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ATTENUATION IN A SHOCK TUBE DUE TO UNSTEADY-BOUNDARY-LAYER ACTION !

By HaroLp MIRELS

SUMMARY

A method 1is presented for obtaining the attenuation of a
shock wave in a shock tube due to the unsteady boundary layer
along the shock-tube walls. It is assumed that the boundary
layer is thin relative to the tube diameter and induces one-
dimensional longitudinal pressure waves whose strength s
proportional to the vertical velocity at the edge of the boundary
layer. The contributions of the various regions in a shock
tube to shock attenuation are indicated.

The method is shown to be in reasonably good agreement with
existing experimental data.

INTRODUCTION

A shock tube consists of a fluid at high pressure (region 4

of fig. 1 (a)) separated by a diaphragm from a fluid at low
pressure (region 1). When the diaphragm bursts, a shock
wave propagates into region 1 while an expansion wave
propagates into region 4. A time-distance plot of these
waves under ideal conditions is indicated in figure 1 (b).
Regions 2 and 3 have the same velocity and pressure but
have different temperatures. The interface between regions
2 and 3 is referred to as a contact surface. The analysis of
the flow for perfect fluids is straight-forward (see, for ex-
ample, ref. 1). In an actual shock tube, however, viscosity
and heat conduction cannot be ignored. These lead to a
boundary layer along the walls of the shock tube, as indi-
cated in figure 1 (¢). The boundary layer introduces non-
uniformities into the shock tube. Analytical studies of this
boundary layer are presented in references 2 to 6. One of
the important consequences of the wall boundary layer is
that it generates weak pressure waves which cateh up with
and attenuate the shock wave propagating into region 1.
This attenuation has been studied experimentally and
analytically in the work of references 1, 4, 5, and 6, and is
the subject of the present report. It is assumed that the
boundary layer is thin relative to the shock-tube diameter,
This is a practical restriction, since most shock tubes are
designed so that the core of potential flow is relatively
uniform in order to permit aerodynamic tests.

A fewremarks concerning previous shock-wave-attenuation
analyses are appropriate. In reference 4, the coordinate
system is defined so that the shock wave is stationary. The
flow between the shock wave and the contact surface is
considered as a one-dimensional steady flow so that at each

instant the mass flow through the shock wave equals the
mass flow at the contact surface. If the mass flow at the
contact surface is known at each instant, the correspond-
ing shock strength can be found. The mass flow at the
contact surface is determined from the local boundary-layer
displacement thickness and free-stream conditions corre-
sponding to an unattenuated shock. However, it can be
shown that free-stream conditions do not remain constant
at the contact surface (because of perturbations induced by
the boundary layer). Moreover, the method of reference 4
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(a) Shock tube before diaphragm burst.
(b) Wave diagram for perfect fluid.
(e) Flow in shock tube with real fluid.

Ficure 1.—8hock-tube phenomena,

! Supersedes NACA TN 3278, “ Attenuation in & Shock Tube Due to Unsteady-Boundary-Layer Action,” by Harold Mirels, 1956.
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does not take into account the existence of weak pressure
waves between the contact surface and the shock wave,
Since it is precisely these pressure waves which are responsi-
ble for shock attenuation, the method of reference 4 cannot
be expected to give accurate quantitative results. It does,
however, indicate some of the important parameters in-
volved. Reference 1 uses the method of reference 4 in its
studies of shock attenuation. At best, qualitative agree-
ment with experiment is indicated.

In reference 6, the flow perturbations due to the boundary
layer are considered in detail. At each section of the shock
tube, the velocity and temperature variations associated
with the boundary layer are averaged across the tube to
provide an equivalent one-dimensional flow. The wall
shear and heat addition due to dissipation and heat transfer
at the walls (all found from boundary-layer theory) are
assumed to act on this equivalent one-dimensional flow,
their action resulting in the generation of one-dimensional
pressure waves propagating in both the upstream and down-
stream directions. By integrating along characteristic lines,
the attenuation of the shock propagating into region 1 is then
found. The theoretical trends appeared to be in good
agreement with the particular experimental results reported
therein.

Reference 5 considers the flow in a coordinate system
which is stationary with respect to the shock. The unsteady
nature of the flow between the shock’ wave and the contact
discontinuity is associated with the receding of the contact
surface with respect to the shock wave. Weak pressure
waves are assumed to be generated just in front of the
receding contact surface. The magnitude of these waves
is obtained by a one-dimensional averaging procedure
similar to that of reference 6. These waves overtake the
shock and result in attenuation. The method of reference 5
ignores the contribution of region 3 and cannot be expected
to yield good quantitative agreement with experiment.

Of the previous reports on shock attenuation, reference 6
appears to give the best agreement with experiment. How-
ever, it can be shown that the method of reference 6 does not
give a completely valid representation of the wave phe-
nomena induced by the boundary layer along the shock-tube
wall. The deficiency of reference 6 is mainly associated with
its use of wall shear in the determination of the perturbation
pressure waves generated by the wall boundary layer. It is
well recognized that the effect of a boundary layer on its
external flow is directly related to the vertical velocity at the
edge of the boundary layer. For example, reference 7, which
is concerned with the Rayleigh (impulsive-plate) problem for
a compressible fluid, shows that the boundary layer generates
pressure waves in the external flow which are equivalent to
those which are produced if the wall moves normal to itself
with a velocity equal to the vertical velocity at the edge of
the boundary layer. The nonzero pressure gradient over a
flat plate moving at high speeds (because of the finite dis-
placement thickness of the boundary layer) is an equivalent
steady-flow phenomenon (e. g., ref. 8).

Thus, a proper way

to find the waves generated by the unsteady wall boundary
layer in a shock tube is to base the calculation on the vertical
velocity at the edge of the boundary layer. Such an analysis
is presented herein. The quantitative results for shock at-
tenuation thus obtained would be expected to differ from
those of reference 6. The comparison between the method
of reference 6 and that of the present report is discussed more
fully in the main body of the report and in the appendix
titled GENERATION OF PRESSURE WAVES BY WALL
SHEAR AND HEAT ADDITION.

ANALYSIS

One-dimensional flow with mass sources is treated, and the
waves generated by these sources are derived. The waves
generated by unsteady-boundary-layer action in a tube are
found, assuming that the process can be considered as a one-
dimensional unsteady flow. The application to the shock-
tube problem is then indicated.

GENERATION OF WAVES BY MASS SOURCES

Consider one-dimensional uniform flow in a tube of con-
stant cross-sectional area. Assume that weak mass sources,
uniformly distributed across each cross section, are present
and perturb the flow. Denote the net perturbation of a
quantity (from the uniform-flow conditions) by A. (See
appendix A for definition of symbols.) The equations of
motion are

QAU bAu ___0Ap
'—a—' —a; = 7 (Momentum)
OAp + JAu .  OAp (1)

Y b S5r =™ (Continuity)

Ap==a?Ap (Isentropy)

where m=m{(x,t) is the rate of mass addition per unit cross-
sectional area per unit . The presence of the sources
generates waves. Let the superscripts + and — indicate
perturbations associated with waves moving in the +#- and
—z-directions, respectively. If &7 designates integration
variables for x,f, the solution for the net perturbation at any
point z,t may be expressed as

Ap=Aapt+Ap~ (2a)
Au=Aut Ay~
L (apt—ap) (2b)
0a
1
Ap=— Ap (2¢)

where

s =gt [ m (=) a

e A =L
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The integrations are conducted along the characteristic lines
r=t—(@—§/(a+u) and r=t— (§—2)/(e—w) in the £,7 plane.
The upper limit on the integral for Ap~ is + o or — » de-
pending on whether M <1 or M >1, respectively. Equation
(2b) incorporates the acoustic relations Ap*=paAu®™ and
Ap~=—paldu”.

GENERATION OF WAVES BY UNSTEADY-BOUNDARY-LAYER ACTION

Consider a tube of uniform cross section to have flexible
walls such that a small normal velocity » can be generated
at the walls. This is equivalent to mass entering the tube

at the rate ? pv di, per unit z, where the integral is taken

around the perimeter of the tube cross-sectional area. If the
flow in the tube is considered as one-dimensional ? the equiv-
alent source strength is

ol
3
i 3)
T d
where d=4A4/lis the hydraulic diameter, and =v(z,t). The
expression for Ap can then be written as
Ap 2’)’ r— g)
az) o (6= ) det
1 Fe t—
1~ML D(E’t_a—u) dg]
Similar expressions can be written for Au and Ap. In the

case of waves induced by boundary-layer action, the » in
equation (4) refers to the normal velocity at the edge of
the boundary layer. Note that a positive » results in
compression waves, while a negative » results in expansion
waves.

ATTENUATION IN A SHOCK TUBE

Equation (4) can be applied to find the attenuation in a
shock tube. The details of the analysis are described in
appendixes B to F. The resulting formulas for shock
attenuation are presented in the following section. The
limiting solution for weak shocks and a numerical solution
for an air-air shock tube are also indicated.

SHOCK ATTENUATION FORMULAS

The flow in a shock tube is assumed to consist of the ideal
basic flow plus small perturbations due to the boundary
layer. Ideal shock-tube flow relations are summarized in
appendix G. The expansion wave of the ideal flow is
assumed to have negligible thickness and to propagate into

2 If the flow through the tube cannot be considered as one-dimensional, it is necessary to
consider each element of tube surface as an elemental wave source of strength proportional to
the Iocal value of v. The net wave strength at any point in the tube is found from an integra-
tion over the entire tube surface.

In the problem of attenuation in a shock tube, the shock wave is considered to be uniform,
laterally, at each value of 7, but to decrease in strength with increases in z. Hence, a one-
dimensional analysis is permissible. Actually, small lateral variations of shock strength
exist, particularly near the walls, since the boundary layer immediately behind the shock
exerts a three-dimensional effect on shock strength. These lateral variations are ignored
herein,

The shape of the shock wave was previously studied (ref. 9). It was assumed that region 2
was infinite in extent (i. e., region 3 was neglected), and the problem was considered as a
steady-flow problem in a coordinate system moving with the speed of the undisturbed shock.
It was found that the shock wave assumes a parabolic shape, but that appreciable shock cur-
vature is restricted to a region near the wall less than a boundary-layer thickness in extent.

region 4 with velocity u=—ay, as indicated in figure 2. Let
point d of figure 2 represent an arbitrary point on the shock-
wave characteristic. The problem is to find the net pressure
perturbation behind the shock (i. e., Ap; ). This requires
an integration of equation (4) along all the characteristic
lines which contribute to Ap, .. The major contribution to
Aps,q comes from characteristic lines bd, be, and ab. Hence,
these are the characteristic lines considered in the present
analysis (as is indicated in appendix B). Integrating along
these characteristic lines permits Ap, , to be expressed as

1 azd Apg d [ 1 f f
P p LiFG). 2T ar M vpdi
'YazD & :l < Apz,c)" 7
Q32 (1 +Ms) 03 dé |\1—-CE Apyya ®)

Equation (5) is derived in appendix F. The notation is
defined in appendixes A and F. The term CF Ap, o/Apsq
represents the contribution to Ap, , of all the characteristic
lines other than bd, be, and ab (appendix F).

If the boundary layer in region 2 is wholly laminar or
wholly turbulent, the boundary-layer solution for »; is known
(appendixes D and E). Similarly, if the boundary layer in
region 3 is wholly laminar or wholly turbulent, the solution
for v; is known (appendixes D and E). For these special
cases, the integrals of equation (5) can be readily evaluated.
Thus, if the boundary layers in regions 2 and 3 are both
laminar, equation (5) becomes (from egs. (F6) and (F7) with
Ny=ng=1/2)

d azd Ap2 a_ "472L2F Ec
\F\/ J 2 (us/ as) 1+ Z
141
(us/az)
1 +
D3 M, I: £VE]!
s . M3 + o (va2) ¥ Lgs 1—-CE ( (6)
Line| Slope,
dr/d¢E
ocd| |/us
ob | \up
oa |-l/ag
tr ab |/(03 +U3)
be \-1/{ap -up)
] |69 | Viag +up)

Region 4

xE

Frcure 2.—Characteristic lines appropriate for study of attenuation
in shock tube.
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where L, and L, are found from appendix D. If the bound-
ary layers in regions 2 and 3 are both turbulent, equation
(5) becomes (from eqs. (F6) and (F7) with ny=n;=1/5)

us 3/5
5/ 45 ad 1/5Ap2 2.5072L2F ——> 1—’_(1_5_6
<u2> <> ( Ds [1+1 (us/az):l”5 Tz

Yooy 2 175 & -
Q32 1+Ms+as (V32) La [1 OE< ) :l

where L, and L, are found from appendix E. The other
perturbation quantities directly behind the shock can be
found from Ap,4/p, and normal shock relations. For
example, utilizing equations (C4) and (C5) gives

Auz,az:z'ylM?—‘ (—1) Mi+1Ap, 4
(/2] 4’71M3 M“ 1 P2

A P2, a__ 271M§_ (’Y] - 1) Apz‘ d
p2 MM —DM:+2] p

ATz,d__:Apz.d Apy g
T, D2 P2

(Eq. of state)

Note that the perturbations directly behind the shock are
not isentropically related except for the limit as M, ap-
proaches 1. This is due to the fact that a perturbation of
shock strength creates an entropy perturbation. (The
particles between the shock wave and the contact surface
have entropy perturbations whose magnitude depends on
the strength of the shock at the instant each particle passed
through it. To the order of the present analysis, these
entropy perturbations do not interact with the longitudinal
wave system induced by the wall boundary layer.)

Expressions similar to equations (6) and (7) can be found
for the mixed cases n,=1/2, ny=1/5 and n,=1/5, ny=1/2.
For other boundary-layer characteristics (such as transition
from laminar to turbulent flow in the middle of regions 2 or
3), it is necessary to integrate equation (5) with the corre-
sponding v distribution. Reliable criteria for determining
the transition points in shock-tube boundary layers have
not yet been established. A crude tentative method for
estimating the transition points in regions 2 and 3 is pre-
sented in appendix H. It is pointed out therein that the
Reynolds numbers at point b, computed separately for re-
gions 2 and 3, can be used as an index to determine whether
the boundary layers in regions 2 and 3 are primarily laminar
or turbulent, respectively. The values of Re,; and Res,,, as
defined in appendix H, can be obtained from figure 3 for the
case where the gas in region 1 is air at 520° R.

The present theory requires that the boundary layer be
thin relative to the shock-tube diameter. The boundary-
layer thickness in region 2 is defined by equations (D5) and
(E3) for laminar and turbulent boundary layers, respectively.
The laminar-boundary-layer thickness 8, is taken to corre-
spond to w/u;=0.99, while the turbulent-boundary-layer

30

20

i

21

Reynolds number, ( 2

i 2 3 4 5 3]
Nominal shock Mach number, M,

Ficure 3.—Reynolds number at point b for air in'region 1 at 520° R.
Res, y=vwsRes » (appendix H).

thickness §, is taken to be the value obtained from a Karman-
Pohlhausen-type integral solution. Considering conditions
along characteristic lines, the maximum boundary-layer
thickness occurs at point & of region 2. Values of &, and
5,5 are plotted as a function of M, in figure 4 for the case
where the gas in region 1 is air at 520° R.

It is previously noted, in connection with equation (4),
that a positive v results in the generation of compression
waves, while a negative v results in the generation of expan-
sion waves. From the boundary-layer theory of appendixes
D and E it can be seen that, apart from dissipation and
heat-transfer effects, v, is negative and ; is positive. Thus,
the boundary layer in region 2 induces expansion waves
(which attenuate the shock), while the boundary layer in
region 3 induces compression waves (which accelerate the
shock). Dissipation and heat transfer modify these results.
Dissipation tends to increase » in both regions 2 and 3.
Heat transfer from the wall to the boundary layer increases v.
Heat transfer from the boundary layer to the wall decreases v.
In region 2 the heat transfer is from the boundary layer to
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Ficure 4.—Boundary-layer thickness at point b in region 2. Gas in

region 1 is air at 520° R; wall is assumed a perfect conductor
(Ty,w="TY.

the wall (ref. 2) and leads to larger negative values of », and
therefore more shock attenuation. In region 3 the heat
transfer is from the wall to the fluid for a weak expansion
wave and from the fluid to the wall for a strong expansion
wave (ref. 2). Thus, for a weak expansion wave, heat
transfer in region 3 tends to generate compression waves
(thus accelerating the shock). For a strong expansion wave,
the heat transfer in region 3 tends toinduce expansion waves
(which attenuate the shock). The net effect of all these
factors is to attenuate the shock wave. The relative magni-
tudes of the various terms in equations (6) and (7) are noted
later in a numerical example.

LIMITING SOLUTION FOR WEAK SHOCKS
For M, approaching 1, equations (6) and (7) take on the
following forms:
Laminar case:

Us d azd Ve Apg,d —871 < Yi— 1) I .

s e ——e 1+ —— fOI'[',w—T)

Ug T vy P2 Ar(nt1) Vo ( ’ ]
(8a)

(tor Ty, p="T5) (8b)

—87,

RS

Turbulent case:
w,\h C_Z 45 Q?il l/é’APzd___ —0.11572 =T
() C) (%) Se=mminp (or Bue=To - 00
—0.1157;

=gm o o T w=T2r) (9b)

The condition 7T, ,=T; (egs. (8a) and (9a)) corresponds to
the case where the shock-tube wall is a perfect conductor
439026—58——32

(assuming that the fluid in region 1 is in thermal equilibrium
with the wall). Note that taking 7%, equal to 7, means
that the wall remains at its original temperature and that
heat is transferred from the fluid (of region 2) to the wall.
The condition 7% ,=T5, (eqs. (8b) and (9b)) corresponds to
the case wherein the wall is a perfect insulator or has a very
low heat capacity. When the shock-tube wall is a metal, the
assumption 75 ,=1T, should give very accurate results, as
discussed in reference 2 (particularly since weak shocks are
now being considered). Results for both T;,=T, and
T »=1"T,, are given so as to define the upper and lower
bounds of the heat-transfer effect on shock attenuation.
The attenuation is greater, by a factor of approximately
;. when there is heat transfer as compared with the insulated-
wall case. (The factor is exactly v for the turbulent
case and approximately ¥, for the laminar case, the latter
depending on the value of ).

ATR-AIR SHOCK TUBE WITH Ti=T=520° R

Equations (6) and (7) were evaluated numerically for an
air-air shock tube with 7,=7T;=520° R. It was assumed
that ¢=0.70 and y=1.4. The results for the laminar and

turbulent cases are summarized in figure 5. Both the
7
W
o
N
ETR: \ Wall a perfect conductor |
3 Tow= T3 =Ty
V% a N | T
o
S"’l? q }—
= N Wall a perfect insulator |
_S’ 3 N Tow= ?:,; T 3w " T 30
5 L
i - =
°
R
:
(a)
O 15 20 25 30 35 40 45 50 55 60
Nomina! shock Mach number, A
(a) Laminar case (eq. (6)).
—Equation 7
— —— Reference 6 (fig. 7(b),
Cr = 0058l ReV5 T
Wall g perfect conductor
20 Top = Taw=T) 7
A~
At e=
- N
8¢ AN 1
Q> S 1
5 Y12 i
£9 D ™~ Wall o perfect insulator |
=S o8 N ™ Tow=T2,r Tow=T3,) ]
gm\slk . N |+
[T I ——
2§ .04
~
- O(b)
10 15 20 25 30 35 40 45 50 55 60

Nominat shock Mach number, A

(b) Turbulent case (eq. (7).

FiGUure 5.—Attenuation in air-air shock tube. 7T)=T,=520° R;
Prandtl number ¢, 0.70; ratio of specific heats v, 1.4.
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F1cURE 6.—Percent contribution to shock attenuation of characteristic lines of figure 2. Air-air shock tube; Tj=Ti= T} = T3,,=520° R;
Prandtl number o, 0.70; ratio of specific heats v, 1.4.

insulated-wall case (7% ,=1T% ;75 = Ts,,) and the case where
the wall is a perfect conductor (7% ,=Ts.,=T1=1T,) are
noted therein. When the shock-tube wall is a metal, the
assumption that the wall is a perfect conductor should give
accurate results except possibly for very strong waves (e. g.,
ref. 2).

The relative contribution to the net attenuation of the
various terms in equations (6) and (7) is indicated in figure 6
for the Ty =T; ,=T,=7T, case. In particular, the percent
contribution of the integrations along the characteristic lines
bd, ab, and be and of the reflected wave at point ¢ are indi-
cated therein. (The reflected wave at point ¢ represents the
contribution of all the characteristic lines in figure 2 other
than lines bd, ab, and be, as is mentioned in appendix F.)
For weak shocks, the major contribution to shock attenua-

tion comes from the integration along line bd. With increas-
ing M, the contribution of the characteristic line bc increases
gradually to a value of about 30 percent at A/;=6.0. The
integration along line ab leads to compression waves (which
tend to accelerate the shock) and therefore is negative in
figure 6. Its value decreases to about —20 percent at
M,~2.0 for the laminar case and to about —35 percent at
M,~2.75 for the turbulent case, and then increases with
increases in M, (The influence of characteristic line ab
may be somewhat overestimated in the present analysis
because of the assumption of an expansion wave of zero
thickness.) The contribution of the reflected wave at point ¢
varies from a value of zero at M;=1 to about —5 percent at
M,=6. The neglect of the latter contribution appears
reasonable for the range of M, considered herein.



ATTENUATION IN A SHOCK TUBE DUE TO UNSTEADY-BOUNDARY-LAYER ACTION 7

RESULTS AND DISCUSSION

Equations (6) and (7) define the attenuation in a shock
tube when the boundary layer is wholly laminar or turbulent,
respectively. These equations are now compared with the
experimental and theoretical results of reference 6.

COMPARISON WITH EXPERIMENTS OF REFERENCE ¢

Measurements of shock attenuation were obtained in the
investigation of reference 6 by using a high-pressure shock

tube having a %- by %-foot rectangular cross section. Air at
room temperature was used in regions 1 and 4. The air
in region 1 was maintained at atmospheric pressure. Four
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(a) Pressure ratio p./pi;, 4.061; shock Mach number relative to wall
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(¢) Pressure ratio p/p;, 7.455; shock Mach number relative to wall
M, 1.518.

Frgure 7.—Pressure behind shock wave as function of distance from diaphragm. Air-air shock tube.

sets of runs, corresponding to p,=4.061, 5.764, 7.455, and
17.915, are reported. The results of these runs are summa-
rized in figures 7 (a) to (d), respectively. Some of the theo-
retical curves of reference 6 are included in these figures.
The theoretical predictions of equations (6) and (7) are also
indicated in figure 7. The latter were found from figure 3
with p,=2117, and by assuming the wall to be a perfect
conductor (since the shock tube had metal walls except for a
pair of schlieren glass inserts).

The Reynolds number at the contact surface for these
tests is given directly by figure 3. The boundary-layer
thickness at point b of region 2 for the test conditions of
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(d) Pressure ratio ps/p1, 17.915; shock Mach number relative to wall
M, 1.792.

T=T,=>520° R; hydraulic

diameter d, 1/7.
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Ficure 8.—Relative boundary-layer thickness at point b of region 2
for experimental conditions of reference 6 (air in region 1; turbulent
boundary layer; Ty="T, ,=520° R; h, 1/8 ft).

reference 6 is plotted in figure 8. It is assumed in figure 8
that the boundary layer in region 2 is wholly turbulent and
that the wall is a perfect conductor. The boundary-layer
thickness is presented in the form of a relative thickness
255 »/h where h is the smallest shock-tube dimension normal
to the flow and equals % for the shock tube of reference 6.
When 2§, ,/h is small compared with 1, the assumption of a
thin boundary layer is valid, and the theory of the present
report is applicable. It may be seen from figure 8 that
285.5/h=0.20 for =12 for the test conditions of reference 6.
Since 25, ,/h tends to overestimate the effective boundary-
layer thickness (because of the asymptotic manner in which
the velocities approach free-stream conditions at the edge
of the boundary layer),® figure 8 indicates that the theory
of the present report is applicable for comparison with the
experiments of reference 6.

In figure 7 (a), the first data point (2223’) is close to the
theoretical value for a wholly laminar boundary layer. The
other points fall somewhat above the theoretical curve for a
wholly turbulent boundary layer. The Reynolds number
per foot at the contact surface for this case is Re, ,/z=0.4X
10° (fig. 3). Using Re=0.5X10° as a rough indication of
the transition Reynolds number, as discussed in appendix H,
it is reasonable to have the first data point near the laminar
curve and the other points near the turbulent curve.

The experimental results for AM,=1.442 are given in figure
7 (b). The Reynolds number at the contact surface is

3 A properly computed displacement thickness would probably give a better estimate of
the effective boundary-layer thickness.
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Re, ,/z=0.8<10°%. The data agree quite well with the
values for a wholly turbulent boundary layet. There is a
slight tendency for the points to lie above the theoretical
curve, which might be attributed to the short length of
laminar boundary layer divectly behind the shock wave.

The experimental results for M;=1.518 (Re, »/2z=1.1X10%)
are given in figure 7 (c¢) and are in excellent agreement
with the turbulent-boundary-layer theory of the present
report.

In figure 7 (d), the experimental results (M,=1.792,
Re, »/z=2.8X10%) fall somewhat below the theoretical pre-
dictions of the turbulent-boundary-layer theory of the
present report.

In general, the theory seems to agree reasonably well with
experiment for the range of data considered in figure 7.
Figure 7 (d) indicates the poorest correlation and suggests
that the present theory may underestimate the attenuation
corresponding to large values of M,.

COMPARISON WITH THEORY OF REFERENCE 6

The present analysis assumes a relatively thin boundary
layer, and the calculations are based on the vertical velocity
at the edge of the boundary layer. The numerical value of »
depends on terms which are related to the boundary-layer
velocity profile, dissipation, and heat transfer. See, for
example, equations (D3a) and (D3c). These terms cor-
respond to the use of wall shear, dissipation, and heat trans-
fer in reference 6. Dissipation and heat transfer play similar
roles (qualitatively) in the present analysis and in reference
6. However, it can be shown that the velocity-profile term
in the equation for » has a sign opposite to that of the wall-
shear term in reference 6 for characteristic lines ab and be
(e. g., appendix I). Therefore, the integrations along lines
ab and be, in reference 6, overestimate and underestimate,
respectively, the contributions of these characteristic lines
to shock attenuation. If the same boundary-layer theory
is used, the attenuation calculations of the present report
and of reference 6 should be in quantitative agreement
only in the limiting case M,—1 (for which the contributions
of characteristic lines ab and b¢ are negligible) and for those
values of M, where the errors due to characteristic lines
ab and be tend to compensate.

Since different boundary-layer theories were used in
reference 6 and herein, it is not directly possible to separate
the discrepancies between the two methods due to the re-
spective boundary-layer theories from the discrepancies due
to basing the attenuation calculations on wall-shear, dissipa-
tion, and heat-transfer terms rather than on ». An estimate
of the latter discrepancy can be obtained by reversing the
sign of the first term in the equations for L, (eq. (D3c))
and L, (eq. (D4c)) for the integrations of » along character-
istic lines be and ab.  Such a procedure shows that the theory
of the present report and that of reference 6 agree at M,=1.
With increasing M, reference 6 first overestimates the at-
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tenuation because of the increasing importance of character-
istic line ab. At M,=0(1.5), reference 6 overestimates at-
tenuation by about 10 to 15 percent. With further increases
in M, the errors in characteristic line bc become important
and tend to compensate for the errors in line ab so that the
discrepancy between the two methods decreases. At
M,=0(2), the two methods are again in approximate agree-
ment. As M, increases further, line ab becomes relatively
less important compared with be, and the theory of reference
6 underestimates the attenuation. At M,=6, the method
of reference 6 appears to underestimate the attenuation by
about 50 percent. The above figures are only approximate
because of the manner in which they were obtained, but they
indicate the proper trend with M.

From figure 5 (b) it can be seen that the attenuation theory
of reference 6 (for turbulent boundary layers) is in good
agreement with that of the present report for 1<M,<2.
The agreement is somewhat better than that to be expected
from the discussion of the previous paragraph. Hence,
either theory could be used to correlate the experimental data
of figure 7. For M, >2, reference 6 considerably underesti-
mates the attenuation. The laminar-boundary-layer theory
of reference 6 differs by a factor of about 2 from that of the
present report; therefore, there is a large discrepancy between
the theoretical laminar-boundary-layer curves in figure 7 (c).

CONCLUDING REMARKS

A method is presented for computing the attenuation of a
shock wave due to unsteady-boundary-layer action. The
various assumptions involved in the analysis are summarized
in this section, since these define the limitations of the
method and suggest possible fields for improvements:

1. Small perturbations: The equations of motion were
linearized, assuming the potential flow external to the wall
boundary layer undergoes only small perturbations. For
long shock tubes with large amounts of attenuation, it might
be advisable to employ a characteristic method.

2. Thin boundary layer: The assumption of a thin bound-
ary layer (relative to shock-tube diameter) is consistent with
the assumption of small perturbations of the potential flow.
If the viscous effects span the entire tube cross section (i. e.,
long tubes), it may be advisable to base the shock-attenuation
theory on wall shear.

3. One-dimensional longitudinal waves: It was previously
pointed out that the perturbations in a shock tube should be
computed by assuming each element of wall surface area to
be an elemental acoustic source of strength proportional to ».
This gives rise to a complex wave pattern involving both
longitudinal and transverse waves. For the purposes of the
present analysis it was assumed that the longitudinal waves
are of primary interest and that these can be computed on
the basis of a simplified one-dimensional theory. This
assumption is accurate when an observer is relatively far

from the sources (since the details of the source distribution
around a perimeter then become relatively unimportant) but
introduces errors when the observer is near the sources. It
would seem that the assumption of one-dimensional longi-
tudinal waves is accurate for weak shocks but introduces
errors for stronger shocks, particularly when the flow relative
to the wall is supersonic.

4. Boundary-layer theory: The boundary-layer theory of
reference 2 was used. It may be assumed that the laminar-
boundary-layer solution is reliable except possibly for very
strong shock waves. In the latter case, very large tempera-
ture gradients exist normal to the wall, and it may be advis-
able to choose a different reference temperature from that
used herein.  Also, for strong shock waves, dissociation might
oceur, which would require changes in the laminar-boundary-
layer theory. The turbulent-boundary-layer theory of
reference 2 requires experimental verification for even the
weak-shock case. However, the good agreement between
the attenuation calculation based on the turbulent bound-
ary layer of reference 2 and the experiments of reference 6
suggests that the turbulent-boundary-layer theory of refer-
ence 2 gives reasonable results, at least for the weak-shock
case.

5. Expansion wave of zero thickness: In order to simplify
the problem of determining the boundary layer behind an
expansion wave, it was assumed in reference 2 that the
expansion wave is of negligible thickness (i. e., “expansion
shock’). This assumption is valid for weak expansion
waves but is in error for strong expansion waves. The
boundary-layer solution for region 3 might be improved for
the strong-wave case by considering the finite thickness of
the expansion wave. However, the contribution to shock
attenuation of region 3 becomes small for the strong-wave
case, so that an improved boundary-layer solution for region
3 may not significantly affect the attenuation calculation.

In addition to the preceding discussion, the following
extensions of the present report might be pursued:

1. The details for obtaining the perturbations at a fixed
point in the shock tube, as opposed to finding the shock
attenuation as is done herein, might be treated. This would
be useful for further correlating the theory with experiment
and for determining conditions at an aerodynamic model
(when the shock tube is used as a wind tunnel).

2. Formulas equivalent to equations (6) and (7) might
be derived for the case where the boundary layer is partly
laminar and partly turbulent.

3. The boundary-layer theory as outlined in appendixes
D and E might be simplified, particularly for the turbulent
case, s0 as to give reasonably accurate results without too
tedious a boundary-layer calculation.

Lewis Friear PropruLsioN LABORATORY
NaTiONAL Apvisory COMMITTEE FOR AERONAUTICS
CreveELaND, Omro, April 24, 1956
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APPENDIX A
SYMBOLS
The following symbols are used in this report: Uy velocity of shock wave relative to wall
A crOs's_—sf'ectional area of tube U, Usg velocity in regions 2 and 3 relative to wall
a speed of sound » vertical velocity (positive when directed into tube)
C eq. (C3) at edge of boundary layer
€y specific heat at constant pressure x longitudinal distance
¢, specific heat at constant volume v ratio of specific heats
D eq. (C3) A perturbation quantity (Ap=perturbation of p, etc.)
d hydraulic diameter, 44/l 8, laminar-boundary-layer thickness in region 2 (eq.
E eq. (C7) ' (D5))
r eq. (C7) 82 turbulent-boundary-layer thickness in region 2 (eq.
h smallest shock-tube dimension normal to flow (E3))
k thermal conduectivity n coefficient of viscosity
Ly, Ly appendixes D and E v kineinatic viscosity
l perimeter of shock-tube cross section £ integration variable representing
M Mach number of flow relative to wall o mass density
M, shock Mach number relative to wall o Prandtl number
M, M, Mach nunber of flow in regions 2 and 3, relative | = integration variable representing ¢
to wall Subscripts:
m rate of mass addition per unit cross-sectional area | 1,2,3,4 regions of shock tube (fig. 1)
per unit z a,b,e,d,e points on characteristic lines (fig. 2)

Ng,My appendixes D and E m evaluated at mean temperature of boundary
P pressure, Ib/sq ft layer (appendixes D and E)
Re Reynolds number (appendix H) w evaluated at wall
Res,, Reynolds number at point b of region 2, Superscripts:

+ associated with wave moving downstream

alx[ P1s <u2> <1+M2——> Ms]; appendix H (+z-direction)

— associated with wave moving upstream
T temperature, °R (—a-direction)
T, temperature of insulated wall Special notation:
¢ " time Q3o =03/0s; D12=p1/Ps, ete. (Two successive integer sub-
U velocity of flow relative to wall scripts, not separated by a comma, represent a ratio.)

APPENDIX B

CHARACTERISTIC-LINE GEOMETRY AND SOME INTEGRALS

The equations of the characteristic lines considered in the
present report are summarized. Some important integrals
are indicated. It is assumed that the characteristic lines are
straight (corresponding to the ideal-flow case) and that the
expansion fan can be considered as an ‘“‘expansion shock”
(i. e., expansion wave of zero thickness) moving with velocity
a4 into region 4 (following sketch). The point d with coor-
dinates 2,f is assumed to be on the shock-wave characteristic.

tr
4 /
/—>U2=U3
3 / 2
d
b X7
Optup
% / e
Os+U3 / )
Region 4 a / ¢ |

0 A

The equations of the characteristic lines are

Line bd:

f=x—(ay+u) (t—1) A
g —E
=1 Qoo
[1+M2 s/aZ)](
1-+-M,
. Line ab:
f=§— (a3—}—u3) (10— 7)
=Ty b—E ‘ -
a3+u% > (B1)
G+ = (lﬁ]‘ﬁ}" ‘“3) (E—£)
Line be:
=&+ (a2 —Us) (Tb"‘T)
SN v 11
L T
S __[:1 M2+(u /(Lz)](& E)
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In terms of z,t, the coordinates of points @, b, and ¢ are

Point a:

=1

Point b:

=1+ My (o) 22
ry=t[14+M,— (us/az)]

£= [1 +M,— (us/az)

1—M;+- (us/as)
1+M,— (us/a2)
1—My+-(ugas) ] )

Point ¢:

o=

7=t

Some important line integrals are

—1-11—2‘_[2 L:(UST—E) 2 dg= (1—usf/u ;)1 =" <1+M2_::_28>—n2<f::2> W

,y/_g i—ny __'L_Lﬁ — g xl'_”z
us) (1+M2 Gz) (1_n2)] \

1 & g gy _
= ﬁ “(nr—p =t [(1

.
), DT = ey

o= [ R (o) 0]
“ 14+M;+4-aq Us
1-+M,~— (’U/s/(h)
1+M3+d43

\ (B2)

(B3)

/lllg a 1—ng
[(+ae—5)3 | )

1+M3+a,43 1—mns

. APPENDIX C
 INTERACTION OF PRESSURE WAVES WITH INTERFACES

Weak pressure waves are assumed to overtake a contact
surface or a shock wave. The strength of the reflected and
transmitted waves is found.

CONTACT SURFACE
Consider the contact surface which separates region 3 from

region 2 (following sketch).

At a certain instant, known

Contact

where
C= (v3023— 1)/ (vasas+ 1)

D =2/(vs0:+1)

The quantities ' and D are reflection and transmission co-

efficients, respectively.
SHOCK WAVE

Consider a shock wave moving with velocity %, into a

Ap3

surface
/

Region 3 2

incident waves Apy, and Ap;, intersect the surface. The
problem is to find the final waves Ap;, and Ap#,. From
isentropic flow relations,
Apt=pa Aut
Cy
Ap~=-—pa Au~
The boundary conditions across the contact surface are
Au{b—{—Auib:Au{b—FAu{b
(C2)
Apiyt+Apry=ApiytAps,
From equations (C1) and (C2), the expressions for Aps, and
Ap; , are

AP = CAps»+DAps,
(C3)

A_p;;_’ b=732(123D APED_CAZ);,—I)

stationary fluid (region 1).

The region behind the shock is

designated as region 2.

Conditions in regions 1 and 2 can be

found from shock-wave theory. In particular, with v,=v,,

=271M§——('Yl—1) h
Pa1 —“‘“—“—“,Yl )

@2__2

a; "it1 <Ms_l\ils) L

__n+HM7
PU= TDMEF2 )

At a certain instant, a known wave Apj, intersects the
shock (following sketch).

(€Y

Entropy
P2 g disconﬁnuit}
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The problem is to determine the net perturbation of the
shock wave. From equations (C4),

Apz.d: 47,
P MFl

AUQ d__

a 71‘{‘ 1 <1+]\42> AMS 4

APz,a_ 4 Az‘ls‘d
pr (vi—1LM:+2 M,

pl2]\13 AM.@, d

v

(C5)

The net pressure and velocity perturbations in region 2 are |

then related by

3

(C6)

where

E E<2p12a12 1FME— 1>/<2p12(1/12 1_—1F—Z\—4§+ 1>
M3 M;
FE<4P12a12 Tfm)/(%’m“w 1+M2+1>

The quantity E is a reflection coefficient.
turbation of the shock Mach number is

AMs.(l____’yl+1£2~1_ Ap;,—d
M, 4, M p,

The resulting per-

(C8)

Apaa
TApSa

For M,=1 =0. For M, infinitely large,

_ M; v,—1
Apo, ¢=2p1t11 TENYE Aty,y Apia 2\/ 271 1
) ~ . - ) ApSa
With Ap,=Apd;+Apss and  Auy,=Auj s+ Aus g, using 27 —|-1
equations (C1) gives Aps !
~ ‘ which becomes 2f;"l=—0.14 for v,=1.4, indicating that the
Ap; a=EApTa Apia
' (C7) | reflected wave is velatively small and is opposite in sign to
Aps a=FApsa the incident wave.
APPENDIX D

LAMINAR BOUNDARY LAYER BEHIND WAVE

The laminar boundary layer behind a shock or thin

expansion wave is analyzed in reference 2. Some of the
results are summarized herein. It is assumed that the wall
temperature behind the wave is constant and that ¢ and ¢,
are independent of temperature. The fluid properties u
and k are referenced to a mean temperature as discussed in
appendix C of reference 2. The notation of reference 2 is
compared with the notation of the present report in the
following equations. The left side of each equation repre-
sents the notation of reference 2, while the right side is in
the notation of the present report. '

Region 2
Upy=Us Uy 1 )
Ue=Us—Uo &:_1_(%2/’“3)
> (D1)
V=102 U uz/us
1=
T=UT—§ Ue 1— (uafus) J
Region 3
Uy ==y Uy 1 h
ue:a4+U3 ue—1+(u3/a'$)
- (D2)
V== (7 = —Usfa,
r=asr+§ Ue 1+ (us/a.s) J

VERTICAL VELOCITY AT EDGE OF BOUNDARY LAYER

The expression for the vertical velocity at the edge of the
boundary layer can now be written as follows:

Region 2
— uz/us
V= [1—(u2/us)] (u r—§ > (D3a)
where
No=1% (D3b)

1H2m T2

1 (2 i

1—(usftts) (To: T o
) (=), mdn b 030
(f‘ﬂ)(l—->:| S —
) — (Uafuy)
152[ PR e 134\/ 5085 —(ugjuy 02V
o T (ugu)) T
J() 7'2d77—-1569J1933_(u2/u3) (O’g) (D3e)
w© B W ——0.50;!—(0;:2(:&2/%;)
fo sgdn_1.134\/2—-.022_ ) (o) (D3
0 37—0.39 (uafus)
ra(0)=(gz) Tl (D3g)
T,
12,2 2ry(0) (D3h)
p Ty 3205 <T2 ”+1>+o.22(T2"—1> (D3i)
P2m TZ

The above quantities can be evaluated if the wall surface
temperature 7%, is known. The value of T:, depends on
the heat capacity and conduction properties of the wall and
the wall thickness. A method for evaluating 7%, is pre-
sented in reference 2. From the discussion in reference 2,
it may be concluded that in most cases T; , approximately
equals 7 when the wall is a metal.
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Region 3 Equations (D4) can be evaluated if 7%, is known. If the
u3fas ) “m( (D4a) wall is initially at temperature Ty, then T ,= T is generally
S\ 1+usfa, a;r—l—f a a good estimate for T;,,, as is discussed in reference 2.
where BOUNDARY-LAYER THICKNESS IN REGION 2
ne=} (D4b) In the body of the report it is assumed that the boundary
oy layer is thin relative to the shock-tube diameter. It is there-
5 [("_f ) (L+ a4):|+ fore of interest to present an expression defining boundary-
Us/s layer thickness. Region 2 is of particular interest since the
(1 4 _§> f ro dnt boundary layer in region 2 is generally larger than that in
i 3¢ region 3. Let §; represent the laminar-boundary-layer thick-
1—};(1//2/(14) %{ T3 ,) f 5 dn} (Dde) ness in region 2, defined so as to correspond to ?—Z=0.99.
3% 8 From equation (18) of reference 3,
[(n—f) Uuge) ], 217\/ s Daa) |, [ 2 \/ﬂz.mTz \/v2(usr~s) 2.8 V1—uafu,
it R 2 1Y VuTom V1413~ uy/u,
1+(IUI3/(14) 0.22usfas Us
1y dy=1686y 52 b 080 (g ieins (D) e
J; 2.234-+ (wsfay) 722 1M§f0 ry dn— T2 r_ T "’)f 82 dn:l (D5)
® — Ty —0.50—0.36(ufu)
f s dy=1.2074 /oL WIB) )T (Dafy , .
0 326+ (uafay) (Eq. (D5) uses a mean reference temperature and an inter-
0.87-H0.60 (g ) polation formula for 5 (defined in ref. 3) and takes the upper
r(0)=(o )W (D4g) limit on the integrals to be « rather than n;.) To evaluate
s 8 8, along the characteristic line bd of figure 2, take u,r—& equal
Ty,
3 3r3(0) (D4h) | ¢, <1+1 T Mu‘/ (lz) (x—£). The value of &; at point b is found
T3 m___ T3 w Ts,r_ . <1+ s/(lz>( >
=0.5 ( +1)+0.22 ( T 1) (D4i) by replacing u,7—¢ by 1137, 1—
APPENDIX E

TURBULENT BOUNDARY LAYER BEHIND WAVE

The turbulent boundary layer behind a shock or thin ex-
pansion wave is also studied in reference 2 for the case of
constant wall surface temperature. The correspondence
between the notation of reference 2 and that of the present
report was previously noted in equations (D1) and (D2).
The turbulent-boundary-layer solution of reference 2 (re-
lating to ) is now summarized. It is assumed that the wall
surface temperature is essentially constant.

VERTICAL VELOCITY AT EDGE OF BOUNDARY LAYER

Region 2
u%/us 17y vy g .
.....Lg [1__ (uz/us) (us‘r— E) (Ela)
where
ny=1/5 (E1b)
L =(), 0460 62 (uz/us) {(02 02[(1&2/’11;3) - 1] } (EIC)
52 (uz/us) Uy T, _
52 (u2/us) ’llzz [(Tg w+ o 1) (1 —7 I2 7

7co 7’;2_,0 (I2.7——I2.8)] (Eld)

02 (u2/us—1) T2/T w
1 (u:}us) [<1 7 T2 w IZ )

5 (uafuy)

7(02+Z~j> (12,,—12,8)] (Ele)

o=(122)" (7= (EB18)

L, N—J 1+zjzdzczzz (Elg)

b2=% ;—1 (E1h)

er—( L2 7—1) (T2 w) (E1i)

Tar_ 3o (E1)
T}2m=0.5 (T;;z’% 1>+0.22 (2%;’—1) (E1k)

The conditions under which T, , essentially equals 7} can be
established by the methods of reference 2. The assumption
of T, ,= T, appears reasonable for most cases.

The integrals I;; and I,;—I,5 can be evaluated using
table I. Reciprocals are tabulated therein so that linear
interpolation is accurate except for b, near —1 or ¢;/(by,+1)
near 1. The integrals can be evaluated analytically from
the following expressions:
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12,7=\/b%j_402 [(12,7);‘12—(12, 7)x2]
(E11)
L~ =ﬁ [Oo—1) (T, I, — (Ba—1) (10, 1)3.]
where
M=y~ (bt B+ c3) (E1m)
2
Bz=i (bz—\/bg‘i“‘lcz) (Eln)
262
il n (B & L (LY
(12,7)52—53[111 - )+;;m(6)] (E1o)
—_ 7 m
(12,7)>\2=>‘§|:1n (% Dz 7—;(%) ] ®1p)

It can be shown that B,<<0, A;>>1. Equations (Elo) and
(E1p) give accurate results for —1.6<83,<{0 and 1<\,<2,
respectively. For values of 8, and N, outside these ranges,
the right sides of equations (Elo) and (Elp) become the
difference of two nearly equal numbers and the following
expansions are useful:

©  8!m! 1\
(D =g g5 1+2(8+m)'(1—ﬁz>] (Flq)

gy B rrmerm () | ©

Region 3
u3jay —ny
|:1 + (us/a4)] <a4r+g (E2a)
where
=% (E2b)
8a[1+ (usfay)] S(usfas) Y
Fa=0.0460 83(us/as) # 65[1+ (ug/a4)]} (E2¢)

531+(u3/a4) “4[73T3 (Ly,7—1Ls,8)—

5y sl
T_“—D——— 1) (1 —7 ~i 13 7>] (E2d)

93 1+ (us/a4)

T3/T3w[(1_71111_3'l3,7 -
3w

63 Us/ts 1+u3/a4
7(6‘3—'%9 (Ls,— 1, 8)] (E2e)
()" (7)" (E20)
L 2Ndez

=), TFbe—e (2e)
b3= (Ts. r/T3, w) —1 (E2h)
03=[(T3,1/Ts)‘"1](T3/T3, ) (EZi)
T 1 )

T3, m___. T’.'i, w T T
T, _0.5< T, +1)+0.22( 1”,3 —-1) (E2k)

The conditions under which Ts, essentially equals T, can
be established by the methods of reference 2. The assump-
tion 73,=7, appears reasonable for most cases. The
integrals I; ; and I3 ;—I; g can be evaluated using table I or
equations (E11) to (Elr) (with the subscrlpt 2 replaced by
the subscript 3 therein).

BOUNDARY-LAYER THICKNESS IN REGION 2

The symbol §, represents the turbulent-boundary-layer
thickness as obtained from an integral (Kdrmdn-

Pohlhausen) type of boundary-layer solution. From refer-
ence 2, it can be shown that
44
Un/Us (ugfu) ( %
=0.0574 ¢z[ ( 1>] T—wugju)% (=)
52 us
(E3)

The value of §, along characteristic line bd or at point b may
be obtained by the substitutions indicated after equation
(D5).

APPENDIX F

DEVELOPMENT OF ATTENUATION FORMULAS

The attenuation of the shock wave in a shock tube is now
Jderived. The flow is considered to consist of the ideal
shock-tube flow plus small perturbations due to the boundary
layer. The ideal flow is uniform in regions 1, 2, 3, and 4,
and is denoted by the appropriate subscripts (i. e., p1, P2, D3,
etc.). Perturbations at any point are denoted by A and an
additional subscript indicating the point. Thus, the per-
turbations at point b of figure 2 evaluated on the right side
of the entropy discontinuity are designated by Aps », Aus s,
and so forth. The expansion wave of the ideal flow is
assumed to have negligible thickness and to propagate into
region 4 with the velocity u=-—a, as indicated in figure 2

(The same assumption was used in the attenuation study of
ref. 6.)

Let point d of figure 2 represent an arbitrary point on the
shock wave. The problem is to find the net pressure
perturbation behind the shock (i. e., Ap; ;). This requires
an integration of equation (4) along all characteristic lines
which contribute to Ap,q Because of the entropy dis-
continuities, there are an infinite number of line segments
along which the integration must be conducted (fig. 2).
However, the major contributions to Ap,, can be shown to
come from segments ab, ¢b, and bd.



ATTENUATION IN A SHOCK TUBE DUE TO UNSTEADY-BOUNDARY-LAYER ACTION 15

If Ap#, represents the incident pressure wave at point d,
then equation (C7) gives

Ap,y o= FAp#, (F1)
But, from equation (4),
27,

Apte=Aptot g ), veEnds (¥2)
where the integration is conducted along the line d. From
equation (C3),

Api = CAp; +DAps, (F3)
Again, from equation (4),
2
APz_,bzApz—,c‘{‘&Wyz_pZZ‘T) " oa(k,7)dE
(F4)
27y
A_p.’i b Ap3 a+a d(lf;\lg) 7)3(5,7’)(12

( )2 3ng <ad ng <C_l)l—n2 Apz,d
Ug z D2

272 FL2 (us/aZ) 1—-2ng

1-% 1+ng—mng
|y LD (M 30 \ 1 ¥ 77, y

It can be shown that Apj,=0 in the present case. More-
over, ps=p;. The expression for Ap; , can then be expressed
as

1 axd Apsq 1
2% 1 [1+sz w137, MJ ndet
732D & Apz, c>_1
a32<1+M3>f ”“ﬂx(l CEop.) @

In appendixes D and E it is shown that for wholly laminar or
wholly turbulent boundary layers

[ T () 1

=] @) )

where L and n are independent of 7 and §&.  The values of L
and n depend on whether the boundary layer behind a given
wave is laminar or turbulent. Substituting equations (F5)
into equation (5) and using equations (B3) yield

(F¥5)

Ec
" o [1—|— (us/az) 2 +

The corresponding change in shock Mach number can be
found from equation (C5). Appropriate values for L and n
are given in appendixes D and E.

If ny=mn3 and CEAp, /Ap, , is assumed not to vary with z,
then equation (F6) indicates that Ap, /Ap, = (£/2)"" and

—CE (i—y’ (F7)

Equation (F7) indicates CEAp, /Ap. . to be independent of
z and is therefore consistent with the original assumption to
this effect. Substitution of equation (F7) into equation

A Do,
CE —*==¢
AP, g

a2 1“7113 32 ( )"’3_”2

22 s ><<1~—OE —Ap“yl (F6)
(1+Ms+as)  v™ Apa,a

(F6) gives accurate results even when n,ns;, since the major
contribution to Ap;, comes from the first term on the right
side of equation (F6). The term CEAp, ,/Ap, , represents
the contribution to Ap,, of all the characteristic lines of
figure 2 other than lines ab, be, and bd, and is referred to as
the contribution of the reflected wave at point ¢ in figure 6.
It can be seen from figure 6 that this term is small and can
probably be neglected in most cases.

If it is necessary to consider the boundary layer behind
the shock (or expansion) wave as partly laminar and partly
turbulent, then equation (5) must be integrated accordingly.

APPENDIX G

IDEAL SHOCK-TUBE RELATIONS

Shock-tube relations, assuming ideal flow, are presented
herein for convenience. The formulas were obtained from
reference 1. The notation pu=p/p:, Gp=as/a;, and so
forth, is again used.

Define
a=(y+1)/(r—=1)
B=(y—1)[2v
Then _
T /84
pu— [1 (Pa— 1)\/0111)21—}—1 EZ,,T;I] (G1la)
p3a= (PraPer) /" (G1b)
P21=M (Gle)

a1+p:1

T34~—a'34—(2?14p21)“’7 (G1d)
“ﬁﬁéﬁ“ (610
" 7 [Bl(a1p21+1>] (G1D
Z—i_'y%ﬁ;[l (p;.;pn)ﬁ‘] (G1g)
M, [61(1—{—011])21)]% (G1h)

Us Par—1 .
2 M= G1i)
s : [Blpm(al—'_pn)]% (

as M3—~a [(20142721) ~Fs— ]

(G1j)
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APPENDIX H

REYNOLDS NUMBERS AND TRANSITION

A Reynolds number characterizing the boundary-layer
development in regions 2 and 3 of the shock tube is now
developed.

Region 2< <£ < 1)
Uy " UT

In the notation of reference 2, a Reynolds number char-
acterizing the boundary layer behind a shock is defined
2 (Up—Uy)?
Vw uﬂ '
indicated by equations (D1) and arbitrarily basing v on free-
stream conditions, the Reynolds number for region 2 may
be written' as

therein as Re=— Using the transformations

_u2(us7'——f) u2/us
Re= Vs (1—uzfu,)

(H1)

where £,7 are the coordinates of a point in region 2 (following
sketch).

/ Regzion

&x

Consider £,7 to be a point on the characteristic line through
z,t (above sketch). The Reynolds number for points along
this line, as a function of £, is (using eq. (B2))

R :“2(910}2—5) (13%111;6;u8> <1+21‘ﬁ;433/a2)

If the transition Reynolds number is known, equation (H2)
can be used to determine the values of £ at which transition
occurs. The maximum Reynolds number in region 2 occurs
at the contact surface (£=£;,) and equals

(1) 120

Equation (H3) can be used as a general index as to whether
the boundary layer (along the characteristic line) is primarily
laminar or primarily turbulent. plot of Re, , against M,
for air in region 1 (with 77=520° R) is given in figure 6.

The transition Reynolds number for the boundary layer
behind a shock wave has not yet been established. In the
absence of more accurate information, the transition Reyn-

(H2)

(H3)

olds number for incompressible flow over a semi-infinite
flat plate [Re=0(0.5X10%] might be used to estimate the
transition point behind a shock wave. That is, take
Re,=0(0.5X10% as a rough estimate for the transition
Reynolds number. This is probably a conservative estimate
for the strong-shock cases, since the large amount of heat
transfer to the shock-tube walls may have a very stabilizing
effect on the boundary layer.

Region 3< 1< ; <u3
Ty
For a point in region 3 (following sketch), the Reynolds

Region 3

/

$prh X7

&x

number as defined in reference 2 becomes (using eqgs. (D2)
and » based on the free stream)

U (a7 +E)  usfo,

Re;
V3 l-l—ug/a,4

(H4)

For a point on the characteristic line influencing point .,
the Reynolds number becomes

Ust  Us/y

R63:73 1-usfas

1+M3+0‘/43 l:§

T+ M, T i) ] (H5)

1+M3—i—a43

At the contact surface (¢=¢,), equation (H5) has the value

= (3 14302 ]

The criterion Re;=0(0.5X10% might be taken as a rough
estimate for the transition Reynolds number behind the
expansion wave.

The boundary-layer characteristics presented in appendixes
D and E indicate a discontinuity in the boundary-layer profile
across the contact surface. (Note that Re, ,/Re; y=v;s/vs.)
This discontinuity does not actually occur, and the theoretical
discontinuity thus represents a deficiency of the present
method.

(HS)
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APPENDIX I

GENERATION OF PRESSURE WAVES BY WALL SHEAR AND HEAT ADDITION

The generation of pressure waves by body forces and by
heat sources in one-dimensional flow is investigated, and
the results are used to compare the method of the present
report with that of reference 6.

WAVE GENERATION BY BODY FORCES AND HEAT SOURCES

Assume a uniform flow of pressure p, velocity u, and so
forth, in a tube of constant cross section. This uniform
flow is assumed to be slightly perturbed by weak body
forces and heat sources. The equations of motion are
(neglecting the possibility of mass sources, since this case is
treated in eq. (1))

bAu bAu —f bAp
bt
0fp, dhu, dp_ | T

ot TP op T4 5,
QAs, 0As ¢

>t Y% oT

where f(z,t) is the body force per unit volume acting in the
~+z-direction and ¢(z,t) is the heat addition per unit volume
per unit time. The symbol As represents the entropy
perturbation of a particle and is related to the pressure and
density perturbations by

As_4p_, 20 12)
& p b

The perturbation at any point z,t can be shown to equal

-

Ap_ap* | ap”
2 Z’+P

Au_1 <é1’_+_é£:>
_ - I3)
As P (E;t—% m E)
C PU f_ © e, T
Ap_1 (ﬂ’..ﬁ)
P Y V4 Cy

where
Apt

» =zpa(17+M>_f_:[ o8t ) f<£’ “*’“]
o= 2pa(1—M)f im[ <E’t—“_—z f<£t_ ]d&

iS + © Qr —
Since equations

d¢

The upper limit on the integral for Ap~
depending on whether M<(1 or M >1.

(1) and (11) are linear, the solution for the case where mass
sources are also present can be obtained by adding equation
(2) to equation (I3). Note that an elemental heat or mass
source generates a symmetric pressure-wave pattern (posi-
tive pressure waves propagating in the downstream and
upstream directions), while an elemental body force generates
an antisymmetric pressure-wave pattern (positive pressure
waves propagating in the downstream direction and negative
pressure waves propagating in the upstream direction).

COMPARISON WITH REFERENCE §

In effect, reference 6 uses equations (I3) to find the shock
attenuation in a shock tube. The value of ¢ is obtained by
averaging, across the tube cross section, the heat transfer at
the wall and the viscous dissipation in the boundary layer.
The value of fis found by averaging the wall shear across the
tube cross section. Thus, if g, is the heat transferred into the
boundary layer per unit wall area, H, is the net dissipation in
the boundary layer per unit wall area, and 7, is the shear per
unit area exerted by the wall on the fluid (taken to be positive
in the -+xz-direction), then

(=5 @t H)=3 @t H)
i

Substituting equation (I4) into equation (I3) and integrating
along appropriate characteristic lines should yield the same
results for shock attenuation as those which were obtained in
reference 6 from a somewhat different viewpoint. However,
these results are not in agreement with the results obtained
from equation (4) (the latter being the basis of the present
report).

Equation (4) is based on » while equation (I4) contains
terms relating to the heat transfer at the wall, viscous dis-
sipation, and wall shear. But, from boundary-layer theory,
it can be shown that » is dependent on terims related to the
heat transfer at the wall, viscous dissipation, and the velocity
profile (see, e. g., eqs. (D3a) and (D3¢)). The heat-transfer
and dissipation terms in equations (I4) and (4) play the same
qualitative roles and, therefore, are not discussed further.
However, the wall-shear term in equation (I4) in some cases
has a sign opposite to that of the velocity-profile term in
equation (4). Thus, these terms are not always in qualitative
agreement, and this leads to discrepancies between the
results obtained from equations (I4) and (4).

Consider, for example, the boundary layer in a shock tube
for the case of negligible heat transfer and dissipation. For
this case, v depends only on the velocity-profile term. Simi-
larly, only the 7,, term is retained in equation (4). The signs
of v and 7, and of the resulting pressure perturbations in
regions 2 and 3 of the shock tube are summarized in the
following table:
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Sign

Perturbations based

Region | Perturbations based
on 7, (eq (14))

on v (eq (4))

v Apt | Ap~ Tw Apt | Ap~

+
+

Thus, when heat transfer and dissipation are neglected, a
perturbation solution based on v differs from a perturbation
solution based on 7, in regard to the sign of the Ap~ waves in
region 2 and the Ap™ waves in region 3.

It may be concluded that attenuation solutions based on
equation (I4) differ from those based on equation (4) in the

following respects: (1) The integration of equation (I4) along
characteristic line ab tends to overestimate its contribution
to shock attenuation, and (2) the integration of equations
(I4) along characteristic line b¢ tends to underestimate its
contribution to shock attenuation. For the limiting case
M,—1, the integrations along ab and bc are negligible, and
equations (4) and (I4) give the same results for shock
attenuation.

When the boundary layer is thin, it is obvious that the
attenuation calculation should be based on equation (4). If
the viscous shear affects the entire cross section (as for a long
shock tube), there is no longer a core of potential flow and the
solution should probably be based on equations (I14) (or on
the characteristics method of ref. 6 when nonlinearities be-
come important). The quantities 7., gw, and H, should then
be based on unsteady pipe flow rather than on thin-boundary-
layer theory. In practice, the boundary layer is generally
sufficiently thin to permit the use of equation (4).
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TABLE I—EVALUATION OF IN:J;II

2Vdz

+bz—cz?
b
[4
b+1
-10 ~-0.8 ~0.6 ~0.4 -0.2 0 2 4 6 8 10 15 20 25 30 35 50 100
Reciprocal of Ir

0 0 2.1736 3. 6804 5.1374 6. 5741 8. 0000 22. 094 36. 119 50. 132 64. 139 78.144 113.15 148.15 183.16 218.16 253.15 358.16 708.27
.1 2.0271 3. 4086 4. 7417 6. 0549 7.3577 20. 223 33. 022 45. 807 58. 588 71. 365 103. 31 135.24 167.18 199.11 231.05 326. 85 646. 18
.2 1.8781 3.1333 4.3418 5. 5311 6.7102 18. 343 29. 910 41, 464 53.013 64. 560 93. 422 122.28 151.14 179.99 208. 85 205.42 583.97
.3 1. 7259 2. 8537 3. 9368 5. 0014 6. 0562 16. 450 26. 780 37.097 47, 409 57.719 83. 489 109. 26 135.02 160. 79 186. 55 263. 84 521. 48
.4 1. 5697 2. 5688 3. 5254 4. 4643 5.3938 14. 541 23. 626 32. 699 41. 767 50. 833 73.493 96. 149 118.81 141.46 164.11 232.08 458. 61
.5 1. 4084 2.2770 3.1056 3.9175 4.7205 12. 609 20. 440 28. 258 36.072 43.883 63. 407 82. 929 102. 45 121.97 141. 49 200. 04 395. 23
.6 1. 2402 1. 9756 2. 6740 3. 3570 4.0317 10. 647 17.207 23. 756 30. 301 36. 843 53.195 69. 545 85. 893 102.24 118.59 167.63 33L.09
7 1. 0619 1. 6602 2.2252 2.7763 3.3200 8. 6368 13. 904 19.160 24. 412 29. 663 42.785 55. 905 69.023 82.142 95. 260 134.61 265. 78
75 .96723 1. 4947 1.9912 2. 4748 2.9513 7. 6046 12.211 16. 807 21. 400 25.991 37. 465 48. 937 60. 408 71.878 83. 347 117.76 232.45
.8 . 86717 1.3217 1.7478 2.1621 2. 5699 6. 5450 10. 477 14. 400 18.319 22.237 32. 028 41. 817 51. 605 61.393 71.180 100. 54 198. 41
.85 . 75932 1.1377 1. 4907 1.8331 2.1698 5. 4447 8. 6809 11.909 15.134 18. 358 26. 414 34. 469 42, 523 50. 576 58. 629 82.787 163. 31
.9 . 63882 . 93571 1.2111 1.4775 1.7300 4.2764 6. 7811 9. 2791 11.775 14.269 20. 502 26.733 32. 964 39.195 45, 425 64.115 126. 41
.95 . 49249 . 69708 . 88539 1. 0669 1.2448 2. 9656 4. 6622 6.3539 8.0438 9.7328 13.953 18.173 22,392 26. 610 30. 829 43. 484 85. 666
.975 . 39446 . 54262 . 67831 . 80885 . 93665 2.1715 3. 3885 4. 6019 5. 8139 7.0253 10. 052 13.079 16.105 19.130 22.156 31.233 61. 487

1.0 b 0 Q 0 1) ¢ 0 0 0 0 0 0 0 0 0 0 0 0

Reciprocal of I1—1Ig

0 0 24, 251 36.772 48.725 60. 423 72.000 185.42 297.85 410. 06 522.18 634. 26 914.39 1194. 4 1474.5 1754.5 2033.9 2874.6 5680. 4
.1 23.108 34.705 45. 758 56. 577 67. 262 171.91 275. 59 279.07 482, 45 585. 80 844.09 1102.3 1360.5 1618.7 1876.9 2651. 5 5233.2
.2 21. 940 32. 604 42.751 52. 674 62. 467 158.29 253.18 347. 87 442. 48 537.04 773.38 1009. 7 1245.9 1482.2 1718.4 2427.1 4789.3
.3 20,743 30. 459 39. 691 48,705 57. 604 144. 54 230. 57 316. 41 402.17 487.89 702.12 916. 30 1130.5 1344.6 1558.7 2201.1 4342. 4
.4 19. 509 28.262 36. 563 44. 662 52. 648 130. 60 207.70 284.61 361. 44 438.24 630.17 822.04 1013.9 1205. 7 1397.6 1973.1 3891.3
.5 18.229 25. 997 33. 350 40. 518 47, 581 116. 43 184. 48 252.35 320.14 387.90 557.28 726. 58 895. 87 1065. 2 1234.4 1742.2 3434.8
.6 16.889 23. 642 30. 024 36. 239 42. 359 101. 94 160. 78 219. 46 278.09 336. 67 483.08 629. 44 775.78 922.11 1068. 4 1507. 4 2970.5
.7 15. 465 21.161 26. 537 31. 767 36. 916 86.973 136. 38 185. 64 234.85 284. 03 406. 91 529. 77 652. 59 775.41 898.23 1266.7 2494. 7
.75 14.710 19. 853 24. 707 29. 429 34.075 79.231 123.79 168. 21 212. 58 256. 92 367.73 478. 50 589.25 700. 00 810. 74 1142.9 2250.3
.8 13.914 18. 482 22,796 26. 992 31121 71.236 110. 81 150. 27 189. 67 229.06 327.46 425. 84 524.20 622. 56 720.91 1015.9 1999. 4
.85 13. 062 17. 025 20. 771 24, 418 28. 006 62. 879 97. 285 131. 58 165. 84 200. 08 285. 63 371.15 456. 65 542. 16 627. 65 884.13 1739.0
.9 12,127 15. 434 18.572 21. 630 24. 643 53. 951 82. 880 111.72 140. 53 169. 32 241.26 313.18 385. 09 456. 99 528.89 744. 57 1463. 5
.95 11.043 13. 600 16. 050 18, 447 20. 813 43. 926 66. 777 89. 568 112.34 135.09 191.95 248. 80 305. 64 362. 47 419.31 589.79 1158.1
975 10.384 12, 488 14. 525 16. 529 18. 512 37.979 57.267 76. 514 95. 744 114.97 163. 00 211. 03 259. 05 307. 06 355. 08 499.12 972.39

1.00 0 0 0 0 0 0 0 0 0 0 0 4] 0 0 0 0 0
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