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BODIES OF REVOLUTION HAVING MINIMUM DRAG AT HIGH SUPERSONIC AIRSPEEDS 1 

By A. J. EGGERS, JR., MEYER M . RESNlKOFF, and DAVID H. DENNIS 

SUMMARY 

Approximate shapes of nonlifting bodies having minimum 
pressure foredrag at high supersonic airspeeds are calculated. 
With the aid of Newton's law of resistance, the investigation is 
carried out for various combinations of the conditions of given 
body length, base diameter, sUljace area, and volume. In gen­
eral, it is found that when body length is fixed, the body has a 
blunt nose; whereas, when the length is not fixed, the body has a 
sharp nose. The additional effect of curvature of the flow over 
the surface is investigated to determine its irifluence on the 
shap('~~ ·for minimum drag. The effect is to increa. e the blunt­
ne8.~ o.i the shapes in the region of the nose and the cwrvature in 
the region M'Ilm8tream of the nose. These shape modijications 
have, according to calculation, only a slight tendency to reduce 
drag. 

Several bodies of revolution oj fineness rat1",os 3 and 5, includ­
ing the caku1ated shapes of minimum drag for given length and 
base dia1neter andjor given base diameter and surjace area, were 
tested at Mach numbers jrom 2.73 to 6.28. A comparison oj 
theoretical and experi1nental foredrag coefficients indicates that 
the calculated minimum-drag bodies are reasonable approxima­
tions to the correct shapes. It is verified, for example, that the 
body jor a given lenqth and base diameter has as much as 20 
percent less foredrag than a cone oj the same fineness ratio. 

INTRODUCTION 

The stiapes of nonlifting bodies of revolution having mini­
mum pressure drag at supersonic speeds have been the subject 
of numerous theoretical investigations. Karman (ref. 1) 
determined the shape of such a body (neglecting base drag) 
with given length and base diameter. Somewhat later 
Haack (ref. 2), Ferrari (ref. 3), Lighthill (ref. 4), and ears 
(ref. 5) calculated body shapes having minimum pressure 
drag for various other given conditions using methods similar 
to those first employed by Karman. In all these inves tiga­
tions the assumption of small perturbation, potential flow 
was made. It is to be expccted, therefore, that the shapes 
obtained by these investigators are represen~ative of mini­
mum-drag body shapes of practical fineness ratios at low 
supersonic Mach numbers. 

Perhaps the first calculation of the shape of a body having 
minimum drag was made by Newton (ref. 6) using a method 
analogous to the present day calculus of variations. Newton 
was concerned with determining the body of given length and 
base diameter having minimum resistance when moving at 

sufficiently high speeds to insure that the inertia forces are 
large compared to the elastic forces in the immersing fluid. 
Thus, as shown by Sanger (ref. 7) and Epstein (ref. 8), the 
law of resistance adopted by Newton approximates that 
(neglecting viscous forces) for hypersonic air flows. Ac­
cord.ing to this law, the local resisting pressure is proportional 
to the square of the free-stream velocity component normal 
to the body surface. Legendre (see, c. g., ref. 9) further in­
vestigated Newton's problem u.nd concluded that if no rc­
strictions were imposed. on the variation of slope along the 
surface, a body having a meridian curve composed of jagged 
lines (sharp edges forward) cO·uld be r.onstructed which, wit.h 
this law of resistance, would have less drag than Newton's 
hody. It may easily be deduced, however, t.hat Newton's 
law of resist,ance would not be satisfied on the surface of 
Le.gcndre's body since. gas would be trapped in a number of 
re.gions along thc jagged cont,oUl". It may be shown in fact 
t,hat when t.his law of r('.sist.ance is satisfied at the surface---:­
in which case the surface angles must lie be.twcen 0 and 7r/2 
radians- then Newton's body may be considered the mini­
mum pressure drag body for the given conditions. 

It has been undertaken in the present report, using New­
ton's law of resistance and the calculus of variations, to 
determine body shapes having minimum pressure drag 
(neglecting base drag) at high supersonic speeds for various 
combinations of the conditions of given length, base diameter, 
surface area, and volume. The effect of curvature of the 
flow over the surface i also investigated to determine its 
influence on the shapes for minimum drag. 

Several bodies of revolution, including two of the bodies 
determined from t.his analysis, wcre tested at Mach numbers 
from 2.73 to 6.28 in thc Ames 10- by 14-inch supersonic 
wind tunnel. Foredrag data at zero lift obtained from t,llese 
t.ests a re compared with t.he analytic predictions to assess 
the accuracy of t.he theoretical considerations. 
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SYMBOLS 

local cro s-sect.ional area of body 
local speed of sound 

ffi 
. 4D 

drag coe Clent, - d2 q,,;1r . 

ffi 
. p-p", 

pressure coe Clent, ---
q", 

constant of integration 
pressure foredrag 
maximum body diameter 
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drag parameter, -2-
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. imil" t Md hypersolllc santy parame er, .. y 
body length 

U 
Mach number, -

a 
distance measured normal to surface of body 
exponent in equation defining shapes of experi-

mental test hodirR 
static pressure 
dynamic pressure 
radius of curvature of stnmmline in plane con­

taining axis of symmet.ry (i. e., meridian planf') 
of body 

body surface an~n 
resultan t vel 0 ('.i t.y 
body volume 
coordinates of point. on meri(lian C\lrVr. of hOlly 

(origin of coordinat.e sYRtem coin(~idp.s wit.h nose 
of body, and x nxiR ('oincides wit.h nxiR of 
symmetry) 

ratio of specifie heat. 11.(, ('OilS tan t. prpsRurr. t.o 
specific hrat at, const.an t. volume. 

angle (in meridian planr) brt.ween frer-stream 
direetion and tangent t.o body surface 

Lagrange mult.iplier 
densit.y 

SllBSCRIPTS 

free-stream conditions 
values at nose point of meridian curve 
values at base poin t of minimizing curve 
right-hand limiting value of quantity at corner on 

minimizing curve 
left-hand limiting value of quantity at COrTIcr 011 

minimizing (:\ll'VC 

values along meridian curve 
cone values 

THEORY 

The investigation undertaken here is concerned with the 
shapes of nonlifting bodies of revolution having minimum 
pressure foredrag at high supersonic airspeeds. Difficulties 
inherellt in the calculatioll of these shapes make it desirable 
to simplify t.he drag pquation insofar as is practicable, ('.011-

sisLr.nt with \'{·taining the salient f('n.tmes of the dependellee 
of drag 011 body shape and fn\e-stream eOllditions. Likewise, 
in view of the several cOllditiolls to be treated (viz., given 
length, base diameter, volume, and surface area), it is 
convenient to set up a procedure of analysis to fit the general 
problem at hand . These fundamental considerations will 
be discussed prior to the determination of specific minimum­
drag shapes. 

FUNDAMENTAL CONSIDERATIONS 

Simplified drag theory.- As pointed out in the intro­
duction Newton's law of resistance applies approximately 
to bodies traveling at high supersonic airspeeds. This 
observation has basis in the fact that at such speeds the 

ill('rtia forees pn·dominat.e over the elastic forces in the 
disturbed air. Thus, oblique shock flows approach the 
corpuscular-type flows treated by Newton as the Mach 
number of the free stream becomes large compared to 1. 
Analysis of such flows can, for our purposes, be simplified 
without appreciable loss in accuracy by assuming that 'Y of the 
disturbed fluid approaches 1. In this case the shock-wave 
angle approaches the flow-deflection angle (see sketch) and 

,--Disturbed flow 
'" region 

, , 

Sketch 1 

" Shock wove , 

"-Body surface 

the pressure coefficient at 0. point just downstream of the 
wave is given by t.he simple expres.<;ion (ref. 8) 

(1) 

This equation is recognized, of course, as being (e.si.de from 
t.he constant multiplier) a mathematical statement of 

ewton's law of resistance for corpuscular or impact-type 
flow. 

When t.he curvature of t.he body, and hence of the dis­
Im'bed flow, is small in the stream direction, equation (1) 
should also predict the pressure ('.oefficiellta at the surface of 
0. body since, in this ('.sse, the centrifugal forces in the thin 
layer of air (sometimes referred to as the hypel'8Onic boundary 
layer) between the shock and the surface should not appreci­
ably alter the impact pressures. When the curvature of the­
body is large in the stream direction, centrifugal forces in 
the fluid between the shock and the surface m..ay appreciably 
alter the pressures at the surface from those just downstream 
of t he shock. Buscmann (ref. 10) investigated this problem 
and f01ll1d t hat the pressure coefficient at a point 01\ the 
smface of a body curved in the stream direction .is given 
by the relation 

(f,,=2 sin.6 (sin 6 + ! LA cos 6 dA) (2) 

in the limit u.s M- ~ and 'Y-l. 

In order to assess the accuracy with whieh the preceding 
equatiolls may 1)(' expected to provide the pressure dis­
t.ributions, I1nd t./IlIS pn\,.<;sure drags, on bodies operating at 
high supm'sonic airspeeds, the predictions of these equations 
arc compared in figure 1 with those of the method of char­
acteristics (obtained from ref. 11 for 'Y= 1.4) for an ogive 
operating at a value of the hypersonic similarity parameter 
K (ratio of free-stream Mach number to slenderness ratio) 
equal to 2, corresponding to a free-stream Mach number of 
6. It is evident that the theory of Busemann (eq. (2») yields 
far too low pressures downstream of the nose, while the 
simple impact theory (eq. (1)) is in reasonably good over-all 
agreement with the method of characteristics. The rel­
atively poor predictions of the Busemann theory are asso­
ciated with the fact that it strongly overestimates centrifugal­
force effects at free-stream Mach numbers which are large 

--- - -- -- -- -- -- -- - -- -- -- -- ---'- - - ---- -
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_- -- ' Method of characteristics (ref. If) 

~ D81--------_+_--~--~r-------~------~------~ 
~ 

Cl. 

Equation (2) .---

D41--------_+_------~r-----~~------_+_------~ 

Or-------~------_+------~+_------~--~C__4 

/p= 0 

- .040!;-------~20;:;------~4;';:O:---------::6-!;;O:------~:::------:-:!.1 00 

Percent body length 

FIGURE I.-Comparison of approximate and exact pressure distri­
butions over a tangent o!!:ive of finen eflf\ ratio 3 operating at a Maeh 
number of 6 (K = 2). 

compared t.o 1, but for which "y of the air flow downstream 
of the bow sIwek is dose'r to 1.4 thall ] (i . e., at. flow con­
ditions of principal interest ill this paper). This matt£'f 
will b£' disclIss£'d in greate'r detaillate'r in the paper. Agre£'­
m£'lIt comparable to that just discussed is obtained with 
t.he other r('sults pre'sl'lItpd ill J't>f~rclI('e 11 for K = 2. For 
lower valu£'s of K the' agn'ement of the impact theory wiLli 
t.he met.hod of characteristies is somewhat poorer, as would 
be expected; however, it does not become ullacceptabl~' 
poor except for values of K below 1 (e. g., the pressure 
coefficients differ by from 0 to 35 percent for a K of %). It 
is th£'refore concluded that for values of K greater than 1, 
equation (1) may be used with acceptable accuracy for the 
purposes of this paper to predict the pressure distributions 
and thus pressure drags on bodies. For this reason, and 
because of its simplicity, iL is employed throughout the 
subsequclI L analysis. 

If til£' manner in which tIll' pressure coefficient varies over 
the surfa('.e is kllowlI, it is a simplc matter, of course, to 
evaluate t he pressure drag of a body. N' cglecting the base­
drag contribution, we have then 

C q 'Ir(p f' 
D= D 4 27rq." Jo Cpyy'dx (3) 

where y' denotes the derivative dy/dx. This equation may 
be expressed in a form more convenient for usc here 

D i' I D = -2-= Cpyy'dx 
'Irq", 0 

(4) 

If Cp in this expresSIOn is replaced by its value given in 

equation (l) (noting that sin2~ =~), there is then obtained 
l+y' 

the relation 

f. 12yy'3 

I D = ---2 dx 
o l+y' 

(5) 

It remains now to consider the procedure for employing this 
expression in combination with the m~thods of the varia­
tional calculus in order to determine the desired minimum­
drag body shapes. 

PROCEDURE FOR CALCULATING MlNTMU'M-DRAG BODIES 

The calculation of minimum-drag body shapes of interest 
here is equivalent to determining the form of the function 
y=y(x) which minimizes the integral defined in equation 
(5) for the various given conditions. In considering the 
procedure for carrying out this calculation, however, it is 
convenient, for reasons that will be apparent later, to write 
equa.tion (5) in a form which effectively yields the total 
drag as the sum of the drag on any finite region of infinite 
slope at the nose plus the drag on the surface downstream 
of the nose. Thus we have 

I - 2+ yy . d . f. 
... 2 2 ,3 

D-Yl ----'P'x 
o l+y' 

(6) 

where the variable limit X2 is introduced to permit variations 
in body length. The conditions of given volume or given 
surface area are fixed by the auxiliary requirements that, 
respectively, 

- = 2y2dx= const. v ]'X 
'Ir 0 

(7) 

or (neglecting bas£' ar£'a) 

S y2 ]'%2 ,-
2'1r =t+ 0 Y'V 1 +y,2dx= const . (8) 

When the length and base diameter arc given, the problem 
is simply to minimize the function ID given by equation (6). 
However, according to the isoperimetric rule of the calculus 
of variations (see, e. g., ref. 12), the problem of minimizing 
the function I D, subject to Lhe auxiliary condition given by 
equation (7) or (8), IS equivalent to minimizing the new 
function J D, where 

(9) 

or 

(10) 

depending on whether the volume or surface area is given. 
The parameter A is a constant, sometimes called the La­
grange mulLiplier. 
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With the aid of equations (6) through (10), the integrand 
functions to be minimized can be immediately written. 
These functions are as follows: 

case a, givl'n ll'ngth and basI' diamctcr 

(11) 

("lIse b, giv{,l1 volume lWei I('ngth or hase diamet.er 

(12) 

("itSI' (' , giv('11 surra!"(' an'a alld I('nglh or lats(' dianlet.er 

~ow !l.ny funetion y = y(x) which minimizes equation (6), 
(9), or (10) must, irrespectiVl' of the given conditions, satisfy 
t.hl' Euler equation (for zero first variatioll of ID or J» with 
small !"hanges ill the function y(x))" 

d 
d.cJv·-fu= O (14) 

where iv' and iv denote the partial derivatives :t, and ~{ 
respeetively. Since the integrand functions given above are 
free of thc independent variable, the first integral of the 
Euler equation for these functions follows immediately, 
namely, 

(15) 

Substituting, successively, equations (I 1), (12), and (13) into 
this equation then' art' th(,11 obtained the expressions 

and 

4?1?1' ~ 
(-1 + --;,-),,=COllSt.. y" -

( Hi) 

(17) 

(18) 

for cases a, b, and (', I'espeetively. Solutions to thesc differ­
ential equations satisf~'ing the terminal conditions on the 
bodies are minimizing curves for the given conditions. 

When the end points of a minimizing CUl've are not fixed, 
other terminal c.onditions must be imposed on the function 
y=y(:r.). Thus, to detcrmine thc ordinate at thc nosc, it is 
rt'CIuired that (s('e rd. 13) 

( 1\) 

for C!l.ses a and b, while 

(20) 

for case c. Similarly, when the length IS not given it is 
necessary that 

(21) 

and when the base diameter is not given it is required that 

(22) 

In addition to the above de cl'ibed conditions, two checks 
must be madc to determine completely the shape of a mini­
ll11Zll1g curvc. The fil'st of these checks entails ascertaining 
whether there !l.re any corners (between the end points) on 
t.he CUl've. This is accomplished by determirung whether 
t,he func-tion y = y(x) cltn satisfy , the rcquircment that (sec 
ref. 12) 

(23) 

at a point of discontinuity in y'. If this equation is not 
satisfied, no corners exist. The second check requires that 
the Legendre condition (for a positive second variation), 

iv'v' ~O (24) 

be satisfied everywhere on the curve. With the aid of these 
checks, the minimizing curves for various combinations of 
the conditions of given length, base diameter, volume, and 
surface area can be uniquely defined. The calculation of 
these curves for several such combinations is now undertaken. 

CALCULA TION OF MINIMUM-DRAG BODIES 

Given length and base diameter.-Equations (16) and (19) 
give the first integral to Euler's equation and the terminal 
condition at the nose, respectively, for these given condi­
tions. It is ('vidcnt upon examining these equations that 
t.he minimizing ( ~urv(' ('an not, in general, pass through both 
Ilw points (0,11) and (:r.2 ,Y2) , but must, in fact, have its for­
ward termination point at (o,YI) with YI' = 1. With this 
information, the minimizing curve can be represented in 
parametric form, namd~T , 

YI (1 +y,2) 2 } 
Y=-4 3 

y' 

YI 3 1 7 , X=- (- +- - -+ln y ) 4 4 ,4 ,2 4 Y Y 

(25) 

It is easily shown with the solution to the Euler equation 
and equation (23) that there are no corners on the minimiz­
ing curve; 2 thus the variation of y with x is readily deter­
mined with the relations of equation (25) for a given land d 
(e,ol'responding to a giv{,ll :r.~ and Y2) of a body. These rela­
l.iolls for a body of given fineness rat.io e!l.1l be shown to be 
equivalent to I,hose originally d('vl'loped by Newton (sec 
ref. 6). 

Given length and volume.- For these given conditions, 
the terminal' conditions (eqs. (19) and (22» require the 
slopes at the nose and at the base to be, respectively, y/ = 1 
and Y2' = 0. The first integral to the Euler expression (eq. 

• Similarly, it can be show n that there are no corners betwoon (o.V,) aDd (I.,V,) OD any of the 
minimizing curves to be treated here. 

--- - -- - - -- ---- ---
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(17)) then leads to the following parametric representation 
of the minimizi9g curve: . 

From the relations of equation (26) it is clear, again, that the 
minimizing curve cannot pass through (0,0), the condition 
Yl' = l determining a value Yl > O. These relations, together 
with the volume condition (eq. (7) and the given length 
condition, serve to determine YI and A and thus, of course, the 
shape of the entire body. As t he length approaches 0, A be­
comes infinitely negative; while, as the length becomes in­
finitely large, A approaches O. (In the latter case the body 
shape approaches the minimum-drag shape for the given 
length and diaD:leter condition, l/d- <Xl.) Intermediate nega­
tive values of A correspond to intermediate values of length 
for a given volume. 

Given length and surface area.- In this case a fiJ's t integral 
to the Euler equation is given by equation (18), and the 
parametric representation of the minimizing curve may be 
written immediately in the form 

(27) 

Upon examination of this equation and equations (20) and 
(22), it becomes apparent that, again, the minimizing ('urve 
cannot go through the point (0,0). The latt,er equations 
determine uniquely, however, the 'values of Yl' (Yl' < 1) and 
Y2' (O < Y2' < Y/) in terms of the parameter A. Similarly, the 
length and surface-area condition in combination with the 
above equations determines the value of A. Thus it is easily 
shown that the practical range of X is from -2 to 0 (corre­
sponding to body lengths of from zero to infinity for a given 
surface area- in the latter case the T ewton body is again 
obtained) . 

Given base diameter and volume.- With these given 
conditions, the first integral to the Euler relation is given by 
equation (17), while the terminal conditions at the fore-and­
aft ends of the body are fixed by equatIons (19) and (21), 
respectively. It is evident that the mjnimizing curve must, 
in general, pass through the origin ill order to satisfy all 
these equations in addition to the Legendre condition (eq. 
(24». The shape of the minimizing curve may thus bo 
defined parametrically as follows: 

(28) 

where Yl'=O . Combining this expression with equation (7), 
there is then obtained for the volume of the body 

3 

V=1;K;2' (Y2,4+6Y/ 2+ 45) (29) 

The range of A for which these results are applicable is 

from zero to 3·.ja/4Y2, corresponding to a volume range from 
infinity to 7rY23·../3/5. For a given Y2 and a given V> 7rYll3/5 

(corresponding to ~>·l3/2) , equation (29) has two solutiolls 

in Y2'. One solution yields values of Y2' greater t.han ..j3, 
a result which violates the Legendre condition (see <'g. 
(24» , while tho other yields permissible values less t,han 
.J3. When Y2 and Y2' are known , A may then be determined 
from the first relat.ion of equatio!l (28), namely, 

(30) 

The uetermination of Y and x follows directly, of COUl'se, 
from equation (28). The solution given here is not appli­
cable to bodies of extremely small fineness ratios (viz ., 

~<~ as can be easily deduced from equation (28). 

Given base diameter and surface area.- In this case 
equations (18) , (20) , and (21) determine the shape of t he 
minimizing curve as being simply a straight line 

/ (A/4)~~ 
y=x-y 1 -(A"4)~~ 

where the parameter A is given by the equation 

(31 ) 

(32) 

Thus, the minimum-drag bod~' for given base diameter and 
surfaee area is a cone. 

COMPARISON OF MINIMUM·DRAG BODY SHAPES 

The previous ('akulation of minimum-drag bodies r eveals 
two general characteristics of their shapes ; Ilamely, when 
the length is given (fixed) the bodies assume blunt noses, 
whereas, when the length is no t given (i. e., is free), t he bodies 
assume sharp noses. The former charact erist ic may be 
traced to the fact that with the length restricted , t he net 
drag is red!-.lced by accepting high er pl'essW'es on a rela tively 
small area of large slope near t he nose, t hus achieving 
lower pressures on a relatively large area of small slope near 
the base. On the other hand, whell the lellgth is no t rc­
strictrd it is evid ent that a sharp rather t han a blunt nose 
will obtain for minimum drag, sinc t' t.he drag of any blunt­
nosed body can be redueed by simply relaxing t he requil'e­
ment on length, thereby allowing the body to be made sharp 
nosed and generally more slender. 

In order to permit a quantitat ive comparison of the 
shapes of the calculated minimum-drag bodies, t ypical 
meridian curves for these bodies are shown in figW'e 2. 
For simplicity the bodies are compared on the basis of the 
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FIGUR~ 2.-Millillllllll drag bodies for variOll~ givell cOllditiolls (//d=5.0 
for all bodies)_ 

same filleness ratio--oruinates have been plotted to all 
expanded scale to better indicate the relative shapes. The 
maximum bluntness is evidently obtained when the drag is 
minimized for a given length and surface area, while the 
maximum ~harpness (a cusp nose) is obtained when the 
base diameter and volume are given. It is apparent from 
figure 2 that the fiat-nosed portions of the meridian curves 
for the given length bodies are in all cases very small. For 
example, Yl equals 0.0050Y2 for the body of given length 
and volume. On the basis of several calculations it is 
indicated, as might be expected, that the degree of bluntness 
will increase with decreasing fineness ratio. 

It is also of interest to compare minimum-drag body 
shapes determined with the aid of the linear theory (see, 
e. g., ref. 2) with those found using the impact theory, that is, 
bodies especially suited for flight. at low and high supersonic 
speeds, respectively. Such a comparison is shown in figure 3 
for the case of given length and base diameter. It is seen 
that qualitatively the shap('s !In' similar although the mini­
mum-drag body for low supersonic speeds is genE'rally the 
fatter of the two . Part of this difference in shapE'S stems 
from the fact that t.he body derivrd using linear theory was 
required to have zero slope at the base. (Also, as will b(' 
shown later, the true minimum-drag shape at high super­
sonic airspeeds may be somewhat fatt.er than that obtained 
using impact theory, due to the fact that centrifugal forces 
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FIGURE 3.-Comparison of minimum drag bodies of given length al\d 
base diameter determined by lillear theory and by impact theory. 

are neglected in this theory.) Comparisons of the results of 
this paper with those of reference 2 for other given conditions 
also indicate qualitative agreement as to general body shapes 
despite the marked difference in the laws governing the 
surface pressures. 

All the preceding allalysis has been prpdicatpd on tll(' 
assumption that t,ht' How of ail' at high supersonic spt'eds 
may, insofar as pressure forces are ('on('erned, he approxi­
mated by a New.t.onian type flow. It. remains now to test 
the aC('UI'a('.y of t,his as..<;lImptioll and ot.Jlf'r Rsppds of t h(\ 

analysis by l'xp{'l'iment.. 

EXPERIMENT 

It has bt'pn undpl·takPn t.o obtain a partial ('hl'ek Oil the 
findings of t,he prec'{'ding theon't.ieal analysis by determilling 
cxperimt'ntally the fon'drags 011 a family of bodies of givl'1l 
fineness ratios at Mach Jlumbers from 2.73 to 6.28. The 
analysis may bp expected to apply, at least approximately, 
in this range since for the bodies tested the corresponding 
values of the hypersonic si.milarity parameter K were, for 
the most part, greater than 1. A brief description of these 
tests is now presented. 

APPARATUS AND TESTS 

The tests were conducted in the Ames 10- by 14-inch 
supersonic wind tunnel, which is of the continuous-flow nOll­
return type and operates with a nominal supply pressure of 
6 atmospheres. The Mach number in the test section may 
be varied from approximately 2.7 to 6.3 by changing the 
relative positions of the symmetrical top and bottom walls 
of the wind tunnel. During operation at the higher Mach 
numbcrs, the supply air is heated before it enters the wind 
tUIlIl('1 to prevcll t condellsation of the air. A detailed 
description of the wind tunnel and its associated equipment 
and of the characteristics of the flow in tlw trst s('etion may 
he found in rdpl'ellct' 14. 

Aerodynamic drag fOI'('es wen' measun'd with a strain­
gage balance. Tar(' fo1'('('s on the sting supports weI'£' essen­
tially eliminated by shrouds that extended t.o wit,hin 0.040 
inch of the model base. A:xial forces 011 t.he bases of t!tp 
models were determillPd from measured base pressures and 
from free-stream static pressures and were subtru.ct.ed from 
measured total drag forces; thus, the data pres en ted do not 
include the forces acting on the bases of the test bodies. 

Reynolds numbers based on the maximum diameter of the 
test bodies were : 

Mach 
II umber 

2. 73 
3. 50 
4. 00 
5. 05 
6.28 

Reynolds 
lI111nber, 
JlU II iOll 

O. 70 
. \15 
.72 
.35 
. 15 

Reynolds llumbers based 011 model length may be ohtained 
by multiplying the above values by model fineness ratio . 

MODELS 

Five models of fineness ratio 3 (ljd=3) and three models 
of fineness ratio 5 (ljd=5) were tested. With the exception 
of an l/d=3 tangent ogive (this sllape was included as being 

- 1 
I 
j 



1 - -­
j 

BODIES OF REVOLUTION HAVING MINIMUM DRAG AT HIGH SUPERSONIC AIRSPEEDS 7 

typicaL of those in common usage), all models had meridian 
section shapes given by the equation 

y _(x)n 
d12- I (33) 

where n was given values of 1, %, X, and X. When n= %, the 
body shapes defined by the above expression closely approxi­
mate the minimum-drag shapes for given length and base 
diameter (eq. (25)) for lld=3 and 5 (see fig. 4). The accu­
racy of this approximation increases with increa.sing values 
of lid as ean easily be seen upon examination of equat.ion (25). 

1.0...----------------------'71 

.8 

.6 

.4 --- Equation (25) 

- - - - 3/4-power approximat ion 

.2 

. 2 
] IOr----------------------------~~ 
>--g 

CD .8 

.6 

.4 

.2 

.4 .6 . 
Body axial C09rdinate, x/x2 

(a) l/d=3 
(b) l/d=5 

.8 1.0 

FIGURE 4.-Comparison of profiles of minimum drag bodies of revolll­
tion for given lengths and base diameters with the approximate 
profiles employed in the present tests. 

When n= 1, the cone is, of course, obtained which is the 
minimum-drag body for a given base diameter and surfacc 
area. Minimum-drag shapes for tW9 different given condi­
tions are thus included among the bodies tested. 

Photographs of the eight models tested are shown in 
figure 5. The l/d=3 bodies (fig. 5(a)) are, from left to right 
in the photograph, the cone, ~-power body, Yz-power (para­
bolic) body, X-power body, and the tangent ogive which has 
a profile section radius of curvature of 9.25 body diameters. 

From left to right in figure 5(b) are the lld=5 cone, %-power 
body, and X-power body. The base diameter of all models 
was 1 inch. 

n=l(cone) n=3/4 n=1/2 n=1/4 Ogive 

(0) A·15674.2 

(a) Fineness ratio 3 bodies. 

FIGURE 5.-photograph of the even test bodie. , the shape' of which 

are given by the ~quation y=~(X/.l)n, and the l/d=3 tangent ogive . 

n=l(cone) n=3/4 

(b) 

(b) Fineness ratio 5 bodie . 

F igure 5.-Concluded. 

ACCURACY OF TEST RESULTS 

The accuracy of the foredrag coefficients is affected by 
uncertainties in the measurements of the following quantities: 
stagnation pressures, free-stream static pressures, base 
pressures, and the forces on the models as measured by the 
strain-gage balance. Both static and free-stream dynamic 
p-ressures were determined from wind-tunnel calibration 
data and stagnation-pressure readings. The latter measure­
ments were aecurate to within ± X percent, thus static and 
dynamic pressures are uncertain by this amount plus possi­
ble calibration errors of ± 1 percent over the Mach number 
range of the tests. The uncertainty in foredrags due to 
inaccuracies in the determination of base pressures does not 
exceed ± 1 percent. Because of the small drag forces 

- -- --- ~~--~ 
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measured, the source of greatest error was the strain-gage 
balance system. The uncertainty in drag due to zero shifts, 
thermal effects, and friction varied from approximately ±2 
percent at the lower Mach numbers to ± 6 percent at the 
highest Mach number. The combined effects of all the 
sources of error result in probable uncertainties in measured 
foredrag coefficients of from ±O.OOI at the low Mach num­
bers to ±O.005 at a Mach number of 6.28. In order to re­
duce this error in the data presented here, particularly at the 
higher Mach numbel's, several measurements were made a.t 
each Mach number and the average values of foredra.g 
coefficients were employed. 

RESULTS AND DlSCUSSION 

The variations with Mach number of the measured fore­
drag coefficients are shown in figure 6. It is evident that the 

.32 I 
./ 

~n:V4 

~ l.--
/ 
J .24 

lid: 3 ~ 
r- -ogive 

I 
-n-1/2 _-I r 

I I r "<1, cone I I, 
I I -n.3f4 

I I I I , , I I 

\;; r--, >- ~ ~ 
~ t:- I ~ ::--~ ,ld:5!'" ~ -n • .l/2 -\,> -n: I, CXlfle 

- n:314 

.os 

3 4 5 6 7 
Mach number, Men 

FIGURE 6.-The variation with Mach number of the foredrag coeffi­
cients ' a t zero lift of t.he t.eRt. bodies. 

%-power bodies do, as predicted, have the minimum foredrags 
of all the test bodies with the same fineness ratio, the drag of 
the %-power body being as much as 20 percent less than that 
of the cone of the same fineness ratio. The general increase 
in foredrag at Mach numbers in the neighborhood of 5 and 
greater can be traced to an increase in friction drag. This 
latter increase is, in turn, caused by.the relatively large de­
crease in Reynolds number with increasing Mach number in 
this range (see section on Apparatus and Tests). 

A check 011 the over-all accuracy with which the optimum 
shapes are predicted by the analysis is obtained by com­
paring theoretical and experimental values of the relative 
foredrag coefficients of the test bodies. Such a comparison 
is given in figure 7 where the ratios of the foredl'ag coeffi­
cients of a test body to the corresponding coefficients of the 
cone of the same fineness ratio are shown as a function of 
the exponent n in equation (33) which defines the shapes 
of the test bodies. The theoretical predictions of the impact 
theory appear to be in good agreement with the experimental 
results at t,he higher values of n (approximately n>O.6). 
Thus it is suggested that the Yt-power body is a reasonable 

------- -
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FIGURE 7.-The ratio of fore drag coefficients of test bodies to foredrag 
coefficiellts of cone as functions of the exponent, n , in the equation 
defining body shapes. 

approximation to the correct minimum-foredrag shape of 
given fineness · ratio. At the lower values of n, 'however, it 
is indicated that the relative drag is significantly overesti­
mated by this theory. This result is not entirely surprising 
since the theory neglects centrifugal-force effects in the 
disturbed flow, and these effects must appreciably ruter the 
pressures over the highly curved noses of the blunter bodies. 

As discussed earlier, the Busemann theory for infinitely 
high Mach numbers overestimates these effects at the Mach 
numbers of interest here. It has therefore been undertaken 
in Appendix A of this paper to obtain a better estimate of 
centrifugal forces by accounting approximately for the de­
crease in these forces (at finite but high Mach numbers) 
associated with the increase in the lateral extent of the 
disturbed flow field with increasing distance downstream 
from the nose of the body. The predictions of the modified 
impact theory shown in figure 7 were obtained with the aid 
of this estimated centrifugal-force effect (see eq. (A9)) in 
combination with equations (1) and (3). It is indicated 
that this theory is markedly superior to the impact theory 
at the lower values of n, corresponding to the blunter bodies, 
over the test Mach number range. The estimate of the 

- --------
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centrifugal forces would thus appear to be in fair agreement 
with the actual magnitude of these forces. 

It is also indicated in figure 7 that with increasing test 
Mach numbers, and hence increasing values of K, the 
accuracy of the modified theory improves. (N ote, especially, 
the trend of the data for the n= X nose shape in fig. 7 (a).) 
This result suggests that improved approximations to the 
correct minimum-foredrag shapes fo[' values of K appre­
ciably greater (,han] may be obtained by using t.his theory 
rather than (,he simple impact, theory. Accordingly, calcu­
lat.ions of rrilnimum-drag shapes llave been made using the 
modified impact t.heory in the manlier discussed in Appendix 
B. The body shapes obtained (sec Appendix B) arc for 
the same given geometric ('olld i tions as those previollsly 
determiJled using impact theory. The resultiJlg shape for 
give1l length and diameter is showll ill figure 8. Newton's 
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FIGURE 8.-The effect of centrifugal forces on the shape of the minim 11m 

drag body of given length and ha.<;e diameter (l /rl = G.18). 

body of tho same fineJ){'ss ratio is also shown for comparison 
The body shape determined by the modified theory is some­
what more blunt in the regioJl of the nose and has more 
curvature in the region downstream of the nose than ew­
ton's body. A similar comparison is shown in figure 9 for 
the bodies of given base diameter and surface area. III this 
case both bodies have pointed noses because the length is 
not fixed, but, in the same manner as for .the bodices of given 
fineness ratio, the shape calculated with the modified theory 
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FIGt;RE 9.-The effect of centrifugal forces on the shape of the min im um 
drag body of give!) diameter alld ;;urfac' area (d=2, S = 31.57). 

has more curvature in the region aft of the nose than does 
the body calculated with the impact theory. This result is 
not surprising in view of the pressure relieving effect of 
centrifugal forces. 

Calculation of the drag of these bodies indicates that those 
obtained using Newtonian theory will as expected have the 
higher drag at hypersonic speeds, although not by more than 
a few percent. This result suggests that consideration of 
centrifugal forces will, in the practical case, principally 
influence the shape and not the drag of minimum drag bodies. 

CONCLUDING REMARKS 

It has been uudertaken in this report to determine approxi­
mately the shapes of several bodies having minimum pressure 
foredrag at high supersonic airspeeds. ·With the aid of 
Newton's law of resistance and the calculus of" variations, an 
investigation was carried out for various combinations of the 
conditions of given body length, base diameter, surface area, 
and volume. In general, it wa.s found that when the length 
is fixed, the body has a blunt nose (i. e., a finite area of 
infinite slope at the nose) as in the classical problem con­
sidered by Newton; whereas when the length is not fixed the 
body has a sharp nose. 

Several bodies of revolution of fineness ratios 3 and 5, 
including the calculated minimum-drag bodies for given 
length and base diameter and for given base diameter and 
surface area, were tested at Mach numbers from 2.73 to 
6.28 in the Ames 10- by 14-inch supersonic wind tunnel. A 
comparison of the relative theoretical and experimental fore­
drag coefficients indicated that the calculated minimum-drag 
bodies were reasonable approximations to the correct shapes. 
It was verified, for example, that the minimum-drag body 
for a given length and base diameter has as much as 20 per­
cent less foredrag than a cone of the same fineness ratio. 
The cone is, however, the ealculated minimum-drag body 
for a given base diameter and surface area. 

The comparison between theory and experiment also 
indicated that the centrifugal forces in the flow about bodies 
curved in the stream direction may influence their drag. 
The relative extent of this influence was found to be pre­
dictable, particularly at the higher Mach numbers, with a 
simple modification to the impact theory of J ewton. It 
was therefore suggested that improved approximations to 
minimum foredrag shapes at high supersonic airspeeds (for 
which the hypersonic sirrUlarity parameter has a value 
appreciably greater than 1) may be calculated with the aid 
of the modified impact theory. Such a calculation was 
tarried out for bodies with the same given conditions as 
t,hose calculated with tohe Newtonian theory. In general, 
t,lle resulting shapes were found to be somewhat blunter in 
the region of the nose, t,o have more cw-vature in the region 
downstream of the nose, and to have slightly lower drag than 
the corresponding shapes obtained llSing the simple impact 
theory. 

AMES AERONAUTICAL LABORATORY 

T ATIONAL ADVISORY COMMITTEE FOR AEHONAUTICS 

MOFFETT FIELD, CALIF., Dec. 14-, 1955 
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APPENDIX A 

ESTIMATED EFFECT OF CENTRIFUGAL FORCES ON SURFACE PRESSURE COEFFICIENTS 

An estimate of the effect of centrifugal {orces on the pres-
3ures at the surface of a body operating at high but finite· 
Mach numbers may be obtained by comparing the disturb­
anee flow fields at these Mach numbers with that assoeiated 
with infinitely large Mach number. 

At high Mach numbers the disturbed air flows in a.-rela­
tively thill region (sometimes termed the hypersonic b'ound­
ary layer) between the bow shock wave and the smface of the 
body (sre sketch). 

:,U , , ' Shock wove 

UaJ~"~L ___ --::"....-!~~~~~~~~<,-- · Streom'lne 
, Bod y su rfoce 

x 

Sketch 2 

The change in pressme from the surface to the shock due to 
centrifugal forces in the fluid is given by the equation 

l1p= fN dp" dN=j'N pU2 dN 
Jo dN 0 R 

assuming the directions of the normals to the streamlines 
between the surface and the shock do not diller appreciably 
from the direction of the normal to the surface. This expres­
sion is more conveniently written in the form 

l1p== pU dN UlN 
R 0 

(AI) 

where TJ and R are mean values of the velocity and radius, 
respectively, in the interval N. Now t.he mass m of air be­
tween the surface and the shock flowing (in unit time) by,a 
point on the body is given by the relation 

m~211Y iN pU dN ~1IY2 p", U '" (A2) 

Combining equations (AI) and (A2) there is then obtained 
for the pressure change 

or in coefficient form 

(A3) 

Now in the limit as the Mach number approaches infinity and 
'Y of the disturbed fluid approaches 1, the thickness of the 
layer becomes infinitesimal and hence 

(A4) 

Similarly, it, is easily shown (e. g., with the compatibility 
equations applying along characteristic lines in axially sym­
metric supersonic flow) that 

dU=O 

along any streamline downstream of the bow shock, and 
thus that 

U=2~"" fVycosody 
y Jo (A5) 

Hence, in this limiting case, equation (A3) takes on a form 
equivalent to that first deduced by Busemarrn (see second 
term on right of eq. (2», and later derived in reference 15, 
namely, 

where 

2 i V 
110v= -R Y cos 0 dy 

BY 0 

I . dO 
RB = Sill 0 dy 

(A6) 

On the other hand when the Mach number is finite, but 
high, and 'Y of the disturbed fluid is closer to 1.4 than 1, 
the preceding evaluations of Rand U are in considerable 
error since the hypersonic boundary layer, although thin, 
is no longer of infinitesimal thickness. This change in the 
boundary layer results from the fact that the bow shock 
is detached (except perhaps at the nose) from the surface 
of the body, the lateral distance from the surface to the 
shock increasing with increasing distance downstream from 
the nose (see sketch). Thus, for example, R would be 
expected to approach RB only near the nose, while with 
increasing distance downstream of the nose it would be 
expected to become larger than RB . From the preSSUl'e 
distributions presented in reference 11 it is indicated, in 
fact, that for K > 1 (the range of K's of interest in this 
paper) 7l> > RB near the maximum ordinate of the body. 
(This indication follows from the small values of the pressure 
coefficients near the maximum ordinate.) It is suggested, 
therefore, that at the high supersonic speeds under consider­
ation, an approximation to R is given by the relation 

R 1 

RB-1_y 
Yz 

(A7) 

Similarly, ill the case of U it no longer follows that the 
magnitude of the velocity must be constant along stream­
lines downstream of the bow shock since pressure disturb­
ances can now be transmitted across streamlines. Thus a 
better first approximation to U than that given by equation 
(A5) may be obtained from the simple corpuscular or impact 
theory, namely, 

u=u", cos 0 (AS) 

When equations (A3), (A7), alld (AS) are combined, the 
estimated change in pressure eoefficient at the surface of a 
body due to centrifugal forces ill high supersonic speed 
flow is obtaiued ill the form 

or 

(A9) 
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APPENDIX B 

CALCULATION OF MINIMUM-DRAG BODIES, WITH CONSIDERATION OF CENTRIFUGAL FORCES IN THE DISTURBED 
FLOW FIELD 

GIVEN LENGTH AND BABE DIAMETER 

For the purpose of this calculation, equations (1) and (A9) 
(or the pressure coefficient are combined with equation (4) 
to yield the drag parameter in tlie form 

ID=y\2+'P(Yt)+.Cl2 sin2 ~+~ (1-;) fu sin2 ~JYY'dX 
(Bl) 

The term Yt2 represents the drag on any finite region of 
infinit.e slope at the nose, while the function 'P(Yt), given by 3 

'P(Yt)=_Y~Z (l-~:) cos2 ~t 

represents a "leading-edge thrust" due to the acceleration 
of the air flow about a corner (if it exists) at (o,y,). 

ThE', expression (B 1) may be put in the fonn 

whereupon (recalling sin2~=~) the integrand .simplifies 
l+y' 

to a function.f given by the relation 

f~YY'(2-11:~:~) 
With the aid of this expression and equations (15) and 

(19) the parametric representation of the minimizing curve 
can be obtained in the following form: 

where 
Yl'=l 

UIIII, ill general, 

The miuimizing curve given by these relations, similar tQ 

the curve obtained from the impact pressure treatment, 
does not have a corner between the points (0, Yt) and (X2, Y2)' 
The minimum-drag shape defined by equation (B2) is com-

'Tbls (unction may be obtained by evaluating 

along the hody·sur(acc str~f\mlin~ about t.he corner at(o,y,), 

pared in figure 8 with that determined earlier by considering 
impact pressures only. 

The equations defining the minimizing curves for the other 
given geometric conditions are obtained in a similar manner. 

GIVEN LENGTH AND VOLUME 

Y (B3) 

with Yt' = 1 and Y/ =0.274 and a value of ). between - CD 

and 0 as required for the given values of length and volume. 
Numerical intE'.gration of equation (B3) is accomplished 

by first evaluating the first integral of the Euler equation at 
the base of the body and solving for C/Y2 in terms of Y2)..' 
Letting I/>(Y', Y2).) represent the resulting function of y' and 
Y2)., equation (B3) become.q 

Y=Yz'P(Y', Y2)..) 

and the volume is given by 

The values of the functions A and r are obtained by numerical 
integration for various values of Y2).. to enable interpolation 
for that value of Y2). which makes r/A3= V/,,[8. The set 
(Y,)., A, r) 80 determined satisfies the given volume a.nd 
length requirements and yields a value of the base ordina.te, 
Y2=I/A. 

GIVEN LENGTH A.ND SURFA.CB .lBBA 

y=~{ {X(I +y'2)'1J -2y'SJy,+ 

.J[).(l +y,2)3/ll_2!l]2Y22+ 12q(3(1 +y'2)2Y2} 

x=I.W d?! 
·l Y 

with a range of ).. given by 

-0.64< >..< 2(1 + 3Yt ) 
2Y2 

(B4) 

The procedure used to integrate equations (B4) is similar to 
that employed to integrate equations (B3) above. 
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GIVEN BASE DIAMETER AND VOLUME 

Y 
3 

(B5) 

where 

For lid ratios greater than X, YI =0, YI' =0, and the ranges of 
Y2' and A are ° SoY2' So-../3 

° <A<3.J3 - - 16 

GIVEN BASE DIAMETER AND SURFACE AREA 

(B6) 

with YI = ° and 

A= 121.6(ylIS)~ 

The minimizing curve given by equations (B6) is compareo 
in figure 9 with that determined earlier (the cone) by con­
sidering impact pressures only. 
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