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A SPECIAL METHOD FOR FINDING BODY DISTORTIONS THAT REDUCE THE WAVE DRAG

OF WING AND BODY COMBINATIONS AT SUPERSONIC SPEEDS ‘

lily HARVARDLOMAXand MAX. A. HEASLET

. .

SUMMARY

For a given wing and supersonic Mach number, the problem
of shaping an adjoining fusekge 80 that the combination ~
huve a low wave drag i-s con.siabed. (?nZyjmekzgm that cun
be simukted by singuLari&s (multipokx) didributed along the
body am%are studied. However, the optimum w-iu.tti of
such singularities are completely epecij$edin ternw of the given
wing geometry. An application i-s made to an elliptic wing
having a bi.convexsecthn, a thickesa-chmd ra$w equal to 0.06
at the root, and an aspect ratw equul to 3. A comparison of
the theoretical result%with a wind-tunnel experiment is do
pre8ented.

INTRODUCTION

The most simplifying a.wmmptions that still permit the
construction of a mathematical model general enough to
contain quantitative information about steady three-
dimensiomd supersonic flow are those basic to we develop-
ment of linearized theory. Of these, the two principal
assumptions me that the viscosi~ effects are negligible and
the perturbation velocities are almost ev-here small
enough to be neglected relative to the flight or free-stream
velocity. Under such restrictions the flow field can be
described in terms of a perturbation velocity potential q
obeyiug the equation

B?%– PYu-$%=o (1)

whore @z=ikP— 1 and the reference coordinate system z is
shown in figure 1. Further, the wave drag of any object in
~ flow field governed by equation (1) can be evaluated (see,
e. g., ref. 1) by means of the equation

‘=-Rrs4ww@+’Jl ‘2)

where x, r, and 8 are cylindrical coordinates also defined in
figure 1.

General solutions to equation (1) are numerous and clas-
sical. In applying these solutions to the interpretation of
physical phenomena the usual approach is to fit them to the
given boundary conditions, that is, to make the flow field
sixmdat ed by them conform to the shape of the disturbing
object as well as to a uniform free stream at infinity. Hence,
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from this point of view, the choice of a type of general solu-
tion to be used in analyzing a particular problem with the
least mathematical effort depends on the geometric form of
the object under consideration. For example, general solu-
tions based on Green’s theorem are well adapted to the study
of forces on single planar wings in a steady supersonic flow.
On the other hand, the general solution given by Lamb (ref.
2)—which is composed of an iniinite set of multipole distri-
butions disposed along a line-is well adapted to the study
of the flow around fuselagdike objects.

In this report use is made of certain general solutions to
equation (1) but with a deviation hm the usual approach
mentioned above. One considers, in fact, two different
kinds of solutions which represent separately, in a given

~z /

FmurM I.—Reference coordinate systems.
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vicinity, d.Merent classes of red objects and, by means of
equation (2), iinds optimum combinations of these solutions
from the viewpoint of low wave drag. The analysis involved
in solving this problem has, in general, a distinct mathemati-
cal advantage over the problem of calculating the drag of a
given object; namely, that the iminediate problem of finding
a shape with a relatively low wave drag is divorced from
any detailed reference to the shape itself. It is true, of
course, that the stream surface repreaentiug this shape must
eventually be found and, in fact, a limitation on the appli-
cability of the method is given by the requirement that this
shape be real. However, the problem of finding the shape
of the object when w is lmown is a matter of direct calcula-
tions One should also be careful to notice that the optimum
solutions obtained by this procedure are not necessarily tie
optimums but purely relative to the choice of solutions used
in the analysis.
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LIST OF IMPORTANT SYMBOLS

wing aspect ratio
(–9)” ti.RICSthem% derivative of the nth multi-

pole distribution an(z) (See eq. 16.)
semi-root-chord of elliptic wing
strength of nth-order multipole distribution

multiplying cos n13
(–B)” times the nth derivative of the nth multi-

pole distribution b=(z)
semispan of elliptic wing
strength of nth-order multipole distribution

multiplying sin nll

drag coefEcient, g
S@

pressure coefficient, local presmre minus static
pressure divided by q

wave drag
wave drag associated with nth-order cancella-

tion multipole distribution (See eq. (59).)
maximum fore-and-aft extent of wing equiva-

lent multipole distribution
mwinmrn for~and-aft extent of wing equiva-

lent multipole distribution for angle 8
free-stream Mach number

pouo~free-stream dynamic pressure, ~

p;

se: equation (46)
radius of body
area of wing plan form
normal projection of wing cross+ectional area

measured in oblique planes
maximum thickness of wing root chord
speed of free stream
volume
Cartesian coordinate system, z parallel to l%ee-

stream direction
cylindrical coordinate system, x parallel to free-

strefbm direction
3 From a rmtbemntknl pint of* tbe-waxmoftbe meibodoutlfnsdfIfxIvefsthattba

Involvesthesolntiento dhwt problem$ thst fS problems of fntegmtfnn. Ccl-

*%
the dm of a @mm My, on the other hand, fnvrhss tbe selntfon to fnvsrse pro~

~ t & pm?blems Involvfng tbe Snvsa-sfon of fntegmf equatiom

ffn(x) strength of nth-order optimum cancollat
multiples (See eq. (36).)-..

i. slope of wing upper surface Jmwmred relnt
to free-stream direction

P tan-l (f? cos 0)

Po free-stream density

P perturbation velocity potential

Dn

V(3

DEFINITION OF THE PROBLEM

The problem of designing an airplane to have a minimum
wave drag must be stated quite precisely. If the aerody-
namicist is approached with the question, “Given an rtero-
‘dynamic shape, can its wave drag be lowered?” he can always
reply that any volume of material having a wave drag cnn
always be reshaped within a space of finite dimensions so
that it will have less wave drag at a given Mach numbw.
Such an answer is interesting but, at present, not very usofu]
to the airplane designer. There is tit, of course, the basic
criterion that the total drag should be minimized at a given

lift and minhizkg a component part of this total without
holding the othar parts fixed does not neceasmily ykld the
lowest possible drag for a given set of restraints. I?or m-
ample, the configuration illustrated in figure 2 has no wnve
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———— Mach waves

FIGURE2.—Body and shroud with zero wave drag.

drag when traveling at zero angle of attack; but it has n
relatively high friction drag, because of the large amount of
wetted area, and its drag due to lift could also be relatively
high. Completely aside from all such performance consid-
erations, however, are many other important considerations
that are unfortunately more or less vaguely defined from m
aerodynamic point of view. For example, an airplane must
contain a certain amount of usable volume, the shaping of
individual parts is limited by structural requirements, and
the ammgement of these parts must not seriously hnrm tho
airplane stability and control. The interrelation of nll such
separate demands presents an extremely complex design
problem making it diflicult to deviate too far from the relinble
shapes set by experience.

As a result of the above-mentioned dii%culties, the nero-
dynamicist who is concerned with discovering a prncticrd
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airplane shape having low wave drag finds the real deihition
of his problem somewhat obscure. In a sense his fimt prOb-
Iem is, literally, to pose a problem; that is, to impose a
minimum number of arbitrary but pertinent restraints within
the framework of which the wave drag is to be minimized.
Even when this has been done, he still is concerned with the
question of uniqueness, since optimum shapw are not neces-
sarily unique even when several restraints are imposed.
Consider, for example, the problem of finding the Busemwm
biplane which will have minimum wave drag at a given
Mach number for a fixed section strength, volume, and
wetted area. If the design Mach number is 1.41, one such
design (on the basis of linearized theory) is shown in figure
3 where the chord-gap ratio, A/c, is equal to j4. The resulting
variation of the wave drag is shown in the upper part of
figure 4. However, when the gap is closed to the point
where h/c equals X, the variation of wave drag, shown in
the lower part of figure 4, is the same within the interval
1.28 <M< 1.66 and everywhere else is lower. It is likely
that one would have fit discovered the former solution, yet
to the accuracy of the theory used, the latter is obviously
preferable.

With the above observations always in mind, attention
will be directed in this report to the analysis of simplified
configurations composed of two distinct types of volume:
planar types, that is, wing-likeVOIUDIe-S,thinin one dimen-

sion and bounded by surfaces that never deviate far from
a reference plane; and rectilinear types, that is, fuselage-like
volumes longer in one dimension than in the other two and
disposed more or less symmetrically about a straight line.

In particular the following problem is posed:
Given a thin nonlifting wing, what is the shape of an
adjoining fuselage, the stream surface of which is
sinmh ted by a line of multiples in the same plane as
the wing, that will minimize the wave drag of the

combination at a given Mach number?

BASIC CONCEPTS

A LINE OF SOURCES

The velocity potential induced at the point x,T,O by a group
of sources distributed along the x asis, starting at —LO, B
well known to be given by

(3)

———— Mach waves at Af= 1.41
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FIGURE3.—Busemam biplane.
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where a.(~) is the source strength per unit of length. In
order to calculate wave drag one needs ordy the value of pas r
approaches infinity. This asymptotic vrdue is simple enough
to fmd provided it is observed that, as r is increased, x should
also be increased so the potential can be studied in the
vicinity of the Mach waves radiating from the disturbing
object. Hence, set

x=z.+f?r (4)

so for a given r, ZOmeasures the streamvme distance of the
point z,r,13from the Mach wave emanating from the origin
and, in particular, the foremost wa~e is located at z*= —LO.
(See @ure 5.)
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FIQUEE5.—Coordinates introduced in equations (4) and (6).
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If equation (4) is placed into-equation (3) and r is assumed
to be large, the potential induced by a source is

1&m.-.———
J

‘“ %(’94
2m@@ –L” SE

and the induced velocities are

1

J
‘0 &’(tMi*)_..——

2q@F –L” -

(5)

(6a)

d-+.=?% (6b)

MULTIPOLES

Lamb, in reference 2, page 527, has presented a general
solution to equation (1) consisting of an infinite set of basic
singular solutions. These basic singularities, referred to as
multiples, can be distributed aIong a line and weighted so
as to reproduce certain body shapes enclosing the line. The
expression for the perturbation velocity potential for a
distribution of nth-order (n=0,1,2,. . . ) multiples starting
at —LOand continuing along the z ati can be written in
terms of a cylindrical coordinate system (fig. 1) as

2.(-)s-.0‘ 1 b “ -pr [aJ,i)cos 7u9+b.(f) sin M] @fo”(z,r,e)=-~
J(z–&--p’F

(7)

()la~
The operator ~ ~ is delined as

and the definition of ~ a a
()

~ ~ follows by induction. If the

notation’

ost)’ ‘ A(v)d?q ~]=(0(3). ;=(W) f .-
Tx “e a

is introduced, where the symbol
f

is read “finite part o~ the

integral,” equation (7) becomes

and the geneml expressions for the induced velocities be-
com-writing only the term involving the cosine, since the
result for the tie is directly analogous

Another very useful way of developing these multipole
solutions evolves from an application of operational tech-

4For a dekdfd dlwnsskn of tbe finffe-p-t mnmpt es used in w m~rt sw refmanca S.

niques. To begin with, rewrite equation (1) in terms of n
polar coordinate system, thus

(lo)

Next, define the Laplace transform of p(z,r,O)by

J

.
~(t?,r,e)= p(z,T,e)e-%iz (11)

o

and apply this transform to equation (10). There results
(for a proof see Appendix A).

(12)

Now, if a general solution to equation (12) is mqmwsc(l in
the form

7(8,7’,0) =f(T) COS d

thenj(r) must satisfy the equation

%J+w$+’289’=0
Solutions to this are given by

.f(r)=an(8)I.@r8) +xn(8)K.@r8)

where Ix and Kx are modiiied Bessel functions as dofmecl in
reference 4, page 77. Hence, if G is to vanish M r goes to
iniinity, a general solution to equation (1O) can be written
in the form

The above result will be transformed back to the physical
plane in two ways. Firstj apply the identity (ref. 4, p. 79)

Kx(z)=(–l)” (: -$~K.(z)

and re-express equation (13) as (only the coefficient of the
cos nO term is written since the treatment of the sine term is
identical)

The inverse Laplace transform of K@8)-see refermce
5-is

{

o, z<pr

L-1[KO@r8)]=
~&v~ x>flr

So, since

J
~ :Lo (z–z,)”-lAJzJdq (14)
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an application of the convolution integral and other standard
operational techniques yields

From comparison of equations (8) and (15), the relation
between the strengths a.(z) and A%(z) for the two different
forms of the solution is found to be

a@)=A&) , n=O
1

J
= (z–z,)”-’A@,)dZ,, i>o

(–~)s~’@)=&! -.O
J

(16a)

or

(–~)na$) (z) =Az(x) (16b)

d“
where a:) (x) symbolizes the operation ~ a,(z) and where

use is made of the conditions

a:) (—LO) =a#’-u (—-Q= . . . =a=(—ZO) =0 (17)

Another way to transform equation (13) back to the
physical plane is to do so directly. In this way one finds
(from ref. 5)

[
o > X<j?r

from which equation (13) reduces immediately to

The perturbation velocities in the field represented by
this potential are readily calculated. Thus

J
z-@A~(’)cOsh[ncOsh-l(F)lw(w,O)= —~>. cos no _%

J(z–~)’–B’r2
(19a)

~-@A.’’)wsh[nmslr& )l)l: Ac,T,e)=& $ ‘n.sin ‘ne
J -L. J(z–.y-fw

(19b)

and by taking the derivative of equation (13) with respect
to r, one iinds

which transforms to

(19C)

If the relation between the functions am(x) and Am(z) is
given by equation (16), the velociti~ represented by equa-
tions (9) and (19) are, of course, identical.

In order to obtain limiting values induced by multipolea
distributed along the z axis starting at –Lo, one returns to
either equation (8) or (18) and calculates the leading term in
a l/r expansion. As in the derivation of equation (6), it is
necessary to observe that as r is increased, z should also be
increased so p is given in the vicinity of the foremost Mach
cone created by the multipole distributions. Hence, using
equation (4), one finds for equation (18)

––-~-&sn9 .A.(’)msh[ncOA-’6+%)l~
‘— 2T 0

‘-’0 ~)

which has the leading term as r goes to inhity

Similarly, the perturbation velociti= reduce to

d-=-l%% (21b)

In calculating the wave drag using equation (2) only the
velocity component9 p=)~~_ and ~J~+ . are necessary.
Hence, from comparison of equations (21a) and (21b) with
(6a) and (6b), it follows that at a given 0 a series of multiples
induce the same momentum flux on an infinite cylindrical
control surface as a line of sources having a strength varia-

.
tion so(x) equal to ~ cos nOAn’(g). If one identifies a line

o
of sources with a body of revolution, then it is apparent
that, at a given 0, a dragwise equivalence has been estab-
lished between a line of multipolm and a body of revolution.

HA-’ THEOREM AND ITS APPLICATION

In the previous section a relation was found between
multipole and source strengths which produce, at a fixed 13,
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z,
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I?IGURD6.—Maoh forecone from z,r,O in Z1,V1,ZIspace.

equivalent momentum transport across a cylinder of Mnite
radius. By using a theorem attributable to Hayea (ref. 6)
one can derive the strength relationship between any distri-
bution of singularities throughout space and a line of sources
which gives the same equivalence.

The essence of Hayes’ theorem is that, for a fixed 0, the
velocities induced on a cylinder of iniinite radius by singular
solutions to equation (1) (e. g., sources and doublets) are
invariant to displacements of the singularities alo~~ certti
oblique planes. In order to be specific, the equation of
these oblique planes is next derived.

Consider the point z,r,Oin a flow field having a supersonic
free stream moving parallel to the z axis. Figure 6 shows
the Mach foreccme (by definition the Mach forecone is the
boundary of the region within which a disturbance in a
supersonic stream can tiect the flow at the cone apex)
from z,T,13in Zl,yl,zl space. The equation of the forecone is

zl=x—~~(r cos 0-yJ~+(r sin 6—zJi (22)

One wishes to let r become very large and iind the shape of
the forecone as it passes through regions close to the origin
of the z1,v1,z1coordinate system, regions in which the objects
creating the wave drag are located. From equation (4)
and the expansion of equation (22) for larger, it follows that

[
x1=%+ 13r-l?r 1—f

‘1
(.Y1Cos 0+2, sin 8)* %

and when r goes to iniinity

Xl=xo+g?yl Cos O+BZ1 Sin 0 (23)

which is the equation of the oblique plane mentioned above.
It should be noted that the envelope formed from these
planes by fixing ZOand varying 0 between O and 27 coincides

with the lMach forecone and aftercone from the point ZO,O,O,
Hayed result can now be stated 5

To the lowest order in I/r, as r tends to infinity, the
magnitude of the perturbation velocity potentird and
its gradients at a tied angle @ is invariant to a finite
translation of sources (or any other singular solution
to the wave equation) on planes parallel to that given
by equation (23).

Consider the application of Hayes’ theorem to planar
distributions of sources lying in the z,= O plane. As is well
known, such a distribution simulates a wing symmetrically
disposed about the horizontal (z,=O) plane. In fact, if
x~(zl,vJ is the local slope of the wing upper surface, tho
local source strength per unit area (according to thin airfoil
theory) required to simulate the wing is — ZJOhU/rand the
velocity potential of the disturbed flow field is given by

where r is the area of integration bounded by the wing edge
and the trace in the Z1=O plane of the Mach forecone from
the point x, y, z. Next introduce the new coordimtm & and
71 such that & lies along the xl axis and V1lies along the
intersection of the zI= O plane and the plane givcm by
equation (23) (see fig. 7). Set

Tl=yl sec A

Zl=&+T1 sin ,u
}

(26)

yl= ql Cos ,u J
Then, in terms of the fl,ql system, equation (24) becomes

SS
dz,y,z)=–: , Ml+ m ~ Am cog P) Cos P 41 ah

-@-gl-ql sin p)’–/(y(?h?h Cos /!)’-/?’2’

(27)
Wing plon ferm-7

FIGUEE7.—Orientation of Z,,V1and fl,~l coordinates.

sForprm@ seaHayes’originaldorhmtfon(ref.6)or,if mommnven!en~rebroncs1.
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FIGURE8,—Position of wing .wsrcea and equivalent single source.

As before, the asymptotic value of p as r=&F+@~ ~ % to
be enlculated. Accordingly, one can apply Hayd theorem
rmd sum up all the sources along a line :1= constant (e. g.,
between a and b in fig. 8) and place them as a single source
on the axis. The strength of this equivalent single source
iS:&’OKl by

uosw’(&,e)=2uo Cos p
J

Ufl+?ll Sk /%71Cos P) 4?1 C@
Wfrlg

where the integration is taken across the complete wing along

the~line f,=constant and Sw’(f@)=& sdfl,e).

The term &(z,O) has a clear geometrical interpretation
(see fig. 9), beiug simply the normal projection of the wing
area intercepted by the oblique plane e zl=z+@l cos 0.

The above defi.nea the strengti variation of a line of
sources (and, therefore, a body of revolution) which induces,
for large r ~nd a fixed 0, a potentkd field identical

SW(X,8)=Normal projection af wmg area olong A&
..-” 1

-++
7-.

X,w-pylcod

A

to that

q

t x,

FIcmnE9.—Wing area interceptedby oblique plane.
4WLO~ Ob]tqueplsuralagivenb eqrmtien @) but tbe wingfs$e &se to tbe nEO PIOM

JtbBttbevwMorlmtb2rmnlmm eotd.

induced by a given wing. Hence, the results given in
equation (6) yield

u.

J

‘o Siu’’(’%$ G
fcY.).cO=——

2~@F- _Lf~J Xo—& (29a)

$%),-+. = —/%% (29b)

A similar result exists for a planar doublet distribution
(see ref. 1 or 6) but, in this report, only problems in which
the wings have no loading (local lift) will be considered.
Lifting tiects have been treated in a similar fashion in
reference 7.

CANCZLLA’HON MUUATPOLES AND DItAQ MININIZA~ON

Since the flow field is governed by a linear partial diiler-
ential equation the velocities induced by different solutions
to it are additive. Therefore, the drag of an object simu-
lated by various multiples distributed along the x, axis
and a sheet of sources in the ZI=O plane is given by

D=-PtITwJ:. {r..
& lim T [(w)m+(%).1 [(Pz)nl+(*)tol

}

where the subscripts m and w refer to the. multiples and
wing source9, respectively. But equations (21) and (29)
identify, for a tied e,these’ velocities with those induced by
equivalent line sourw. Hence, for any given 0; one can
immediately apply Kdrmfin’s drag formula (ref. 8) and
then for the total drag, integrate 0 from O to 27. This leads
to

{
uosm’’(z,,e)+$(–p)’[a:+~(z,)costi+b:+~ (z,) Sinmq

}

{
?7.s.’’(%,0)+$(+y[ag’+~(q)cosn8+

}
b :+~ (ZJ)Sinti] lnlz,–zs]

However, since both the wing and multiples are in the same
plane (interpreted physically, the wing is centrally mounted
on the fuselage) and the wing is simulated by sources only
(ha no twist or camber), one can show the optimum value
of each bK+D(zJ is identically zero.’ Hence, one can write

1
$ (–m%+” (%) Cos ‘nR

[ 1
Uos.’’(%,e)+$(–B)%:+” (@cos ‘n9 ln[z,–ql

(30)

1BY synumtry

Henm
S.’’(z,a) -s.’’(z/%-e)

J k
SIn m9s.’’@)do.o

o
and eny pitive or negative vorhtien of b.@~) (m) can OIISYinorwo the drag.
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Next esprmd the term &“(z,13) in a Fourier series. One
finds

U.S.’’(Z,O)=5(–p)”ctg+’)(z)cm ‘ne (31)
o

where

.S
%(z)=;: ~‘r Sm’(z,e)d

u. 2’_—
say ‘R-B)’ o ‘“’(z’e) ‘s ‘d

(32)

(33)

Place these expressions in equation (3o), integrate with
respect to t?-using the orthogonal property of the trigo-
nometric series-rind one iinds

D=2D.+5D. (34)
1

where

Since one can shows

the minimum value of D as expreesed by equation (34) is
given when each D. is itself a minimum. In other words,
each Da can be minimhed separately. Further, it follows
that the value of the minimum itself is zero and occurs when

~“(”+l)(z)=–am(. +l)(z)

{-

u. 2“

J—% o Sw”(z,o)ae, , n=o
.

u. ‘r

J

(36)
—— S.”(x,O) cos d 0?$, n>O

d-m o

Equation (36) is the mathematical definition of the
optimum cancellation multiples; namely, those multiples
which are just equal in magnitude and opposite in sign to
the wing equivalent multipoles-equivalent in the sense
that they induce an identical momentum flux across a
cylinder of infinite radius.

Obviously, if all the optimum cancellation ms.dtipoles
were used, the wave drag of the combination would be zero.
This result must, however, be properly interpreted with
regard to the simulated shape. In order that the multipole
lines can represent the distortion of a real fuselage, one
must assume a cylindrical body exists upstream from the
Mach cone z+ZO=& (the effects of the nose are being
neglected). This body forms the initial boundary of the
stream tube which represents the physical fuselage in the
vicinity of the wing and multipole lines. Clearly, the area
enclosed by this initial boundary can be small enough for
the subsequent stream surface to cross itself and represent,
therefore, a physically unreal body. Hence, the fact that
the wave drag of the wing and multipole combination can

m
1WJ7.$).SA. sinn~,z-–L. cm & IntegrationgivesI=: ~ nA4wldchcmnew

.

b ncgath-e. ‘ ,

be reduced to zero is quite valid, but in the over-all picture
not only have the inevitable nose and tail drags been neg-
lected but also the shape sindated by the combination cm
be unrealistic.

SOME PROPERTIES OF THE CANCELLATION MULTIPOLZS

Let us consider next some of the restrictions necees.arily
imposed on cancellation-multipole distributions and some of
the particular properties of those given by equation (36). In
the first place, if a,(z) is any multipole distribution that
generates a potential field given by equation (8) or (15), it
follows from equation (17) that the value of a.(z) and its
first n derivativea should be everywhere continuous. Further,
if a.(z) is a constant behind some point, say L. (i. e., for
co>X>LO), the induced flow field would simulate exTanding

streamlines in the case n=O or some form of vorticity in the
case n>O; the former case is to be avoided since any simu-
lated body is assumed to have a tite area at z= co, and tho
latter case is to be avoided if there are no resultant forces
normal to the free stream.

One can show that all the above properties are satisfied
by %(f), the optimum cancellation-multipole distribution
as defined by equation (36). First, notice that a~+l) (:)
must be zero everywhere outside the wing-enclosing lMach
forecone and aftercone, that is, for — OJ<~<—LO’ and
LO<E< ~ (see fig. 10). (Any multiples in these regions cnn-
not combine with the wing equivalent multiples and must,
therefore, increase the drag.) Hence, one can set

(~~) _LOf)=a$-l) (—LO’)

=., . a.(—LO’)

=0

t /r\ I

I /’
L; /

/

/

/

,/

‘\

m
0 \

\

i-
\\

\ Ion-l@

“\ ‘/
Iorm

Y

/’+ = constont

/

//

+ x,(

FIGWEE10.-Symbols used in study of multipole properties.
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Then the condition of continuity is automatically satisfied for
a~) ($) in the entire interval — co<x< m if &’ ($,0) is
derived from n wing having finite wave drag (in particular,
from a wing having no blunt edges along which the normal
component of the free-stream lMach number is unity or
greater). It follows immediately that c@ ($), m<n, is
continuous since the latter is found by integrating (further
smoothing) %!i (~).

The proof that an(LO) as given by equation (36) is zero
requires more consideration. One can show, however, that
cr.w)(LO)=0 where Osm sn. I&t, the equality a$) (Lo) =0
follows from the fact that the &g closes and S=’ (L@) itself
is zero. Ntwt consider the definition of %W (g). Thus

–U.tY$fqg)=—
J

“S.’(W) cm M d
(–B)nr o

J

_ –2U0 2’

(–l% o
cos p cos n$ d

J
::’)~w(t+~ s~ %~ cos P) d~ ‘
0,

where use has been made of equation (28) for the deti.nition
of SW’(~,fl) and h. and hl are defined in figure 10. Since

J

1~
(&&)”-=-’%w(tl) 41 (37)a~w(t)= r(n— m) -LOJ

0n8 has

Change the &,v coordinates back to the X,Y system by means
of equation (26) and this becomes

–2U0 ‘“ma ~ ~s H
(,+z+py .Cos 0)”-=-1

.!q
‘ au$”)(Q=(_p).Tr(n-m) o

}U(ZJJ)(ix d~

The mea SE, shown
when ~=Lo (being
therefore

in figure 10, becomes independent of o
then just the area of the wing itself),

–2U”

SS
xu(z,yjti dya.w (~O)=(_p)wr(m—n) ~

J
2r(Lo–x+By CoSo)”-*-l cos?14 CU3=0
o

since, for m<n

J

9r

cos mtl cosnode=o
o

Hence, for the a,(:) defined by equation (36)

at) (LO)= C#-l) (LJ = an@-a(LJ = . . . = am(LJ=0 (38)

AIRPLANE SHAPE

In the previous section a connection was established be-,
tvmen multipole distributions and their resulting wave drag.

Further, this connection was direct and relatively simple if
the strengths and positions of the distributions were given.
Unfortunately the connection between the mukipoles and
the shape of the simulated surface is generally not so simple.
Such a relation does certainly exist, however, and if the
strengtha of the multiples are known, the relationship is
again direct. That is, a given distribution of multiples
yields directly, by the formulas given in the previous section,
the induced velocities everywhere in the flow field, these, in
turn, fix the stream surfaces along any one of which (since, ef
course, the theory neglects viscosity) a physical surface can
be imagined.

In general, if

F.(z,y,z) =0

F,(z,r,e) =0 }

(39)

are the equations of a stream surface in cartesian and polar
coordinates, respectively, then the equations

must hold.

(40)

For example, in studies of thin wings lying in a plane, the
particular form of equation (39)

Z—h(z,y)=o

is aemnned and equation (4o) becomes

–(U.+%):–W+%=O

or, neglecting second-order effects,

ah 1—= —
ax u.“

which is the familiar boundary condition used in thin-airfoil
theory. On the other hand, if the equation of the body
shape is written in the form

7’-R(Z,O)=O

then equation (40) becomes, for linearized

~ bR
U. g=pr–z, ~

theory,

(41)

If the flow field is radially symmetrical or if the body surface
is quasi-cylindrical, equation (41 ) reduces to

2)R 1

57E w
(42)

which is the familiar boundary condition used in the study
of quasi-cylindrical bodies or bodies of revolution.

In general, a nonlinear partial differential equation of the
fit order such as equation (41) can be reduced to two simul-
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taneous, ordinary, nonlinew differential equations of the
tit degree (see, e. g., ref. 9). Thus equation (41) becomes

(43)

and if ~ rmd p, are known fuuctions of x, R, and O, these can
be solved numerically.

If the strengths of all rectilinear multiples and source
sheets are given, equation (19) or (24) can be used to find
p, and ~ at arbitmmy field points. Hence, the first step in
finding the body shapes reduces to tlmt of integrating such
equations. However, these integrations are dii%cult and
tedious even when entirely numerical procedures are em-
ployed and the results still have to be interpreted in terms of
the body shape according to equations (43).Therefore,
from a practical viewpoint, it is necessary to study certain
approximate methods for obtaining the velocity field.

Let attention be concentrated on the disturbances created
by a line of multiples. In particular, consider the fields
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induced by simple polynomial distributions satisfying, in
each case, the end conditions given by equation (17). J?or
particular variations set

QJ5)=C.(1-P)Z

as(Z)=cJ1-qTz 1 (4
a@=c4(l —3?)5

where co, Q, and cd are constants dete rmining the amplitudes
and Z=z/Lo. Figure 11 (a) shows the variations of these
coefficients with Z, and figures 11(b) through 11(f) show
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FIGURE1l.—Continued.

how velocities induced by these distributions vary with
ZO(ZO=Z-f%) and F (7=&]LO). The results have been com-
pared with those for large 7 given by equation (21) and with
those for small F given by slender-body theory. Values for
the latter theory am det.ermiued from equations (9) or (19)
by expanding the expressions in powers of r and neglecting
all but the first terms. Thus it can be shown

%,)7*=

(q(z)
2ur

) n=o

(45a)
(–2)%da.Jz)cog~, ~>o

4#1+1

. _—-— —.
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1 (–2)%!CZ*(Z)sin ‘TlL9
; %8),*= 4tia+l ) n>O (45b)

The significance of figure 11 with regard to practical oppli-
mtions is more or less obvious. The iirst step in its usc is to
lind the effective length of the cancellation-multipole dis-
tributions. Since the wing is given, the streamwm variation
of the cancellation multiples can be calculated. Actunlly
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this variation will extend between the apexes of the enclosing
Mach forecone and aftercone, a distance of Lo+L~ (see
fig. 10). However, depending on the wing plan form and
section, the effective lengths of the distributions (the interval
of principal variation) can be considerably less as illustrated
in figure 12. Designate this effective length as 2L, and the

FmuRE 12.—Effective length of multipole distribution.

7

straight lines ‘hving the slopes, on the log~log scale, equal
to — (n + 1) where n is the order of the multipole. Since this
theory amounts to an expansion of the equations for the

/’
/’/’//// /’

~
-1

-1
b

I F

A+.

-1

0

(a)
Inrge 7

distance to the vicinity of the body surface as r,, and one em
define the parameter 74 thus

(46)

Using figure 11 and the parameter 7., one can now estimate
the error incurred by the use of various approximate methods
for calculating the body shape. A convenient way to carry
out these estimations is to study the magnitude of the first
crest of the waves shown in figures 11 @) through 11 (f), and
the distance this crest lies from the foremost Mach cone.
Graphs showing the variations of these quantities with 7 are
given in figures 13, 14, and 15.

By means of the above concepts, let us study briefly four .
diilerent approximate methods that can be used to calculate
a body shape.

SLENDER-BODY THEORY

Slender-body theory is represented in figure 14 by the

velocities in powers of 7, it obviously represents a good
approximation when F. is SufEcientiy small. A’otice that for
a given percentage error the limiting value of 7. for which the
method applies increases as the order of the multiples in-

Pasition

Position of
--— Moxima
—.-. .— Minima

/
/

//,’

A-
-1

+,
cas 28

I
I

Small 7
FD-1

t

+,
Cos 28

–1

(b)

(a) Radial velaoities induced bv sources I
Large 7

Fmurm 13.—Po~tians of orests of waves or&ed by multipole distri-
butions shown in figure 11.

(b) Radial velocities induoed by second-rder multiples.
FIGURE13.—Continued.



722

.—. ——..

REPORT 128%NATIONAL ADVISORY COMMI’ITEE FOR AERONAIJ’lTCS

/’
/’//,
/z!-

-1

i

0 “-1 I .7

Smell T

b

-1 “

(c)

Loqe T

(c) Trmgentisl velocities induced by seccmhrder multiples.
FIGURE13.—Continued.

creases. For example, when Fe= 0.2, q., as given by slender-
body theory is 19 percent less than that given by exact
linearized theory for the case shown, whereas ~, is only 3
percent less. Correspondingly, the positions of the wave
crests follow the path predicted by slender-body theory to
larger values of 7 as the order of the multiples increases.
The latter trend is illustrated by figure 15.
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(d) Radial velocities induced by fourth-order multiples.

l?mmm 13.—Continued.

If for a particular problem r, is small enough for slender-
body theory to be considered a good approximation, the
equation for the body shape, r= R(z,O), corresponding to
the combined wing and optimum cancellation multiples
defined in equation (36) is determined by the expressions
(using equations (45), (36), and (14) together with equa-
tion (42))

Iv
:a#z Ckq(z-z,y Cos n+s.”(z,,y)

-Lo’

(470)

(47b)
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Fmrmn 14.—Continued.

Approximate methods for iinding (w/UJZ) ~~mo~d (PJUJ win~,
the velocities induced by the wing, can often be used also;
but these apply to individual cases and cannot be discussed
here.

~12Y kOR LARGE ;=

The asymptotic values for magnitude and position of the
first wave. crest obtained by placing equations (44) into

20
\

.

(e)

I03
\

.5 LO 23 5 10
i

(e) P*

Fmmm 14.—Conoluded.

equations (21) are also shown in figures
For n S4 it is clear that this theory can
is greater than about 2.

CONTROLSURFACE THEORY

13, 14, and 15.
be used when 7,

The approximations inherent in ordinary control-surface
theory can also be estimated by inspecting figures 14 and
15, where by control-surface theory one means that the
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Fmwrm 15.—Concluded.

exact linearized theory is used to evaluate induced velocities
along a given surface and these values are assumed constant
for all ? in the vicinity of the surface. As shown in
figure 16, this amounts to assuming ~ and ~ are given
by a straight horizontal line in iigure 14 and by straight
lines with a unit negative slope in figure 15. Obviously,
the error in the body shape calculated by this theory increases
as the amplitudes of the disturbing multiples increase and
aa the radius of the contiol surface diminishes.

One of the simpk% applications of control-surface theory
arises in the study of quasi-cylindrical bodies. In such
cases the expression for the body surface can be derived
immediately from equation (42). Thus, if the amplitudes
of the cancellation multipolea are small enough and Rc,
the radius of the control surface, is large enough for control-
surface theory to be considered a good approximation, the
body shape, T= R(z,O), corresponding to the combined wing
and optimum cancellation multipolcs is determined by
using equations (19c), (16b), and (36) together with equa-
tion (42)

(48)

where LT.=1 for n=O and un=2 for n>O.
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which can be solved using numerical techniques.
A further refinement of equation (49)can be obtainod if

the position of the induced velocities is also varied according
to the slope (again at 7=7,) of the curves in figure 16. De-
fining this dope as ~., see figure 17, and z, as

za=w—0(l+6,)(R—R.)

one can see this refinement simply amounts to replacing
the value of z in the right-hand term of equation (49) by X8.

ILLUSTRATIVE EXAMPLE-ELLIPTIC WING

In order that one may be able to assw.s the practical sig-
nibmce of the preceding sections, the concepts presented
therein will now be applied to the solution of n particular
problem. For the basic wing plan form in this particular
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FIGURE 16.—Comparison of velocity fields given by exact-linearized
and aontrol-surface theory.

A study of optimum fuselage shapes using control-surface
theory has been carried out by Nielsen (ref. 10) for a constant-
chord”sweptback wing having a bicmmex section and a sonic
leading edge. The set of interfering singuhwities used in
reference 10 are equivalent (the singularities are limited to
the z axis) to the multiples used herein. The fuselage
shapes calculated by IVielsen are thus the sam~within the
accuracy of control-surface theory-as those given by equa-
tion (48).
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A method of modifying control-surface theory to increase
its accuracy is illustrated in iigure 17. Induced velocities
computed by thie method are based on those calculated
along a given control surface but are extended away from
this surface by varying their magnitude as (F)7mwhere the
value of Y. is fixed by the slope of the curves in figure 14 at
7=7., T. being defined by equation (46) (fig. 17). With this
modification equation (48) becom~
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-.4, 2 .3
i

l?mmm 17.—Comparieon of velocity fields given by exaot-lirmariml
and modified contzol-surface theory.
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example rm ellipse will be chosen. There are two good
reasons for this choice; tit, the ellipse is electively un-
swept and plmes a severe teat on the role of body interfer-
ence in reducing the wave drag at-s supersonic speed, and,
second, for a given volume, the optimum section (i. e., the
ono yielding minimum wave drag) for these wings when
considered separately has been discovered (see ref. 11) so
the reduction in wave drag brought about by the body
will reduce the minimum value possible for such wings when
flying alone, The drag reductions for the ii.ret few cancella-
tion-multipole distributions will be calculated and compared
with the totrd drag of the wing alone, the wing mounted on
an intl.nite cylinder, and the wing mounted on a basic body
of revolution. I?imdly the details of calculating a body
shape simulated by the wing source sheet, a source line
representing a basic body of revolution, and the fit two
optimum crmcellation-multipole distributions will be carried
out.

THE ELLIPTICWING

Consider the elliptic lens specified by the equation

‘=+=X1-H-J (50)

where the thickness, span, and chord are shown in iigure 18.
The streomwiee slope of the upper surface is seen to be

Z)z
— =X&/)=+ax. (51)

and the total wing plan-form area S and volume V are,
res~ectively,

I

S’=mzb
1

(52)

J

Y

ix
Wing plan form

lF-

-4

+2”+
Root section

FKXJZE18.—Deflnition of paramotere used to study elliptic wing.

43587 &07~7

,<= constont

\

Fmmm 19.—Elliptio wing in f,~ coordinat~

Wave drag,-The wave drag of the elliptic wing repre-
sented by equation (5o) can be calculated by means of
equation (3o) in which, since one wishes now to find the
wave drag of the wing alone, the an’s are set equal to zero.
The value of S’@’(z,o) follows by placing equation (51) intQ
equation (28) and integrating. Thus

UOSW’(X,13)=2U0cos p
1(-+)

(f+q sin J@i’=

where, by referring the equation of the plan form to the &v
coordinates (see eq. (26)) and solving for the points where
the straight line ~=conetant intersects the wing edges, one
fids-see figure 19

h,~= —b’~sin p+ab~a’ COS’p+ba sin’ ,u-.g’ COS’~
hvj a? toss P+ N sid P

Hence,

S.’(z,e)=–
4ztab

(a’+b’~’ cd o)’ d~ (53)

From the relation

~’(tl) =az+b’@ COS’o (54)

the wave drag can be expressed in the form (integrating once
by pint@

:=-* JXP..)%E)4%$I’

Further integration yields
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Mnt Exoct Ackeret
numk hneorized wove—

theory t(x-f)/u2

I .044 .050
2 -.053 -.050
3 -.102 -.100
4 -.104 -.100

Regicm to be

1

z

ocwpied by
My streamline ----— —7

/ I / x

Fmmm 20.—Points at whioh exactAinearized themy was compared
with an Ackeret wave in plane of symmetry for elliptic wing.

Finally, the wave drag can be expressed in
based on the total wing area xab, as

coficient form,

(55)

Equation (55) represauts the lowest value of wave drag
po~ible for a wing having an elliptic plan form and fied
volume. This equation was first derived by Jones in
reference 11.

The velocities induced by the wing source sheet in the
vicini~ of the fuselage .-Later, when one wishes to calcu-
Iat e a stream surface in the presence of the source sheet that
simulates the wing given by equation (50), it is necessary to
know the velocities induced by these sources at the body
surface. Hence, the value of p, induced by the source sheet
was calculated at the four points indicated in figure 20.
As it turns out, these values are w close (see the figure for a
numerical comparison) to those obtained by assuming the

source sheet to be two-dimensional with a chordwise intensi~
identical to that along the root section of the elliptical sheet
(i. e., using the Ackeret wave generated by the root section)
that the effect of the wing can be assumed to be given every-
where in the vicinity of the body by the latter velocity field
if (as will be the case ‘in subsequent application) the surface
of the body passea through the region shaded in the figure.
That is, the effect of the wing in the equations for the fuselage
shape (such as eqs. (47), (48), or (49)) is assumed to be

THE OPTZNUM CANCELLA~ON MULTIPOLE9

One can now find the strengths of the multiples along the
x axis which induce arcund a cylinder of iniinite radius a
momentum field identical to that created there by the elliptic
wing. The negatives of these variations are, acccrding to

equation (36),the optimum cancellation
combining equations (53) and (36)

multiples. Hence,

where um=l for n= Oand u.=2 for n>O. Particular vari-
ations of a.w (z) are shown in figure 21. These results aro

2

r \

I \

o \

-1- \ ,

\J
(o)

-g=
-4 -2 0 2 4 6

(a) n=;
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r \

1 / ‘ \

1 \

T
g s’ /
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%’
0

\
/
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\
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(b)
!

‘Z6 -3 0 3 6
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(b) n=2
1.0

.8
/-~ \

.6 I

.4

/
.2 , \

o
/

-.2 /

-.4 I /

-.6 /

\
/

-.8 /

(c)

-lg6 -3 0 3 6

(o) :=4

FrGURE 21.—Variation of nth derivative of nth-order cancellation
multipolea for elliptic wing.
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for JZ=O, 2, awl 4, since C# (zj for any odd n is zero by
symmetry, rmd apply when the wing plan for and free-
strenm Mach number are related by

att
—= —

Z@ 3ir (58)

which contains the particular case for which the Mach
number is & and the aspect ratio is 3. It is apparent that
there are at least n+ 1 roots to %$ (z) for –LO<X<LO.
This follows immediately from equation (38) and is true in
general. As rLresult the curves for the higher values of n

.06 P \

.04 /

/ \

.02 /

/
\

T
-w N40 / \
m ~o o +

‘Q /
\

-,02 /

/

\
-.04 /

/

-,06 /
\ J

(o)

-6 -4 -2 0 2 4 6

(a) n=2x

.0006

.0004

/
\

.0Q02 /

/
%-v*Q \

~: $
0 /

\ t

-,0002 /
\

/

-.0004 I

/ J

(b)
-.OOCK= -A -? n 9 A c. “ L -1 c1

x

(b)n=4
J?munn 22.—Variation of nth-order cancellation multiples for elliptic

wing.

become increasingly wavy and, correspondingly, increas-
ingly diihcult to evaluate numerically.

Figure 22 presents the values of an(z) for the same elliptic-
wing Mach number relation given by equa Lion (58). hTotice
that each of these curves has only one root (they necessarily
have at least one) in the interval –LO<X<LO and is in-
creasingly smooth with increasing n. The latter follows
from equation (37) and the fact that the first n derivatives
of these curves must, in general, be continuous. For mam-
pleat z= +Lo the fit four derivatives of al(z) must vanish.

Wave drag,-One can now calculate how much the wing-
alone drag is reduced when combined with each successive
optimum cancellation-multipole dis&ibution. If ~= clenot es
the drag saved by the nth-order cancellation multiples,
then by equation (35)

where L. is the maximum value of L(o) as given by equation
(54)

L~=a2+b’& (60)

The total drag saved by means of the first m multipolo dis-
tributions, would, by equation (34), be

(61)

Using equations (53) and (36) h’ deiine the a~+D (.x) in

equation, reversing the order of integration, and int e-
W* once by parts, one finds

D. –4 ‘~

J J

r12
—=_

fl 7+ ,
Ccs ‘nl?ldl

o WSnO~ZJ:;:,d~IJ::.d~3

(4td)’ L’(eJ-2&’&,/L’(e’)–g,’
L4(eJL4(e2) J- tl–f?

64 (tab)g ‘/2

J J

TB
=—

T’ o
Cos ?l.&del costide2

o

{

—+!D(o’), L’(o,) s .L’(/32)

—T*/4L’(eJ, L2(oJ2L2(13J

It is apparent fkom @e 23 that this can be written

or

~, 32(tub)2 ’12

J

cm W31dl

J

Xl’
—.
fl~ o (a’+ b’f?’cos2tlJ2 ,91

COS“&d, (62)

The total drag saved by using all the cancellation multiples
is, by definition,

~ 16 (tub)’ ‘n—=
J (

%@ ~SiIIml costiel
!l~o (a2+b2$cos28J2 2 )
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FIQURZ23.-Regions used in developing equation (62).

and since
-1

z=~—~ – sin 2nz 00s 2nz
4 .=ln

this is equal to the drag of the wing alone, as it, of course,
should be.

The reduction in wave drag as the wing is combined with
the fit three optimum cancellation multiples is presented
in figure 24. In studying figure 24, one sees, as the Mach
number approaches 1 (i. e., p~O), more and more of the
original wing wave ~m is destroyed by a line of simple
sources alone. Further, the value of Fe which can be writ-
ten-see equations (46), (54), and figures 21 and 22—

(63)

tends (for n fixed avemqge distance to the body surface re)
to zero as the Mach number approaches 1; and this, in turn,
means that as ~ goes to zero the dlect of the multipole
strengths on the body shape can be calculated using slender-
body theory.

1.0
/f

I
/

.8
/

,

I

t I i .

&
~ I I I

.4 /
/ I \h I I I

.2
/ ‘

\\’\ I

I I A I I I -b =H7r-1
o

— ,
.4 .8 1.2 L6 ZLO 24 28 3.2

Reduced ospect rotio, &l

FIGURE 24.-Portions of elliptic-wing wave drag oreated by various
equivalent multipole distributions.

I

x

(a) Radial velocities induced bv sources... /
Fmmm 25.—Velocities induced by the elliptic-wing cancellation

multiples at the control surface where 19R/L.=0.148.

When various ordem of multiples are distributed along
a line, one can show the cross-sectional area normal to the
free stream of the simulated body as given by slender-body
theory is a function of the source distribution only (me
Appendix B). Coupled with the discussion in the preceding
paragraph, this can be used to demonstmte that, for Mach
numbers close to 1, the ‘%upermnic aren rule” proposod by
Jones (ref. 12)and Whitcomb and discussed in reference 13
gives a good approximation for the wave drag of an elliptic
wing and body combination which is symmetrical with
respect to the plane of the wing.

The induced velocity field.-A method for calculating tho
velocity field induced by the multiples when a~(~) is given
numerically is presented in Appendix C. By means of this
method, velocities induced by the Q and a~ m~til?ole di+
tributions shown in figure 22 have been calculated for 7
equal to 0.148 and the results are shown in figure 26.
Since the distributions in figure 22 were for the particular
case a]bD=4j3~, it is evident from equation (63) that the
values in figure 25 apply to the case r,/b equal to O.161;
that is, when the body radius is about 16 percent of tho
wing semispan.

For ~mparative purposes, the values given by slen(ler-

body theory are also shown in figure 25. The degree of
agreement between the two curves is consistent with tlm
results shown in iigures 14 and 15.

INTERPRETATION OF DRAG REDUCTIONS

Comparison with wing mounted on a oiroular oylinder.—
With regard to figure 24 one should be careful to no~ico
that the drag of the wing alone has been used for tlm
reference drag. The drag reductions shown, tlmrefom, ropro-
sent gains brought about by interfering with the velocity
field induced by a planar murce sheet, or, in terms of a
combination with an upstream cylindrical stream surface,
gains made by modiftig a body, shown in figure 26, which
bulges behind the wing leading-edge Mach wave in accord-
ance with the velocities induced there by the sourco sheet.
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(b) Radial velocities induced b; second-order multiples.
Fmwan 26.—Continued.

Obviously, from this viewpoint, a considerable reduction in
drag con be brought about merely by eliminating the bulge,
thereby making the body a circular cylinder throughout.
Mathernaticnlly, such a procedure amounts to using a certain
set g of cancellation multiples along the z axis behind the
point –l& and, if the drag of this remlting combination
wero u8ed as a reference, the gains shown in @me 24 would
be diminished.

An approximate way to e9timate the drag’ of a wing
mounted on a circular cylinder is illustrated in figure 27
and coneista merely of subtracting from the wing source
sheet those sources blanketed by the body. Using the
subscripts 1, 2, and 3 to designate the wave drags of the
individual wings as indicated in figure 27, Jones (ref. 15)
has shown that if wing 1 is an elliptic wing with a bi-
convex section and wing 2 lies entirely within the plan
form of wing 1, then

“=D’O+%)+D’ (64)

———— Moth waves from wing mat section ,
,/ ,/

/’ /“
/ /

/ /
,/ /

/
/ /

\
\

\
\ \\

l?mmm 213,-Wing and stream tube simulated by planar shmt of sources.
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(o) Tangential velocities induced by second-order multiples.
fi@JRE 25.—Concluded.

where Vg and VI are the volumes of wings 1 and 2,respec-
tively.

For a supersonic Mach number, D, is closely approximated
by the wave drag of a rectangular wing having the same
section and aapect ratio. If A,, 4Ra, and r, are, respectively,
the aspeet ratio, plan-form area, and thickness ratio of the
rectangular wing, its drag can be expressed in the form

(65)

where

r(32b 20

L
—

Wings

1
2R [—l

-fl--2o4

n
u

I 2 3

Ra5 &5\\\\ \\\\
Equivalent wing–body combinations

FIGURE 27.—Method of approximating wing mounted on a cylinder
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Further, if Al is the aspect ratio of the elliptic wing, one can
showaee figure 27 and equation (52)—

(67)

The drag of the elliptic wing follows from equation (55) and
can be written

where

Finally, therefore, equation (64) can be put in the form

(68)

(69)

(70)

and the ratio N../Nl is a function of the parameters R/b and
/3A1Old~.

By means of equation (70),the dashed curves shown in
figure 28–
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FIWRE 2S.-Drag of various multipole distributions compared with
drag of wing mounted on circular cylinder.

representing approximately the vrwe drag of a wing mounted
centrally on a circular cylinde~were calculated. Though
considerable drag reduction is indicated by adding just
those multiples necessary to make the body cylindrical,
it is apparent the total wave ‘drag can be reduced further,
for the range of parameters shown, by using only the first
tmo optimum cancellation-mukipole distributions, so(z)
and as(x), given by equation (36).

Comparison with wing mounted on a basic body of revo-
lution.-Figure 2S shows the effect on the wave drag of
adding the optimum cancellation multiples either to the
wing alone or to the combination of an iniinite circular
cylinder and a centrally mounted wing. Estimates of their
effect when added to a wing mounted on a basic body of
revolu (ion can also be carried out,. In order to present these

estimates, however, the results of the following two theorems
due to R. T. Jones (ref. 15) are needed.

1. Designate the closed body of revolution which, by
slender-body theory, has a minimum drag for a fixed volumo
and length as a Seara-Haack body. Then the total wavo
drag of a Sears-Haack body and any other body of revolution
or any centrally mounted thin wing which lie entirely within
the Sears-Haack body’s enclosing Mach fomcone ancl after-
c.one is given by the equation

‘=D=O+%3+D’
(71)

where:

Ds= wave drag of Sears-Haack body alone
D, wave drag of other body or (e.xPosed) wing alone
Vm volume of Sears-Haack body
v, volume of other body or (exposed) wing

2. Designate the body of revolution which, by slender-bocly
theory, has a minimum drag for a fixed base diameter and
length as a K&rm&n ogive. Then the total wave chmg of (L
Kfmn6n ogive and any other slender body of revolution or
any centrally moqnted thin wing which lie entirely withiu
the ogive’s enclosing Mach forec.one and aftercone is given
by the equation

D= D~+Da

where:

D= wave drag of Kfwmfm ogive alone
D, wave drag of other body or (esposecl

(72)

wing alone

In order that the theoretical results could be tested by
wind-tunnel experiments, a basic body of revolution lmving
a finite base area was chosen. Such a body can be simulated
by a combination of the source distributions which produce, 1°
separately, the Sears-Haack body and the Kfwmfm ogive.
Thus, if 21 is to be the body length, the line of sources

a.(z) 2
~=~ ( )

V.–4V.. ; F–2 (73)

simulates (by slender-body theory) a body of revolution
having a total volume V equal to V&+ V~, a cross-sectional
area given by

s(z)=%
[“=+’’(s+sin-?)]+

and a base area S(i) equal to V=/l.
The wave drag of a wing mounted on this basic, unmodified

body will now be calculated. Just as was the case in study-
ing the wing attached to an infinite cylinder, the assumption
@ made that the wave drag of this combination is the samo
as the wave drag on the contlguration simulated by super-
imposing the singularity distributionM which create seplI-

by llne&ked theory. -
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rat ely the exposed wing panels and the body of revolution.
With this assumption, the wave drag can be written ex-
plicitly in terms of the wing and body geometry by applying
equdione (71) and (72). Hence,

‘=D’+D=(l+%)+D’(75)

where D3 is the drag of the exposed wing panels alone, given
by equation (7o) and shown for various values of R/b in
figure 28, and V3 is their volume (see fig. 27)

‘7’=’”(=:) (76)

Since D~ and Ds=, the wave drags of a K6rm6n ogive and a
Senrs-Hanck body flying alone, are well known to be

tho wave drag coe5cient of the unmodified combination,
based on the complete wing area mzb,can be expressed as

%[(1-%+%1
(78)

where N1 and NZ are defined in terms of Mach number and
wing-body geometry in equations (66) and (69). An ex-
nmple of the variation of CLJwith lMach number for the par-
ticular combination shown in figure 29 (R/bwas set equal to
0.181) is given by the dashed line in figure 30.

It is now possible to find how much the drag of this un-
modified combination can be reduced by means of the opti-
mum cancellation-multipole distributions used to derive the
results shown in figure 24. Again applying equations (71)
nnd (72), one can show

‘=”’+”4’%3+”’

k=--L
Moxlmum thickness of wmg
along center line, t =0.234

Total valume of body= 44.15CI
VW=31.72

VK=12.88

FIGURE29.—Dimensions of wing-body combination analyzed.
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I?IG- 30.—Drag variation for modiiied and unmodified wing-body
combinations.

where V4 is the total volume and D, the total wave drag per-
taining to the wing (now the complete wing including the
portion blanketed by the body) and the multiples. How-
ever, within the accuracy of the approximation-being, in
fact, exact within slender-body theory, see Appendix B—
the volume added by the wing is subtracted from the bnsic
body by the optimum cancellation-source distribution so
that VA is zero. Further, if N4 is the value of D/Dmread
from figure 24 for a speciiic value of &41 and a specific num-
ber of multipole types, one can readily show

(80)

where NI is defined in equation (69). Hence, the drag of
the unmodified combination can be reduced to either

–=cD=*{vK2+8[v”HD
(pub

(81)

if the same total volume is maintained (maintained, as is
obvious from an inspection of the equation, by increasing
the value of the Sears-Harwk portion of the basic body an
amount equal to the volume of the ecrposed wing) or to

c“=dj~.— (VK’+8Vs.~+__& ATIAT4

if the volume of the fuselage is reduced by an amount equnl
to the wing volume.
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Fzcwnn 31.—Body shape having favorable interference wave drag at
ilf= 1.41 when combined with elliptic wing.

The results expressed by equations (80) and (81), when
applied to the fit two optimum cancellation-multipole dis-
tributions, are shown for the geometrical parameters pre-
sented in figure 29 by the solid curves in figure 30. The
value of R/bused for the solid curves was 0.161 instead of the
0.181 value used to calculate the dashed curve. The smaller
value was used since the moditled body is drawn in along the

sides by the cancellation multiples (see fig. 31), decreasing
the average body radius in the wing region from about 1.00
to about 0.89. One must be careful to notice that the solicl
curves represent minimum (relative to the special method
being discussed) values which can be obtained by a specific
design at a speciiic Mach number and do not represent tho
variation of wave drag with Mach number for any given
combination.

~ BODYSHAPE-FIRSTCALCULATION

The final step in studying the effect of the optimum
cancellation multiples, defined in equation (36), is to find
the distorted body shape which they produce in combination
with the wing and a basic body. The decision was maclo to
calculate a body shape which would be optimum at a Mnch
number equal to ~ The details of the wing and body
geometry are given in figure 29 and~he basic body pnmmotem
V. and Vs were interpreted in terms of source strength by
equation (73).

It was apparent from the results of figure 26 thot, for 111o
values of r. and b given by figure 29, the velocity field induced
by the first two optimum multipole distributions can bo
calculated with good accuracy using slender-body theory.
Combining the values of ~r and w so calculated with those
induced by the wing, given by equation (56), and thoso
induced by the basic body, using also slender-body theory to
interpret equation (73), one can iind the body slmpo by
solving the two simultaneous nonlinear differential equations
presented as equations (43). These were solved numerically
by the method outlined in Appendix D and the results were,
unfortunately, unrealistic. Figure 32 shows an example of rL
streamline close to the 0= O plane and the crossing of such
streamlines obviously invalidates the solution.

BODYSHAPE-SECONDCALCULATION

The failure observed in the tit calculation hns a simple
enough interpretation. For the chosen wing the basic body
was too small in diameter at the wing-body juncture to per-
mit the use of the first two cancellation multiples in their
entirety.

Several avenues of approach are yet available. One could,
for example, maintain the same wing and basic body but
reduce the Mach number, one could start with a huger basic
body, or one could lower the thickness ratio or aspect rnlio
of the wing, thus diminishing the strength of the cancellation
multiples. All of these, however, are modifications of tho
basic conditions or basic restraints and as soon a-s such

Y

I

1? =.888 - /
/

1;

;/

Multiples -J’ ~- Streamline, 8-O

FIGURE32.-Stree.rnline when starting body rsdius ia too smrdl.
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restrictions me abandoned it must be remarked that no
matter how low the wave drag of a set of nonlifting, volume-
cnclosing surfaces has been made, another arrangement of
the same volume within rLfinite space will give a lower value,
unless, of course, the wave drag of the first arrangement ie
already zero. Therefore, instead of modifying any of the
initial restraints, consider the following alternative:

How much cm the drag be reduced by using only a
portion of the first two cancellation muhipoles so that a
real body would still be simulated?

In order ta answer the above question, examine briefly the
first calculation. Notice, from figure 25, that the cause of
the body collapse is attributable to the large values of ~
and ~ induced by the second-order cancellation multiples,
a~(z). Hence, let so(z) be maintained at its full value and
reductions permitted only in the magnitude of C&E). To
carry out such a procedure efficiently, one must be able to
determine the effect of a given variation bf a,(z) on the body
shape. I?ortunately, Graham, in reference 16, has developed
a method by means of which the relation between c&) and
body shape. can be quickly estimated. Graham has shown
if

1. a rectilinear distribution of second+rder multipolea
of strength al(z) is placed along the z axis (see fig.

33) in a supersonic stream (iW=fi)
2. slender-body theory is used to evaluate q, and ~,
3. R=R. is the radius of a circularly cylindrical tube

for —Lo>z>– co,

then

R=RC
{

1+227*(Z)Cos24+ J1+4F*(Z) Cos20+4[F*(Z)]’‘“
2 }

(83)

is the continuation of the stream tube for z> —LO.
Since the initial strengths of the cancellation muhipoles

nre negntive, F*(x) is negative and the critical value of R

Multiples -

Ramm 33.—DcJlnition of parameters used to study effeot of seoond-
order multiples on fuselage shape.
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FIQUEEI34.-Variation of RIROwith –F*=U.

occurs along the plane 19=0 or ~. The variation of RIR.
with F*~u is give; in figure 34 from which one can see t~at
the maximum value of IF*I must be less than 0.6ifthe
simulated stream tube behind the plane z= —LOis to be real.

The problem can now be continued, using Graham’s
result as a guide, by assuming-the critical body radius in the
more complicated source and multipole arrangement is
principally determined by F*(O)—the parameter governing
the body indentation at the center of the cutout and at the
wing-body juncture. In the first place, since there is no
interference between ditlerent orders of multiples, it is
necessary to consider only the d-rag produced by the second-
order multipole. Appendix E presents a method for finding
the optimum distribution of the second~rder cancellation
multiples for a given wing and a fixed value of F*(O).
The resulting wave drag is given in equation (E1 1). At a
Maoh number equal to@ and for the basic wing and body
parameters presented in figure 29, FW*(0) (defined by eq.

(ES)) equals –2.90 and the reduction in ~’/@’, the amount
of drag caused by the wing second-order multiples alone —
see equation (62) and figure 24-is shown in figure 35 for a
range of F*(O). Variations on the strength of various com-
binations of second+rder multiples are shown in figure 36.
It is important to notice that for a given percentage reduction
in the maximum strength of the multiples the resulting

percentage reduction in ~~ is much larger.
The strengths of a,(z) shown in figure 36 must now be

combined with the zero-order multiples and wing source
sheet, and the combined velocity field used to calculate the
shape of the new body. Using again slender-body theory to
evaluate the velocity field inducad by the multiples and the
numerical methods given in Appendix D to compute the
streamlines, one finds, by restricting the distribution and
strength of the second-order cancellation multiples to their
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Fmmm 35.—Reduction in drag caused by second-order multipolcs.
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/- - -uz(x), vorlotion of second-order
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multiples for wing olone. (If
there were no restraints on

.4 . F*(x), this would be reduced
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F1amm 3f3.-Variation of second-order multiples for several valu=
of F*(o).

optimum values corresponding to the restraint II P(O) =
—0.6, that a retd as well as reasonable body shape results.
The details of this shape are presented in ilgge 31 and their
general interpretation is discussed in the next section.
Finally, using the value P(O) = —0.6, the drag curves shown
in figure 30 were reinterpreted, and the results-which rep-

11 m-w @m OSm themarbnrm .~le woe of — F (z).However,that valoe

ls bawd on a dktrfbntkm of m(r) alonsj end in orm mm sensraf mm the added wlwlty

Preldmwd by tbe prewnce of the other sin@nrItles fwmnh tbe larger raloe.
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FIGURE37.—Drag of unmodified and modified oombinrhione with real
body shapes.

resent an estimate of the amount the wave drag of nD
elliptic wing mounted on a basic body of revolution can bo
reduced by realistic body distortions-are shown in figure 37.

DISCUSSION OF RESULTS

It is possible to gain some insight into the reasons for the
various body distortions shown in figure 31 by inspecting,
in another light, the body shape first calculated. Consider
first the elliptic wing at the top of figure 38. The air over
the forward part of this wing, when it is alone in a super-
sonic stream, is compressed (mathematically, the sign of p=
is negative), the compression being greatest near the lending
edge. On the other hand, the air over the after portion of
the wing is undergoing an expansion, the magnitude of which
is greatest near the trailing edge. Consider now, in combi-
nation with this wing, a body which is to have a slmpo
providing favorable interference. It is apparent that the
body should cast expansion waves over the forward portion
of the wing, destroying the compression there, and nbsorb
the expansion waves coming from the wing af terportion.
Or in another light, the positive pressure on the forward
region of the wing (one can use the equation (7P= @—p.)/Q=
—2Pz/U0 for the preslwre coefficient) should be reduced ns fnr
as possible by a wave shed from the body and having lnrge
negative pressures where it comes in contact with the wing
forward region.

Since waves in a supersonic flow field are fundamentftlly
associated with the slope of the disturbing surface, the afore-
mentioned favorable interference fields would be created by
a body having, longitudinally along its surface, slopes such
as those shown in the lower part of tigure 38. This is ex-
actly what the solution obtained from the calculation of 1he
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FIGURE 38.—Regions of expansion and compression on wing with
unmodified and modified fuselage.

first body shape tried to establish since the fuselage near the
plane of the wing (the portion most strongly affecting and
being affected by the pressures on the wing) and ahead of the
wing chordwise center line was distorted in a manner that
caused rm expansion across the wing entire forward portion.
The dficulty arose because the fuselage was not wide enough

to provide the longitudinal e.stent of favorable slopes neces-
sary to create the positive pressure called for by the wing
forward compression region, and the body streamline near
the wing root, following a path such as that shown by the
line in figure 38, crossed the body center line before it reached
the wing chordwise center.

Consider now the second body calculated in the previous
section. In this case an additional restraint was imposed
which, effectively, ‘fked the maximum body indentation.
Subject to such a condition, an optimum interference field
was discovered. If the resulting fuselage shape is inspected
near the plane of the wing, surface slopes are found similar
to those shown in figure 39. The following discussion is
intended to show that, from a physical viewpoint, this ar-
rangement is reasonable.

Most of the wing pressure drag occurs on the wing inboard
portions. Hence, for a tied maximum fuselage indentation,
it is beneficial, from an over-all point of view, to create
initially a compression wave, which increases the pressure
drag on the forward portion of the wing tip but provides n
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FIGUEE 39.—Regions of expansion and compression
fuselag-e distortion show&

on wing with
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succeeding extent of fuselage having slopes that generate a
strong expansion wave over the forward portion of the wing
inboard section. Similarly, the iinal portion of the body is
forced to have a region of unfavorable interferences where
the e.spansion waves from the wing tips combine with body
expansion waves to increase the local drag (i. e., increase the
Iocrd suction pressure) in order that the over-all interference
effects are as beneficial, under the given restraints, as possible.
This arrangement (i. e., unfavorable interference near the
wing tip and favorable interference near the wing root) is
given further support by the attenuation property inherent
in three-dimensional waves. Thus the pressures induced
by the body on the wing tips are not as strong, for a given
generating surface slope, as those induced on the inner por-
tion of the wing, dply because the tips are farther from the
disturbing surface.

Although these considerations are somewhat oversimplMed
(the shape of the upper part of the body has been completely
ignored in estimating the eilect of the waves), the longitudinal
variation of surface slopes near the plane of the wing and the
resulting body streamlines there are, from a physical point
of view, reasonable.

In order b support the above conclusions, the source and
multipole distributions simulating the final modiiied body
shown in figure 31 were used to calculate (see Appendix C)
U/ Ue in the plane of the wing near the root section. The
values of u] UO induced by the wing sources along these
sections were amuned to be the same as those induced by a
two-dimensional biconvex section having the same local
chord; that is, tip effects were neglected. These values for
body and wing were added and the resulting pressure distri-
bution, shown in &me 40 (0,= –2 UIUJ, were obtained.

.15

Two-dimensionol biconvex section-. /

//
/

40 ~ . / /
q /

/
0

///0 ,
/

-.150
100

Percent chord

Wing Ieodlng edge-;~

‘o*r r-Two-dimensional
\II biconvex section
--———

cd .01
t
] Wing ond modified body

~.

u
o .1 .2 .3

FIQmm 40.—Variation of pressure and section-drag coefficient on
sect ions indicated.

The results are similar to the estimates presented in figure
39. The large drag saving near the root section is illustrated
in figure 40 by the graph showing the low valuea of section
drag cmdiicient along the inner portion of the wing.

Another important characteristic of wing-body combina-
tions designed to have low wave drag is ah illustrated in
figure 40. As shown in the graph of UIUO, over the surface
of a two-dimensional biconvex section the air is everywh ore
accelerating in the streamwise direction. In studies con-
cerning the eflects of viswsity on the fluid flOW and, in
particdar, studies concerning the boundary layer, this posi-
tive fluid acceleration is referred to as a favorable pressure
gradient. If the flow is ]amimir in the vicinity of the leading
edge of a smooth wing and the pressure gradient is every-
where favorable, the flOW tends b remain laminar and
unseparated over most of the wing chord. Notice that the
modiihd wing-body combination has a line of zero prmsum
gradient extending along a Mach line downstrmm from a
point near the body and wing leading-edge juncture. Im-
mediately behind this line the pressure gradient is unfa vor-
able which gives rise to the possibility of flow separation or,
at least, transition from laminar to turbulent flow there.

CO~ARISONmTH EXPERIMENT

The modified wing-body combination shown in figuro 31
was tested in the Ames 2- by 2-foot transonic wind tumml.
The Reynolds number of the test, based on the mean aero-
dynamic chord, was approximately 1.5 X 10e. This com-
bination had an exposed wing volume of 3.44 cubic inches
and a body volume equal to 44.60 cubic inohes, for a total
vohme of 48.04 cubic inches. As a control, an unmodified
combination composed of the same elliptic wing mounted
on a body of revolution (the area distribution of which was
detetied from equation (74) with 1=10.5, Vx= 12.88,
and V9E=29.02 cubic inches) was tested. The exposed
wing area in the unmodified combination was 3.32 cubic
inches and the body volume was 41.90 cubic inches, for a
total volume of 45.22 cubic inches. Thus, the unmodified
combination had the same body length as the modified ono
but less volume.

The wave drag at .kf= 1.41 of the combination shown in
figure 31 has already been calculated and presented in figuro
37 by the curve pertaining to real body shapes. By use, in
equation (78), of the values of Vx amd VW mentioned abovo
and a value of 0.176 for 12/b, the wave drag for the unmodified
body was calculated throughout a supersonic Mach number
range. The theoretical results obtained for body conilgura-
tions are shown by the dashed curves in figure 41.

The wind-tunnel results for the total drag on both con-
figurations are shown in figure 42 for 0.6 <MS 1.4. Notico
that three groups of data are shown. The lower one repre-
sents the unmodified body alone, the middle one represorhs
the modified and unmodified combinations with no fixwl
transition, and the upper one represmts both combinations
with transition fixed along the leading edge. The mochds
tested with natural transition did not show the predicted
drag reduction. As was pointed out in the discussion of
figure 40,however, the adverse pressure gradients on tlm
modified model could be inducing transition in the vicinity of
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FIGURE 41.—Variation with Mach number of theoretically and experi-
mentally determined drag coefficient.

the 46° line behind the juncture of the wing leading edge with
tho fuselage. This, in turn, would cause the wing of the
modified model to have a larger area covered with a tnr-
bulent boundary layer and, hence, cause the drag of the
model to increase. Jn order b separate the potential and
viscous effects, the transition-tied tests were made. If the
experimental wave drag is taken to be the difference between
the drag at a supersonic Maoh number and the drag. at

M

FIGURE 42.-Experimental valuea for drag coefficient.

JZ=O.6, the resulting values of experimental wave drag are
as shown in figure 41.

Figure 41 shows that the experimental reduction in
wave drag brought about by the modification agrees with
that predicted by theory. Both theory and experiment
show a reduction of about 0.0015 in the drag coefficient at
the design Mach number (1.41), and the experiment further
shows an average reduction of 0.0020 over the Mach number
range 1.2<.M<l.4. A further study of figure 42 shows that
the difference between the experimental and theoretical
wave draga shown in figure 41 for the wing-body combina-
tions is nearly the same as the d.ifbrence between experiment
and theory for the body alone.

AMES AEROI.TAUTICULABORATORY
NATIONALArwrsoRY CoanmrrBE FOR&ROZ-TAUTICS

MOFFETTCFIELD, CALIF., May 16,1966’
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APPENDIX A

DERIVATION OF THE OPERATIONAL FORM

For convenience, take the normalized
equotion in Cartesim coordinates, thus

a’v bZP bZP_O
T@–~–G–

form of the wave

(Al)

and define the Laplace transform of p(z,y,z) by

J

.
p(s,y,z)= e-=q(z,y,z)dz (A2)

o

Now if a=j(y,z) is the equation of the foremost Mach cone
or Mach cone envelope and ~(y,z) 2 0, it is apparat

(A3)

()
since (p)=.f is, but —

$ z-f
is not, necessarily zero. From

equation (A3) we see

Further, integrating by parts gives

J

.
e

()
‘= ~ dz=e’p-e-’r ~

o z-f
(A6)

Hence,

(A7)

The last term on the right is the directional derivative of
the perturbation potential along the surface x=j(~,z).
This is, of course, along the so-called c.onormal. Since q is
a constant on the forward envelope, its gradient along the
envelope is zero and

APPENDIX B

ON THE ~OLUME OF BODIES CALCULATED USING SLENDER-BODY THEORY

The following proof shows that in a rectilinear distribution
of singularities, only the murces contribute tQ the total cross-
sectional area of the simulated body and, hence, to its volume.

According to slender-body theory, the velocities induced
in the field by distributions of mukipoles along the x axis can
be written

[

(z@
2n-r

9 n=O

1 (–2)WZ.(Z) sin ?20
;vno= 4n-r=+l

Further, we have derived-see equation
only second+rder eflects, the equation
boundary condition for the body, thus

@lb)

(41)-neglecting
representing the

@2)

Combine equations (B1) and (B2)

multiply by de, and integrate

or

2Z70 & W=2TUO(Z)+$ (–2)”(n-l)!(zn(z) J:r $ (+) do

Since the integrand in equation (B3) is
int?,we have

:;=&(z)

u.

which shows the simulated-body normal
to be dependent only on the source strength. Further, the
total volume is given by

(B3)

a periodic function

(134)

cross-sectional mea

‘=J:s(’)h=J:(’’-’)(z)&+(
and when S’(1’) =S(—1) =0, there results

@b)
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APPENDIX c

ON THE CALCULATION OF VELOCITIES INDUCED BY ARB~RARY

The potential and velocity fields represented by equations
I

Then
(18) rmd (19) are diilicult to evaluate analvticallv even if

COMBINATIONS

SOURCE DISTRIBUTIONS

.&(t) is a ‘sf.&ple function. However, the ~alcula%ons can ‘-’ A.Om&qo@,7,e)= —;
be reduced to a relatively simple process. First, let equation J -1 J(~–~’_~

(18) be expressed in t&rns of ~he dimensionless variables

Z,z, and 7 where
J

COS 28 ~-7A@2(Z-~z-P]&-
5= z/LO

)

w@7,e)=-—
2T _~ ~(z–a’–~

~=~/Lo

J

(cl) “
and so forth. Consider next the variation of An@)

7=&/L. in @e 43 and represented by the equation

{

(l!X&360nZ)+(390n-760nZE+(200n-400m)~, –1<2<–0.9
A=(?)=

n > –0.9<7

741

(c~a)

(c~b)

shown

(C3)

As seen in the figure, Ax vanishes at ~= – 1, is a parabola greater than –0.9. The velocities induced by a multipole

between —1 and —0.9 (assuming the values m at ~= –0.95
distribution given by equation (C3) can be calculated in a
straightforward manner in the two regions — 1+7 sZ<

and n at ~=— 0.9), and the straight line, An@=n, for ~ –0.9+7 and –0.9+FSZ. For example, if

{

Z+l .o+J@+l .O)*—7
–(Z+O.9)4(Z+1.0)*-F+7% . ~ ) –l+F<Z<–O.9+F

T7M9(Z)

200 -
–(Z+o.9)4@+l.o)*-7+ (Z+l.o)4(Z+o.9)’-7+Fln 5+1.0+ J@+1:0)2–F, –0.9+7<Z

Z+O.9+ .@+o.9)~7

(C4)

{

(Z+O.95)4(Z+1 .0)2–7’-7%
E+l.o+.@+l.o)*—7

)—1+7<5<—0.9+7
T-N%(Z)= 7

100 (C5)

@+o.95)4(Z+l.o)’–F-@+ l.05)l@+o.9)’–71n:+1+1 .O+ J@+l”o)’–~, –().9+7<Z
. Z+O.9+ 4@+o.9)~—F

then q% cah be written

ISOW) if one is given a distribution of sources that is
composed of, or is adequately approximated by, a series of
20 equally spaced parabolic arcs, equation (C6) ean be used
for each individual arc and the results superimposed for the
completa solution. To this effect, define mt and ni in terms
of A&) by

-(%+%+)
“=4+’%+) }

(C7)

so they represent the magnitudes shown in figure 44. Then,
if [~ denotes the greatest interger contained in Z(e. g.,
[6,34] equals 6), the equation for the radial velocity becomes

Values of M% and IV% are tabulated in table I for 7 equal
to 0.074, 0.148, 0.222, and 0.296. The asymptotic magni-
tudes of these functions are given by slender-body theory.
Hence, one can easily show for large Z

(C9)

An(:)

[ I I I I
E

-1 -.95 -.90 -.85 -.80 -.75 -.70

l?rrmm 43.—Detition of symbols used in equations (C3) and (C6,)

.
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-1 -.9 -.8 -.7

-++

I?mum 44.-DeSnition of symbols used in equation (C7).
.

Notice that both functions have essentially reached their
asymptotic values for large z by the time Z= — 1+7+0.5.
By applying simple tabulative procedures to equation
(CS)-for example, listing m, and n, in reverse order and
accumulating multiplications of adjacent terms-the value
of q% for any A.(Z) representable by equation (C7) is readily
calculated.

The velocities induced by higher order multiples can be
calculated in a similar fashion. Because of the asymptotic
behavior of the M’s and N’s, however, one is led into the
numerically inefficient process of obtaining small numbers
from ~erencea of large numbers. For the velocities ~ and
m, the following is a method for circumventing this difficulty.

It follows from equations (9) or (19), that for small
7, ~+ and p~e can be expressed in terms of the multipole
strengths a.(ii) —as defied by equation (7) — by the equa-
tions

()p+l % =CO+C1r+. . .+CW+. . . (CIOa)
Cos M

ra+l
()

= =DO+D1r+. . .+.D,P+. . . (Clob)

where for vsn, n 2 I

where values of the M’s and N’s are listed in tables II and
Ill. Their asymptotic values, as given by equations (C1O)
and (Cll), are

+_l;5_tt~

Ne
150Z-+275Z+126

1507

3728=
15@+275~+ 126 1——_

150%-73 2m .

and these are also given in the tables.
As the tables show, equations (C13) are su5cimtly

accurate approximations to M and N for pra cticrd calcu-
lating purposes when o — 1 +?+0.5. Hence, the velocities
at the point Z,7 induced by the multipolea in the interval
– l<~<Z–7–O.5 can be calculated using equations (C13).
In terms of the distribution for A,(f)-which is equal to
%$ (~), see equation (16)—this means the multipole clis-
tribution shown in the upper part of figure 45 can be cal-
culated by means of the asymptotic formulas and the result
added to that obtained for the distribution shown in the
lower part of @ure 45 by use of equations (C12b) and tables
H. and III in a manner identical to the one represented by
equations (C6), (C7), and (C8).

The value of ~(Z,F) induced by a multipole distribution

such as that shown in the upper part of figure 45 is, on tlm
basis of equations (C1O) and (Cll),

so

1

DV–

0 , Vodd

n+: ()(–1) ‘&2”-’ ‘r 6 ,,)(z) , even ~cllb)
4T

( r

J
r lfi

1 0- , V odd

Consider now the velocities ~ and *O induced by the

multipole strength defined by equation (C3); thus

&=mM@)+nN@ (C12a)

_&=mM,8(Z)+nN,o@ (C12b)

(C13)

(C14)

AJ:)I

I I

! ,
-1 -.8 0

FIGURE 45.—Range of application of equations (C12) and (C13).
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whore 132& (z) =Az(x) and zt is shown in figure 45 and de-
fied by the equation

[lo@–F)]
5{= o.4+z—&

10
(C15)

the symbol [1O(Z-7)] meaning, as before, the highest integer
value contained in 10 (Z-7). A similar result can be derived
for p% and one has finally for –1 S[1O(Z-7)+11]S5

==[’O”?l][miM’~(’-%)+~N+(’-w)l

(C16b)

and for [10(7 ?-7)+ 11]26

The streamwise gradients of induced velocities can also be
defined in terms of M’s and N’s as were the velocities

Values of Me;, Nq, M,z, and N% for 7 equal to 0.148,0.222,
and 0.296 are given in tables IV and V.

APPENDIX D

NUMERICAL METHOD USED

The method used to calculate the body shape was a stand-
ard step-by-step solution to the two simultaneous total
differential equations (eq. (43) in the text)

(01)

Tho essentials of the process are recognized from the following
computing-sheet heading set up for initial valuea of o and R
:qual to 30° and 0.148, respectively, where ?i=z/LO and
R= PR/LO

.

TO CALCULATE BODY SHAPE

9 0 @ @

ag:y @.&o-n f
0 Ii

0 -o. &a 0.w 0.149
1 –.m ---------- ----------
2 –. m ---------- ---------- ‘------- l-=+=-l

-------- I -------- I -------- I

<
APPENDIX E

J
OPTIMUM VARIATION OF ~ (x) FOR A FIXED VALUE OF :L a~ (x) dx

0

Given Ifj(z) =~(–cc), then
L

SS

L

D2= –~4TU: 0
0 [fz.j$(z,)+&(@][fz$(q’)+%m(%)] L111

W)j(zJl&-x#w%
-Le -LO -1 -1

00

li FQ fixdx’ (m)
=2

SS
mm’m+t+ldwkc’

-1 –1
0

and since cq(-LO) =@ (—LO)=a.j-n (—LO)=0
where the variation of Go)(z) is iixed, pose the restraint

J

10 J J
0 %(z)dZ=-* :L Z%& (Z)dz

a@dz=~*(0) : Rl=constant (E2)
-LO

v. _&e
Therefore, the standard variational problem

and ask for the function cq(z) which minimizes D2 for a given
vahm of the constant. a~’+’s’%%~h]

— =0
0

(E3)
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reduces to

s{~J:.. J... -
0 [(z!! (Z,) +a.j$ (zI)] [a.jm(G) +%$ (m)]

and this becomes

S:Lo’[wI&’

Integrating

and

three times by parta, using the relations

aaJ-.L@)=&& (–L.)=&+@ (–L)=O

W(0)=&@ (0)=0, by symmetry

Equation (J36) is the familiar singular integral equation
lmown, in aerodynamic applications, as the airfoil equation,
Its inversion is discussed, for example, in reference 3. If one
solves equation (E6) and applies the conditions

(#I (o)=a-fI (L.)=0
then

4&L: ~2=48AOL0.yO.——
15tT‘ 15?r

and

Now set

(E7)

(Es)

so that FW*(0) is a known coustant. Then

Using the above expressions, one caa show

%(4 : du@& [F*(0)+F’W*(0)I
u. u.

{bo(5Y~41J1-(:Y+3 (5)ln:;Y-}

(E1O)

The wave drag can be calculated by combining equations
(335) and (El).

Integrate three times by parts and there results, finally

()D,=% qL:T~ ~ 4 [~(o) +~u”(o)l’ (ml)
o
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