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ATTENUATION IN A SHOCK TUBE DUE TO UNSTEADY-BOUNDARY-LAYER ACTION 

SUMMARY 

A method i s  presented for obtaining the attenuation of a 
shock wave in a shock tube due to the unsteady boundary layer 
along the shock-tube walls. I t  i s  assumed that the boundary 
layer i s  th in  relative to the tube diameter and induces one- 
dimensional longitudinal pressure waves whose strength i s  
proportional to the vertical velocity at the edge of the boundary 
layer. The contributions of the various regions in a shock 
tube to shock attenuation are indicated. 

The method i s  shown to be in reasonably good agreement with 
existing experimental data. 

INTRODUCTION 

A shock tube consists of a fluid a t  high pressure (region 4 
of fig. 1 (a)) separated by a diaphragm from a fluid at  low 
pressure (region 1). When the diaphragm bursts, a shock 
wave propagates into region 1 while an expansion wave 
propagates into region 4. A time-distance plot of these 
waves under ideal conditions is indicated in figure 1 (b). 
Regions 2 and 3 have the same velocity and pressure but 
have different temperatures. The interface between regions 
2 and 3 is referred to as a contact surface. The analysis of 
the flow for perfect fluids is straight-forward (see, for ex- 
ample, ref. 1). In an actual shock tube, however, viscosity 
and heat conduction cannot be ignored. These lead to a 
boundary layer along the walls of the shock tube, as indi- 
cated in figure 1 (c). The boundary layer introduces non- 
uniformities into the shock tube. Analytical studies of this 
boundary layer are presented in references 2 to 6. One of 
the important consequences of the wall boundary layer is 
that it generates weak pressure waves which catch up with 
and attenuate the shock wave propagating into region 1. 
This attenuation has been studied experimentally and 
analytically in the work of references 1, 4, 5, and 6, and is 
the subject of the present report. It is assumed that the 
boundary layer is thin relative to the shock-tube diameter. 
This is a practical restriction, since most shock tubes are 
designed so that the core of potential flow is relatively 
uniform in order to permit aerodynamic tests. 

A few remarks concerning previous shock-wave-attenuation 
analyses are appropriate. In reference 4, the coordinate 
system is defined so that the shock wave is stationary. The 
flow between the shock wave and the contact surface is 
considered as a one-dimensional steady flow so that a t  each 

instant the mass flow through the shock wave equals the 
mass flow at  the contact surface. If the mass flow a t  the 
contact surface is known a t  each instant, the correspond- 
ing shock strength can be found. The mass flow a t  the 
contact surface is determined from the local boundary-layer 
displacement thickness and free-stream conditions corre- 
sponding to an unattenuated shock. However, it can be 
shown that free-stream conditions do not remain constant 
a t  the contact surface (because of perturbations induced by 
the boundary layer). Moreover, the method of reference 4 

Time r,,+,,+ 

t bUllULI 

surface 

LBoundary layer 
(C) 

(a) Shock tube before diaphragm burst. 
(b) Wave diagram for perfect fluid. 

(0) Flow in shock tube with real fluid. 

FIGURE 1.-Shock-tube phenomena. 

1 Supersedes NACA TN 3278, "Attenuation in a Shock Tube Due $9 unsteady-Boundary-Layer Action," by Harold Mirels, 1956. 
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does not take into account the existence of weak pressure 
waves between the contact surface and the shock wave. 
Since i t  is precisely these pressure waves which are responsi- 
ble for shock attenuation, the method of reference 4 cannot 
be expected to give accurate quantitative results. It does, 
however, indicate some of the important parameters in- 
volved. Reference 1 uses the method of reference 4 in its 
studies of shock attenuation. At best, qualitative agree- 
ment with experiment is indicated. 

In  reference 6, the flow perturbations due to the boundary 
layer are considered in detail. At each section of the shock 
tube, the velocity and temperature variations associated 
with the boundary layer are averaged across the tube to 
provide an equivalent one-dimensional flow. The wall 
shear and heat addition due to dissipation and heat transfer 
a t  the walls (all found from boundary-layer theory) are 
assumed to act on this equivalent one-dimensional flow, 
their action resulting in the generation of one-dimensional 
pressure waves propagating in both the upstream and down- 
stream directions. By integrating along characteristic lines, 
the attenuation of the shock propagating into region 1 is then 
found. The theoretical trends appeared to be in good 
agreement with the particular experimental results reported 
therein. 

Reference 5 considers the flow in a coordinate system 
which is stationary with respect to the shock. The unsteady 
nature of the flow between the shock'wave and the contact 
discontinuity is associated with the receding of the contact 
surface with respect to the shock wave. Weak pressure 
waves are assumed to be generated just in front of the 
receding contact surface. The magnitude of these waves 
is obtained by a one-dimensional averaging procedure 
similar to that of reference 6. These waves overtake the 
shock and result in attenuation. The method of reference 5 
ignores the contribution of region 3 and cannot be expected 
to yield good quantitative agreement with experiment. 

Of the previous reports on shock attenuation, reference 6 
appears to give the best agreement with experiment. How- 
ever, it  can be shown that the method of reference 6 does not 
give a completely valid representation of the wave phe- 
nomena induced by the boundary layer along the shocls-tube 
wall. The deficiency of reference 6 is mainly associated with 
its use of wall shear in the determination of the perturbation 
pressure waves generated by the wall boundary layer. I t  is 
well recognized that the effect of a boundary layer on its 
external flow is directly related to the vertical velocity at  the 
edge of the boundary layer. For example, reference 7, which 
is concerned with the Rayleigh (impulsive-plate) problem for 
a compressible fluid, shows that the boundary layer generates 
pressure waves in the external flow which are equivalent to 
those which are produced if the wall moves normal to itself 
with a velocity equal to the vertical velocity at  the edge of 
the boundary layer. The nonzero pressure gradient over a 
flat plate moving a t  high speeds (because of the finite dis- 
placement thickness of the boundary layer) is an equivalent 
steady-flow phenomenon (e. g., ref. 8). Thus, a proper way 

to find the waves generated by the unsteady wall boundary 
layer in a shock tube is to base the calculation on the vertical 
velocity at  the edge of the boundary layer. Such an analysis 
is presented herein. The quantitative results for shock at- 
tenuation thus obtained would be expected to differ from 
those of reference 6. The comparison between the method 
of reference 6 and that of the present report is discussed more 
fully in the main body of the report and in the appendix 
titled GENERATION OF' PRESSURE WAVES BY WALL 
SHEAR AND HEAT ADDITION. 

ANALYSIS 

One-dimensional flow with mass sources is treated, and the 
waves generated by these sources are derived. The waves 
generated by unsteady-boundary-layer action in a tube are 
found, assuming that the process can be considered as a one- 
dimensional unsteady flow. The application to the shock- 
tube problem is then indicated. 

GENERATION OF WAVES BY MASS SOURCES 

Consider one-dimensional uniform flow in a tube of con- 
stant cross-sectional area. Assume that weak mass sources, 
uniformly distributed across each cross section, are present 
and perturb the flow. Denote the net perturbation of a 
quantity (from the uniform-flow conditions) by A. (See 
appendix A for definition of symbols.) The equations of 
motion are 

p ( g + u z ) = - %  (Momentum) 1 
bAu bAp 

b*+p -+u -=m (Continuity) (1) 
bt bx dx 

Ap=a2Ap (Isentropy) J 
where m=m(x,t) is the rate of mass addition per unit cross- 
sectional area per unit x. The presence of the sources 
generates waves. Let the superscripts + and - indicate 
perturbations associated with waves moving in the +x- and 
-2-directions, respectively. If $,T designates integration 
variables for x,t, the solution for the net perturbation at  any 
point x,t may be expressed as 

where 
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The integrations are conducted along the characteristic lines 
~ = t -  (x-U/(a+u) and ~ = t -  (6-x)/(a-U) in the .$,T plane. 
The upper limit on the integral for Ap- is + or - w de- 
pending on whether M <  I or M >  1, respectively. Equation 
(2b) incorporates the acoustic relations ~ p + = p a ~ u +  and 
A,-= - paAu- . 

GENERATION OF WAVES BY UNSTEADY-BOUNDARY-LAYER ACTION 

Consider a tube of uniform cross section to have flexible 
walls such that a small normal velocity v can be generated 
at  the walls. This is equivalent to mass entering the tube 

1 egion 4 with velocity u= -a4, as indicated in figure 2. Let 
point d of figure 2 represent an arbitrary point on the shock- 
wave characteristic. The problem is to find the net pressure 
perturbation behind the shock (i. e., Ap,,). This requires 
an integration of equation (4) along all the characteristic 
lines which contribute to The major contribution to 
Apz,, comes from characteristic lines bd, be, and ab. Hence, 
these are the characteristic lines considered in the present 
analysis (as is indicated in appendix B). Integrating along 
these characteristic lines permits A;ozfd to be expressed as 

flow in the tube is considered as one-dimen~ional,~ the equiv- 
alent source strength is 

- 

a t  the rate $ pv dl, per unit z, where the integral is taken 

around the perimeter of the tube cross-sectional area. If the 

where d =4A/l is the hydraulic diameter, and v=v(x,t). The 
expression for Ap can then be written as 

1 azd APZ.~=[ 1 J;, do Icvz dp+ 
F 272 pz 1+M2 6, 1-M2 6 

&S,*-V ( t , t - e )  a-u d ~ ]  (4) 

Similar expressions can be written for Au and Ap. In  the 
case of waves induced by boundary-layer action, the v in 
equation (4) refers to the normal velocity a t  the edge of 
the boundary layer. Note that a positive v results in 
compression waves, while a negative v results in expansion 
waves. 

ATTENUATION IN A SHOCK TUBE 

Equation (4) can be applied to find the attenuation in a 
shock tube. The details of the analysis are described in 
appendixes B to F.  The resulting formulas for shock 
attenuation are presented in the following section. The - 
limiting solution for weak shocks and a numerical solution - 
for an air-air shock tube are also indicated. 

SHOCK ATTENUATION FORMULAS 

The flow in a shock tube is assumed to consist of the ideal 
basic flow plus small perturbations due to the boundarv " 
layer. Ideal shock-tube flow relations are sum.marized in 
appendix G. The expansion wave of the ideal flow is 
assumed to have negligible thickness and to propagate into 

2 If the flow through the tube cannot be considered as one-dimensional, it is necessary to 
consider each element of tube surface as an elemental wave source of strength proportional to 
the local value of v. The net wave strength at any point in the tube is found from an integra- 
tion over the entire tube surface. 

In the problem of attenuation in a shock tube, the shock wave is considered to be uniform, 
laterally, at each value of z, but to decrease in strength with increases in z. Hence, a one- 
dimensional analysis is permissible. Actually, small lateral variations of shock strength 
exist, particularly near the walls, since the boundary layer immediately behind the shock 
exerts a three-dimensional effect on shock strength. These lateral variations are ignored 
herein. 

The shape of the shock wave was previously studied (ref. 9). It  was assumed that region 2 
was infinite in  extent (i. e., region 3 was neglected), and the problem was considered as a 
steady-flow problem in a coordinate system moving with the speed of the undisturbed shock. 
I t  was found that the shock wave assumes a parabolic shape, but that appreciable shock cur- 
vature is restricted to a region near the wall less than a boundary-layer thickness in extent. 

Equation (5) is derived in appendix l?. The notation is 
defined in appendixes A and F. The term CE 
represents the contribution to Ap2,, of all the characteristic 
lines other than bd, be, and ab (appendix F). 

If the boundary layer in region 2 is wholly laminar or 
wholly turbulent, the boundary-layer solution for vz is known 
(appendixes D and E).  Similarly, if the boundary layer in 
region 3 is wholly laminar or wholly turbulent, the solution 
for v3 is known (appendixes D and E). For these special 
cases, the integrals of equation (5) can be readily evaluated. 
Thus, if the boundary layers in regions 2 and 3 are both 
laminar, equation (5) becomes (from eqs. (F6) and (F7) with 
nz=n3= 112) 

f 

FIGURE 2.-Characteristic lines appropriate for study of attenuation 
in shock tube. 
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where Lz and L3 are found from appendix D. If the bound- 
ary layers in regions 2 and 3 are both turbulent, equation 
(5) becomes (from eqs. (F6) and (F7) with nz=n3= 115) 

where Lz and L3 are found from appendix E. The other 
perturbation quantities directly behind the shock can be 
found from A p z S d / p z  and normal shock relations. For 
example, utilizing equations (C4) and (C5) gives 

(Eq. of state) 

Note that the perturbations directly behind the shock are 
not isentropically related except for the limit as M8 ap- 
proaches 1. This is due to the fact that a perturbation of 
shock strength creates an entropy perturbation. (The 
particles between the shock wave and the contact surface 
have entropy perturbations whose magnitude depends on 
the strength of the shock at  the instant each particle passed 
through it. To the order of the present analysis, these 
entropy perturbations do not interact with the longitudinal 
wave system induced by the wall boundary layer.) 

Expressions similar to equations (6) and (7) can be found 
for the mixed cases nz= 1/2, n3= 1/5 and nz= 1/5, n3= 1/2. 
For other boundary-layer characteristics (such as transition 
from laminar to turbulent flow in the middle of regions 2 or 
3), it is necessary to integrate equation (5) with the corre- 
sponding v distribution. Reliable criteria for determining 
the transition points in shock-tube boundary layers have 
not yet been established. A crude tentative method for 
estimating the transition points in regions 2 and 3 is pre- 
sented in appendix H. I t  is pointed out therein that the 
Reynolds numbers a t  point b, computed separately for re- 
gions 2 and 3, can be used as an index to determine whether 
the boundary layers in regions 2 and 3 are primarily laminar 
or turbulent, respectively. The values of Rezsb and Reasb, as 
defined in appendix H, can be obtained from figure 3 for the 
case where the gas in region 1 is air a t  520' R. 

The present theory requires that the boundary layer be 
thin relative to the shock-tube diameter. The boundary- 
layer thickness in region 2 is defined by equations (D5) and 
(E3) for laminar and turbulent boundary layers, respectively. 
The laminar-boundary-layer thickness a2 is taken to corre- 
spond to u/uz=0.99, while the turbulent-boundary-layer 

FIGURE 3.-Reynolds number a t  point b for air  inrregion 1 a t  520' R. 
Re3. b =  v23Re2. b (appendix H). 

thickness ?i2 is taken to be the value obtained from a Kiirmsn- 
Pohlhausen-type integral solution. Considering conditions 
along characteristic lines, the maximum boundary-layer 
thickness occurs at  point 6 of region 2. Values of a Z s b  and 
i2, are plotted as a function of M, in figure 4 for the case 
where the gas in region 1 is air a t  520' R. 

I t  is previously noted, i11 connection with equation (4), 
that a positive v results in the generation of compression 
waves, while a negative v results in the generation of expan- 
sion waves. From the boundary-layer theory of appendixes 
D and E it can be seen that, apart from dissipation and 
heat-transfer effects, vz is negative and v3 is positive. Thus, 
the boundary layer in region 2 induces expansion waves 
(which attenuate the shock), while the boundary layer in 
region 3 induces compression waves (which accelerate the 
shock). Dissipation and heat transfer modify these results. 
Dissipation tends to increase v in both regions 2 and 3. 
Heat transfer from the wall to the boundary layer increases v .  
Heat transfer from the boundary layer to the wall decreases v .  
In  region 2 the heat transfer is from the boundary layer to 
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(b) Turbulent case (eq. (E3)). 

FIGURE 4.-Boundary-layer thickness a t  point b in region 2. Gas in 
region 1 is air a t  520' R; wall is assumed a perfect conductor 
(Tz.w= TI). 

the wall (ref. 2) and leads to larger negative values of v2 and 
therefore more shock attenuation. In  region 3 the heat 
transfer is from the wall to the fluid for a weak expansiorl 
wave and from the fluid to the wall for a strong expansion 
wave (ref. 2). Thus, for a weak expansion wave, heat 
transfer in region 3 tends to generate compression waves 
(thus accelerating the shocli). For a strong expansion wave, 
the heat transfer in region 3 tends to induce expansiorl waves 
(which attenuate the shocli). The net effect of all these 
factors is to attenuate the shock wave. The relative magni- 
tudes of the various terms in equations (6) and (7) are noted 
later in a numerical example. 

LIMITING SOLUTION FOR WEAK SHOCKS 

For Ms approaching 1, equations (6) and (7) take on t,he 
following forms: 

Laminar case: 

Turbulent case: 

- - -0.11571 
C2(71+ 111 

(for T2, ,= T2, ,) (9b) 

The condition T2,,=Tl (eqs. (8a) and (9a)) corresponds to 
thc case where the shocli-tube wall is a perfect conductor 

439026-58-2 

(assuming that the fluid in region 1 is in thermal equilibrium 
with the wall). Note that taking Tz,, equal to TI means 
that the wall remains at  its original temperature and that 
heat is transferred from the fluid (of region 2) to the wall. 
The condition T2,,= Tz,, (eqs. (8b) and (9b)) corresponds to 
the case wherein the wall is s perfect insulator or has a very 
low heat capacity. When the shock-tube wall is a metal, the 
assumption T2,,= T1 should give very accurate results, as 
discussed in reference 2 (particularly since weak shocks are 
now being considered). Results for both T2,,=T1 and 
T2,,= T,,, are given so as to define the upper and lower 
bounds of the heat-transfer effect on shock attenuation. 
The attenuation is greater, by a factor of approximately 

when there is beat transfer as compared with the insulated- 
wall case. (The factor is exactly 7, for the turbulent 
case and approximately Y~ for the laminar case, the latter 
depending on the value of a,). 

AIR-AIR SHOCK TUBE WITH T&=T1=520° R 

Equations (6) and (7) were evaluated numerically for an 
air-air shock tube with T4=Tl=52O0 R. I t  was assumed 
that a=0.70 and y=1.4. The results for the laminar and 
turbulent cases are summarized in  figure 5 .  Both the 

7 

6 

5 

4 

3 

2 

I 

Oi.0 ' 1.5 ' 20 ' 2.5 ' 3.0 ' 3.5 ' 4X) ' &5 ' 6.0 ' 5.5 ' 60 
Nominal shock Mach number, M, 

(a) Laminar case (eq. (6)). 

(b) Turbulent case (eq. (7)) 

5.-Attenuation in air-air shock tube. T, = T4= 520" It; 
Praridtl number U ,  0.70; ratio of specific heats y, 1.4. 
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(a) Laminar case. (b) Turbulent case. 

FIGURE 6.-Percent contribution to shock attenuation of characteristic lines of figure 2. Air-air shock tube; TI= T4= Tz,,= T3,,=520° R; 
Prandtl number u, 0.70; ratio of specific heats y, 1.4. 

insulated-wall case (T2,,= T2,r;T3,w= T,,,) and the case where 
the wall is a perfect conductor (T2,,=T3,,=TI=T4) are 
noted therein. When the shock-tube wall is a metal, the 
assumption that the wall is a perfect conductor should give 
accurate results except possibly for very strong waves (e. g., 
ref. 2). 

The relative contribution to the net attenuation of the 
various terms in equations (6) and (7 )  is indicated in figure 6 
for the T2,,= T3,,= TI= T4 case. In  particular, the percent 
contribut-ion of the integrations along the characteristic lines 
bd, ab, and bc and of the reflected wave at  point c are indi- 
cated therein. (The reflected wave at  point c represents the 
contribution of all the characteristic lines in figure 2 other 
than lines bd, ab, and bc, as is mentioned in appendix F.) 
For weak shocks, the major contribution to shock attenua- 

tion comes from the integration along line bd. With increas- 
ing M,, the contribution of the characteristic line bc increases 
gradually to a value of about 30 percent at  Ms=6.0. The 
integration along line ab leads to compression waves (which 
tend to accelerate the shock) and therefore is negative in 
figure 6. Its value decreases to about -20 percent at  
M s r 2 . 0  for the laminar case and to about -35 percent at  
MSg2.75 for the turbulent case, and then increases with 
increases in Ms. (The influence of characteristic line ab 
may be somewhat overestimated in the present analysis 
because of the assumption of an expansion wave of zero 
thickness.) The contribution of the reflected wave a t  point c 
varies from a value of zero at  Ms=l  to about -5 percent a t  
Ms=6. The neglect of the latter contribution appears 
reasonable for the range of M, considered herein. 
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RESULTS AND DISCUSSION I 
Equations (6) and (7) define the attenuation in a shock 

tube when the boundary layer is wholly laminar or turbulent, 
respectively. These equations are now compared with the 
experimental and theoretical results of reference 6. 

COMPARISON WITH EXPERIMENTS OF REFERENCE 6 I 
Measurements of shock attenuation were obtained in the 

investigation of reference 6 by using a high-pressure shock 
tube having a g- by >&foot rectangular cross section. Air at  
room temperature was used in regions 1 and 4. The air 
in region 1 was maintained at atmospheric pressure. Four 

Experimental points (ref. 6) 
Theory, turbulent boundory layer 

(eq. (7) with T2,w = T3,w = q)  
Theory, laminar boundory loyer 

(eq. (6) with T2,w = 7-3,W= TI) 
Theory, turbulent boundary layer 

(ref. 6, Gf = 0.0581 

(a) Pressure ratio p d / p ~ ,  4.061; shock Mach number relative to wall 
iM,, 1.344. 

I I I I I I I 

o Experimental points (ref. 6) 
Theory, turbulent boundory layer 

(eq. (7) with T2,w = T3,w= TI) 
--- Theory, laminar boundary layer 

(eq. (6) with T2,w= T3 = TI) 
--A Theory, turbulent  bound^;^ layer 

(ref. 6, Cf = 0.0581 ,?e-'I5) 
Theory, laminar boundary layer 

(ref. 6, Cf = 0.664 ,?e-'I2) 

sets of runs, corresponding to p,,=4.061, 5.764, 7.455, and 
17.915, are reported. The results of these runs are summa- 
rized in figures 7 (a) to (d), respectively. Some of the theo- 
retical curves of reference 6 are included in these figures. 
The theoretical predictions of equations (6) and (7) are also 
indicated in figure 7. The latter were found from. figure 3 
with p,=2117, and by assuming the wall to be a perfect 
conductor (since the shoclc tube had metal walls except for a 
pair of schlieren glass inserts). 

The Reynolds number at the contact surface for these 
tests is given directly by figure 3. The boundary-layer 
tl~iclcness at  point b of region 2 for the test conditions of 

I I I I I I I 

o Experimental points (ref. 6) 
Theory, turbulent boundary layer - 

(eq. (7) with T2,, = T3,,= TI) 
--- Theory, laminar boundary layer - 

(eq. (6) with T2,, = T3,w = TI) 
--- Theory, turbulent boundary layer - 

(ref. 6, Cf = 0.0581 

(b) Pressure ratio palp,,  5.764; shock Mach number relative to wall 
M,, 1.442. 

I I I I I I I 

o Experimental points (ref. 6 )  
Theory, turbulent boundary layer - 

(eq. (7) with T2.w = T3Aw = TI) 
- 7 

I --- Theory, laminar boundory loyer 
(eq. (6) with T2., = T3.w = TI) i - Theory, turbulent boundaiy layer 
(ref. 6, Cf = 0.0581 ~ e - " ~ )  

(c) Pressure ratio pJp1 ,  7.455; shock Mach n~unber  relative to wall (d) Pressure ratio p d / p l ,  17.915; shock Mach number relative t o  wall 
lVs, 1.518. M,, 1.792. 

FIGURE 7.-Pressure behind shoclr wave as function of distancc fro111 diaphragm. Air-air shock tube. TI= T4=52O0 R ;  hydraulic 
diameter (1, 117. 
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FIGURE %-Relative boundary-layer thickness a t  point b of region 2 
for experimental conditions of reference 6 (air in region I ;  turbulent 
boundary layer; TI= T2,,=5200 R ;  h, 118 ft). 

reference 6 is plotted in figure 8. I t  is assumed in figure 8 
that the boundary layer in region 2 is wholly turbulent and 
that the wall is a perfect conductor. The boundary-layer 
thickness is presented in t,he form of a relative thickness 
2iZvb/h where h is the smallest shock-tube dimension normal 
to the flow and equals )6 for the shoclc tube of reference 6. 
When 2iZ,,/h is sm.al1 compared with 1, the assumption of a 
thin boundary layer is valid, and the theory of the present 
report is applicable. It may be seen from figure 8 that 
2 i 2 , b / h i ~ . 2 ~  for r S  12 for the test conditions of reference 6. 
Since 2i2,,/h tends to overestimate the effective boundary- 
layer thickness (because of the asym.ptotic manner in which 
the velocities approach free-stream conditions at  the edge 
of the boundary layer),3 figure 8 indicates that the theory 
of the present report is applicable for comparison with the 
experiments of reference 6. 

In  figure 7 (a), the first data point (xr3')  is close to the 
theoretical value for a wholly laminar boundary layer. The 
other points fall somewhat above the theoretical curve for a 
wholly turbulent boundary layer. The Reynolds number 
per foot a t  the contact surface for this case is Rezsb/x=O.4X 
lo6 (fig. 3). Using Re=0.5X lo6 as a rough indication of 
the transition Reynolds number, as discussed in appendix H, 
it is reasonable to have the first data point near the laminar 
curve and the other points near the turbulent curve. 

The experimental results for Ms = 1.442 are given in figure 
7 (b). The Reynolds number at  the contact surface is 

3 A properly computed displacement thickness would probably give a better estimate of 
the effective boundary-layer thickness. 

Rez3,/x=0.8X106. The data agree quite well with the 
values for a wholly turbulent boundary layer. There is a 
slight tendency for the points to lie above the theoretical 
curve, which m.ight be attributed to the short length of 
laminar boundary layer directly behind the shock wave. 

The experimental results for Ms=1.518 (Rez,b/x=l.1x lo6) 
are given in figure 7 (c) and are in excellent agreement 
with the turbulent-boundary-layer theory of the present 
report. 

In figure 7 (d), the experimental results (M8=1.792, 
Re2,b/x=2.8X106) fall somewhat below the theoretical pre- 
dictions of the turbulent-boundary-layer theory of the 
present report. 

In  general, the theory seems to agree reasonably well with 
experiment for the range of data considered in figure 7. 
Figure 7 (d) indicates the poorest correlation and suggests 
that the present theory may underestimate the attenuation 
corresponding to large values of Ms. 

COMPARISON WITH THEORY OF REFERENCE 6 

The present analysis assumes a relatively thin boundary 
layer, and the calculations are based on the vertical velocity 
at  the edge of the boundary layer. The num.erica1 value of v 
depends on term.s which are related to the boundary-layer 
velocity profile, dissipation, and heat transfer. See, for 
example, equations (D3a) and (D3c). These terms cor- 
respond to the use of wall shear, dissipation, and heat trans- 
fer in reference 6. Dissipation and heat transfer play similar 
roles (qualitatively) in the present analysis and in reference 
6. However, i t  can be shown that the velocity-profile term 
in the equation for v has a sign opposite to that of the wall- 
shear term in reference 6 for characteristic lines ab and bc 
(e. g., appendix I). Therefore, the int,egrations along lines 
ab and bc, in reference 6, overestimate and underestimate, 
respectively, the contributions of these characteristic lines 
to shock attenuation. If the same boundary-layer theory 
is used, the attenuation calculations of the present report 
and of reference 6 should be in quantitative agreement 
only in the limiting case MS+l (for which the contributions 
of characteristic lines ab and bc are negligible) and for those 
values of M, where the errors due to characteristic lines 
ab and bc tend to compensate. 

Since different boundary-layer theories were used in 
reference 6 and herein, it is not directly possible to separate 
the discrepancies between the two methods due to the re- 
spective boundary-layer theories from the discrepancies due 
to basing the attenuation calculations on wall-shear, dissipa- 
tion, and heat-transfer terms rather than on v. An estimate 
of the latter discrepancy can be obtained by reversing the 
sign of the first term in the equations for Lz (eq. (D3c)) 
and L3 (eq. (D4c)) for the integrations of v along character- 
istic lines bc and ab. Such a procedure shows that the theory 
of the present report and that of reference 6 agree a t  Ms= 1. 
With increasing M,, reference 6 first overestimates the at- 
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tenuation because of the increasing importance of character- 
istic line ab. At Ms=0(1.5), reference 6 overestimates at- 
tenuation by about 10 to 15 percent. With further increases 
in .ills, the errors in characteristic line bc become important 
and tend to compensate for the errors in line ab so that the 
discrepancy between the two methods decreases. At 
Ms=0(2), the two methods are again in approximate agree- 
ment. As Ms increases further, line ab becomes relatively 
less important compared with bc, and the theory of reference 
6 unclerestimates the attenuation. At M,=6, the method 
of reference 6 appears to underestimate the attenuation by 
about 50 percent. The above figures are only approximate 
because of the manner in which they mere obtained, but they 
indicate the proper trend with Ms. 

From figure 5 (b) it can be seen that the attenuation theory 
of reference 6 (for turbulent boundary layers) is in good 
agreement with that of the present report for 1 5  M,52.  
The agreement is somewhat better than that to be expected 
from the discussion of the previous paragraph. Hence, 
either theory could be used to correlate the experimental data 
of figure 7. For M,>2, reference 6 considerably underesti- 
mates the attenuation. The laminar-boundary-layer theory 
of reference 6 differs by a factor of about 2 from that of the 
present report; therefore, there is a large discrepancy between 
the theoretical laminar-boundary-layer curves in figure 7 (c). 

CONCLUDING REMARKS 

A method is presented for computing the attenuation of a 
sllocli wave due to unsteady-boundary-layer action. The 
various assumptions involved in the analysis are summarized 
in this section, since these define the limitations of the 
method and suggest possible fields for improvements: 

1. Small perturbations: The equations of motion were 
linearized, assuming the potential flow external to the wall 
boundary layer undergoes only small perturbations. For 
long shock tubes with large amounts of attenuation, it might 
be advisable to employ a characteristic method. 

2. Thin boundary layer: The assumption of a thin bound- 
ary layer (relative to shock-tube diameter) is consistent with 
the assumption of small perturbations of the potential flow. 
If the viscous effects span the entire tube cross section (i. e., 
long tubes), it may be advisable to base the shock-attenuation 
theory on wall shear. 

3. One-dimensional longitudinal waves: I t  was previously 
pointed out that the perturbations in a shock tube should be 
computed by assuming each element of wall surface area to 
be an elemental acoustic source of strength proportional to v. 
This gives rise to a complex wave pattern involving both 
longitudinal and transverse waves. For the purposes of the 
present analysis it was assumed that the longitudinal waves 
are of primary interest and that these can be computed on 
the basis of a simplified one-dimensional theory. This 
assumption is accurate when an observer is relat'ively far 

from the sources (since the details of the source distribution 
around a perimeter thcn become relatively unimportant) but 
introduces errors when the observer is near the sources. I t  
would seem that the assumption of one-dimensional longi- 
tudinal waves is accurate for weak shocks but introduces 
errors for stronger shocks, particularly when the flow relative 
to the wall is supersonic. 

4. Boundary-layer theory: The boundary-layer theory of 
reference 2 was used. I t  may be assumed that the laminar- 
boundary-layer solutioii is reliable except possibly for very 
strong shock wavcs. In the latter case, very large tempera- 
ture gradients exist normal to the wall, and it may be advis- 
able to choose a different reference temperature from that 
used herein. Also, for strong shock waves, dissociation might 
occur, which ~vould require changes in the laminar-boundary- 
layer theory. The turbulent-boundary-layer theory of 
reference 2 requires experimental verification for even the 
tveak-shock case. However, the good agreement between 
the attenuation calculation based on the turbulent bound- 
ary layer of reference 2 and the experiments of reference 6 
suggests that the turbulent-boundary-layer theory of refer- 
ence 2 gives reasonable results, at  least for the weak-shocli 
case. 

5. Expansion wave of zero thickness: In order to simplify 
the problem of determining the boundary layer behind an 
expansion wave, it was assumed in reference 2 that the 
expansion wave is of negligible thickness (i. e., "expansion 
shocli"). This assumption is valid for weak expansion 
waves but is in error for strong expansion waves. The 
boundary-layer solution for region 3 might be improved for 
the strong-wave case by considering the finite thickness of 
the expansion wave. However, the contribution to shocli 
attenuation of region 3 becomes small for the strong-wave 
case, so that an improved boundary-laycr solution for region 
3 may not significantly affect the attenuation calculation. 

In addition to the preceding discussion, the following 
extensions of the present report might be pursued: 

1. The details for obtaining the perturbations at  a fixed 
point in the shock tube, as opposed to finding the shock 
attenuation as is done herein, might be treated. This would 
be useful for further correlating the theory with experiment 
and for determining conditions at  an aerodynamic model 
(when the shock tube is used as a wind tunnel). 

2. Formulas equivalent to equations (6) and (7) might 
be derived for the case where the boundary layer is partly 
laminar and partly turbulent. 

3. The boundary-layer theory as outlined in appendixes 
D and E might be simplified, particularly for the turbulent 
case, so as to give reasonably accurate results without too 
tedious a boundary-layer calculation. 

LEWIS FLIGHT PROPULSION LABORATORY 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

CLEVELAND, OHIO, April 24, 1956 
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APPENDIX A 

SYMBOLS 

The following symbols are used in this report : 
A cross-sectional area of tube 
a speed of sound 
C eq. (C3) 
CD specific heat a t  constant pressure 
CU specific heat at  constant volume 
D eq. (C3) 
d hydraulic diameter, 4A/l 
E eq. (C7) 
F eq. ((37) 
h smallest shock-tube dimension normal to flow 
k thermal conductivity 
L2,L3 appendixes D and E 
I perimeter of shoclr-tube cross section 
M Mach number of flow relative to wall 
Ms shock Mach number relative to tvall 
M2,M, Yach nu-nber of f l o ~  in regions 2 and 3, relative 

to wall 
m rate of mass addition per unit cross-sectional area 

per unit x 
n2,n3 appendixes D and E 
2) pressure, Ib/sq ft 
Re Reynolds number (appendix H) 
Rez, 1, Reynolds number at  point b of region 2, 

9 V I  [vu (%>' US (1  +u2-3) a2 MS])  appendix H 

T temperature, OR 
T, temperature of insulated wall 
t time 
1~ velocity of flow relative to wall 

US velocity of shock wave relative to wall 
u2,u, velocity in regions 2 and 3 relative to wall 
1' vertical velocity (positive when directed into tube) 

at  edge of boundary laycr 
.r longitudinal distance 
Y ratio of specific heats 
A perturbation quantity (Ap=perturbation of p, etc.) 
8? laminar-boundary-layer thickness in region 2 (eq. 

(D5)) 
82 turbulent-boundary-layer thickness in region 2 (eq. 

033)) 
P coefficient of viscosity 
v liincmatic viscosity 
t inlegration variable representing c 
P mass density 
u Prandtl nuinber 
T integration variable representing t 
Subscripts : 
1,2,3,4 regions of shocli tube (fig. I)  
a,b,c,d,p points on characteristic lines (fig. 2) 
m evaluated a t  mean temperature of boundary 

layer (appendixes D and E )  
w evaluated a t  wall 
Superscripts : 
+ associated with \rave moving downstream 

(+x-direction) 
- associated with wave moving upstream 

(-a-direction) 
Special notation : 
a3? = a3/a2; pI2 =pl/p2, etc. (Tvvo successive integer sub- 

scripts, not separated by a coLn~na, represent a ratio.) 

APPENDIX B 

CHARACTERISTIC-LINE GEOMETRY AND SOME INTEGRALS 

The equations of the characteristic lines considered in the 
present report are summarized. Some important integrals 
are indicated. It is assumed that the characteristic lines are 
straight (corresponding to the ideal-flow case) and that the 
expansion fan can be considered as an "expansion shock" 
(i. e., expansion wave of zero thickness) moving with velocity 
a, into region 4 (following sketch). The point d with coor- 
dinates x,t is assumed to be on the shock-wave characteristic. 

Region 4 I 

The equations of the characteristic lines are 
Line bd : 

t=x- (az+u2) (t-T) 1 

us7-<= 

Line ab: 

1 +M3 + a43 
Line bc: I 
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In terms of x,t, the coordinates of points a, b, and c are 

&=-2 Point a : 

7,' t 1+M2-- (uSlaz) 
1+M3+at3 

Point b: 
I 

&,=x[l+M,- (us/az)l 2 
rb=t[l +Mz- ( ~ ~ l a z ) ]  

Point c:  

Some important line integrals are 
1 
-- S (usT-t) -"z d [ = ( l - ~ ~ / u ~ ) ~ - ~ ~  (1+M2- 
1+M2 5 ,  

APPENDIX C 
INTERACTION OF PRESSURE WAVES WITH INTERFACES 

Weak pressure waves are assumed to overtake a contact 
surface or a shock wave. The strength of the reflected and 
transmitted waves is found. 

CONTACT SURFACE 

Consider the contact surface which separates region 3 from 
region 2 (following sketch). At a certain instant, known 

[ Region 3 2 - X 

incident waves Ap$, and Ap,, intersect the surface. The 
problem is to find the final waves Ap, , and Apg , . From 
isentropic flow relations, 

The boundary conditions across the contact surface are 

From equations (C I) and (C2), the expressions for Ap$, and 

where 
C= (r32a23- 1) 1 (r32a23-t 1 ) 

D = 2 l ( ~ ~ ~ a ~ 3 +  1) 

The quantities C and D are reflection and transmission co- 
efEicients, respectively. 

SHOCK WAVE 

Consider a shock wave moving with velocity u, into a 
stationary fluid (region 1). The region behind the shock is 
designated as region 2. Conditions in regions 1 and 2 can be 
found from shock-wave theory. In  particular, with yl=y,, 

At a certain instant, a known wave Apg, intersects the 
shock (following sketch). 
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- *d-* n2MS A M , , ,  
p2 23314-1 

The problem is to determine the net perturbation of the 
shoclc wave. From equations ( C 4 ) ,  

- 

+=. ( 1  +&)  AM^, (l } 
al rl+l The quantity E is a reflection coefficient. The resulting per- 

turbation of the shock Mach number is 

where 
144; 

b - ( 2 P 1 2 a 1 2  rn-- 1)/(2P12U12 

The net pressure and velocity perturbations in region 2 are 
then related by 

APPENDIX D 

For M,= 1, '*=0. A P ; ~  Por M ,  infinitely large, 

Mi 
A w , d = 2 ~ l a l -  I AU2." 

With ApZsd = Ap)2td+ Apgd and A u , , =  Au$,+ Au,,, using 
equ~~tions (C 1) gives 

A p i  t ~ =  EAp-t d 

(C7) 
~ p ~ , ~ = ~ ~ p z ~  

LAMINAR BOUNDARY LAYER BEHIND WAVE 

A p i a  - 
A d  2-JTx + , ' 

2% 

which becomes += -0 .14 for rl= 1.4, indicating that the 
AP2. a 

reflectecl wave is relatively small and is opposite in sign to 
the incident wave. 

The laminar boundary layer behind a shock or thin 
expansion wave is analyzed in reference 2 .  Some of the 
results are summarized herein. It is assumed that the wall 
temperature behind the wave is constant and that a and c, 
are independent of temperature. The fluid properties p 

and k are referenced to a mean temperature as discussed in 
appendix C of reference 2 .  The notation of reference 2 is 
com.pared with the notation of the present report in the 
following equations. The left side of each equation repre- 
sents the notation of reference 2 ,  while the right side is in 
the notation of the present report. 

Region 2 

Region 3 

VERTICAL VELOCITY AT E D G E  OF BOUNDARY LAYER 

The expression for the vertical velocity a t  the edge of the 
boundary layer can now be written as follows: 

2 -- d l  p Z m  T2 { . [ (J - ' )  ( I -%)]  L -  ---- llrn U s  - 
2 ~2 T 2 . m  q+m ~ 2 1 ~ s  5 

The above quantities can be evaluated if the wall surface 
temperature T,,, is known. The value of T2, ,  depends on 
the heat capacity and conduction properties of the wall and 
the wall khickness. A method for evaluating T2, ,  is pre- 
sented in reference 2. From the discussion in reference 2 ,  

1 it  may be concluded that in most cases T , , ,  approximately 
1 equals TI when the wall is a metal. 
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Region 3 

where 
n3=% (D4b) 

3- 

. - 1 ~ ~ a ~ ~  2 ( 1 + 3  Jm r3 d n f  

Equations (D4) can be evaluated if T3,, is known. If the 
wall is initially a t  temperature T4, then T3 ,,= T4 is generally 
a good estimate for T3,,, as is discussed in reference 2. 

BOUNDARY-LAYER THICKNESS I N  REGION 2 

In the body of the report it is assumed that the boundary 
layer is thin relative to the shock-tube diameter. I t  is there- 
fore of interest to present an expression defining boundary- 
layer thickness. Region 2 is of particular interest since the 
boundary layer in region 2 is generally larger than that in 
region 3. Let 62 represent the laminar-boundary-layer thick- 

(Eq. (D5) uses a mean reference temperature and an inter- 

1 + (~31a4) T3. w 
( T 3  2;)Jrns3dn) (D4c) d a 4  

polation formula for qa (defined in ref. 3) and takes the upper 
limit on the. integrals to be rather than 7s.) To evaluate 
6, along the characteristic line bd of figure 2, take uSr-[ equal 

U 
ness in region 2, defined so as to correspond to -=0.99. 

uz 
From equation (18) of reference 3, 

to (1+M2-usia2) (2-[j. The value of 62  at point b is found 
1 +M2 

T3. -=O.5 rn (&+1)+0.22 ( q - 1 )  (D4i) 1 by replacing uSr--t by 
T3 T3 3 

APPENDIX E 
TURBULENT BOUNDARY LAYER BEHIND WAVE 

The turbulent boundary layer behind a shock or thin ex- 
pansion wave is also studied in reference 2 for the case of 
constant wall surface temperature. The correspondence 
between the notation of reference 2 and that of the present 
report was previously noted in equations (Dl) and (D2). 
The turbulent-boundary-layer solution of reference 2 (re- 
lating to v) is now summarized. I t  is assumed that the wall 
surface temperature is essentially constant. 

VERTICAL VELOCITY AT EDGE OF BOUNDARY LAYER 

where 
n2= 115 

(E lg) 

(Elh) 

(Eli) 

The conditions under which T2,, essentially equals Tl can be 
established by the methods of reference 2. The assumption 
of T2,,= Tl appears reasonable for most cases. 

The integrals 1 2 , 7  and 12,7-12,s can be evaluated using 
table I. Reciprocals are tabulated therein so that linear 
interpolation is accurate except for bz near - 1 or cz/(b2+ 1) 
near 1. The integrals can be evaluated analytically from 
the following expressions: 
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where I 

I t  can be shown that P2<0, X,> l .  Equations (Elo) and 
(Elp) give accurate results for -1.6<P2<0 and 1<X21 2, 
respectively. For values of P2 and X2 outside these ranges, 
the right sides of equations (Elo) and (Elp) become the 
difference of two nearly equal numbers and the following 
expansions are useful : 

8!mf 1 
( 1 f 7 ) h = & [ ~ + $ ~ ~ ( ~ ~ ]  

1 
(12, 7)k2=- ['-'g (7+m)(8+m) (Lr] X, (Elr) 

Region 3 
a3=L3[ ~:/a4 Q ).I 

1 + (~31~4) a47 + 5 (E2a) 

where 
n3= % (E2b) 

ai[l+ (~3/a4)I {p3 L3=0.0460 - 3 3  (E2c) 
83 (u3la4) 03[1+ (u3la4)l 

The conditions under which T3,w essentially equals T, can 
be established by the methods of reference 2. The assump- 
tion T3,,= T4 appears reasonable for most cases. The 
integrals 13,7 and 13,7-13,8 can be evaluated using table I or 
equations (Ell) to (Elr) (with the subscript 2 replaced by 
the subscript 3 therein). 

BOUNDARY-LAYER THICKNESS IN REGION 2 

The symbol Ti2 represents the turbulent-boundary-layer 
thickness as o b t a i n e d  from an i n t e g r a l  (Kiirmiin- 
Pohlhausen) type of boundary-layer solution. From refer- 
ence 2, it can be shown that 

(E3) 

The value of & along characteristic line bd or a t  point b may 

( ~ ~ - ~ - 1 ) ( 1 - 7 - ~ 1 ~ , , ) ]  (E2d) 
be obtained by the  substitutions indicated after equation 

a 4 573, w 

APPENDIX F 

DEVELOPMENT OF ATTENUATION FORMULAS 

The attenuation of the shock wave in a shock tube is now 
derived. The flow is considered to consist of the ideal 
shock-tube f l ~ w  plus small perturbations due to the boundary 
layer. The ideal flow is uniform in regions 1, 2, 3, and 4, 
and is denoted by the appropriate subscripts (i. e., p,, p,, p3, 
etc.). Perturbations at  any point are denoted by A and an 
additional subscript indicating the point. Thus, the per- 
turbations a t  point b of figure 2 evaluated on the right side 
of the entropy discontinuity are designated by Ap,,,, AuzSb, 
and so forth. The expansion wave of the ideal flow is 
assumed to have negligible thickness and to propagate into 
region 4 with the velocity u=-a4 as indicated in figure 2. 

(The same assumption was used in the attenuation study of 
ref. 6.) 

Let point d of figure 2 represent an arbitrary point on the 
shock wave. The problem is to find the net pressure 
perturbation behind the shock (i. e., A P ~ , ~ ) .  This requires 
an integration of equation (4) along all characteristic lines 
which contribute to ApzSd. Because of the entropy dis- 
continuities, there are an infinite number of line segments 
along which the integration must be conducted (fig. 2). 
However, the major contributions to A P , . ~  can be shown to 
come from segments ab, cb, and bd. 
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If Ap,fd represents the incident pressure wave at  point d, 
then equation (C7) gives 

Apz ,a= FApzd 

But, from equation (4), 

I t  can be shown that Ap$,=O in the present case. More- 
over, p2=p3. The expression for Ap2,, can then be expressed 
9.S 

where the integration is conducted along the line bd. From 
equation (C3), 

Again, from equation (4), 

In appendixes D and E it is shown that for wholly laminar or 
wholly turbulent boundary layers 

where L. and n are independent of T and (. The values of L 
and n depend on whether the boundary layer behind a given 
wave is laminar or turbulent. Substituting equations (F5) 
into equation (5) and using equations (B3) yield 

The corresponding change in shock Mach number can be 
found from equation ((25). Appropriate values for L and n 
are given in appendixes D and E.  

If nz=n3 and CEAp2,,/ApZ,, is assumed not to vary with x, 
then equation (F6) indicates that Apz,,/Ap2,,= (&/x)l-"2 and 

Equation (F7) indicates CEAp,, ,/Ap,,, to be independent of 
x and is therefore consistent with the original assumption to 
t.his effect. Substitution of equation (F7) into equation 

(F6) gives accurate results even when nz Pn3, since the major 
contribution to Ap2,d comes from the first term on the right 
side of equation (F6). The term CEAp, ,/Ap,, represents 
the contribution to Ap2,& of a11 the characteristic lines of 
figure 2 other than lines ab, bc, and bd, and is referred to as 
the contribution of the reflected wave a t  point c in figure 6. 
I t  can be seen from figure 6 that this term is small and can 
probably be neglected in most cases. 

If it is necessary to consider the boundary layer behind 
the shock (or expansion) wave as partly laminar and partly 
turbulent, then equation (5) must be integrated accordingly. 

APPENDIX G 

IDEAL SHOCK-TUBE RELATIONS 

Shock-tube relations, assuming ideal flow, are presented 
herein for convenience. The formulas were obtained from 
reference 1. The notation p12=pl/p2, a32=a3/a2, and so 
forth, is again used. 

Define 
ff= (Y+l)/(Y-l) 
;B=(Y-~)/~Y 

Then 

- T - 2 -  34-a34- ( ~ 1 4 ~ 7 . 1 ) ~ ' ~  (Gld) 

I (Gle) 

uz- -- pH-1 
a~ Y l  [Bl(ffl~21+ 111% 

(Glf) 

1 3 = ~  [I- @14fi1)'4] 
a4 ~ 4 P 4  

(Gig) 

3 = ~ ~ =  a1 [fil(l+alRI) ( ~ l h )  

U"=M - PZI- 1 (Gli) 
a2 2-~1[B1p21(~1+p~~)l~ 

u3 - -- 1 
-M3=-;-- [(~142)21) -;4---1 

a3 
(Glj) 

P n  4 
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APPENDIX H 

REYNOLDS NUMBERS AND TRANSITION 

A Reynolds number characterizing the boundary-layer 
development in regions 2 and 3 of the shock tube is now 
developed. 

Region 2 ( us -us7 - 

In  the notation of reference 2, a Reynolds number char- 
acterizing the boundary layer behind a shock is defined 

therein as Re=- ' (ue-uw)2. Using the transformations 
v w  ue 

indicated by equations (Dl)  and arbitrarily basing v on free- 
stream conditions, the Reynolds number for region 2 may 
be written as 

where C;,T are the coordirlates of a point in region 2 (following 
sketch). 

Consider t , ~  to be a point on the characteristic line through 
x,t (above sketch). The Reynolds number for points along 
this line, as a function of t, is (using eq. (B2)) 

olds number for incompressible flow over a semi-infinite 
flat plate [Re=0(0.5X106)] might be used to estimate the 
transition point behind a shock wave. That is, take 
Rez=0(0.5X106) as a rough estimate for the transition 
Reynolds number. This is probably a conservative estimate 
for the strong-shock cases, since the large amount of heat 
transfer to the shock-tube walls may have a very stabilizing 
effect on the boundary layer. 

Region 3 (- 1 SG Sa, ' "1 
For a point in region 3 (following sketch), the Reynolds 

) Region 3 

number as defined in reference 2 becomes (using eqs. (D2) 
and v based on the free stream) 

For a point 011 the characteristic line influencing point x,t, 
the Reyilolds number becomes 

If the transition Reynolds number is linown, equation (H2) 
can be used to determine the values of ij a t  which transition 
occurs. The maximum Reynolds number in region 2 occurs 
a t  the contact surface ( t=  fa) and equals 

Equation (H3) call be used as a general index as to whether 
the boundary layer (along the characteristic line) is primarily 
laminar or priinarily turbulent. A plot of Re,,, against Ms 
for air in region 1 (with Tl=52o0 R) is given in figure 6. 

The transition Reynolds number for the boundary layer 
behind a shock wave has not yet been established. In  the 
absence of more accurate information, the transition Reyn- 

At the contact surface (,$=to), equation (H5) has the value 

 he criterion Re3=0(0.5X lo6) might be taker1 as a rough 
estimate for the traiisilion Reyilolds number behind the 
expailsion wave. 

The boundary-layer characteristics presented in appendixes 
D and E indicate a discontinuity in the boundary-layer profile 
across the contact surface. (Note that Rez,b/Re3,b=v,/vz.) 
This discontinuity does not actually occur, and the theoretical 
discontinuity thus represents a deficiency of the present 
method. 
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APPENDIX I 

GENERATION OF PRESSURE WAVES BY WALL SHEAR AND HEAT ADDITION 

The generation of pressure waves by body forces and by 
heat sources in one-dimensional flow is investigated, and 
the results are used to compare the method of the present 
report with that of reference 6. 

WAVE GENERATION BY BODY FORCES AND HEAT SOURCES 

Assume a uniform flow of pressure p, velocity u, and so 
forth, in a tube of constant cross section. This uniform 
flow is assumed to be slightly perturbed by we,ak body 
forces and heat sources. The equations of motion are 
(neglecting the possibility of mass sources, since this case is 
treated in eq. (1)) 

where f(x,t) is the body force per unit volume acting in the 
+x-direction and q(x,t) is the heat addition per unit volume 
per unit time. The symbol As represents the entropy 
perturbation of a particle and is related to the pressure and 
density perturbations by 

The perturbation at  any point x,t can be shown to equal 

Ap 1 Ap As 
,=Y(p-z) J 

where 

The upper limit on the integral for Ap- is + co or - 
depending on whether M<l or M>l. Since equations 

(1) and (11) are linear, the solution for the case where mass 
sources are also present can be obtained by adding equation 
(2) to equation (13). Note that an elemental heat or mass 
source generates a symmetric pressure-wave pattern (posi- 
tive pressure waves propagating in the downstream and 
upstream directions), while an elemental body force generates 
an antisymmetric pressure-wave pattern (positive pressure 
waves propagating in the downstream direction and negative 
pressure waves propagating in the upstream direction). 

COMPARISON WITH REFERENCE 6 

In effect, reference 6 uses equations (13) to find the shock 
attenuation in a shock tube. The value of q is obtained by 
averaging, across the tube cross section, the heat transfer a t  
the wall and the viscous dissipation in the boundary layer. 
The value off  is found by averaging the wall shear across the 
tube cross section. Thus, if qw is the heat transferred into the 
boundary layer per unit wall area, Hw is the net dissipation in 
the boundary layer per unit wall area, and 7, is the shear per 
unit area exerted by the wall on the fluid (taken to be positive 
in the +x-direction), then 

Substituting equation (14) into equation (13) and integrating 
along appropriate characteristic lines should yield the same 
results for shock attenuation as those which were obtained in 
reference 6 from a somewhat different viewpoint. However, 
these results are not in agreement with the results obtained 
from equation (4) (the latter being the basis of the present 
report). 

Equation (4) is based on v while equation (14) contains 
terms relating to the heat transfer a t  the wall, viscous dis- 
sipation, and wall shear. But, from boundary-layer theory, 
it can be shown that v is dependent on terms related to the 
heat transfer at  the wall, viscous dissipation, and the velocity 
profile (see, e. g., eqs. (D3a) and (D3c)). The heat-transfer 
and dissipation terms in equations (14) and (4) play the same 
qualitative roles and, therefore, are not discussed further. 
However, the wall-shear term in equation (14) in some cases 
has a sign opposite to that of the velocity-profile term in 
equation (4). Thus, these terms are not always in qualitative 
agreement, and this leads to discrepancies between the 
results obtained from equations (14) and (4). 

Consider, for example, the boundary layer in a shock tube 
for the case of negligible heat transfer and dissipation. For 
this case, v depends only on the velocity-profile term. Simi- 
larly, only the 7ur term is retained in equation (4). The signs 
of v and 7, and of the resulting pressure perturbations in 
regions 2 and 3 of the shock tube are summarized in the 
following ta,ble : 



18 REPORT 1333-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

Thus, when heat transfer and dissipation are neglected, a 
perturbation solution based on v differs from a perturbation 
solution based on 7, in regard to the sign of the Ap- waves in 
region 2 and the Apf  waves in region 3. 

I t  may be concluded that attenuation solutions based on 
equation (14) differ from those based on equation (4) in the 

Region Perturbations based i I on v (eq (4)) 

following respects: (1) The integration of equation (14) along 
characteristic line ab  tends to overestimate its contribution 
to shock attenuation, and (2) the integration of equations 
(14) along characteristic line bc tends to underestimate its 
contribution to shock attenuation. For the limiting case 
Ms-+l, the integrations along a b  and bc are negligible, and 
equations (4) and (14) give the same results for shock 
attenuation. 

When the boundary layer is thin, it is obvious that the 
attenuation calculation should be based on equation (4). If 
the viscous shear affects the entire cross section (as for a long 
shock tube), there is no longer a core of potential flow and the 
solution should probably be based on equations (14) (or on 
the characteristics method of ref. 6 when nonlinearities be- 
come important). The quantities ?,, q,, and H, should then 
be based on unsteady pipe flow rather than on thin-boundary- 
layer theory. In  practice, the boundary layer is generally 
sufficiently thin to permit the use of equation (4). 

Perturbations based 
on TU, (eq (14)) 
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