equation the velocities induced by different solutions
to it are additive. Therefore, the drag of an object simu-
lated by various multipoles distributed along the = axis
and & sheet of sources in the z,=0 plane is given by

D=—p a0 [ ao{ tim oDt (oD (et

where the subscripts m and w refer to the multipoles and
wing sources, respectively. But equatnons (21) and (29)
identify, for & fixed 6, these velocities with those induced by
equivalent line sources. Hence, for any given 6, one can
immediately apply Kérmén’s drag formula (ref. 8) and
then for the total drag, integrate 6 from 0 to 2x. This leads
to

2 L) L)
- R Y
{U S’ (x1,0)+2(—ﬁ)"[a +0 (2)cosnf+d 20 () smnﬂ]}
{Uosw"(xg,e>+$ (—B)la$™ () cos o+

b &+0 (2,) sin nf) }lnlxl—xgl

However, since both the wing and multipoles are in the same
plane (interpreted physically, the wing is centrally mounted
on the fuselage) and the wing is simulated by sources only
(has no twist or camber), one can show the optimum value
of each b2+Y(z;) is identically zero.” Hence, one can write

2x J‘L ®)
L' (6)

$ (—B)*aZ+? (z)) cos nﬂ:l

do [ dn| U8 @0+

[U,,Sw"(za,o)+$ (—B)"a&+ (z9)cos na] 10—z
(30)

7 By symmetry

o'/ (z,8) = 3w’ (z, 2x—6)
Henoce

ir
f gin n6S" (1,6)d6=0
-J0

and any positive or negative variation of b.(*#) (1) can only increase the drag.
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Next expand the term S,’/(z,6) in & Fourier series. One
finds

U.,sw"(x,0>=$ (—B)"ag*" (z) cos n (31)
where .
2r
a@=52 [ S@nd (32
a‘,{"(z):ﬂ_(—[_]‘—’ﬁ? ﬁ  S./(2,6) cos nods (33)

Place these expressions in equation (30), integrate with
respect to 6—using the orthogonal property of the trigo-
nometric series—and one finds

D=2Do+$ D. (34)

where

28 L, L,
s I [N A R ARVETEN

[ ™0 (20) +as "0 (z)] 1) 21— 25

Since one can show?

(35).

z, L,
=_f - d"lf_L daaf " (2,)f" () Inlay— 2] >0

the minimum value of D as expressed by equation (34) is
given when each D, is itself a minimum. In other words,
each D, can be minimized separately. Further, it follows
that the value of the minimum itself is zero and occurs when

0D ()= —a, ()

Uo 2r ”
) _ﬁ_‘!; Sw (:E,a)dﬂ,

2x
U Sy (x,0)cosnddf, n>0
#(—B)"Jo

Equation (36) is the mathematical definition of the
optimum cancellation multipoles; namely, those multipoles
which are just equal in magnitude and opposite in sign to
the wing equivalent multipoles—equivalent in the sense
that they induce an identical momentum flux across a
cylinder of infinite radius.

Obviously, if all the optimum cancellation multipoles
were used, the wave drag of the combination would be zero.
This result must, however, be properly interpreted with
regard to the simulated shape. In order that the multipole
lines can represent the distortion of a real fuselage, one
must assume a cylindrical body exists upstream from the
Mach cone z-+L,=fr (the effects of the nose are being
neglected). This body forms the initial boundary of the
stream tube which represents the physical fuselage in the
vicinity of the wing and multipole lines. Clearly, the area
enclosed by this initial boundary can be small enough for
the subsequent stream surface to cross itself and represent,
therefore, a physically unreal body. Hence, the fact that
the wave drag of the wing and multipole combination can

, n=0
(36)

@ @
1etfin) =X, Ausin né, s=—L,cos . Integration gives I= 3 54,3 Which can nover
1 1
be negative.
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be reduced to zero is quite valid, but in the over-all picture
not only have the inevitable nose and tail drags been neg-
lected but also the shape simulated by the combination can
be unrealistic.

SOME PROPERTIES OF THE CANCELLATION MULTIPOLES

Let us consider next some of the restrictions necessarily
imposed on cancellation-multipole distributions and some of
the particular properties of those given by equation (36). In
the first place, if a,(z) is any multipole distribution that
generates a potential field given by equation (8) or (15), it
follows from equation (17) that the value of a.(z) and its
first » derivatives should be everywhere continuous. Further,
if a.(z) i8 & constant behind some point, say L, (i. e., for
o >z >L,), the induced flow field would simulate expanding
streamlines in the case n=0 or some form of vorticity in the
case n>0; the former case is to be avoided since any simu-
lated body is assumed to have a finite ares at z= =, and the
latter case is to be avoided if there are no resultant forces
normal to the free stream.

One can show that all the above properties are satisfied
by a,(§), the optimum cancellation-multipole distribution
as defined by equation (36). First, notice that a{**V(§)
must be zero everywhere outside the wing-enclosing Mach
forecone and aftercone, that is, for — o <t<{—L,” and
L, <t = (seefig. 10). (Any multipoles in these regions can-
not combine with the wing equivalent multipoles and must,
therefore, increase the drag.) Hence, one can set

a? (=L )=a=? (—L,)

= . . . au(_La,)
=0
N j
// AN tan~'8
A / \\Z
/
/ \
/
/ ;
N
AN
L, AN \ /\(-C = constont
N /
N | S
Y e

Ficure 10.—S8ymbols used in study of multipole properties.
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Then the condition of continuity is automatically satisfied for
o (f) in the entire interval — o<zl if S,/ (£0) is
derived from a wing having finite wave drag (in particular,
from a wing having no blunt edges along which the normal
component of the free-streem Mach number is unity or
greater), It follows immediately that o« (£), m<ln, is
continuous since the latter is found by integrating (further
smoothing) «f (£).

The proof that «,(L,) as given by equation (36) is zero
requires more consideration. One can show, however, that
af(L,)=0 where 0 <m<n. First, the equality o (L,)=0
follows from the fact that the wing closes and S’ (L,,0) itself
is zero. Next consider the definition of & (). Thus

a (E)— = f S (£,6) cos nd df
—_ hy 8, §)
=(—_—%%_ cOs u cosnd dﬁf M(E+7 8in g,m cos pdny -

where use has been made of equation (28) for the definition
of S,/ (£,6) and &, and k, are defined in figure 10. Since

O ), EEEE 6D
one has
me—__ —20, ™
O o

1(6- &1) o .
f f dn(E—&)* ™" Ny (£147 8in g,7 cos p) cos p

ko(6, &)

Change the £,7 coordinates back to the z,y system by means
of equation (26) and this becomes

—U, r
on) (£ — ) — n—m—1
A=), 3108, Jeatoy s
Mlzy) dedy
The area S, shown in figure 10, becomes independent of 6

when t{=L, (being then just the area of the wing itself),
therefore

& (Lo =gy m—n) B),.ﬂ‘(m 2 f f)\u(a:,y)da; dy
ﬁ (Lo—2z+By cos )™ cosnb d§=0
since, for m<n
f:'cos mo cosnb df=0

Hence, for the «,(£) defined by equation (36)
a’ (L) =ag " (Lo)=as*"? (Lo)= ... =an(L;)=0 (38)

AIRPLANE SHAPE

In the previous section a connection was established be-

tween multipole distributions and their resulting wave drag.
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Further, this connection was direct and relatively simple if
the strengths and positions of the distributions were given.
Unfortunately the connection between the multipoles and
the shape of the simulated surface is generally not so simple.
Such a relation does certainly exist, however, and if the
strengths of the multipoles are known, the relationship is
again direct. That is, a given distribution of multipoles
yields directly, by the formulas given in the previous section,
the induced velocities everywhere in the flow field, these, in
turn, fix the stream surfaces along any one of which (since, of
course, the theory neglects viscosity) a physical surface can

be imagined.
In general, if
F c(xy'y:z)=0
(39)
F ,,(0:,1‘,0)=0
are the equations of a stream surface in cartesian and polar
coordinates, respectively, then the equations

oF, OF, OF,
(Ua+$"r) Oz +¢1 a{; +‘P: bl.:_=0
(40)

1 oF,

(U +€"z) oz p+‘P p+_ B ae =0

must hold.
For example, in studies of thin wings lying in a plane, the
particular form of equation (39)

2—h(z,y)=0

is assumed and equation (40) becomes
ok Oh
_(Uo_l'ﬁpz) 'b_x—?’ya_y"l'#’z:o

or, neglecting second-order effects,

Oh_ 1
oz U,**

which is the familiar boundary condition used in thin-airfoil
theory. On the other hand, if the equation of the body
shape is written in the form

r—R(x,8)=0
then equation (40) becomes, for linesrized theory,

OR_  w OR
Vee— Bw “n
If the flow field is radially symmetrical or if the body surface
is quasi-cylindrical, equation (41) reduces to

oR 1
T (42)

which is the familiar boundary condition used in the study
of quasi-cylindrical bodies or bodies of revolution.

In genecral, a nonlinear partial differential equation of the
first order such as equation (41) can be reduced to two simul-
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taneous, ordmary, nonlincar differential equations of the
first degree (see, e. g., ref. 9). Thus equation (41) becomes

ds_ 1
dz U

R 1
%=l_70 ‘Pr(:r'; R)a)

(z,R,6)
(43)

and if ¢ and ¢, are known functions of z, R, and 8, these can
be solved numerically.

If the strengths of all rectilinear multipoles and source
sheets are given, equation (19) or (24) can be used to find
o and ¢ at arbitrary field points. Hence, the first step in
finding the body shapes reduces to that of integrating such
equations. However, these integrations are difficult and
tedious even when entirely numerical procedures are em-
ployed and the results still have to be interpreted in terms of
the body shape according to equations (43). Therefore,
from a practical viewpoint, it is necessary to study certain
approximate methods for obtaining the velocity field.

Lot attention be concentrated on the disturbances created
by a line of multipoles. In particular, consider the fields

4
'ﬂal= c:(l-l«?z)'F /,/ \\
.2 ‘\
% N
% (o}
-2
N )
-4
T T 11 ]
2| a,=c,(1-72°F = >
\\
2o
c2 I~
N
-2 N L
.2 1 T 1
— 04 = c4lI-F2)°% 2
o o 4=Cq / -
Cq \\‘ /
L
~25 -5 0 5 1.0
x
-= Radii ot which velocities ¢, and ¢, are presented
r
Y /
Ve - --—7“—---888
/ / 444
s - L <98
e _ 7 " <48
- Z -— - (@)
Z Z
-1 \\\ I x
——— Multipoles

(a) Multipole distributions.
F1aurEk 11.—Radial and tangential velocities induced by three different
multipole digtributions at four radii.
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induced by simple polynomial distributions satisfying, in

each case, the end conditions given by equation (17). TFor
particular variations set

a(@)=co(1—2")%

a@)=c(1—2")°z (44)

a(@)=c(1—2°)

where c,, ¢z, and ¢, are constants determining the amplitudes
and z==z/L,. Figure 11 (a) shows the variations of these
coefficients with %, and figures 11(b) through 11{f) show
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how velocities induced by these distributions vary with
Z, (T,=z—p7) and 7 (F=pr/L,). The results have been com-
pared with those for large 7 given by equation (21) and with
those for small 7 given by slender-body theory. Values for
the latter theory are determined from equations (9) or (19)
by expanding the expressions in powers of r and neglecting
all but the first terms. Thus it can be shown

%2—1(:_) »y n=0

“v"r)r—»o': (453')

(—2)*nla,(x) cos nd
4721‘""'1

y n>0
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1 (—2)™nla,(x) sin nd
r Prg)rmso™= 4T;u+l s 120 (45b)

The significance of figure 11 with regard to practical appli-
cations is more or less obvious. The first step in its use is to
find the effective length of the cancellation-multipole dis-
tributions. Since the wing is given, the streamwise variation
of the cancellation multipoles can be calculated. Actually
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this variation will extend between the apexes of the enclosing
Mach forecone and aftercone, a distance of L,+L, (see
fig. 10). However, depending on the wing plan form and
section, the effective lengths of the distributions (the interval
of principal variation) can be considerably less as illustrated
in figure 12. Designate this effective length as 2L, and the

20y, — 2 »

/-aﬂ(x)

Lo¥Lo
Fiaure 12,—Effective length of multipole distribution.
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distance to the vicinity of the body surface as r., and one can
define the parameter 7, thus

= _Br,
I',-—r“
Using figure 11 and the parameter 7., one can now estimate
the error incurred by the use of various approximate methods
for calculating the body shape. A convenient way to carry
out these estimations is to study the magnitude of the first
crest of the waves shown in figures 11 (b) through 11 (f), and
the distance this crest lies from the foremost Mach cone.
Graphs showing the variations of these quantities with 7 are
given in figures 13, 14, and 15.
By means of the above concepts, let us study briefly four .
different approximate methods that can be used to calculate
a body shape.

(46)

SLENDER-BODY THEORY

Slender-body theory is represented in figure 14 by the
straight lines having the slopes, on the log-log scale, equal
to —(n+1) where n is the order of the multipole. Since this
theory amounts to an expansion of the equations for the
velocities in powers of 7, it obviously represents a good
approximation when 7, is sufficiently small. Notice that for
a given percentage error the limiting value of 7, for which the
method applies increases as the order of the multipoles in-
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creases. For exa.mple when 7,=0.2, ¢,, a8 glven by slender-
body theory is 19 percent less than that given by exact
linearized theory for the case shown, whereas ¢;_ is only 3
percent less. Correspondingly, the positions of the wave
crests follow the path predicted by slender-body theory to
larger values of ¥ as the order of the multipoles increases.
The latter trend is illustrated by figure 15.
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If for a particular problem r, is small enough for slender-
body theory to be considered 2 good approximation, the
equation for the body shape, r=R(z,6), corresponding to
the combined wing and optimum cancellation multipoles
defined in equation (36) is determined by the expressions
(using equations (45), (36), and (14) together with equa-
tion (42))

d:c [W(z’m) v T2 AR f:t d‘bf _L dm(z—2,)" cos m5."(@.9) (470)
an_foiero] 20 e s
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Approximate methods for finding (ps/ U, R) wixg2nd (&r/U.,) wing,
the velocities induced by the wing, can often be used also;

but these apply to individual cases and cannot be discussed
here.

THEORY FOR LARGE rg

The asymptotic values for magnitude and position of the
first wave crest obtained by placing equations (44) into
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equations (21) are also shown in figures 13, 14, and 15.

For n<4 it is clear that this theory can be used when 7,
is greater than about 2.

CONTROL-SURFACE THEORY

The approximations inherent in ordinary control-surface

theory can also be estimated by inspecting figures 14 and
15, where by control-surface theory one means that the
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Fiaure 15.—Position of first crest of waves created by multipole
distributions shown in figure 11.
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exact linearized theory is used to evaluate induced velocities
along a given surface and these values are assumed constant
for all 7 in the vicinity of the surface. As shown in
figure 16, this amounts to assuming ¢ and ¢ are given
by a straight horizontal line in figure 14 and by straight
lines with a unit negative slope in figure 15. Obviously,
the error in the body shape calculated by this theory increases
as the amplitudes of the disturbing multipoles increase and
as the radius of the control surface diminishes.

One of the simplest applications of control-surface theory
arises in the study of quasi-cylindrical bodies. In such
cages the expression for the body surface can be derived
immediately from equation (42). Thus, if the amplitudes
of the cancellation multipoles are small enough and R,
the radius of the control surface, is large enough for control-
surface theory to be considered a good approximation, the
body shape, r=R(x,0), corresponding to the combined wing
and optimum cancellation multipoles i1s determined by
using equations (19¢), (16b), and (36) together with equa-
tion (42)

dR [go,(x,Rc,G):I +E et
0 T

where o,=1 for n=0 and ¢,=2 for n>0.

_La'

v (ﬂ?—f)’—ﬁ’Rcz

fo " S (Eb) cos mp i (48)
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A study of optimum fuselage shapes using control-surface
theory has been carried out by Nielsen (ref. 10) for a constant-
chord 'sweptback wing having a biconvex section and a sonic
leading edge. The set of interfering singularities used in
reference 10 are equivalent (the singularities are limited to
the z axis) to the multipoles used herein. The fuselage
shapes calculated by Nielsen are thus the same—within the
accuracy of control-surface theory—as those given by equa-
tion (48).

MODIFIED CONTROL-SURFACE THEORY

A method of modifying control-surface theory to increase
its accuracy is illustrated in figure 17. Induced velocities
computed by this method are based on those calculated
along a given control surface but are extended away from
this surface by varying their magnpitude as (r)* where the
value of v, is fixed by the slope of the curves in figure 14 at
r=7,, 7, being defined by equation (46) (fig. 17). With this
modification equation (48) becomes

dR__ %(xyRcﬁ)] © (Ez s ¢, COS T
dx'[__U., o T \®) TioR,
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(z—%) cosh ( ncosh™! %) dt

Vet —PR:
fo T S cosnydy (49)

*—6R,
—Lo,

which can be solved using numerical techniques.

A further refinement of equation (49) can be obtained if
the position of the induced velocities is also varied according
to the slope (again at 7=7,) of the curves in figure 15. De-
fining this slope as 3,, see figure 17, and z; as

zy=2—B(1+35,) (R—R.)

one can see this refinement simply amounts to replacing
the value of 2 in the right-hand term of equation (49) by z,.

ILLUSTRATIVE EXAMPLE—ELLIPTIC WING

In order that one may be able to assess the practical sig-
nificance of the preceding sections, the concepts presented
therein will now be applied to the solution of a particular
problem. For the basic wing plan form in this particular

30 | |
Source distribution given by g,=g, (I-¥2)¥
25 \
20 1C1n"|)r/7
e
Sla  Linearized theory
1
|
1_5 T 1 \
Modified control—
surface theory
A
Amplitude of first crest
15 2 3 4 5

=

Position of first crest

¢« Modified control
\\ surface theory

=

Y
X, - Linearized theory

A
-4 2 3 4

r

Figure 17.—Comparison of velocity fields given by exact-linearized
and modified control-surface theory.
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example an ellipse will be chosen. There are two good
reasons for this choice; first, the ellipse is effectively un-
swept and places a severe test on the role of body interfer-
ence in reducing the wave drag at-a supersonic speed, and,
second, for a given volume, the optimum section (i. e., the
one yielding minimum wave drag) for these wings when
considered separately has been discovered (see ref. 11) so
the reduction in wave drag brought about by the body
will reduce the minimum value possible for such wings when
flying alone. The drag reductions for the first few cancella-
tion-multipole distributions will be calculated and compared
with the total drag of the wing alone, the wing mounted on
an infinite cylinder, and the wing mounted on a basic body
of revolution. Finally the details of calculating a body
shape simulated by the wing source sheet, a source line
representing a basic body of revolution, and the first two
optimum cancellation-multipole distributions will be carried

out.
THE ELLIPTIC WING

Consider the elliptic lens specified by the equation
. t —2;2 y2
2= :|:§ (1 ?‘7'—"173) (50)

where the thickness, span, and cliord are shown in figure 18.
The streamwise slope of the upper surface is seen to be

0z

| =M= (51)

and the total wing plan-form area S and volume V are,
respectively,

S=mab

(52)
G
V 5 tab

)

e

y X

Wing plan form

— =
——]

Root section

Figure 18.—Definition of parameters used to study elliptxc wing.
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Freure 19.—Elliptic wing in £,5 coordinates.

Wave drag.—The wave drag of the elliptic wing repre-
sented by equation (50) can be calculated by means of
equation (30) in which, since one wishes now to find the
wave drag of the wing alone, the a,’s are set equal to zero.
The value of S,/(z,6) follows by placing equation (51) into
equation (28) and integrating. Thus

U.S,'(z,0)=2U, cosztf < (¢+nsin p)dn=
2tU, cos u . , 70 8in p\Mm
P 13 >b,

where, by referring the equation of the plan form to the £y
coordinates (see eq. (26)) and solving for the points where
the straight line £=constant intersects the wing edges, one
finds—see figure 19

by 1 =_62£8in M-:I:(Zb'\/(ll2 cos? u-}+b*sin® p—¢2 cos? u
ho ) @’ cos® u+b%sin® i
Hence, .
Su'@0)= aoiab Vai+-b%82 cos® 6—a?  (53)
o (a1 b8 cos? 6)*

From the relation
L2(8) =a*+-b%8% cos® 8 (54)

the wave drag can be expressed in the form (integrating once
by parts)

D 1 2r L@ L (6) 4tab
¢ 47 J; dﬁf —L® d&f —L® [D(o)

LA0)—24" | LV L*0)—&*
VIO —£2 | E—h
Further integration yields
D ds
7Y @ e oy
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Values of ¢/l

Point Exact Ackeret
number linearized wave—
theory HNx-r)/a?
1 .044 050
2 -.053 -.050
3 -.102 -.100
4 -.104 -.100
Region to be
occupied by

body streamling —————

Fieurp 20.—Points at which exact-linearized theory was compared
with an Ackeret wave in plane of symmetry for elliptic wing.

Finally, the wave drag can be expressed in coefficient form,
based on the total wing area =ab, as

1+2 (bﬁ>
i T

Equation (55) represents the lowest value of wave drag
possible for & wing having an elliptic plan form and fixed
volume. This equation was first derived by Jones in
reference 11.

The velocities induced by the wing source sheet in the
vicinity of the fuselage.—Later, when one wishes to calcu-
late a stream surface in the presence of the source sheet that
simulates the wing given by equation (50), it is necessary to
know the velocities induced by these sources at the body
surface. Hence, the value of ¢, induced by the source sheet
was calculated at the four points indicated in figure 20.
As it turns out, these values are so close (see the figure for a
numerical comparison) to those obtained by assuming the
source sheet to be two-dimensional with a chordwise intensity
identical to that along the root section of the elliptical sheet
@i. e., using the Ackeret wave generated by the root section)
that the effect of the wing can be assumed to be given every-
where in the vicinity of the body by the latter velocity field
if (as will be the case in subsequent application) the surface
of the body passes through the region shaded in the figure.
That is, the effect of the wing in the equations for the fuselage
shape (such as eqs. (47), (48), or (49)) is assumed to be

Cp= (55)

1 ¢ o —for0<6<=
mga,—:[:a;(x:i:ﬁrsmﬂ)sma, tform < <27
1 t for 0<8< (56)
. —for T
;iqug—:l:&—i(a::Fﬁrmna)cosﬁ, Horm<f< 2w

THE OPTIMUM CANCELLATION MULTIPOLES

One can now find the strengths of the multipoles along the

z axis which induce around a cylinder of infinite radius a
momentum field identical to that created there by the elliptic
wing. The negatives of these variations are, according to
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equation (36), the optimum cancellation multipoles. Hence,
combining equations (53) and (36)

2tabU,x (27 /a’+b3B% cos®0—2?
7 (=" (a*+b°67 cos?0)"

where o,=1 for n=0 and ¢,=2 for n_>0.
ations of % (2) are shown in figure 21.

cosnfdd (b7)

o (z)=—

Particular vari-
These results are

2
N
| AN
= N
&= © /
] I/
\L/
(@)
K3 -4 -2 0 2 4 6
() n=(§
2
AN
o [\
gl / \
¥ /
., N
N
(b) . A
2§ = 0 3 6
(h) n=2
10
8 N

- .4
. / \/
_.8 \V/
(c)
9% =3 0 3 6
X
(c) n=4

F16uRrE 21.—Variation of nth derivative of nth-order cancellation
multipoles for elliptic wing.
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for n=0, 2, and 4, since o™ (z) for any odd » is zero by
symmetry, and apply when the wing plan for and free-
stream Mach number are related by

a 4

'EE=3—7T (58)

which contains the particular case for which the Mach
number is 4/2 and the aspect ratio is 3. It is apparent that
there are at least n+1 roots to a®(@) for —L,<a2<L,.
This follows immediately from equation (38) and is true in
general. As a result the curves for the higher values of n

.06 AN

\

.02 / \

2
(4
——

B3a,(x)
1L

PN /

-.04 \
o6 \/
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become increasingly wavy and, correspondingly, increas-
ingly difficult to evaluate numerically.

Figure 22 presents the values of a,(z) for the same clliptic-
wing Mach number relation given by equation (58). Notice
that each of these curves has only one root (they necessarily
have at least one) in the interval —L,<z<L, and is in-
creasingly smooth with increasing n. The latter follows
from equation (37) and the fact that the first » derivatives
of these curves must, in general, be continuous. For exam-
ple at 2=+ L, the first four derivatives of o,(z) must vanish.

Wave drag.—One can now calculate how much the wing-
alone drag is reduced when combined with each successive
optimum cancellation-multipole distribution. If D, denotes
the drag saved by the nth-order cancellation multipoles,
then by equation (35)

D g (Lo Lo
D) an [ drareiar e Gataln—zl (69

where L, is the maximum value of L(6) as given by equation
(54)

~=a’+b’g* (60)
The total drag saved by means of the first m multipole dis-
tributions, would, by equation (34), be

5=2DO+ZT‘, D, 1)

Using equations (53) and (36) to define the a®+®(x) in
equation(59), reversing the order of integration, and inte-
grating once by parts, one finds

(a)

0006

0004 \

.0002 /
/ \

iz o )
al= \\ //
-0002 \ /
-.0004 \\ J/
(b)
~000&g =2 2 0 2 g 5

(b) n=4
Fraure 22.—Variation of nth-order eancellation multipoles for elliptic
wing.

D, —4 Lwl) (o,)
" f ccs nﬂldt)lf cos 16,d8, f f
—L(fp —L(8)

(4 tab)* L0)—2&° E24/L2(0))—£2
FRICAYAICN VL@ &2 L—56

2 /3 /2
—MJ‘ cos nBldﬂlf c0s N6,
¢ 0

T

_7"2/41;4(02):
—=*[4146)),
It is apparent from figure 23 that this can be written

1_?._165&6)2 T2 cos nd,db,
e} L*(@)f cos st

/2 ) 1 cos 16,
J; coSs ﬂeldﬁlﬁ W dﬁg]

D. 32(tab)? f*ﬁ
¢ = Jo

L28,) < L*6.)
L*6,) > L*(62)

or

Ccos 1L01d01 T2
(@*+b6% cos™;)’ Js,

cos nd:di;  (g2)

The total drag saved by using all the cancellation multipoles
is, by definition,

D _ 16 (tad)?
g 7

J; (a’-l-b’ﬂ’ cos? )2(2 alnz-} sin 2n6, cos 21101)
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Fioure 23.—Regions used in developing equation (62).
and since

:r:=3-——21 1 sin 2n2 cos 2nz

a=

this is equal to the drag of the wing alone, as it, of course,
should be.

The reduction in wave drag as the wing is combined with
the first three optimum cancellation multipoles is presented
in figure 24. In studying figure 24, one sees, as the Mach
number approaches 1 (i. e., 8—0), more and more of the
original wing wave drag is destroyed by a line of simple
sources alone. Further, the value of 7, which can be writ-
ten—see equations (46), (54), and figures 21 and 22—

- Br,
R (63)

tends (for a fixed average distance to the body surface r,)
to zero as the Mach number approaches 1; and this, in furn,
means that as g goes to zero the effect of the multipole
strengths on the body shape can be calculated using slender-
body theory.

1.0
/
/
/
7
.8 7
Wing alone —————1~
Wing + a, ---——9~
6 Wing + ap+ag-——o \\\ L — |
%' Wing +a,+as+ag __\:\ . |+
)(
P AN
4 // \\ N\
y- \ \\ —— "1
.2 / Aé,/
/ | ;—///
—
L L
//‘4///
¢] 4 .8 L2 1.6 20 24 2.8 32

Reduced aspect ratio, 84

Fraure 24.—Portions of elliptic-wing wave drag created by various
equivalent multipole distributions.
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———— Slender-body theory /\ \
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(a) Radial velocities induced by sources.
Figure 25.—Velocities induced by the elliptic-wing cancellation
multipoles at the control surface where SR/L,=0.148.

When various orders of multipoles are distributed along
a line, one can show the cross-sectional area normal to the
free stream of the simulated body as given by slender-body
theory is a function of the source distribution only (sce
Appendix B). Coupled with the discussion in the preceding
paragraph, this can be used to demonstrate that, for Mach
numbers close to 1, the “supersonic area rule” proposed by
Jones (ref. 12) and Whitcomb and discussed in reference 13
gives a good approximation for the wave drag of an elliptic
wing and body combination which is symmetrical with
respect to the plane of the wing.

The induced velocity field.—A method for calculating the
velocity field induced by the multipoles when a,(z) is given
numerically is presented in Appendix C. By means of this
method, velocities induced by the @, and «; multipole dis-
tributions shown in figure 22 have been calculated for 7
equal to 0.148 and the results are shown in figure 25.
Since the distributions in figure 22 were for the particular
case a/bf=4/3=, it is evident from equation (63) that the
values in figure 25 apply to the case r,/b equal to 0.161;
that is, when the body radius is about 18 percent of the
wing semispan.

For comparative purposes, the values given by slender-
body theory are also shown in figure 25. The degree of
agreement between the two curves is consistent with the
results shown in figures 14 and 15.

INTERPRETATION OF DRAG REDUCTIONS

Comparison with wing mounted on & circular oylinder.—
With regard to figure 24 one should be careful to notico
that the drag of the wing alone has been used for the
reference drag. The drag reductions shown, therefore, repre-
sent gains brought about by interfering with the velocity
field induced by a planar source sheet, or, in terms of a
combination with an upstream cylindrical stream surface,
gains made by modifying & body, shown in figure 26, which
bulges behind the wing leading-edge Mach wave in accord-
ance with the velocities induced there by the source sheet.
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!6 1) T 1 T T
————Slender-body theory
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X
(b) Radial velocities induced by second-order multipoles.
Figure 25.—Continued.

Obviously, from this viewpoint, a considerable reduction in
drag can be brought about merely by eliminating the bulge,
thereby making the body a circular cylinder throughout.
Mathematically, such a procedure amounts to using a certain
set ? of cancellation multipoles along the z axis behind the
point —L,, and, if the drag of this resulting combination
were used as a reference, the gains shown in figure 24 would
be diminished.

An approximate way to estimate the drag of a wing
mounted on a circular cylinder is illustrated in figure 27
and consists merely of subtracting from the wing source
sheet those sources blanketed by the body. Using the
subscripts 1, 2, and 3 to designate the wave drags of the
individual wings as indicated in figure 27, Jones (ref. 15)
has shown that if wing 1 is an elliptic wing with a bi-
convex section and wing 2 lies entirely within the plan
form of wing 1, then

D3=D,(1+3%)+D2 64)

———— Moach waves from wing root section
/

F1aure 26,—Wing and stream tube simulated by planar sheet of sources.

¢ The exact evaluation of multipols distributions necessary to simuiate a circular cylinder
for the entire body length has heen studied In reference 14.

——— Slender-body theory / \\\
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(¢) Tangential velocities induced by second-order multipoles.
Figure 25.—Concluded.

where V; and V, are the volumes of wings 1 and 2, respec-
tively.

For a supersonic Mach number, D; is closely approximated
by the wave drag of a rectangular wing having the same
section and aspect ratio. If 4;, 4Ra, and =, are, respectively,
the aspect ratio, plan-form area, and thickness ratio of the
rectangular wing, its drag can be expressed in the form

8D,
P ARaN.
= aN, (65)
where
r .
16, , [2sinpd, VT—FA]
= P4 3 B4, 6 ‘
B2A3 4 1
Ni=+ 1— 5 ’) cosh lﬁAg:I’ B4,<1 (66)
| l?f-‘ L, BA>1
R Wings
N [
20 — 2R =
=
- | 2 3
el s yd e
/ 7/ s Vil
— y =
N, \, N N
\\ \\ \\\ \\\

Equivalent wing—-body combinations

Froure 27.—Method of approximating wing mounted on a cylinder
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Further, if A4, is the aspect ratio of the elliptic wing, one can
show—see figure 27 and equation (52)—

pa=% (%) 4, (®7)

The drag of the elliptic wing follows from equation (55) and
can be written

Z]f;=4ale 68)
where
4 2
1+2( )
Ny== _ \mBAy (69)

[+(za)

Finally, therefore, equation (64) can be put in the form

Ds_ [ 82(R\],ERN:
=G @

and the ratio No/V; is a function of the parameters /b and
ﬁAl Only. '
By means of equation (70), the dashed curves shown in

figure 28—
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F1aure 28.—Drag of various multipole distributions compared with

drag of wing mounted on circular cylinder.

representing approximately the wave drag of a wing mounted
centrally on a circular cylinder—were calculated. Though
considerable drag reduction is indicated by adding just
those multipoles necessary to make the body cylindrical,
it is apparent the total wave ‘drag can be reduced further,
for the range of parameters shown, by using only the first
two optimum cancellation-multipole distributions, a,(z)
and a3(x), given by equation (36).

Comparison with wing mounted on a basic body of revo-
Iution.—Figure 28 shows the effect on the wave drag of
adding the optimum cancellation multipoles either to the
wing alone or to the combination of an infinite circular
cylinder and a centrally mounted wing. Estimates of their
effect when added to a wing mounted on & basic body of
revolution can also be carried out. In order to present these
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estimates, however, the results of the following two theorems
due to R. T. Jones (ref. 15) are needed.

1. Designate the closed body of revolution which, by
slender-body theory, has & minimum drag for a fixed volume
and length as a Sears-Haack body. Then the total wave
drag of a Sears-Haack body and any other body of revolution
or any centrally mounted thin wing which lie entirely within
the Sears-Haack body’s enclosing Mach forecone and after-
cone is given by the equation

D=Dax (14+352)+D, (71)
SH.
where:
Dsy  wave drag of Sears-Haack body alone

D, wave drag of other body or (exposed) wing alone
Vsg volume of Sears-Haack body
Va2 volume of other body or (exposed) wing

2. Designate the body of revolution which, by slender-body
theory, has a minimum drag for a fixed bese diameter and
length as a Karm#n ogive. Then the total wave drag of a
Kfrman ogive and any other slender body of revolution or
any centrally mounted thin wing which lie entirely within
the ogive’s enclosing Mach forecone and aftercone is given
by the equation

where:

Dgr wave drag of KarmAan ogive alone
D, wave drag of other body or (exposed) wing alone

In order that the theoretical results could be tested by
wind-tunnel experiments, a basic body of revolution having
a finite base area was chosen. Such a body can be simulated
by a combination of the source distributions which produce,*®
separately, the Sears-Haack body and the Karmén ogive.
Thus, if 27 is to be the body length, the line of sources

o 2
a/lg‘f)-:ﬂ'_ls (Vx—4V3H %) V l?_? (73)
simulates (by slender-body theory) a body of revolution

having a total volume V equal to Vgg+ Vg, a cross-sectional
area given by

A l::cxm—l-l’ <g+sin-l %)]-{-

8V su

Sk (P—a?,  —l<z<I (74)

and a base area S(I) equal to Vi/l.

The wave drag of a wing mounted on this basic, unmodified
body will now be calculated. Just as was the case in study-
ing the wing attached to an infinite cylinder, the assumption
is made that the wave drag of this combination is the same
as the wave drag on the configuration simulated by super-
imposing the singularity distributions which create sepa-

10 The source distributions simulate the Sears-Haack body and the Kérmfin oglvo only
when slender-body theory is used to calculate the body shapes. I linearized theory Is used
, the body shape will, of courss, be somewhat different. However, the subsoquent
results and conclusions are by no means limited by the assumptions pertalning to slender-
bodsg]theory. The latter theory is used only to obtaln an estimate of the body velumes or

to study cases for which it gives results that are not significantly different from those given
by linearized theory.
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rately the exposed wing panels and the body of revolution.
With this assumption, the wave drag can be written ex-
plicitly in terms of the wing and body geometry by applying
equations (71) and (72). Hence,

D=Dx+Dsn (1+2V3

)+D; (75)
where D; is the drag of the exposed wing panels alone, given
by equation (70) and shown for various values of R/b in
figure 28, and Vj; is their volume (see fig. 27)

z 88 76)

T—tab 573

Since Dx and Dgy, the wave drags of 2 Kérmdn ogive and a
Sears-Haack body flying alone, are well known to be

Vet
ot T

(77)

the wave drag coefficient of the unmodified combination,
based on the complete wing area mab, can be expressed as

D 0 K2+8V33 [ 16tVSH T 8 R)+
gmab “°T  2lab ' F \2 3D
oA [( 2R ﬂ%] )
1

where N, and N, are defined in terms of Mach number and
wing-body geometry in equations (66) and (69). An ex-
ample of the variation of Cp with Mach number for the par-
ticular combination shown in figure 29 (R/b was set equal to
0.181) is given by the dashed line in figure 30.

It is now possible to find how much the drag of this un-
modified combination can be reduced by means of the opti-
mum cancellation-multipolé distributions used to derive the
results shown in figure 24. Again applying equations (71)
and (72), one can show

2V,

D=Dx+Dsa (1+ +D, (79)
10l-.._ 551
T i
— T T

1473 |

21

Maximum thickness of wing
along center line, / =0.234

Total volume of body=4460
V=372
x=12.88

Fi1gure 29.—Dimensions of wing-body combination analyzed.
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Figure 30.—Drag varistion for modified and unmcdified wing-body
combinations. .

where T, is the total volume and D, the total wave drag per-
taining to the wing (now the complete wing including the
portion blanketed by the body) and the multipoles. How-
ever, within the accuracy of the approximation—being, in
fact, exact within slender-body theory, see Appendix B—
the volume added by the wing is subtracted from the basic
body by the optimum -cancellation-source distribution so
that V, is zero. Further, if &, is the value of D/D,, read
from figure 24 for a specific value of 84; and a specific num-
ber of multipole types, one can readily show

%b
D=2 NiN, (80)

where XV, is defined in equation (69). Hence, the drag of
the unmodified combination can be reduced to either

= =0°‘ﬁibz4{ Vx't8 [VSH“‘”’ (3-3 gl?):r} +

gmab
NN, (81)

B

if the same total volume is maintained (maintained, as is
obvious from an inspection of the equation, by increasing
the value of the Sears-Haack portion of the basic body an
amount equal to the volume of the exposed wing) or to

1
Cp=m (Ve*+8Vsr®) ‘|‘—B NN, (82)

if the volume of the fuselage is reduced by an amount equal
to the wing volume.
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Fiaure 31.—Body shape having favorable interference wave drag at
M=1.41 when combined with elliptic wing.

The results expressed by equations (80) and (81), when
applied to the first two optimum cancellation-multipole dis-
tributions, are shown for the geometrical parameters pre-
sented in figure 29 by the solid curves in figure 30. The
value of R/b used for the solid curves was 0.161 instead of the
0.181 value used to calculate the dashed curve. The smaller
value was used since the modified body is drawn in along the
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sides by the cancellation multipoles (see fig. 31), decreasing
the average body radius in the wing region from about 1.00
to about 0.89. One must be careful to notice that the solid
curves represent minimum (relative to the special method
being discussed) values which can be obtained by a specific
design at a specific Mach number and do not represent the
variation of wave drag with Mach number for any given
combination.

THE BODY SHAPE—FIRST CALCULATION

The final step in studying the effect of the optimum
cancellation multipoles, defined in equation (36), is to find
the distorted body shape which they produce in combination
with the wing and a basic body. The decision was made 1o
calculate a body shape which would be optimum at a Mach
number equal to /2. The details of the wing and body
geometry are given in figure 29 and the basic body parameters
V& and Vs were interpreted in terms of source strength by
equation (73).

It was apparent from the results of figure 25 that, for the
values of r, and b given by figure 29, the velocity field induced
by the first two optimum multipole distributions can be
calculated with good accuracy using slender-body theory.
Combining the values of ¢, and ¢s so calculated with those
induced by the wing, given by equation (56), and thoso
induced by the basic body, using also slender-body theory to
interpret equation (73), one can find the body shape by
solving the two simultaneous nonlinear differential equations
presented as equations (43). These were solved numerically
by the method outlined in Appendix D and the results were,
unfortunately, unrealistic. Figure 32 shows an example of a
streamline close to the 6=0 plane and the crossing of such
streamlines obviously invalidates the solution.

BODY SHAPE—SECOND CALCULATION

The failure observed in the first calculation has a simple
enough interpretation. For the chosen wing the basic body
was too small in diameter at the wing-body juncture to per-
mit the use of the first two cancellation multipoles in their
entirety.

Several avenues of approach are yet available. One could,
for example, maintain the same wing and basic body but
reduce the Mach number, one could start with a larger basic
body, or one could lower the thickness ratio or aspect ratio
of the wing, thus diminishing the strength of the cancellation
multipoles. All of these, however, are modifications of the
basic conditions or basic restraints and as soon as such

Y

r—Wing source
/' sheet

A =.888 -

!
!0
Multipoles -~ &-Streamline, §~0

Ficore 32.—Streamline when starting body radius is too small.



THE REDUCTION OF WAVE DRAG OF WING AND BODY COMBINATIONS

restrictions are abandoned it must be remarked that no
matter how low the wave drag of a set of nonlifting, volume-
enclosing surfaces has been made, another arrangement of
the same volume within a finite space will give a lower value,
unless, of course, the wave drag of the first arrangement is
already zero. Therefore, instead of modifying any of the
initial restraints, consider the following alternative:

How much can the drag be reduced by using only a

portion of the first two cancellation multipoles so that a

real body would still be simulated?

In order to answer the above question, examine briefly the
first calculation. Notice, from figure 25, that the cause of
the body collapse is attributable to the large values of ¢,
and ¢ induced by the second-order cancellation multipoles,
a;(z). Hence, let «,(x) be maintained at its full value and
reductions permitted only in the magnitude of «;(z). To
carry out such a procedure efficiently, one must be able to
determine the effect of a given variation df ay(z) on the body
shape. Tortunately, Graham, in reference 16, has developed
o method by means of which the relation between az(z) and
body shape can be quickly estimated. Graham has shown
if

1. a rectilinear distribution of second-order multipoles
of strength «y(z) is placed along the z axis (see fig.
33) in a supersonic stream (M=+/2)

2. slender-body theory is used to evaluate ¢, and s,

3. R=R, is the radius of a circularly cylindrical tube
for —L,>z>— =,

4 z
4, F*(I)=m f—Lo o (29)dz,
then
R=R { 1-+277*@) cos 20+ T--4F*@) cos 20+4[F*<x>]*}”*
_R, .

83)

is the continuation of the stream tube for z>>—L,.
Since the initial strengths of the cancellation multipoles
are negative, F*(z) is negative and the critical value of B

Mulfipoles < _{_

X

Fraure 33.—Definition of parameters used to study effect of second-
order multipoles on fuselage shape.
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F1oURE 34— Variation of R/R, With —F¥pq.

occurs along the plane =0 or x. The variation of R/R.
with F*,,. 18 given in figure 34 from which one can see that
the maximum value of |[F*] must be less than 0.5 if the
simulated stream tube behind the plane =—L, is to be real.

The problem can now be continued, using Graham’s
result as a guide, by assuming-the critical body radius in the
more complicated source and multipole arrangement is
principally determined by #*(0)—the parameter governing
the body indentation at the center of the cutout and at the
wing-body juncture. In the first place, since there is no
interference between different orders of multipoles, it is
necessary to consider only the drag produced by the second-
order multipole. Appendix E presents a method for finding
the optimum distribution of the second-order cancellation
multipoles for a given wing and a fixed value of F*(0).
The resulting wave drag is given in equation (E11). At a
Mach number equal to 4/2 and for the basic wing and body
parameters presented in figure 29, F,,*(0) (defined by eq.
(E8)) equals —2.90 and the reduction in D,/qS, the amount
of drag caused by the wing second-order multipoles alone—
see equation (62) and figure 24—is shown in figure 35 for a
range of F*(0). Variations on the strength of various com-
binations of second-order multipoles are shown in figure 36.
It is important to notice that for a given percentage reduction
in the maximum strength of the multipoles the resulting
percentage reduction in D, is much larger.

The strengths of a»(z) shown in figure 36 must now be
combined with the zero-order multipoles and wing source
sheet, and the combined velocity field used to calculate the
shape of the new body. TUsing again slender-body theory to
evaluate the velocity field induced by the multipoles and the
numerical methods given in Appendix D to compute the
streamlines, one finds, by restricting the distribution and
strength of the second-order cancellation multipoles to their
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Frcure 35.—Reduction in drag caused by second-order multipoles.
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Fiaure 36.—Variation of second-order multipoles for several values
of F¥(0).

optimum values corresponding to the restraint!* F*(0)=
—0.6, that a real as well as reasonable body shape results.
The details of this shape are presented in figure 31 and their
general interpretation is discussed in the next section.
Finally, using the value F*(0)=—0.6, the drag curves shown
in figure 30 were reinterpreted, and the results—which rep-

11 Figure 34 gives 0.5 as the maximum permissible vhlue of —F*(z). However, that value

is based on a distribution of ce(r) alons, and in our more general case the added velocity
field caused by the presence of the other singularities permits the larger value.
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F1cure 37.—Drag of unmodified and modified combinations with real
body shapes.

resent an estimate of the amount the wave drag of an
elliptic wing mounted on a basic body of revolution can be
reduced by realistic body distortions—are shown in figure 37.

DISCUSSION OF RESULTS

It is possible to gain some insight into the reasons for the
various body distortions shown in figure 31 by inspecting,
in another light, the body shape first calculated. Consider
first the elliptic wing at the top of figure 38. The air over
the forward part of this wing, when it is alone in a super-
sonic stream, is compressed (mathematically, the sign of ¢
is negative), the compression being greatest near the leading
edge. On the other hand, the air over the after portion of
the wing is undergoing an expansion, the magnitude of which
is greatest near the trailing edge. Consider now, in combi-
nation with this wing, a body which is to have a shape
providing favorable interference. It is apparent that the
body should cast expansion waves over the forward portion
of the wing, destroying the compression there, and absorb
the expansion waves coming from the wing afterportion.
Or in another light, the positive pressure on the forward
region of the wing (one can use the equation C,=(p—p.)/¢=
—2¢,/U, for the pressure coefficient) should be reduced as far
as possible by a wave shed from the body and having large
negative pressures where it comes in contact with the wing
forward region.

Since waves in a supersonic flow field are fundamentally
associated with the slope of the disturbing surface, the afore-
mentioned favorable interference fields would be created by
a body having, longitudinally along its surface, slopes such
as those shown in the lower part of figure 38. This is ex-
actly what the solution obtained from the calculation of the
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F1aure 38.—Regions of expansion and compression on wing with
unmodified and modified fuselage.

first body shape tried to establish since the fuselage near the
plane of the wing (the portion most strongly affecting and
being affected by the pressures on the wing) and ahead of the
wing chordwise center line was distorted in a manner that
caused an expansion across the wing entire forward portion.
The difficulty arose because the fuselage was not wide enough

OF WING AND BODY COMBINATIONS
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to provide the longitudinal extent of favorable slopes neces-
sary to create the positive pressure called for by the wing
forward compression region, and the body streamline near
the wing root, following a path such as that shown by the
line in figure 38, crossed the body center line before it reached
the wing chordwise center.

Consider now the second body calculated in the previous
section. In this case an additional restraint was imposed
which, effectively, fixed the maximum body indentation.
Subject to such a condition, an optimum interference field
was discovered. If the resulting fuselage shape is inspected
near the plane of the wing, surface slopes are found similar
to those shown in figure 39. The following discussion is
intended to show that, from a physical viewpoint, this ar-
rangement is reasonable.

Most of the wing pressure drag occurs on the wing inboard
portions. Hence, for a fixed maximum fuselage indentation,
it is beneficial, from an over-all point of view, to create
initially a compression wave, which increases the pressure
drag on the forward portion of the wing tip but provides a

o

f_-—Multipoles

Region of:
= compression
] i
31 expansion

s

Fiaure 39.—Regions of expansion and compression on wing with
fuselage distortion shown.
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succeeding extent of fuselage having slopes that generate a
strong expansion wave over the forward portion of the wing
inboard section. Similarly, the final portion of the body is
forced to have a region of unfavorable interferences where
the expansion waves from the wing tips combine with body
expansion waves to increase the local drag (i. e., increase the
local suction pressure) in order that the over-all interference
effects are as beneficial, under the given restraints, as possible.
This arrangement (i. e., unfavorable interference near the
wing tip and favorable interference near the wing root) is
given further support by the attenuation property inherent
in three-dimensional waves. Thus the pressures induced
by the body on the wing tips are not as strong, for a given
generating surface slope, as those induced on the inner por-
tion of the wing, simply because the tips are farther from the
disturbing surface. :

Although these considerations are somewhat oversimplified
(the shape of the upper part of the body has been completely
ignored in estimating the effect of the waves), the longitudinal
variation of surface slopes near the plane of the wing and the
resulting body streamlines there are, from a physical point
of view, reasonable.

In order to support the above conclusions, the source and
multipole distributions simulating the final modified body
shown in figure 31 were used to calculate (see Appendix C)
4/U, in the plane of the wing near the root section. The
values of #/U, induced by the wing sources along these
sections were assumed to be the same as those induced by a
two-dimensional biconvex section having the same local
chord; that is, tip effects were neglected. These values for
body and wing were added and the resulting pressure distri-
bution, shown in figure 40 (C,=—2 w;U,), were obtained.

A5

- = » - -~
Two-dimensional biconvex section~ - /ﬂ/;
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Fraure 40.—Variation of pressure and section-drag coefficient on
sections indicated.
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The results are similar to the estimates presented in figure
39. Thelarge drag saving near the root section is illustrated
in figure 40 by the graph showing the low values of section
drag coefficient along the inner portion of the wing.
Another important characteristic of wing-body combina-
tions designed to have low wave drag is also illustrated in
figure 40. As shown in the graph of u/U,, over the surface
of a two-dimensional biconvex section the air is everywhere
accelerating in the streamwise direction. In studies con-
cerning the effects of viscosity on the fluid flow and, in
particular, studies concerning the boundary layer, this posi-
tive fluid acceleration is referred to as a favorable pressure
gradient. If the flow is laminar in the vicinity of the leading
edge of a smooth wing and the pressure gradient is every-
where favorable, the flow tends to remain laminar and
unseparated over most of the wing chord. Notice that the
modified wing-body combination has a line of zero pressure
gradient extending along a Mach line downstream from a
point near the body and wing leading-edge juncture. Im-
mediately behind this line the pressure gradient is unfavor-
able which gives rise to the possibility of flow separation or,
at least, transition from laminar to turbulent flow there.

COMPARISON WITH EXPERIMENT

The modified wing-body combination shown in figure 31
was tested in the Ames 2- by 2-foot transonic wind tunnel.
The Reynolds number of the test, based on the mean acro-
dynamic chord, was approximately 1.5)X10°% This com-
bination had an exposed wing volume of 3.44 cubic inches
and a body volume equal to 44.60 cubic inches, for a total
volume of 48.04 cubic inches. As a control, an unmodified
combination composed of the same elliptic wing mounted
on & body of revolution (the area distribution of which was
determined from equation (74) with [=10.5, Vx=12.88,
and Vgz=29.02 cubic inches) was tested. The exposed
wing area in the unmodified combination was 3.32 cubic
inches and the body volume was 41.90 cubic inches, for a
total volume of 45.22 cubic inches. Thus, the unmodified
combination had the same body length as the modified one
but less volume.

The wave drag at M=1.41 of the combination shown in
figure 31 has already been calculated and presented in figure
37 by the curve pertaining to real body shapes. By use, in
equation (78), of the values of Vi and Vg, mentioned above
and a value of 0.176 for B/b, the wave drag for the unmodified
body was calculated throughout a supersonic Mach number
range. The theoretical results obtained for body configura-
tions are shown by the dashed curves in figure 41.

The wind-tunnel results for the total drag on both con-
figurations are shown in figure 42 for 0.6 <M <1.4. Notico
that three groups of data are shown. 'The lower one repre-
sents the unmodified body alone, the middle one represents
the modified and unmodified combinations with no fixed
transition, and the upper one represents both combinations
with transition fixed along the leading edge. The models
tested with natural transition did not show the predicted
drag reduction. As was pointed out in the discussion of
figure 40, however, the adverse pressure gradients on the
modified model could be inducing transition in the vicinity of
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Fraure 41.—Variation with Mach number of theoretically and experi-
mentally determined drag coefficient.

the 45° line behind the juncture of the wing leading edge with
tho fuselage. This, in turn, would cause the wing of the
modified model to have a larger area covered with a tur-
bulent boundary layer and, hence, cause the drag of the
model to increase. In order to separate the potential and
viscous effects, the transition-fixed tests were made. If the
experimental wave drag is taken to be the difference between
the drag at a supersonic Mach number and the drag. at
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Frgure 42.—Experimental values for drag coefficient.

M=0.6, the resulting values of experimental wave drag are
as shown in figure 41.

Figure 41 shows that the experimental reduction in
wave drag brought about by the modification agrees with
that predicted by theory. Both theory and experiment
show a reduction of about 0.0015 in the drag coefficient at
the design Mach number (1.41), and the experiment further
shows an average reduction of 0.0020 over the Mach number
range 1.2<CM<1.4. A further study of figure 42 shows that
the difference between the experimental and theoretical
wave drags shown in figure 41 for the wing-body combina-
tions is nearly the same as the difference between experiment
and theory for the body alone.

Ames AERONAUTICAL LLABORATORY
NaTronan Apvisory CoOMMITTER FOR ABRONAUTICS

MorrerT F1eup, Cavtr., May 16, 1966



APPENDIX A

DERIVATION OF THE OPERATIONAL FORM OF THE WAVE EQUATION

For convenience, take the normalized form of the wave
equation in Cartesian coordinates, thus

A% % 0%

d_:tt’—dy ozt =0 (A1)

and define the Laplace transform of ¢(z,7,2) by

(e,2)= f " e ply,2)d (A2)

Now if =f(y,2) is the equation of the foremost Mach cone
or Mach cone envelope and f(y,2) > 0, it is apparent

I . _,,ma 3F (R0
e ay’f ez g,2)e”™ f =5y Gy s

(A3)

is not, necessarily zero. From

=y

since (¢)s-, i8, but (by)

equation (A3) we see

"2 4224 u(26)
J; bz’dx bz’+ 02/ 1ms (A5)
Further, integrating by parts gives
® o2 Op
ﬁ o= 5% do—sp—orr (2 ) (A6)
Hence
: _so_?’_so_i> o%_0%_
J; ¢\ o =85 oz
_.,< bso af Dsob
bz 02 )yur
(AT)

The last term on the right is the directional derivative of
the perturbation potential along the surface z=/(y,2).
This is, of course, along the so-called conormsal. Since ¢ is
a constant on the forward envelope, its gradient along the
envelope is zero and

_.,bqo _b~¢ bf ot ® (0% J%p O % %
J; ‘h: !(by s (A-4) j; € %',—'a—y—z—sz—, d&"—s?ﬁ by, ség 0 (AS)
APPENDIX B

ON THE VOLUME OF BODIES CALCULATED USING SLENDER-BODY THEORY

The following proof shows that in a rectilinear distribution
of singularities, only the sources contribute to the total cross-
sectional area of the simulated body and, hence, to its volume.

According to slender-body theory, the velocities induced
in the field by distributions of multipoles along the z axis can
be written

—ag(ﬂf_) y n=0
Pn,= (Bla)
n,. (—2)*nla.(z) cos nb
4pntl » m>0
1 (—2)"nla(x) sin né
L =D B1b)

Further, we have derived—see equation (41)—neglecting
only second-order effects, the equation representing the
boundary condition for the body, thus

OR @ OR
U 5=(>—5% SN (B2)
Combine equations (B1) and (B2)
sin 76 OR

27U,R ———au($)+2 (—2)nlan(z) (‘m L
740

Rn+1 ba

multiply by d9, and integrate

a7, 2 f "B = 2ra o)+
z Jo 2

oR
R cos no— smna >d0

>3 (—2prlada) |, " < e

or
2T, = ()= 2ra,(2)+ 3 (— 27—l @) f dg(Sm no) N
(B3)

Since the integrand in equation (B3) is a periodic function

in 6, we have

28 _a,)
a—' Uo (B4)

which shows the simulated-body normal cross-sectional area
to be dependent only on the source strength. Further, the
total volume is given by

Ve f_l, S@)dr— f_" = 2)S" @ da+ @ +DS(—1)
and when S(')=S(—1)=0, there results

AN ®6)

o —
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APPENDIX C

ON THE CALCULATION OF VELOCITIES INDUCED BY ARBITRARY SOURCE DISTRIBUTIONS

The potential and velocity fields represented by equations
(18) and (19) are difficult to evaluate analytically even if
A,(%) i8 2 simple function. However, the calculations can
be reduced to a relatively simple process. First, let equation
(18) be expressed in terms of the dimensionless variables
z,£, and 7 where

z=z/L,

=g L,
T7=pr/L,

(C1)

® {(190n—360m)+(390n—760m)§+(200n—400m)?", —1<E<—
A —

n

As seen in the figure, A4, vanishes at =
between —1 and —0.9 (assuming the values m at £E=—0.95
and 7 at £=—0.9), and the straight line, 4,({)=n, for %

—1, is a parabola

Then
— 1 (=7 A(DdE
gaa(EC-,T,@)— o f-—l -J(E__TQ__F; (02&)
N L e Ol o) il SRS

- G-
and so forth. Consider next the variation of A,(£) shown
in figure 43 and represented by the equation

- (C3)
] _O-QSE

greater than —0.9. The velocities induced by a multipole
distribution given by equation (C3) can be calculated in a
straightforward manner in the two regions —1+7<z<
—0.947 and —0.94-7<z. For example, if

—GHOWETFLOF T i TELOE/EHLOPT

—1+7<2<{—0.947

200~ — @E40.9)YEF L0+ G-+ 1.0) VGO0 - rin EELOEVEHLOP o 2 = 0
' ' ' ’ 7+0.9+VEF0.9—7
— (5+o.95)w/(5+1.0)=—?—?21n5+1'°+"/‘;‘H'O)LP, TR —0.94F
7T T
(Cs)
~T00 -
I s a FHLOFYEFLOF o
Z+0.95)y/(@+1.0°—7F (5+1.05)w/(5+0.9)0 T r1n§+0.9+ o 0.94+7<=

then ¢,. can be written
¢0;=qu(§)+an(§)

Now, if one is given a distribution of sources that is
composed of, or is adequately approximated by, a series of
20 equally spaced parabolic arcs, equation (C6) can be used
for each individual arc and the results superimposed for the
complete solution. To this effect, define m, and 7, in terms

of A,(z) by
)-a (50

el 4

so they represent the magnitudes shown in figure 44. Then,
if [x] denotes the greatest interger contained in Z(e. g.,
[6.34] equals 6), the equation for the radial velocity becomes

«.aa;=[w&;:1+m|: mM,. (z_ > LN ( Ol)] (C8)

(C6)

7,05

()]

Values of M, and N, are tabulated in table I for 7 equal
to 0.074, 0.148, 0.222, and 0.296. The asymptotic magni-
tudes of these functions are given by slender-body theory.
Hence, one can easily show for large z

M, ~0
1 (C9)
% 2ar
| 4,(8)
m n
| | | ! L
-1 -95 -50 -85 -80 -75 ~70

Fiaure 43.—Definition of symbols used in equations (C3) and (C8.)
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Fraure 44.—Definition of symbols used in equation (C7).

Notice that both functions have essentially reached their
asymptotic values for large 2 by the time T=-—147-0.5.
By applying simple tabulative procedures to equation
(C8)—for example, listing m, and n, in reverse order and
accumulating multiplications of adjacent terms—the value
of ¢, for any .4,(Z) representable by equation (C7) is readily
calculated.

The velocities induced by higher order multipoles can be
calculated in a similar fashion. Because of the asymptotic
behavior of the M’s and N’s, however, one is led into the
numerically inefficient process of obtaining small numbers
from differences of large numbers. For the velocities ¢, and
v, the following is & method for circumventing this difficulty.

It follows from equations (9) or (19), that for small
T, ¢u; and . can be expressed in terms of the multipole
strengths @,(x)—as defined by equation (7)— by the equa-
tions

ot "“r =C+Cr+. . +Cr+. . (C10a)
©n
prtl (r Sm‘ 72)9>—1)¢,-|-Dlr+ AD+...  (C10b)
where for v<n, n>1
g ons, —¥)T (n—z)
( 1)4 B2 2 ad (@), veven (Clla)
R CE
, vodd

(_1) 23'2"_ nI‘(n——i) a (@),
D,— 4x I‘(l _{__>

Consider now the velocities ¢ and ¢, induced by the
multipole strength defined by equation (C3); thus

, vodd

=My @)+ N (@) (C120)
=M @)+ 1N, (@) (C12b)

v even (Cl1b)
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where values of the M’s and N’s are listed in tables II and
IIT. Their asymptotic values, as given by equations (C10)
and (C11), are

_19+20%
515077

N, 1508*+2755+126
T 15077

194202
150473

1502*+2753+126 1
15077 277 )

~ (C13)

.M29=

N29=

and these are also given in the tables.

As the tables show, equations (C13) are sufficiently
accurate approximations to M and N for practical calcu-
lating purposes when z>—1474-0.5. Hence, the velocities
at the point Z,r induced by the multipoles in the interval
—1<§<Z—7—0.5 can be calculated using equations (C13).
In terms of the distribution for .A;(f)—which is equal to
a®(£), see equation (16)—this means the multipole dis-
tribution shown in the upper part of figure 45 can be cal-
culated by means of the asymptotic formulas and the result
added to that obtained for the distribution shown in the
lower part of figure 45 by use of equations (C12b) and tables
IT and ITI in a manner identical to the one represented by
equations (C6), (C7), and (C8).

The value of ¢,,(,7) induced by & multipole distribution
such as that shown in the upper part of figure 45 is, on the
basis of equations (C10) and (C11),

—BG7)—5 " G-pA@E— 42

7 sin 20
80
HE D=2 07— )+ 22 o G—F—E)+
2
@ @F—F—1,) (—_l_?) —51%-? (C14)
A6
7-7 7
/—I\l 1 ! 1 ! ! i
- -8 -6 -4 2 0
4 =
x; _
A8
I |
I i
| {
L 1 1 | 1 1 1 1 | 1 E
-1 -8

FicUure 45.—Range of application of equations (C12) and (C13).
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where % (z)=A;(z) and =, is shown in figure 45 and de-
fined by the equation

B 0.4+ E—7— 10T

(C15)

the symbol [10(Z—7)] meaning, as before, the highest integer
value contained in 10(Z—7). A similar result can be derived
for ¢, and one has finally for —1<[10@—7)+11]<5

e(T)  0E=H+1)
7 sin 20 uoa—%m—s[ ‘M’O (z_—_>+’"4N23 (:c-——)].l_
H@™) (C17a)
ey@)  moah+u ey i
008 20 _“"@-ﬂﬂlrﬁ[mﬂg’@"ﬁ)“’Nz?(z 10 >:|+
A,@E—7—7,
H@'F)_QTF) (C17b)

The streamwise gradients of induced velocities can also be

(@) 0G4 i—1 \ — -1 ) defined in terms of M’s and N’s as were the velocities
= 2 | ma (3, %)) 1
¢ and = ¢y. Thus
(C162) r M4l
Gog=Tm. N,
2(2) UW%‘““ Vi —1 N ,Pz_oz *
cos 20:‘ 1 [m{ 27( 10 >+m 2?<$__>] cos ZB_mMgf-l_nN“-
(C16b) | Values of Moz, Nog, Ms,, and N, for 7 equal to 0.148, 0.222,
and for [10@—7)4-11]>6 and 0.296 are given in tables IV and V.
APPENDIX D -

NUMERICAL METHOD USED TO CALCULATE BODY SHAPE

The method used to calculate the body shape was a stand-
ard step-by-step solution to the two simultaneous total
differential equations (eq. (43) in the text)

3_37:%,1'22 Py (:v,R,B)
D1)
%—:_1— or(2,B,0)

The essentials of the process are recognized from the following

computing-sheet heading set up for initial values of 6 and B

equal to 30° and 0.148, respectively, where r=z/L, and
=gR/L,

APPENDIX E

OPTIMUM VARIATION OF a, (x) FOR A FIXED VALUE OFIOL @, (%) dx
—Le

Given

D=zt | | [ () as® ()] 08" (@) +o6 ()]

(E1)

~ (L1 %2
i
where the variation of af?(z) is fixed, pose the restraint

1 [° T
== ay(z)dz=I"*(0) i R,=constant

7). ®2)

and ask for the function ay(2) which minimizes D; for a given
value of the constant.

D 6] @ ® ® ® ®
| oo | omons | G2 (@), | @2
e @a'_l Cl for ® for
R ®and ® @ ®and ®
0 | —osm 0.524 0.148
1 —.802
2 —-. 7582
® ® ® @ ® ® ®
etk 0wt ((7:55)| (@), |(5:39)] (@)., | (@)
o ot for ® for @1+ | @1 B
B |Qwmdo| ® |@mi@| 2 2
If (5)—f(—2), then
1 1
| sepsteynin—siinds,
] [1]
=2 [ sesannlst—aldade
and since ap(—L,)=cf? (—L,)=af"® (—L,)=0
0 1 0
[, awto——i [ sepis
=L, —Z,
Therefore, the standard variational problem
0 a(@)dz]_
3| Dot [, 22 (E3)
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reduces to
? {5:_[%3 f —:, f _OLo [a (21) +o® (21)] [af® (%) +® (22)]

Eri da,dzs— GUf rie® (Il)dxl}—

In|—55— Iz

and this becomes

f ; ? [g’mULfl):I dry {;ij‘o f_oL [o® ()5 ()]

2 2 3
$61L2332 ng ! )‘gl}___o

In

Integrating three times l;y parts, using the relations
doy(— Lo)=8a (—L,)=3" (—L,)=0
Sa, (0)=622 (0)=0, by symmetry
and

—r}

dex"

lim 2 f [0 (2.)+a (z2)] 1n

n—0
— lim 2z, f as (x2)+a~"’ (22) da=0
n—0
yields
(1] (1]
f L8 I:%z‘)] dz, % { f_L las® (22) o ()]
3{—z} _
In Lg dxﬁ_l_Uo)‘oI:{ _'O
where
M=o (E9)
By the fundamental lemma of the calculus of variations
ErS] { f [as® (x2)+o® (x2)] 1n —L—z’ d:ca+Uo>\oz3}—0
O>Il> La
One can also show
3 L, 2__ 2
s [ o0 @rter @ i e —voat =,
Lo>2, >0

Hence,

f a,“’(:ro 1n lxl 1'2

AL =",+7:2T—N2}
0 af(x) | |2i—a}
f g, "Iz ¢ (B

Integrating by parts and changing the notation so that

N PR
711=L£§’ g (ﬂz)=a—aa%
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one has

1 1
f(m)dng='7a+72"h_)\o7ﬂ/2"' g('ﬂi).d‘ﬂz
0 M7 0 MM

Equation (E6) is the familiar singular integral equation

(E6)

“known, in aerodynamic applications, as the airfoil equation.

Tts inversion is discussed, for example, in reference 3. If one

solves equation (E6) and applies the conditions

a? (0)=a;®(L)=0
then
R\ S
Yo =" 05 T 15x

and
o(z) | ag(r) AL}

T e {[10 (ﬁ)g_"‘]\’ (£ +

—JIE—a
3 ( ) 1n 7
L) "L io=—= ®7)
Now set
O (@) , L3
[, 2R a—rro] R (ES)
so that F,*(0) is a known constant. Then
° a(r)dr_ L x 25, L8
f s, O, O g Bi=—r0) g Ritgpe (19)
Using the above expressions, one caa show
R}
) D) L5m L a0+ For(O)
L—+L—3
{[10 (L 4]\/ (L +3 (L) 1n L+ /L’—x’
(E10)

The wave drag can be calculated by combining equations
(E5) and (E1).

[2.)] @
=g [ rotmat—nad | P 4

Integrate three times by parts and there results, finally

675

L (f.f; ! O+ F O (E11)
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