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NONLIFJ!ING WING-BODY COMBINATIONS WITH CERTAIN GEOMETRIC RESTRAINTS HAVING
MINIMUM WAVE DRAG AT LOW SUPERSOIWC SPEEDS 1

By fiVARD Lowx

.

SUMMARY

Several variatwnd problem involving o@imurn wing and
body combinations hmhq minimum wave drag8for di$erent
kindk oj geometrical restraints are. analyzed. Particufiw
m%mtionix paid to the efec+fon the waw drag of 8horteni~ the
jmelage and, & slender M“al-ly symmetric bodti, tlw e$ect
oj&ing thefuxelage altimeterat 8evercdpoim%or even oj~ng
wlLo12?portion Ojh $?wpe.

INTRODUCTION

Recently several nutho~ have used linearized theory to
study the wave drag of wing-body combinations traveling
at supmsonic speeds (see, e. g., refs. 1 to 5). These studies
have clearly demonstrated the importance of iimling the
wave drag of n whole airplane rather than the separate
wnvo drags of its various parts (wings, fuselages, etc.),
since the magnitude of the interference terms can pre-
dominate. In effect, this means that various optimization
problems for bodiesauch as the problem of finding the body
shape having a minimum wave drag for a given volume-
should be re-examined when interfering wings or other bodies
am in the same flow field. In many cases the solution to
the now problem differs from the body-alone problem only
in interpretation.

The purpose of this report is to study minimum wave-drag
combinations which satisfy a few of the many possible
gcomotric restraints pertinent to the interests of airplane
dmignors. An attempt has been made to analyze the
various problems in a unified manner so that e.stensions to
othor kinds of restraints can be deduced.

LIST OF IMPORTANT SYMBOLS

A aspect ratio
(lQ(x) source distribution equivalent to wing in

sense defined by equation (3)
am(x) multipole distribution of order n
D wave drag
D@ portion of drag due to all the nth order

multipole8 for n >0
DW,Dub, D, see equation (8).
D,, additional drag resulting from restraint (See

eq. (11).)
Jo, J, restraints defied in equations (19)
L’+-L distance between apexes on x axis of forecone

and oftercone enclosing wing (See fig. 3.) “

U-FL length of basic body
1,’+1, length of modification
M Mach number

to basic body

~.
. . average body radius

s,(z) fuselage area in cross section normal to the
free stream

S=(X,C9) normal (to free stream) projection of wing
area in section cut by plane z1=x+13vI cos t?
(See fig. 2.)

u. - speed of free stream
v volume
qy, z Grtwhrn-cuordimzwqwtem (See fig. 1.)
%(z) source distribution representing the fuselrge

modifications

P -
0 polar coordinate (See fig. 1.)
Pm free-stream density ~
u See equation (17).
P velocity pot ential

BASIC THRORY AND ASSUMPTIONS

BASIC THEQRY

Many of the discussions and dermations contained in the
following are carried out on the assumption that the render
is familiar with the concepts presented in reference 4 which
should be considered as a first part to this report. In
particular, an acquaintance with the solutions to the wave
equatiou referred to as “multiples” is assumed, together
with Hayes’ invariance principle and the conseqtient multi-
pole distributions equivalent to a wing in the sense that
both induce the same momentum spectrum at infinity.

The entire analysis used herein is based on the assumptions
and idealizations necessmy to develop the linearized equation
for the velocity pozential, p, in supersonic flow, namely

I%?U-P.-V.=O ~ (1)

where B2=JW—1 and the reference coordinate system 1 is
shown in fi.we 1. The arialysisis further restricted to the
solution of problems involving a givm uncambered and un-
twisted wkg mounted centrally on a vertically symmetrical
fuselage, the entire configuration being at zero angle of
attack.

1SuperAes NACA TN 3(67, W’ing-Body GmMnntions Wltb Cerwn (%omehio RwtmlotdHm%g Low Zsr&Li[tWave DragatLew Sn@sonJc Mach X-umbem,”by HarvardLomax
10M.

? It shouldba~ that ther @ h @rallel to tbe fre+strmmdIrwXion(windaxm).
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the exposed panels of the wing are used to calculate the G’sl
C, is negligible and the entire axial source distribution so(z) .
is related to the geometrical properties of th6 body by tlm
rblation

d8, (2)Q(4=U. ~=umwz)

THEWINGEQUIVALENT SOURCE DISTRIBUTION AND THE OPTIMUM
CANCELLATION SOURCES

Let the given wing lie in’ the ZI=O plane. According to

.x)/ - I Hayes’ theorem (ref. 7), the wing equivalent source distribu-
tion [m(x)]. is obtained by accumulating on the Z1 axis, at

Z

FIGURE l.—Coordiuate systems used in analysis.

ADDITIONAL ASSUMPTIONS

We now make the two additional assumptions: one, the
value of PA, where A is the wing aspect ratio, is small; and
two, the value of BR/L.,where R is the average body radius
nnd 2L, is the distante along the z axis in which the multipole
strengths difTersignificantly from zero, i9 small.

One can evaluate the signiikance of these assumptions by
studying their implications relative to the multipole distri-
butions used to simulate the wing and body. Suppose, for
example, a group of nth order mukipoles is placed along the
body center line, their strengths: G(z), being tied by the
condition that a circular cylinder in the vicinity of the body is
a stream surface when the velocity field induced by these
multiples is combined with the velocity field induced by the
source sheetsrepresenting the given wing. With the assumpt-
ions of smaUBA and 19RIL.mentioned above, the Cm’s,for n
greater than O,can be shown (see, e. g., ref. 4) to have a negli-
gible effect on the wave drag. Hence, all the multiples (for
n>O) that combine with the wing to)make a circular cylinder
a stream surface and any additional rnukipoles (for n>O)
added to make the body have mild distortions from such a
surface are negli&ble in evaluating the wave drag. There-
fore, under the wmmptions mentiond above, out of all the
singularities distributed along the body axis, it is necessary,
in studying the wave drag, to consider only the sources
(multiples for which n= O).

With the restrictions to smfi valu& of #R/L. and mild
body distortion (see Ward, ref. 6, for a discussion of orders of
magnitude), slender-body theory can be used to calculate the
body shape, rmd on the basis of this theory one can show
(see ref. 4, Appendix B) that S’,(x), the body croks-sectional
mea measured normal to the free stream, is completely deter-
mined by the axial source distribution alone. Hence, if only

a distance z from the orig& all the wing sources intercepted
by the line z,=x+f?y,cos 0, and then, for CLfixed z, avmaging
these values as Ovaries from Oto 2T. Thus using thin-airfoil
theory to relate the planar source sheet to wing geometry,
one finds

1
J

* Sw’(z,tw+- ao(z)=~ ~
.

(3)

where S=’ ($,0)= b/&[&(@)] and Sw(zjO) is the normal
(tQ the z ~) projection of the wing cross-sectional ares-t
intercepted by the plane 3X1=Z+WCOS o as shown in figure
2. Without the additiofi of further restraint, tho optimum
source distribution along the Z1axis is that which just cancels
the wing equivalent so~rce d.&ibution.
be interpreted directly in terms of both

S(X,O)=Normol projecticm

of wing ores olong AA
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FIGURE 2.—Area intercepted by oblique piano.

JThe trneobllqueplaneIsgivenby the eqnatlon

S1.z-l-wm W%dn @

but, to be mndstent with the asanxnptlms bimlo to Unuarked throry, the variation with ZI

la neglded.
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gcomeh-y by means of equations (2) and (3). Thus, with no
further restraints, the best fuselage shaping, for a wing-body
combination satisfying the assumptions discussed
satisfie9the equation

and has any reasonably smooth crowsectional form.
that the total volume taken out of the fuselwe is

above,

(4)

Notice
exactk

equal to the total volume of the exposed portion of the wing.
Hence, the total volume of the modified combination is the
same M that of the original smooth cylinder.

THEDRAG

The total wave drag of a system can be expressed in terms
of its actual or equivalent multipole distributions as

D=2Do+p, (5)

where D. is the drag caused by the nth order nmkipoles
am(z)and is given by the equation

for n=0,1,2 . . . (6)

wherea~f”~l)(z) represents (b/2rc)”_%E(z). IJnderthe assump-

tions given above, the magnitide of ~ D, is small. Let us

designate it by D,, so that, in g~neril,

D= W,+D, (7)

On the other hand, the total wave drag of a system com-
posed of the combination of a wing and a body can also be
written symbolically as

D=D.+2D.,+D, (8)
where
D. drag of the wing alone
Db drag of the body alone ,
2DW* interference drag

The various components of wave drag d&ned in equations
(7) and (8) help one to evaluate more readily the drag reduc-
tions that can be realized from appropriate fusalage shapings.
Thus, if the fuselage shape satisfies equation (4), the total
wave drag of the combination under the assumptions that
PA and /3R/L,are small can be written either as

D=D, (9)
or aa

D= DW–D, (lo)

If, in finding the fuselage shape,
(a) the multiples representing a wing and a body fly@g

separately =e assumed to represent the same
wing and body when combined (i. e., the shape
fields can be superimposed),

(b) the multiples representing the fuselage are equal
in magnitude but opposite in sign to the wing
equivalent multiples,

bhen equation (10) holds wi%hout the assumption of small
9A and ~R/Le.

In subsequent problems we will discuss the effects on the
wave drag and fuselage area distribution of adding certain
~dditional restraints to the body geometry. The addition
~f such restraints may or may not change the relation
given by equation (10), but they must always add a term to
~quation (9) so that

}

D= D,+ D,.

D,, 20

WINGS CENTRALLY MOUNTED ON
QUASICYLINDERS

This section is devoted to the solution

(11)

SLENDER

of two probl&us
involving a given nncambered and untwisted wing ‘mounted
centrally at zero angle of attack Oria tube that is cylindrical
forward of some point ahead of the wing. The problems are,
in both cases, to iind the area distribution of the fuselage
behind the cylindrical portion that will minimize the wave
drag of the combination.

SHOINENINQ THE FUSELAGE

Remembering the assumptions listed at the beginning of
this section, let us consider the following problem:

(i) Given a wing and a slender fuselage having the
same normal cross-sectional area in all planes ahead of
the plane z= –U (see fig. 3), what is the optimum fuse-
lage area distribution behind the plane z=–ZQ’ if the
fuselage must end at the plane z=h?

Of course, if Z,2L0 (i. e., the body modiikation an extend
over the entire range enclosed by the forecone and aftercone
enclosing the wing), the solution is already given by equation
(4).H~ce, in the following, &<Lo.
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Fmuaz 3.—Wing on limited fuselage.
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For simplicity of notatiom, bt cq(z) represent the sources
along the fueslage center line and so(z) represent the wing
equivalent source distribution. Then, riccording-ta equation
(6)

%’(z,)] [~’(zJ+q’(Z!J]ln&l*] (12)

where from the conditions stated in the problem and the
geometric interpretation to the fuselage sources given by
equation (2), q(z) is zero for values of z outside the interval 4
–L’<dlo.

Consider now a variation of equation (12) for a iked
\ a@) in the interval —~ <z SL and a free variation- of

%(z) in the subinterval –G<z<i& There results

Integrate once by parts with respect to xl (since the varia-
tions &zJ—~) and 6%(ZJ must be zero). Then, by the
fundamental lemma of the calculus of variations, the brack-
eted term must be zero for —~ SXl <10 and one finds the
condition

J JLoq’(X~&+b%’(-=O;-L/zl—~–Lo’q-q –LO’9*S1O(13)

Equation (13) is an integral equation which can be inverted
(by methods such as those outlined in ref. 8). Inverti&,
integrating once with respect to z, and expressing ~(z)
and ~(z) by means of equations (2) and (3), respectively,
one tids

S;(X)=+-J s.’(z,e~+’’(z~!j!+x)x)

J?%rd ‘“’(’’”) ’14)(Z,–7)J(Q+ZJ(Z1-– l.)

which gives the optimum fuselage area distribution under the
conditions and assumptions posed.

The wave drag of the combination represented by equation
(14) can be expressed either in the terms defied in equation
(8) or (11). Let us first consider the form given by equation
(8). If the expression for the drag of an nth order multipole
distribution is integrated once by parts, there results since
an(’+l) (—~) =fz”(”+l) (Q =0

Using this expression, one can show that equations (8) nncl
, (12) yield

so that, by equation (13)

Dub Jlb Jb q’(zJ& D, I
—=—~ -Lo’q(x,) & =——

!Z -Lo’ z~—q Q

Hence, for any combination satisfying equation (14), once
sgain _

D= Dw–D~

On the other hand, D,c, the increase in drag caused by
shortening the fnsehi.ge, can also be obtained. Integrating
equation (1!2) by parts, one has (note D,,=2Do)

D,c 1 ‘OJ JLo[q’(q)+%’(w)] d%
y=2ru.f –Lo’[q(zl)+%(~l)ld.z, _~ot xl—~

Combined with equation (13), this becomes

D,, 1 %
J JJo%’(%)+%’(Z-J&..—!-l21rU.s 1, aO(xJdzl -zo’ xl—x-g

The derivative of equation (14) with respect to z gives

~o ~’(zJ&’+zl)(zl-lo) &.;
~’(z)+%’(z)= ‘1 JT~(20—z)(~+@fo x—xl

–-l.()’<x<lo
so

D,. 1- ‘OJ [s
Lo~@J&+.=—!22dJm= 1, Q&) &cl /0

xl—~

-Jlb d%
n- -zo’(z,–q)~(w+%)(10–%)

J 1‘ofzo’(%wo’+%)(%—10)~3
b %—%

which reduces to

(lbn)
or, alternately,

CONSTRMN~ FE9~GE AREM

Another class of problems is that in which the magnitude
of the fuselage area is tied at various points. Suppose, for
example, that a fuselage shaped according to equation (4)
had in some region a cross-sectional area too small to be
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FIamtE4.—Wing mounted on fuselage restrained at three sections.

nccoptctble for some pfictical purpose. The question is,
tlmn, what is the. best shape for given values of minimum
fuselagb cross-section area at given planes and what is the
penalty in wave drag caused by the added ,constraints?
Before considering the general wge of an arbhary number
of restraints, let us first consider the simple problem:

(ii) Given a wing, what (under the various aswunp-
tions given above) is the area distribution of the ad-
joining fuselage which has a prescribed area at three
given stations (the initial, the final, and an intwmediate-
station z=dl, see fig. 4) and yields a minimum wave
drag for the combination?

As before, let so(z) represent the wing equivalent source
distribution. Then the drag caused by the restraints can
bo written

D,, 1 J JJoad(zJ+u.s/’(%)&
‘“[ao(z,)+u&’(zJ]dx,_Lo

y=izp -L, Z1—zq
(16)

where fly(z) is the unknown fuselage area to be optimized.
For simplicity, replace the unknown &(z) by U(Z)where

U(—LO)=SO

O’(L)=S2 ~
Lot

Uo(z)= o’(z); –Losxsd,

U](z)=u(z); d,~z~~ }

(17)

(18)

and
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the restraints on the fuselage area give the relations

J [ J%&(d,,o)@ =Jo
‘1 ~ol(x)~= S1 —L90++T o 1 (1911}–L,

J [ s
* SJd@)@ =JI–Jo (19b)‘0 U1’(z)dx= S9—EL—+ o

Iil 1
where Jo and J1 are constants fixed by the given con-
straints. Notice

J,=(S,–&) (19C)

so the conetsnt J1 is a measure of the difference between
the initial and final areas.

Using the usual variational techniques, we can write, for
the quantity to be minimized,

D., p~h ‘IJ ‘JLoy+~ –LoUo’(z)atc++d,U1’(z)dz
or

~ {sd,

[s
4 mO’’(&iq+ J‘o U1’’(%wz~ +

4iT
uo’(zJ&l

–Lo –Lo z~—~ d, 1z,-%+0
J

LO

[s
‘1 ao’’(z&+ JJoU,’’(Q)&~q’(q)dtl

d, –LO XI—% dl z,-% + 11}
By taking the variation tmd satisfying the conditions at the
end points, one obtains the two simultaneous integral equa-
tions

J‘IUo%k)d%+J
.}

‘oul’’(G)c&=_&..._L<zl<d,
_L, x~—q q xl—~ 2’

.

J
(20}

‘1UO%ZW9+ J~d(%)&=_h_~oZ1—* ~;d,<x,<.izo
d, XI—*

The set of equations (2o) is identical to that analyzed by
Adams (ref. 9Jfor bodies of revolution with fixed areas at the
initial, final, and an intermediate section. In the inter=t
of subsequent generalization, however, we will consider its
solution in the following way: First write the equations (20)
in the equivalent form

One can show that

is the solution to the integral equation (where A, B, and Cl
are constants) since

J‘oO“(%)&=
{

[ ()1—%’B—(?l COS-l 2
:; –~<~<d~

–L. ~1—~

[
–d,

( )1
(23)

—n- B+C?l (30S-1
z

; d,<x,<Lo

.
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constraints ‘in now be Site U’(–ZO)=U(Q=O

A=0,4~

u’ (z)= J‘UWM%=A@s-’
-LO ()

~ –&/~+

[
c1 (d-–) cosh-l =–d= c@-l(~)]

(24)

and

[ (%)+--%[’”-+
u(z)—L%=A z OOS-l

~’~’-’(%)%[(d(z)-cO&c*LH*LH-
~~(dl–zz) COS-’() 1~ +~(L2–d?)(Lo’-~

(25)

and

[ ( )1Jo=–; dl~~+.L# COS-l ~ +

Soliing for C, and B, we find

I?rom equation (25) the fuselag’e cross-sectional area can be written

In terms of the wing, body, and interference drag components defined in equation (8), the

[ ()!?_D” ‘b s &) B+OI T&-80 COS-l . ~--+( o– ( )1—s, CoS-l ~
fz!l

total wave drag is

(27a)

where B and G are ti~en above. The equation ‘or ‘“ ti

Dr._ 1 ( ‘[ ( )1aWJO2-2TJOJ1 d~~Lo’–d12+Lo2 COS-l ~ ?
~—m(Lo2—d?l

{
J~2 Lo2-d?+Z>= cos -l(+)+qcorl(+)~}) (27%,

If the additional specification.is made that the initial and
final areas are the same, the solution simplifies considembly,
since, for such cases, Jl= O and equatiom (26) and (27)
reduce to

(28)

Often the exact statement of the restraint is that S(x)
shall not be ZaS than S1 at z=dl. In such cases care must
be used in applying equations (26) and (27) or (28) and (29),
since they are only valid when the fuselage cross-sectioned
area at dl is exactly S1. If such is the case, equations (26)
and (28) give the optimum body shape OflY if JO2 o) that is.
only if

J
2“SU(d,,O)d9SI 2 So–;r o

Otherwise the optimum variation of area is given by equation
(4).

Next let us generalize the analysis leading to equation
(26) and (27) by conside@ the following problem:
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(iii) Given a wing, what is the mea :distribution of
the adjoining fuseliie ‘which hai pr%cribed areas at
n +1 stations (includi@ the initial trnd%nal ones tied
by the Mach forecone and aftercone enveloping the
wing, see fig. 5) and yiel~, a “minimumwave drag for
the ~ombin~tion? ,!

~-- original cylinder .,/
,.’

,,

\
\

,,,q \
\

\

3
\

Y//
‘“4 ,’

FIQUItE 5.—Wing mounted on fuselage ~trained at n+ 2 sections.

By analogy with equation (22), the integral equation
for u“(z) (where a(z) is defied by eq. (17)) that must be
satisfied for n minimum wave drag can be written at once
in the form

.

JGU“(G)d~-hf;&< ZI<&lJ a
.=0,1, . . .,n (30).)j@zl—~

where do= –h and dn+,=h. The quantity

‘+B% –~ c, Cosh-’ $%–-,““(%)=J= , (31)

is a solution to equation (3o) since it yields
.

s
~ U“(q)&

{
=– B+$ C, COS

-1(+)-$ (J
(jr, ~s-1 IL ;

-~ q-q

&.-l<zI<&, v=1,2, . . . . n+l (32)

Furtlmr, it is apparent from equations (24) and (25) that,
with the conditions u’ (—~) =u’ (Q =0

#(z)= –B&?-&+$ C,(&–z) cosh-l ~~ (33)
4601OM%9

and

JMX)=SO-*:s.(.jw-;[.-+
~’cos-’(%)l+sc’{(~-z)’m

(34)

The wave drag due to the restraints can be obtained by
using equations (32) and (16). Thus

D,, 1

.[ .()
~=2B(uo—um+& & c, n-ut-uo COS-l ~ —

( )1Ux+lCos-1 —
.-2

(350)

or in terms of the components deiined in equation (8)

[ ():=+D+Wo-&+J+~C< T&-6’o COS-l $ –

( )1S*+*COS-* + - (35b)

where Uf= U(df). Notice UO=S’Omd U.~l=IS.+l, so when
J90=sn+l,

D,. n- “
y=~ ~ c,(uf–so) (350)

,or

yT”–D~Tgc*(Ho) ‘ (35d)

hilly, using the known values of JSf(z) at du, u=O, 1,
. . . >n+ 1, one obtains the n+ 1, simultaneous equations

-.

ATiZ I~;v=l,2, .. .,n+l (36)

which determine the n+ 1 constants B, G, G, . . ., C..
These, in turn, & the shape, through equation (34), ~nd
the wave drag, through equations (35).

Solutions similar @ the above are presented in references
10 and 11, and are used therein to calculate the drag of bodies
of revolution having their areas speciiied at a given number
of stations. Such a method has the advantage of giving the
lower bound to the drag of bodi- whose areas have been
measured at a discrete number of places and, further, of
giying a value representative of all area variations in the
vicinity of the calcnlated opt’bmm. Reference 10 centaim
a tabulation of the constants necessary to evaluate the
minimum drag of an area distribution fixed at 19 points.

WINGS CENTRALLY MOUNTED ON SLENDER CLOSED
BODIES OF REVOLUTION

In the precediqg section the interference between the
central portion of the airplane and its nose and tail regions
was neglected. In this portion we will consider the entire
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fuselage, assuming, first, it is a slender closed body and,
second, it can be calculated in the pr=ence of the wing,
using the same postulates given in the previous section
KBasicTheory and Assumptions.” -

UNLtblITEDINDENTATION LENGTH, FIXED VOLUME

Let us first consider the question:
(iv) Given the wing, body length, and total volume

of the combination, what is the area distribution of the
body which yields a minimum wave C@ if the apmes
of the Mach forecone and aftercone, enclosing the wing
lie within the body (see fig. 6) and the specified volume
is large enough for the body to be real?

/
/

/c/\\\\
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FIGURE 6.—’Wing on closed body.

This problem can be sol~ed in a simple mannw by means
of the following lemma discovered by R. T. Jones, see
reference 1.

Designate the closed body which has a minimum wave
drag for a fked volume and length & a Seam-Haack body.
Then the total drag of a Sears-Haack body and any other
wing or (slender) body entirely within the fore and after
Mach cones with apexes at the tail and nose of the Sears-
Haack body, respectively, is given by the equation

‘=”4+%)+”’ (37)

where
“m wave hg of Sears Haack body alone
“1 wave drag of second body alone
v&.E volume of Sears-Haack body
v, volume of second body

A proof of this lemma can be obtained by placing the
Sears-Haack source distribution and the wing equivalent

mnltipole distributions (or the second body’s cquivalmt
mnltipole distribution) in equation (6).Sinimonly the
source interfere, the dr~o can be written in the form

where the interference term has been integrated by parts
and –G’, Lo, and –lQ L form bounds of the arbitrary and
Sears-Haack source distributions, G, and %~,, respectively.
As iswell knowD

and

Placing equation (40)in (38) and integrating,

(39)

(40)

one finds

and since one can easily show

JLo
VI=+ _Lo,a!l@xl)dzl

equation (37) follows immediately.
‘Returning now to problem (iv), we see that its solution

follows horn equation (37) and the solution is, in fact, simply
a Sears-Haack body having, at the appropriate place rekkivo
to the wing-body juncture, the additional area variation
specified by equation (4). This follows, since, if D1represents
the combined drag of the wing and indentation, then V,,
the combination volume of the wing and indentation, is zero,
Hence, the minimum value of D, for a given volume, is
obtained when Dm and D1 are independently minimized.
But D= is already a minimum on a volume basis and D1 is a
minimum for a given wing. ?NToticethe location of tho
w% ale% the body is immaterial, provided the requirocl
ind&tation can be a-ccommodated by the fuselage.

LIB5TE0 INDENTATION LENGTH ON SEARHAACK BODY, FIXED VOLUhfE

Consider, next, th’emore difiicult problem
(v) Given a wing and Sears-Hanck body of length

24 (long enough to contain the apexes of the fore and
after Mach cones enclosing the wing), what modification
of this fuselage within the length 11’ + 11(and within
that length only, see fig. 7). minimizes tho total wavo
drag for a given total volume?

In order to answer this question, it is necessary to considcw
separately two casw; namely, the one in which 11’z w and
1,~h (i.e., the portion of the body free for variation contains
the apexes of the wing’s Mach cone envelope, as shown in
fig. 7) and the other in which the preceding conditions are,
not satisfied.

First consider the combination for which 11’a~ and
~ ~~. The wave drag of such a combination can always
be calculated using equation (37) wherein Dm is tho wave
drag of t%e basic Sears-Haack body fixed by the stationary
nose and tail portions, D1 is the combined wave drag of the
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wing and the (as yet unknown) body indentation, and VI is
tlm not difference in volume between V,, tie vol~e of
the Swws-Haack body, and the final volume of the complete
cofigumtion. Site the basic Sears-Haack body is fixed
and the total volume is given, the @ire term DsH[l+ (2V1/
Vsm)]jg fied ~d the solution to the problem is obviously
tlmt for which the wing equivalent sources and the source
simulating the body indentation combine to form a Sears-
Haack distribution in the interval –1,’ SXS1,.

Using equations (2) and (3) to relate the W@ and body
source variations to their respective areas, we find the
fuschtgo cross-sectional area can be written for –Zo<z< –11’

8V.W (zo2_Z9M i

m)==
. (41a)

for -1,’ 5X <11

J2“L%@)d+W!z(10%2)L+~~A4=3TZ04

128V’ , [(l{+z)(l,–z)]~f (41b)
3tr(l,+l,’)

and for 11<z SIO

=8%’ (zo2–&)fi~A@ 3TI04 (41C)

The total wave drag of the wing and the fuselage, as given
by equations (41) is then

where De is defined by
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equations (5), (6), and (7).
Since, as we have been assuming, 8A is small, De& ne@-

~ble, and a comparison between equations (37) and (42)
)hows that the drag of the combination formed by mounting
nvo wing panels on a Sears-Haack body can be reduced
tithout a change in the total volume and with a modifica-
tion limited to the interval —lI’<& 11by the d.ifkence
>etween the drag of the two panels flying alone and the
hag of a &ars-Haack body having a length equal to 1,’+1,,
md a volume equal to the volume bf the two panels. So
.ong as the points z= –l: and X=ll do not lie off the basic
>ody, and so long as the required indentation can be accom-
modated, this r~ult is independent of the wing’s fore-and-aft
positi?n.

If the body modification is limited so that either ll’<L’
m ~<h or both, the above results do not apply, since,
D such cases, the second body—in the sense deilned above-
mnnot be varied for z between —11’and, —~ or L and 11or
both, and its drag camiot, therefore, be reduced tb that of
m equivalent Sears-Haack body. The best modification in
this case can be calculated from the rmdte presented in the
material immediately following.

I LIMITED lNDKNTATTON ON AR~ITIt.4RY BODY-FIXED VOLUME

Consider the question
(vi) Given a wing, a body length, and the area dis-

tribution of the fore-and-aft portions of a body, what
ii the variation of wea along the intermediate portion
of the body which yields a minimum wave drag for a
fixed total volume?

Again, as in equation (17),let u(z) repr~ent the sum of the

“b
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(not Seers-Hoock)

L

%

Y

‘.
- ‘..

“Modified body
(modificottini
limited to thii
rmrtion of the

lx

FHJRE 8.—lktent of modification for fig and baaio body (not
S~Haaok).
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sources representing the basic body and the W@ equivalent
source distribution,

U(Z)=MZ)+J%(%OW (43)

It is now convenient, however, to let u(z) be a tied function
in the entire interval –&’ SX<L, see iigu.re 8, and let the
body modifications, which are to be optimized in the inteiwal
—1,<< 11.be represented by Ai$(z) which has the end con-
ditions

}

A&’(—ll)=A&’(l~=O -
A&+–t~=A&&)=O

(44)

The change in voh.uqe caused by the body modification, AV,
is given by . .

1

[~
AV=– _[lzA5’,’(z)dx ,- (45)

.

The usual variational procedure leads directly to the
integral equation

where & and AI are tied by the conditions given in equa-
tions (44) and (45). Equation (46) is similar in form to
equation (13) and its inversion can be obtained by use of
methods similar to those for inverting the latter equation.
Thus, the solution to equation (46) becom= for —1,<z S11

(47)
where

and V is the total ~olume of the wing and unmodified
fuselage, that is

v=– J:;Xof(z)clx
Equation (47) integrates to give

As~x)= –u(X)++ (I,x+11210)~w–

where

(49)

(50)

(51)

If Da is the d~~ of the original wing-body combination
and D& is the drag of a body of revolution having the
same normal area distribution as the moti_cation, then

~=$–D~-~ [2(V+AV’)+l?Io-21d (62@

On the other hand D,, can be ~~tten

where if

r
Q(x,,%)=-& *

Xl’–l:
(63)

(64:

13MI~ INDENTATION ON ARBITRARY BODY—FIXED DIAMETER

& a final examFle in-this section, consider the questiot
(vii) Given a wing, a body length, and tho area dis

tribution of the fore-and-aft portions of a body, wlm
is the intermediate variation of fuselogo area tlmt hn
a given area at some intermediate station z=dl nm
yields a minimum wave drag for the combination?

Using the same defhition for u(z) as is given in equotiol
(43), and again designating the area modification as A&(z)
one can apply the same methods used to develop equation
(21) and-(46) pnd write the integral equation for ASf~x) t
the form

where & and A1are constants whose values depend upon th
r&traints.

The solution to equation (56) can be written

(5’

and the three constants A, B, ancl c1 are fixed by tho CO1
ditions: (1) continuous slope

J
1,

A&~(z)dx=O (6&
-11

(2)the body mea at x=1, is unchanged

J:11AS,’(X) cik=O (6s

and (3) the body area at dl is given

J“A&’(x) dx=A&(d,) (6s
–1,
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The final solution is

u(d,)-H(d,) 1} (59)

where

nncl IZ nnd H(z) are clefined in equations
respectively. ‘

The drag can be &pressed eitlmr as

(6G

(48) and (51),

(61a)

where D. is again the drag of the original unmodified com-
bination and D~~is the drag of the modification alone, or as

whero D* ml C, nre defied by equations (54) and (60),
respectively, and B is given by
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