NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED
June 1941 as Advance Restricted Report

AN ANALYTICAL STUDY OF WING AND TAIL LOADS
ASSOCIATED WITH AN ELEVATOR DEFLECTION
By H. A. Pearson and J. B. Garvin

Langley Memorial Aeronautical Laboratory Langley Field, Va .

CASEFILE COPY

NACA

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

 ASSOCLATED VITH AN BLEVATOR DEFECTION
 By H. A. Pearson and J. B. Garvin

summat

The equations relating the wing and tail loads are dorived for the tyje of control movement that proceeds at a constant rate to a maximum value and tincreafter remains conetant. These ecuations are then used to compute the variation wita time of the wing and tail loads for the BI-BS aimlane; each of the important parameters is varied in turn in the computations. Equations are derived for the deterrination of the maxiaum increments of the wing load, the down-tail load, and the up-tail load following a Given elevator aisplacement.

For a given elevator displacenent, the results indicate that the greater the rate of elevator movement the greater is tho down-tail load and that a rearard shift of the center of gravity causes an increase in both the wing load and the upwardacting tail load.

INTEODUCTION

The opinion has often been expressed that the design load requirements of tail surfaces do not have the some rational basis as the reauirements for other importent parts of the airplane. It is felt that the recuirements, in the case of the horizontal tail surfaces, should not only take into account the soonetric and the aerodynanic properties of the surfaces but should also have some intimate deletionship with the wing design load factor.

In order to achieve this relationship, it is neces. sary to determine both the wing load that accompanies a civen elevator deflection and the maximun effective angle of attack that occurs at the tail surfice when both linear velocities and angular velocities are combined. TherePove, a rational determination of the tail load must somehow ta'e into account not only the stability characteristics of the airplane but also the manner in which the pilot actually moves the controls.

As early as 192l, Case and Gates (reference l) had investigated the problem of determining the tail load from a rational basis and, although their paper included a series of design charts, they concluded that the number of factors upon which the maximum tail load depended was too large for any simple general formula to be given and that it was impossible to correlate the maximum tail load. With the subsequent maximum wing load. Since that time, a number of related papers (references 2 to 8) have eppeared; these papers have correlated the wing load with the stick force (see reference 2) or with the tail load. In most of the papers, either insufficient results are given for determining the effect of a wide variation in the rate of elevator movement on the tail load (see refarences 4 and 5) or elevator dispiacement functions have been so chosen (see references 6 and 8) that the rate of movenent is variable along the path. For these functions it is impossible to isolate the effect of elevator movement on the tail load.

A consideration of the problem of determining the maneuvering tail loads for various types of airplane indicates that a desirable approach would be:

1. Determine the variables that, from theoreticel considerations, appear to be the most inportant in determining the tail load.
2. Having determinod these variables, find by experiments conducted on an actual airplane, the parameters of which are accurately known, the effect of each variable in turn on the tail load.
3. Obtain statistical data regarding actual amounts and rates of elevator deflections at various air speeds for various airplane types.

The present paper covers step 1 of the outlined investigation, includes methods of computing the variation of wing end tail loads, and gives numerical results of the application of the theory to the $B T-9 B$ airplane. Finally, theoreticel formulas are developed and charts are given for computing the maximum increments of wing load, the down-tail load, and the up-tail load following a given elevator displacement.

The ollowing is a list of the symbols employed in this paper:

\because	airplane weight, pounds
S	wing area, square feet
s_{t}	tail area, square feet
b	wing span, test
ε	acceleration of gravidy, feet per second yer second
m	airplane mass (V / E) , slugs
k_{Y}	radius of geration of airplane, feet
I	pitching motent of incrtia (mzy ${ }^{2}$), slug-icet ${ }^{2}$
${ }^{x}{ }_{t}$	tail distance from center of छrarity of airplane to aerodynamic center of tail, faet
V	airplane velcoity, feut per second
ρ	mass density of air, slugs per cubic foot
9	denamic pressure ($1 / 2 \mathrm{p} V^{2}$), pounds per squere foot
T_{1}	tail efficiency factor ($\mathrm{q}_{\mathrm{t}} / \mathrm{q}$)
L	lift, pounds
${ }^{C}$	Iift coefficient
C_{m}	pitching-moment coefficient of airplane less horizontal tail
a	wing angle of attack, radians
α_{t}	tail angle of attack, radians
i_{t}	angle of setting of tail surface, radians
δ	elevator arele, radians
ϵ	downwash argle, radians

4

```
            \gamma flight-path angle with horizontal, radians
            0 angle of pitch ( }\alpha+Y\mathrm{ (), racians
            I empirical constant denoting ratio of damping
                moment of complate airplane to damping moment
                of tail alone
            n airplane load factor
            t time, seconds
                            With subscript i, t indicates time of maxi-
                mum elevator deflection; with prime (1), t
                indicates a particuler time. The notations
                \alpha}\mathrm{ and }\ddot{\alpha},\dot{0}\mathrm{ and }\ddot{0},\dot{\gamma}\mathrm{ and }\ddot{\gamma}\mathrm{ denote
                single and double differentiations with re-
                spact to time.
    K}\mp@subsup{|}{1}{},\mp@subsup{K}{2}{},\mp@subsup{\mathbb{K}}{3}{}\mathrm{ constants occurring in basic differential equa-
                tion
            a, b roots of basic differential iquation
            A, B constants of integration in solution of differ-
                        ential equation
                    Fo,F1, F , F
                        values of angles
```

Subscripts:

0	initial value
max	maximum value
d	down load
lo	zero lift
geo	geometric
t	tail

THEORETICAL RELATIONS BETVEA VING AND TAIL LCAD

The mathematical treatment of the longitudinal motion of an airplane following an elevator movement involves three simultaneous nonlinear differential equations. The correct solution of these equations must be obtained either by series substitution or step-by-step methods. A close
approximation to the correct solution can be obtained if it is assumed that, in the interval betwoen the start of a pull-up and the attainment of maximun ioads on the wing and the toil surfaces, neither the initial velocity nor the initial attitude changes materially. These assumptions, wich eiminate one of the three equatiors of motion end the trigoronetric coefficierts in the other two ecuations, aftord a consicierable saving in labor when a large number of cases are to be investisated. In adaition, tie assumptions agree qualitatively with experimental ailght results anc have been generaly usea in treating longtucinal motion of an airplene fojlouine a control defiection.

The folloving method, which mainly employs well-rnown results, might conosivaiy be useful at that stage of the design whore numerieai values of tie load are required bat where results of madel tests are unevailable. Under such conaitions most of tie aerodynamic peraneters of the airplane that enter into the problem must be cetermined from other sources. Some of these paraneturs car oo cetermined With a hich desree of accuracy; theress othcrs, rotibly the dormash factor, the tail efficiuncy tactor, and the slopo of the pitchinc-monent curve, canaot be obtained with the sane accuracy.

If en sign conventions figure 1 are used, the following equations aroly to the steady-fight condition:

$$
\begin{equation*}
\because \cos \gamma_{0}-\frac{d C_{L}}{d \alpha} \alpha_{0} Q S=0 \tag{1}
\end{equation*}
$$

Equation (1) repreaents the sumetion of the forces perpendicular to the iastantaneous filight path and equetion (2) represeats the moments about the conter of gravity.

In accordance nith the assumpton that there is no loss in speed during the pull-up, the corresponeing dynamic equetions can be wititen as

$$
\begin{equation*}
\because \cos \left(\gamma_{0}+\Delta \gamma\right)-\frac{\alpha c_{\ddot{u}}}{\dot{\alpha} \alpha}\left(\alpha_{0}+\Delta \alpha\right) q S+m \dot{\gamma} v=0 \tag{3}
\end{equation*}
$$

$$
\begin{array}{r}
\left(c_{m}+\frac{d c_{m}}{d a} \Delta \alpha\right), \frac{S^{2}}{b}+\frac{d c_{I_{t}}}{d \alpha_{t}}\left[\left(\alpha_{0}+\Delta \alpha\right)\left(1-\frac{d \epsilon}{d \alpha}\right)-\frac{d x_{t}}{V} \frac{d \epsilon}{d \alpha}-\frac{\dot{\theta x_{t}}}{V} \frac{K}{\sqrt{\pi_{t}}}+i_{t}\right. \\
\left.\quad+\frac{d \alpha_{t}}{d \delta}\left(\delta_{0}+\Delta \delta\right)\right]\left(n_{t} q\right) s_{t} x_{t}-m k_{Y} z \ddot{\theta}=0 \tag{4}
\end{array}
$$

The terr containing \dot{a} is introduced to correct for the effect of lag in downwash at the tail, end the term contraining $\dot{\theta}$ is introduced to account for the change in tail angle due to rotation.

If equations (1) ard (2) are subtracted from aquatons (3) and (4) end if it is assumed that only a small chance in attitude takes place (so that $\cos \left(\gamma_{0}+\Delta \gamma\right) \cong$ cos γ), the following equations of motion are obtained:

$$
\begin{gather*}
m \dot{\gamma} V-\frac{d C_{L}}{d \alpha} \Delta \alpha \quad q S=0 \tag{5}\\
\frac{d C_{m}}{d \alpha} \Delta \alpha q \frac{S^{2}}{b}+\frac{d C_{I_{t}}}{\dot{\alpha} \alpha_{t}} \Delta \alpha\left(1-\frac{d \epsilon}{d a}\right)-\dot{\alpha} \frac{x_{t}}{V} \frac{d \epsilon}{d \alpha}-\dot{\theta} \frac{x_{t}}{V} \frac{\tilde{Y}}{\sqrt{\eta_{t}}}+\frac{d \alpha_{t}}{d \delta} \Delta \delta\left(\eta_{t}\right) S_{t} x_{t} \\
-m k_{Y} \ddot{\theta}=0 \tag{6}
\end{gather*}
$$

From figure 1 the following relations are seen to exist

$$
\left.\begin{array}{l}
\theta=\left(x_{0}+\Delta \alpha\right)+\left(\gamma_{0}+\Delta \gamma\right) \tag{7}\\
\dot{\theta}=\dot{\alpha}+\dot{\gamma} \\
\ddot{\theta}=\ddot{\alpha}+\ddot{\gamma}
\end{array}\right\}
$$

$$
\begin{equation*}
\dot{\gamma}=\dot{\theta}-\dot{\alpha}=\frac{d C_{L}}{d \alpha} \Delta \alpha q \frac{S}{m \nabla} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{\gamma}=\ddot{\theta}-\ddot{\alpha}=\frac{d C_{L}}{d \alpha} \dot{\alpha} \cdot q \frac{S}{m V} \tag{9}
\end{equation*}
$$

If equations (8) and (9) are substituted into aquatron (6), the terms containing $\ddot{\alpha}, \dot{\alpha}, \Delta \alpha$, and $\Delta \delta$ are sestegatoc; and, if the resulting equation is divided by $-m y_{Y}{ }^{2}=-I$, there is obtained

$$
\begin{align*}
& \dot{\alpha}+\dot{\alpha}\left[\frac{-C_{L_{t}}}{d \alpha_{t}} \frac{S x_{t}^{2}}{2 I} \rho \eta_{t} V\left(\frac{K}{\sqrt{\eta_{t}}}+\frac{d \epsilon}{d a}\right)+\frac{d C_{L}}{d a} \frac{\rho}{2} V \frac{S}{m}\right] \\
&-\Delta \alpha\left[\frac{d C_{m}}{d \alpha} q \frac{S^{2}}{I b}+\frac{d C_{I_{t}}}{d \alpha_{t}}\left(\eta_{t} q\right) \frac{S_{t} x_{t}}{I}\left(1-\frac{d \epsilon}{d \alpha}-\frac{d C_{L}}{d \alpha} \frac{K}{\sqrt{\eta_{t}}} \frac{\rho}{2} \frac{S x_{t}}{m}\right)\right] \\
&=\Delta \delta\left[\frac{d C_{I_{t}}}{d \delta}\left(\eta_{t} q\right) \frac{S_{t} x_{t}}{I}\right] \tag{10}
\end{align*}
$$

For simplicity, equation (10) is written as

$$
\begin{equation*}
\ddot{\alpha}+K_{1} \dot{\alpha}+K_{2} \Delta \alpha=K_{3} \Delta \delta \tag{11}
\end{equation*}
$$

which is the equation for a damped oscillation with an impresser force where
$K_{1}=\frac{\rho V}{2 n}\left[\frac{d C_{I_{t}}}{d x_{t}} \frac{S_{t} x_{t}{ }^{2}}{k_{Y}} \eta_{t}\left(\frac{K}{\sqrt{\eta_{t}}}+\frac{d \epsilon}{d \alpha}\right)+\frac{d C_{L}}{d \alpha_{t}} S\right]$
$K_{2}=-\frac{\rho V^{2}}{2 m}\left\{-\frac{d C_{m}}{d \alpha} \frac{S^{2}}{L_{Y}^{2} b}+\frac{d C_{L_{t}}}{d \alpha_{t}} n_{t} \frac{S_{t} X_{t}}{k_{Y}}\left[\left(1-\frac{d \epsilon}{d \alpha}\right)-\frac{d C_{I}}{d a} \frac{X}{\sqrt{n} t} \frac{\rho}{2} \frac{S x_{t}}{m}\right]\right\}$
$K_{3}=\frac{o V^{2}}{2 m}\left[\frac{d C_{t}}{d \delta} \pi_{t} \frac{S_{t} x_{t}}{k_{Y}{ }^{2}}\right]$
If may be noted here that, when derivatjves are considerec, il is immaterial whether α or $\Delta \alpha$ is used. Because most of the results aill be given as increments of angles, the rotation Δa and $\Delta \delta$ will be retained excopt where derivatives are uoed. If, in equation (11), $\Delta \delta$ is expressed as a function of t and, in particular, if it is assumed that the elevator displacement curve is composed of a constant gradient up to a value of $\Delta \delta_{\text {max }}$ occurring at time t_{1} and thereafter is held at a constant value, the following conditions for determining tho constants of integration exist.

In the first interval between $t=0$ and $t=t_{1}$, $\Delta \delta=\frac{t}{t_{I}} \Delta \delta_{\text {max }} ;$ and at $t=0, \Delta \alpha=\dot{\alpha}=0$.

In the second interval, where $t>t_{1}$ ard $\Delta \delta=\Delta \delta_{\max }$,
the conditions for deternining the constants are that at $t=t_{1}, \Delta a, \dot{\alpha}$, and $\Delta \delta$ are given by tho values obtained from tho first interval. When the roots of $\ddot{\alpha}+K_{1} \dot{\alpha}+\pi z a$ ars complex, that is, of the form ajib, as will bu the case with airgienes that are loxgituainally stable, the solution of the difiereatiel equation for the first interVal $\left(t<t_{1}\right)$ is
$\Delta a=\frac{\delta_{m a x^{K}}}{t_{1} K_{2}}\left\{e^{a t}\left[\frac{K_{1}}{K_{a}} \cos b t-\frac{1}{b}\left(a_{1}+1\right) \sin b t+t-\frac{K_{1}}{K_{2}}\right\}\right.$
If equation (12) is differentiated and simplified by introducing tio aquivalent values of K_{1} and K_{2}, than

$$
\begin{equation*}
\dot{\alpha}=\frac{\delta^{K} a x^{K}}{t} K_{2}\left[\left(1-e^{a t} \cos b t+e^{a t} \frac{a}{b} \sin b t\right)\right] \tag{13}
\end{equation*}
$$

In the second interval, where $t>t_{1}$ and $\Delta \delta=\Delta \delta_{\text {max }}$, the complete solution of equation (11) is

$$
\begin{equation*}
\Delta x=e^{a t}(A \cos b t+B \sin b t)+\frac{K_{5} \Delta \delta_{m a x}}{K_{2}} \tag{14}
\end{equation*}
$$

where A and B are constants of integration.

$$
\begin{align*}
& \text { If oquation }(14) \text { is differentiated, } \\
& \dot{\alpha}=e^{a t}[(a A+b B) \cos b t+(a B-b A) \sin b t] \tag{15}
\end{align*}
$$

If the values that apply at $t=t_{1}$ are assigned to $\quad \mathrm{A} \alpha$ and $\&$, equations (14) and (15) may be solved simultaneously for the numerical values of the constants of integration A ard B, which are than inserted into the enuetions that apply for the second interval. Equations (12) and (14) enable a determination of the increment in wing angle of attack, while equations (13) and (15) give the rate of change of the angle of attack following the particular type of control displacement adopied. The increments of the wing load and the load factor are then found from the aquations

$$
\begin{align*}
& \Delta L=\frac{d^{C}}{d \alpha} \Delta \alpha_{q} S \tag{16a}\\
& \Delta_{n}=\frac{d C_{I}}{d a} \frac{\Delta a q}{W_{S}} \tag{16b}
\end{align*}
$$

It is seen from the bracketed term in equation (6) that, in order to determine the effective tail angle of attack at any time, the pitching velocity and the rate of change of the wing angle of attack must first be known. If substitutions are made from cquations (7) and (8) into this term, the increment in effective tail angle of attack at any time is
$\Delta \alpha_{t}=\left[\Delta \alpha\left(1-\frac{d \epsilon}{d \alpha}-\frac{d C_{L}}{d \alpha} \frac{\rho}{2} \frac{s}{m} \frac{x_{t}}{\sqrt{\eta_{t}}}\right)-\dot{\alpha} \frac{x_{t}}{v}\left(\frac{d \epsilon}{d \alpha}+\frac{1}{\sqrt{\eta_{t}}}\right)+\frac{d \alpha_{t}}{d \delta} \Delta \delta\right](17 a)$
Tha value of Δa_{t} given in equation (17a) is to be inserted in the equation

$$
\begin{equation*}
\Delta \Sigma_{t}=\frac{d C_{L_{t}}}{d \alpha_{t}} \Delta \alpha_{t} \eta_{t} q S_{t} \tag{17b}
\end{equation*}
$$

to obtain the increment in tail load at any time.
The pitching angular velocity from equation (8) is seen to be

$$
\begin{equation*}
\dot{\theta}=\alpha+\Delta a \frac{d C_{L}}{d a} \frac{\rho}{2} \frac{S V}{m} \tag{18}
\end{equation*}
$$

Although equations (12) to (15) are solutions for a particular type of elevator movement, other analytical displacement functions that give somewhat simpler solutions are available. (See references 6 and 8.) In these simpler functions, however, tha rate of movement varies along the displacerent curve so that its effect on the tail load cannot be directly determined. The following equations are general, allow for all types of elevator movement, and are subject to the assumptions previously listed. They may be derived from a consideration of a succession of small increments of elevator impulse $\delta(t) d t$.

$$
\begin{equation*}
\Delta a=\frac{K_{3}}{b} \int_{0}^{t^{\prime}}\left\{e^{a\left(t^{\prime}-t\right)} \sin b\left(t^{\prime}-t\right) \delta(t)\right\} d t \tag{19}
\end{equation*}
$$

$\dot{a}=\frac{K_{3}}{b} \int_{0}^{t^{\prime}}\left\{\left[a \sin b\left(t^{\prime}-t\right)+b \sin b\left(t^{\prime}-t\right)\right] e^{\left.a\left(t^{\prime}-t\right)_{\delta}(t)\right\} d t(20)}\right.$
The evaluation of general equations (19) and (20) is most readily obtained by intograting curves of the values
appearing vithin the braces plotted against the quantity $t^{\prime}-t$. Such an integration gives the value of $\Delta \alpha$ or $\dot{\alpha}$ at the time t^{\prime}.

APPEICATION OH MHE MEZORY

Fractical flight considerations indicate that certain quantities appearing in equations (lla) must be considered as variables with a fiven airplane. These quantities, not necessarily listed in the order of their importence, are as follows:
(1) Mass density of air ρ
(a) Airplane speed V
(3) Airplane nass m
(4) Pitching moment of inertia $I\left(=m k_{Y}^{2}\right)$
(5) Rate of elevator deflection do/dt
(6) Increment of elevator deflection $\Delta \delta$
(7) Slope of the pitching-moment curve $d C_{m} / d a$ (verjation is due to chenges in the center-ofEravity posfition)
(3) Slope of the lift curve $\quad \lambda C_{L} / d \alpha$ (variation is due to cheanfes in the thrust component that contributes to the lift)
(9) Tail efficiency factor η_{t} (variation is due to changes in thrust condition)
(10) Downash factor $d \in /$ da (veriation is due to changes in tho thrust condition)

A number of calculations were made to determine the relative effects of each of these varisbles on the wing and tail loads for the ET-9B airplone. A drawing of this airplane is shown in figure 2. For all the ceses considered, the pertinent parameters and their numerical values are listed in table I. The required aerodynamic parameters wert avallable from unreported tests made in the full-scale wind tunnel and the other values listad were available by
measurement or were arbitrarily assigned. The range covered by these variables is the range that might be covered under actual flight conditions.

Figure 3 shows the computed changes from the steadyflight concition in the wing angle of attack, the effective tail angle of attack, and the angular velocity for cases 1, 2, and 3 of table I due to a 150 deflection of the elevator. The variables covered in this figure are the air speed and the rate of elevator deflection.

Figure 4 shows the effect of varying the altitude at two different dynamic pressures corresponding to indicated velocities at lis and 150 miles per hour, with only the medium rate of elevator movement being used. Figures 5 through 10 show the results of varying the moment of inertia, the airplane mass, the slope of the lift curve, the downwash factor, the center-ofigravity position, and the tail efficioncy factor. In figures 4 to 9 , case 4 of table I was used as the basis for comparison; in figure lo, case 1 of table I was used.

In figure 3, it is seen that the maximum effective negative increment of tail angle of attack markedy increasei with an increasa in the rate of elevator deflection; whereas, for a given dynamic pressure, the maximum wing angle of attack remained almost unchanged with the rate of elevator movement. An increase in the air speed caused: (1) a decrease in the maximum negative value of the effective tail angle of attack and (2) a proportional increase in the maximum angular velocity. Because of this behavior, the maximum increment of load on the wing and the positive increment of load on the tail would be proportional to the dynamic pressure for a given rate and amount of elevator deflection, but the maximum negative increment in tail load woula be slightly less than proportional to the initial dynamic pressure.

From figures 5, 6, and 7, it is seen that the assumed changes in the moment of inertia, the airplane mass, and the slope of the lift curve, respactively, caused only slight additional changes in the wing and the effective tail angles of attack and only slight additional changes in the angular velocities. A mora marked effect is apparent in figures 4, 8, 9, and 10 , where the altitude, the downwash factor, the center-of-gravity position, and the tail efficiency factor, respectively, were varied. It must be rememoered, however, that the changes apparent from these
figures do not necessarily represent the relative importance of each of the variables because the percentages of chances considered were not equal but were tazen as the changes that might be obtained in the contemplated fight tests.

Teiole II prosonts the percontage of change in the maximum wing load and in the maximum positive and negative tail load for interpolated l-percent changes in each of the variables, case 4 being used as the standard of comparison. Although this table summarizes the quentitatito effoct of slight changes in each variable froin case 4 of tabie I, these changes must be taken as qualitative for other flicht conditions of the $B I-9 B$ airplane and for otiner afrplanes.

Eefore conclusions as to the relative importance of the variables are drawn from an inspection of table II, it must be recogaized that certain variables may be more accurately obtainable than others. For this reason, thoso variables that are less accurately known, such as the downwash factor and the tail efficiency factior, may acquire greater importance in order to provide for the probable error in the derived values. It appears that, for equal retes and amounts of elevator deflection, the center-ofgravity position is of the greatest importance; the downwash factor, the air speed, and the toil efficiency factor are of approximately cqual importance but are somewhat less important than the center-of-gravity gosition in determining the wing and tho tail loads.

RQUATIONS HOR DETERMINING GAXIMUM LOADS
nlthough the preceding sections have given the simplified theory and its application to the computation of the load variation with time, the values of principal interest from structural considerations are the maximum increments of load on the wing and the tail following a given control deflection. Equations and factors for determining the theoretical maximum loeds are as follows:

Waximum iling Load Increment
Reference to equation (14) indicates that the increment of the wing angle of attack, and as a consequence the
wing load, is determined by the addition of a damped oscillatory term and a constant term that depends on the elevator deflection. The oscillatory term is so heavily damped, ${ }^{\text {h }}$ owever, that after a few seconds (figs. 3 to lo) its effect has practically disappeared and the increment in the wing angle of attack quickly approaches a final value equal to $K_{3} / K_{2} \delta_{\text {max }}$. If the values for K_{2} and K_{3} given by equation (Ila) are substituted into equation (14), there is obtained the following equation for the final value of $\Delta \alpha$:

This value may be inserted in the equation

$$
\begin{equation*}
\mathrm{n}=1+\frac{\frac{d C_{\tilde{I}}}{d \alpha} q \Delta \alpha}{W / S} \tag{22}
\end{equation*}
$$

to obtain the resulting load factor following an elevator deflection $\Delta \delta_{\text {max }}$. Kaul and Lindemann in reference 4 have given an equation similar to equation (21) except for the first term in the denominator. Although the order of importance of the terms in the denominator of equation (21) will in most cases be 2, 3 , and 1 , computations indicate that the effect of the first term may sometimes be as large as that of the third term.
iith the exception of $d C_{m} / d \alpha$ and $d \epsilon / d \alpha$, all of the quantities involved in equation (21) for a given case can be determined with a satisfactory degree of accuracy or are specified by the geometrical characteristics of the airplane.

From figures 3 to 10 , it is seen that the airplane, in oscillating about the final value of Δa, first reaches

[^0]a maximum value of $\Delta a_{m a x}$. In order to account for this maximum value, the value of $\Delta a_{\text {in }}$ inal givon by equation (21) can be increased by the use of the correction factors given in figure ll. Theso factors were obtained by first noting from figure 3 that the time shift of the values of $\Delta \alpha_{m a x}$ from that of an instantaneous deflection to that for any other rate of deflection was approximately equal to t_{1}, the time required to reach the maximum elevator deflection. This result, together with the knowledge that the natural period of vibration about the final trin condition is equal to $2 \pi / b$, places the time at which $\Delta \alpha$ reaches a maximum as aporoximately equal to $t_{1}+\pi / b$. By a somewhat long and tedious derivation, not essential to this paper, the miltiplying factor ior equition (2l) was found to be closely given by
$$
F_{0}=1+e^{-\left(K_{1} / 2\right)}\left(t_{1}+\frac{\pi}{\sqrt{K_{2}-K_{1}^{2} / 4}}\right)
$$

The factor as given applied best when $t_{1} \leqq 0.5$ and for the usuel range of stebilities where $K_{2} \supseteq K_{i}^{i} / 4$. For values outside this range the factor is obviously incorrect. Figure ll shows the factor Fo plotted afainst t_{1} for various values of K_{1} and raitos of K_{1} / F_{2} tinat are likely to exist in an actual case. Alternetively, the maxinum increnent in the wing angle could be found by comput-
ing a few velues of Δa near the time $t_{I}+\frac{\pi}{\sqrt{\mathrm{K}_{3}-\mathrm{K}_{1}{ }^{2} / 4}}$, with the use of equation (14) for this purpose.

Maximum Down-Tail Load Increments

Reference to ficure 3 indicates that, with rapid rates of elevator deflection, tha maximum down-tail load increment occurs when maximum deflection is reached; whereas, with the slowar rates, the maximum increacnt actually occurs before the maximum deflection. On the besis that the meximum tail increment occurs at time t_{1}, equation (17 a) could be rewritten as
$\Delta \alpha_{t_{d}}=\frac{\Delta \varepsilon_{\max }}{t_{1}} \frac{K_{3}}{K_{a}}\left[F_{2}\left(i-\frac{d \varepsilon}{d \alpha}-\frac{d C_{I}}{d \alpha} \frac{\rho}{2} \frac{s}{m} \frac{x_{t}}{\sqrt{\pi_{t}}}\right)-F_{z} \frac{x_{t}}{V}\left(\frac{d t}{d c_{1}}+\frac{1}{\sqrt{n_{t}}}\right)+\frac{d \alpha_{t}}{d \delta} \frac{K_{2} t_{1}}{K_{3}}\right]$
where F_{1} and F_{z} would be the values multiplying the
quantity $\delta_{m a x} K_{3} / t_{1} K_{2}$ of equations (12) and (13) when $t=t_{1}$.

As may be noted from the figures, substitution of
t_{1} for t would yield too low a vaiue of the down-tail angle if the elevator motion wore slow. An analysis of the results of the computations, together with the equations involved, indicated that the maximum down-tail angle will occur either at the time t_{1} or near the time given by $0.4 \pi / b$, depending on which value is the smaller. The value $0.4 \pi / b$ is near the quarter period of the oscillation.

Figure la Eives the values of F_{1} and F_{2} computed by substituting these two values of time into equations (12) and (13). The faired parts of the curves were obtained by applying the value t_{1} and the horizontal portions were obtained by using the value $0.4 \pi / b$ for the time. The approximation to the maximum theoretical value of the down-tail angle obtained by the substitution of the value $0.4 \pi / b$ for the time is not so close, however, as the approximation factor previously given for the wing angle.

Maximum Up-Tail Load Increment

Feference to iqures 3 to ll indicates that the uptail load increment has two values of interest: a maximum value that occurs during the first oscillation of the airplane and a final steady value that occurs when the airplane is trevelings at a constant angle of attack and a constant angular velocity. In the final steady state, the rate of change of the angle of attack is zero; therefore, in ecuation (l7e), which gives the effective tail angle, the middle term becomes zero. If the value $\Delta \alpha_{\text {final }}$ given by equation (2J.) is substituted for Δa in equation (17a; and the resulting expression is simplified, it is found that the final increment of ur-tail angle is very nearly equal to

$$
\begin{equation*}
-\left(\frac{d C_{m}}{d \alpha}\right)\left(\frac{1}{\eta_{t} A}\right)\left(\frac{S b}{S_{t} x_{t}}\right)\left(\frac{1}{d C_{L_{t}}}\right) \Delta \alpha_{f \text { inal }} \tag{24}
\end{equation*}
$$

Equation (24) indicates that the final up-tail load
increment following a conixol aisplacement depends almost directly unon the slope or the niteing-moment curve for the airplane without the tril in place. Such a variation of the final value of the teil load precludes the possibility of fivine the maxinum velue as a factor tines the steady value, the procedure previously used with the wing. A reasonable method seems to be to divide the maximm value into two parts: the steady value already given and an additional value to be added to this given value.
Although it is arpossible to give this extra incre-
ment exactly by eny short expression, the following expression has been found to give a reasonaily close approxinetion

$$
\begin{equation*}
\Delta 8 \frac{d \alpha}{d \delta}\left[e^{-K_{1} / 2}\left(\frac{0.9 \pi}{\sqrt{K_{2}-K_{1} / 4}}+t_{1}\right)\right] \tag{2.5}
\end{equation*}
$$

This ralue was cetermined from an amalysis of the eruations involved as well as of the computed results, and it will be seen that the exponential time factor is similar to that praviousju given in the determination of w_{0} for the wing and is subject to the sane linitations as that factor. Figure 13 gives the variation of the exponential factor F_{3} (the oracieted term of equation (25)) with t_{1} for vacious values of K_{1} and K_{1} / K_{2}.
DISCLSSION OF BQUATIOAS OF KAXIMUA-LOAD INCREKENOS

The equations giten include most of the factora required for the determingtion of the maximum load values of the wing and the tail following a given type of elavator movoment. Beceuse some of the nuantities that appear vary only slightly betwoen airplanes, it may be possible upon the completion of proposed flight tests to introduce average values in the equations that will make theal appear less formidable.

It is obvious that, in any well-ialecnet design, the controls should be capable of being moved sufficiently by the pilot to maneuver the airplane to the applied load factor at all air speeds within the unstalled-flight range. The necessary relation between the elevator deflection and the load factor cen be obtained fromequations (2) and
(22), and the up-tail load is then found from expressions (21). (24), and (25). Although the down-tail load increment is related to the wing load factor through the increment of elevator deflection, it depends so markedly on the rate of movement that the rate must be known or assigned in advance.

At present, little is known regarding the rates of elevator deflection encountered under normal conditions except that a finite leneth of time (of the order of 0.2 sec) is required to apply the necessary force in even the quickest maneuver $\begin{aligned} & \text { ith the controls both aerociynamically }\end{aligned}$ and statically balanced. It seems reasoneble to expect that, even though the controls are moved as rapidy as possible, the effective rate of movement would be slightly reduced owing to aerodynamic lag. Further, it can be expected that the rate of movement would be decreased with an increase in the size of the airplane because of an increase in the inertia of the control system.

Farticularly severe tail loads can be built up if, after movement of the elevator and during the time that the airplane is traveling on a curvilinear path, the elevator is abruptly reversed to an opposite position. This type of movement, under certain conditions, could result in a tail-load increment more than twice the value obtained with the single throw. Such movements are unusual and therefore probably of small concern. It should be noted, hovever, that, in a normel maneuver such as a pull-up, the elevator is returned to neutral more or less rapialy at some time after the initial upward displacenent. If this return to neutral is made at about the time of the maximum upwara load due to damping, substantial upward increment of load may be added to that already existing. Because of these possibilities, the horizontal tail for small maneuverable airplanes should probably be designed to withstand load increments incurred in a push-cown, pull-up condition that would cover the flight $V-G$ envelope from a negative to a positive value of g. The loads for the large airplane should be designed for a similar maneuver, but the rates of movement should be considerabiy lower.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va.

1. Case, John, and Gates, S. B.: Tail Loads in Recovering from a Vertical Dive at Teraincl Velocity, R.\&M. No. 756, British A. त.A., Arril 1921.
2. Gates, S. B., and Howard, H. B.: On the Maximum Load in Pullink out frot Vertical Dives. H. $\mathrm{A}_{\mathrm{M}} \mathrm{M}$. No. 1252, British A.R.C., 1928.
3. Boles, H., and Allward, G. A.: Loads on the Main Flanes and Tail of an Aeroplane then Recovering from a Dive. R.\& M. No. l2 29, British A.R.C., 1928.
4. Kaul, Hans W.: Beeinflussung der Abfangbeanspruchungen durch Gestaltungsmassnahmen und Sicherheitsvorrichtungen. Luftfahrtforschung, BZ. 14, Lfg. 4/5, April 20, 1937, pp. 192-19:.
5. Kaul, Hans V., and Lindenann, Hans: Fiugversuche und fechnungen zur Bestimmung der Luftkräfte am Fluezeug bei Hohenruderbetäifgung. Jahrb. 1938 der deutschen Versuchsanstalt für Luftehrt, ap.. 167-1\%8.
6. Schinint, W., and Clasen R.: Luftlräfte auf Fiügel und Eohenleitwerk bei einem Höhenruderausschlag $\beta_{H}=$
 1987 der deutschen Luftfahrtforschung, R. Oldabours (iünchen), pp. i 160-I 173.
7. Schepisi, Giuseppe: Sulla Sollecitazione del Velivolo nella Ropresa, L'Aerotecnica, vol. XVIII, fasc. 4, Apxil l938, pp. 434-14j.
8. Dickinson, H. B.: Maneuverability and Control Surface Strength Criteria for Larse Airplanes. Jour. Aero. Sci.. vol. 7, no. 11, Sept. 1940, pp. 469-4 7\%.

TABLE I

CHARACTERISTICS USED IN THE COMPUTATIONS

M	Characteristics held constant							
$\frac{7}{1}$	$\begin{gathered} x_{t} \\ (f t) \end{gathered}$	$\begin{gathered} \mathrm{b} \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} s \\ (s q f t) \end{gathered}$	$\begin{gathered} s_{t} \\ (s q f t) \end{gathered}$	K		$\frac{1 O_{L_{t}}}{3 \delta}$	$\frac{d c_{t}}{d \delta}$
	-16	42	248	48.5	1.1	2.83	1.51	0.533

Chersoteristics veried

Case	$\left\lvert\, \begin{gathered} \rho \\ \text { (slugs } / \end{gathered}\right.$ $\text { cu } f t)$	($\begin{gathered}V \\ \text { fps })\end{gathered}$	$\|(1 b / \mathrm{sq} \mathrm{ft})\|$	$\underset{\left(s u_{6} s\right)}{m}$	$\left(\begin{array}{c} I \\ \left(s_{g}-f t^{2}\right) \end{array}\right.$	$\left\lvert\, \begin{gathered}k_{Y}{ }^{2} \\ \left.(f)^{2}\right)\end{gathered}\right.$	$\frac{d C_{m}}{d c}$	$\frac{d C_{L}}{d \alpha}$	η_{t}	$\frac{\mathrm{d} \epsilon}{\text { d } \epsilon}$
1	0.00238	146.6	25.6	140	4400	31.4	0.205	4.15	0.95	0.53
2	. 00238	183.3	40.0	140	4400	31.4	. 125	4.15	. 95	. 53
3	. 00238	220.0	57.6	140	4400	31.4	. $12 \overline{3}$	4.15	. 55	. 53
4	. 00198	201.0	40.0	140	± 400	31.4	. 123	4.15	. 55	. 53
5	. 00168	265.0	57.6	140	4200	23.4	. 125	4.15	. 95	. 53
6	.00198	201.0	40.0	140	4600	32.8	. 125	4.15	. 95	. 53
7	. 00198	201.0	40.0	250	4400	29.3	. 1	4.15	. 95	. 53
8	. 00198	201.0	40.0	140	4400	31.4	. 125	4.56	. 95	. 53
9	. 00198	201.0	40.0	140	4400	31.4	. 125	4.15	. 95	60
10	. 00128	201.0	40.0	$1 \leq 0$	4400	31.41	10	4.15	. 95	. 53
11	. 00238	146.6	25.6	140	4400	31.4	. 225	4.15	1.21	. 53

TABLE II

VARIATION IN LOADS FOR CASE 4 CAUSEI) BY SEPARATPEY CBANGIVG EACH OF A NUMBER OF PARAMITEASS I PGRCENT

Variable chenged	Percentage of chengo in		
	Maxinum increwnt of wing load	Maximum negative increment of tall load	Maximun positive increment of tail loed
Center-of-gravity position	4.65	0.97	21.91
Airplane airepeed, V	2.00	1.97	2.00
Downwash factor, de/da	. 99	. 23	-. 31
Slope of lift curve, $\mathrm{dC}_{\mathrm{L}} / \mathrm{da}$	-. 28	-. 06	. 04
Tail efficiency factor, η_{t}	. 22	-. 48	. 32
Airplane mass, m	. 1.8	. 08	$-.07$
Moment of inertia, I	. 09	. 58	. 22
Altitude	. 06	. 05	. 11

$4 . \times 43$
maca

.

Figure 3.- Effect of rate of elevator deflection and air speed on increments of wing ard tail angle of attack. Cases 1,2 , and 3 .

Figure 4.- Effect of altitude on increments of wing and tail angle of attack. Cases 2,3,4, and 5 .

Figure 5. - Effect of moment of inertia on incremerts of wing and tail angle of attack.
Cases 4 and 6.

Figure 6. . effect of airplane mass on inorements of wine gnd tail ancle of attask. Cases 4 ?nd 7.

IICA

Figure 12.- Factors for determining maximum down-tail load.

[^0]: *As a direct result of the assumptions employed, only the short-period highly damped oscillation appears in the equations.

